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Abstract—With the increasing growth of data and the ability of learning with them, machine learning models are adopted in various
domains. However, few of machine learning models are able to reason their prediction, which limits their further applications in real-world
tasks. With the potential to address this dilemma, model interpretation has become an important research topic because of the ability to
provide the underlying reasons for model predictions at the feature level or concept level. Model interpretation at the concept level
focuses on exploring the roles of concepts in model prediction, which enables more compact and understandable interpretations.
Concept-level model interpretation requires the identification of the concepts that contribute to model prediction and the exploration of the
rules underneath these concepts. To achieve the two objectives, we propose a Concept-level Model Interpretation framework (CMIC)
from the perspective of causality. CMIC can automatically detect concepts in data and discover the causal relation between the detected
concepts and the model’s predicted labels. Furthermore, CMIC ranks the contributions of concepts by their causal effect on the model
prediction, reflecting the detected concepts’ importance. We evaluate the proposed CMIC framework on both synthetic and real-world

datasets to demonstrate the quality of the provided interpretation.

Index Terms—Model interpretation, causal discovery

1 INTRODUCTION

ECENTLY, with the generation of an enormous amount of

data, machine learning models are popular in various
domains due to their ability to learn from data. In the real-
world applications, knowing the reasons behind the machine
model prediction is critical for people to decide whether to
trust the model. Especially in the high-risk domains, such as
medicine and finance, providing the reasons for prediction is
highly desired for safe and broad applications of machine
learning models. Owing to the ability to reveal the inner
mechanism of machine learning models [2], [7], [19], model
interpretation has become a trending topic in recent years.
Moreover, model interpretation is important for a model to
be accepted by real-world applications. In turn, it further
facilitates the model design and debugging when diving into
the reasons behind model predictions to inspect the model.
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Most existing works on model interpretation focus on
single feature level interpretation. Existing methods assign
each underlying feature an importance score, indicating the
key features for model prediction [7], [36]. The representative
scoring methods include the gradient-based scores [36], [38],
Shapley value-based scores [2], [7], [27], [29], [36], [41], and
perturbation based scores [11]. However, interpreting mod-
els at the single feature level suffers from some limitations.
First, a single feature may lack semantic meanings. For exam-
ple, a single pixel in images, a single word in documents, or a
single value in the gene expression data may not correspond
to meaningful semantics. Second, in high dimensional data,
the feature importance vector would be large, which makes
it difficult for a human to understand. Inspecting the impor-
tance vector of all those features is time-consuming, and it
could be challenging to infer a proper interpretation. Third,
when handling high dimensional data, the features may be
noisy or contain redundant information, which makes the
single feature level interpretation vulnerable.

As complementary to the single feature interpretation, the
interpretation at the concept level can overcome the aforemen-
tioned limitations. Concept, an intermediate-level summariza-
tion of data, is more concretized than a single feature, making it
more readable for humans. For example, in medical datasets, a
combination of features, such as patients’ residence, yearly
income, occupation, and education level, compose a socio-eco-
nomic status concept, which is easy to interpret. Moreover, as a
summarization of the original data, the concept can filter out
redundant information and be less sensitive to noise. To con-
duct model interpretation at the concept level, the following
two questions need to be answered: What concepts contribute to
the model prediction? What are their roles in the model prediction?

A few concept-level interpretation methods have been
proposed in the literature to answer the above two questions.
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The quantitative testing with concept activation vectors
(TCAV) [24], and automatic concept-based explanations
(ACE) [15] learn the representations of the pre-defined con-
cepts in the original data space, and adopt gradient-based
score methods to measure the importance of such concepts.
The causal concept effect (CaCE) method [17] adopts an
intervention-based strategy, which modifies the original
data by forcing them to contain or not contain one specific
concept, and the importance of such concept is measured as
the difference in label predictions after the intervention.
Although promising, these existing methods still have some
limitations. Both TCAV and CaCE require prior knowledge
about the concept. Besides, TCAV and ACE generate model-
specific interpretations, which require access to the struc-
tures and parameters of the model. Furthermore, CaCE relies
on pre-defined causal relations between the concepts and the
model predictions to calculate the importance score of a con-
cept, which might obtain unreliable results when the
assumption about the causal relation is not satisfied.

In light of the above challenges, we propose a Concept-
level Model Interpretation framework from the Causal
aspect, abbreviated as CMIC. CMIC automatically extracts
potential concepts in the available data and meanwhile pro-
vides readable descriptions of the extracted concepts. To
explore what concepts contribute to the model prediction
and analyze their importance, the relationship between the
extracted concept and the model’s predicted labels is stud-
ied from a causal aspect. A concept contributes to the model
prediction if it is a cause of the predicted label. The causal
effect of a concept on the predicted label is viewed as the
importance score of this concept. Our CMIC framework
consists of three components. In the first component, con-
cepts are extracted in an unsupervised way, along
with the generation of understandable descriptions for each
extracted concept. In the second component, a causal graph
for the extracted concepts and the predicted labels is con-
structed to identify concepts that contribute to the model
prediction. The third component is the causal effect analy-
sis. The importance score of the identified concept is calcu-
lated, which is regarded as the causal effect of such a
concept on the model predicted labels. Experiments on both
synthetic and real-world datasets show that the proposed
CMIC framework can generate meaningful concept-level
model interpretations, which provides a lens to explain the
performance difference of different classifiers.

The rest of this paper is organized as follows. In Section 2,
we discuss of the related work on model interpretation. Sec-
tion 3 presents an overview of the propose CMIC frame-
works. In Section 4, the details of the proposed CMIC
framework are presented. Section 5 introduces the experi-
ments on both synthetic and real-world datasets. Finally,
Section 6 concludes this paper and points out the future
directions.

2 RELATED WORK

We summarize the related work into four categories: (1)
Local interpretation; (2) Global interpretation; (3) Counter-
factual interpretation; (4) Concept-based interpretation.
Local Interpretation. In recent years, various local interpre-
tation methods have been proposed to provide explanations
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for classification models through scoring the importance of
each input feature for a given instance[2], [7], [9], [18], [26],
[27], [29], [34], [38], [41]. The authors in [34] propose
LIME (Local Interpretable Model-Agnostic), an interpretation
method that explains the predictions of any classifier in an
interpretable and faithful manner, by learning an interpret-
able model locally around the prediction. Besides, a family of
quantitative input influence measures that capture the degree
of influence of inputs on outputs of systems is introduced [9].
DeepLIFT ((Deep Learning Important FeaTures) [38] is
proposed for decomposing the output prediction of a neural
network on a specific input by backpropagating the contribu-
tions of all neurons in the network to every feature of the
input. In addition, the Shapley-value-based methods have
been proposed to provide local interpretations, by assigning
each feature an importance value for a particular predic-
tion [2], [71], [271, [29], [36], [41].

Global Interpretation. In contrast with local interpretation
methods that only capture the local behavior of the model
on a local region of the input space, global explanation
methods [19], [22], [28], [33], [34], [42], [45] aim to explain
the overall decision-making process of a model. Some meth-
ods in this category provide global explanations via the sur-
rogate models [28], [33], [45]. For example, the authors
in [33] propose to learn if-then rules to globally explain the
behavior of black-box models that have been used to solve
classification problems. There are also some other global
interpretation methods [19], [22], [34], [42] that can provide
explanations for different populations. In [42], model distil-
lation is leveraged to learn global additive explanations that
describe the relationship between input features and model
predictions. In [22], the authors provide a global attribution
method by grouping local features with similar importance
scores. In [34], the global interpretation is constructed by
aggregating the weights of linear models. In [19], the
authors use an enhanced mixture model to approximate the
target model, and then extracts the global interpretations
from the derived enhanced mixture model.

Counterfactual Interpretation. Counterfactual has been
extensively discussed in the causal inference literature [32].
Recently, some counterfactual explanation methods [1], [40]
have been proposed to explain predictions of individual
instances. The authors in [40] show example explanations,
discuss their strengths and weaknesses, illustrate how they
can be used to debug the underlying model, inspects its fair-
ness, and also unveils security and privacy challenges that
they pose. Moreover, CoCoX (shorted for Conceptual and
Counterfactual Explanations), introduced in [1], can explain
decisions made by a convolutional neural network (CNN)
using fault-lines. Specifically, given an input image for
which a CNN model predicts a class, the proposed fault-
line based explanation can identify the minimal semantic-
level features (referred to as explainable concepts).

Concept-Based Interpretation. By far, there are some concept-
based interpretation methods have been proposed [13], [14],
[15], [20], [30], [35], [46]. The authors in [24] lay out the general
principles and desiderata for the concept-based explanation,
and then proposed TCAV method, which tests the concept
activation vectors to reflect the concept importance. Further,
based on TCAYV, a systemic framework ACE [15], is devel-

oped to identify hi§her—1eve1 concepts that are meaningful
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TABLE 1
Comparison Between CMIC and Existing
Concept-Level Interpretation Methods

Method Automatic Concept ~ Explore Causal  Causal Graph
Detection Relationship Learning

TCAV X X X

ACE v X X

CACE X v/ X

AutoRMI v X X

CMIC v v v

to humans. In [46], concept-based explainability for DNNs
(Deep Neural Networks) is studied in a systematic
framework, and proposes a concept discovery method
that considers two additional constraints to encourage
the interpretability of the discovered concepts. Further, in
[13], the authors improve the interpretability of a similarity
learning system, and designs a deep interpretable architec-
ture for similarity learning built upon hierarchical concepts.
CaCE [17] examines the importance of the concept by com-
paring the prediction difference on the data with or without
such a concept. In [14], the authors provide node-level con-
cept-based reasoning for graph neural network (GNN) mod-
els by introducing Concept Bottleneck Graph Neural
Networks (CBGNNSs). In [20], the authors propose a auto-
matic and robust model interpretation method (AutoRMI),
which automatically generates the prototype-based concept
explanations with certified robustness guarantees. In [35],
the authors propose a framework that can add to any back-
bone neural network to jointly learning to predict and gener-
ate the ante-hoc explanations via concepts.

Compared with the existing concept-level interpretation
methods, the proposed CMIC framework works for black-
box models, which is a significant difference to model-spe-
cific interpretations [15], [24], [46]. Besides, different from
CaCeE [17] and TCAV [24] that require concept specification,
CMIC is able to detect the concepts and express readable
concept meanings automatically. Another significant differ-
ence between the proposed CMIC and CaCE is that CaCE
predefines the causal graph, which may not always be faith-
ful to the actual causal graph, and CMIC avoids this draw-
back by discovering causal relations from data. Overall, We
compare our work with existing works including TCAYV,
ACE, CACE, and AutoRMI in terms of the following three
aspects: (1) whether it can automatically extract the concept,
(2) whether it explore the causal relationship between the
extracted concepts and the prediction, (3) whether it learns
the causal graph between the extracted concepts and the pre-
diction. The comparison between CMIC and existing con-
cept-level interpretation methods is summarized in Table 1.

3 OVERVIEW

3.1 Problem Definition

The studied problem is to interpret a target classification
model, denoted as f, at the concept level. The input of the
proposed CMIC framework includes a sample set denoted
as X, and the output labels of model f, denoted as Ly, where
X € R™? n is the number of samples in X, d is the number

of features, and Ly = f(X) € R". For presentation clarity,
Authorized licensed use limited to: Purdue
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we name Ly as the f-label. The output of our framework is
the concept-level interpretation for the target model f,
including a set of N, concepts {A4;}~, with each concept
associated with human-friendly concept meanings, a causal
graph G which shows the causal relation between the
extracted concepts and Ly, and the importance scores of
concepts that are relevant to the model f.

3.2 Proposed Framework

Fig. 1 shows the framework of our proposed CMIC interpre-
tation method, which contains three steps. The first step is
concept extraction, in which the potential concepts in the
feature data X are extracted in an unsupervised way. In
order to identify model- f related concepts, our second step,
denoted as concept-label causal relation discovery, aims to
explore the relationship between the extracted concepts and
the f-label. Naturally, those model-f related concepts iden-
tified in the second step are fed into the last step called con-
cept effect analysis, whose objective is to understand the
significance of the identified concepts in model-f’s label
prediction. The following section introduces the three steps
at length.

4 METHODOLOGY

4.1 Concept Mining

How to quantitatively define and extract concepts from
data, such as images and text, has been an active research
topic for decades [23]. In this work, we focus on extracting
concepts from structured data. Specifically, concept is
defined as some common characteristics shared by a subset
of samples in the dataset. Based on the definition of the con-
cept, the samples containing the same concept can be
viewed as a cluster. Therefore, in the first stage of concept
extraction, CMIC explores the discriminative clusters in the
dataset as much as possible. Next, the concept meaning con-
tained in each cluster will be extracted to illustrate the con-
cept quantitatively.

4.1.1  Discriminative Clustering for Concept Detection

To fulfill the requirement of exploring as many discrimina-
tive clusters as possible, we adopt the discriminative clus-
tering [39] method described as follows. The entire dataset
X is separated into two sets, i.e., a “discovery dataset” D
and a “natural dataset” N. The discovery dataset aims to
discover all potential clusters, and the natural dataset is an
auxiliary source to ensure the discovered clusters are dis-
criminative. In detail, initial clusters in the discovery dataset
are estimated by the K-means clustering. For each cluster
whose size is larger than a pre-defined parameter £, a binary
SVM (Support Vector Machine) classifier [43] is trained by
considering this cluster as the positive class and the natural
dataset as the negative class. After training the SVM classi-
fier on the combined dataset, the top m samples with the
highest SVM scores in the discovery dataset are used to
form a new cluster associated with that SVM classifier. The
above two procedures, SVM classifier training and label
assignment on the discovery dataset, are repeated until
convergence.

niversity. Downloaded on October 19,2023 at 20:23:36 UTC from IEEE Xplore. Restrictions apply.
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Fig. 1. The framework of CMIC. The proposed CMIC framework contains three steps. The first step is concept extraction, which automatically discov-
ers the potential concepts and transforms the original data into concept-level data. The second step is causal structure learning, which explores the

causal relationship between the extracted concepts (A4;, Ao, ...,
the importance of the concept from the causal view.

The motivation of using the SVM classifier on the com-
bined dataset is to ensure that the detected cluster in the dis-
covery dataset is discriminative to the whole dataset.
Therefore, clusters detected by the discriminative clustering
perfectly fit our requirements.

4.1.2 Concept-Level Data Transformation

After discriminative clustering, we can obtain totally N,
SVM classifiers, and each classifier is a detector for one spe-
cific concept. One sample = € R” contains the i-th concept if
S;(z) = 1, where S;(-) denotes the i-th SVM classifier.

By utilizing the obtained SVM classifiers, the original
data can be transformed into concept-level data. Let A €
RN denote the transformed concept data, and A4;; =
Sj(z;), where S; is the j-th SVM classifier, and z; is the i-th
sample of X. In other words, 4, ; € {0,1} indicates whether
the i-th sample x; contains the j-th concept or not.

After obtaining the concept detectors and transforming the
data into a concept space, the next stage is to quantitatively
explore the semantic meaning of each extracted concept.

4.1.3 Concept Meaning Extraction

Our concept meaning extraction method is motivated by the
fact that one concept can be expressed by the combination of
its proxy variables. For example, the concept “good socio-eco-
nomic status” can be expressed as the features “yearly income”
> 200K and “residence” in wealthy neighborhoods (e.g., Los
Altos Hills in California). We assume that the meaning of each
concept is a subset of features with certain value ranges.
Based on this assumption, we propose a two-step procedure
for concept meaning extraction: (1) Select a subset of features;
(2) Determine the value range of each selected feature.

Step 1: Feature Selection. A feature selected to describe the
concept meaning should satisfy the following criteria. (1)
Within the cluster, the values of feature should be homoge-
neous. (2) Across clusters with different concepts, the values
should be heterogeneous. To fulfill the requirements, the
following is proposed for feature selection.

Let S; denote the SVM classifier of the i-th concept. Let

! denote the positive sample set with respect to the i-th
concept e, X0 =[@M7T, @, ..., (xx)) 1*, where X
€ RNixd, ( € X satisfies S;(x <")) > 0.5, for j=1,2,...,N;.
Si(m?’)) is the output of the i-th SVM classifier, which is the

probability of containing the i-th concept. N; is the number
Authorized licensed use limited to: Purdue
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Ay) and the f-label L;. The last step is the Concept Effect Analysis, which measures

of samples in X and d is the total number of features in
the original dataset X. Implementing the second criterion
involves other concepts’ clusters. To this end, we construct a
negative sample set for the i-th concept, denoted as X(~%), and

, T N 71t
X)) ()]

where X9 RN ixd x§7i>,x(27i), e x(\,j’)

ples with S;(z\ ) < 0.5,j=1,2,..., N,
Based on our design criteria, we propose the following
objective function to select features that form a concept.

are the top N; sam-

Ne d .
max >3 b (deros (XL X0) + dysiia (X))
e
d
—A) 1 a
; {p,’ >0.5}
st 0<pl <1, 1)

where pk denotes the probability that the k-th feature is
selected to form the concept in the i-th cluster. X denotes
the vector of the k-th feature in X, diyos(-, ) denotes the
cross concept distance, and dyithin measures the homogene-
ity of the feature within the concept. 1, is an indicator
function, and X is a hyperparameter. By maximizing the first
term, features with high heterogeneity across the clusters
and high homogeneity within the cluster will be selected.
The second term is a regularization term restricting the
number of selected features.

To make the Eqn. (1) differentiable, the Wasserstein dis-
tance [8], [44] is adopted to measure the heterogeneity across
the concept, and the variance is used to measure the homoge-
neity within the concept. Besides, a differentiable approxi-
mate function to the regularization term is also adopted.
Overall, the transformed objective is shown as follows:

K
(4) (@) (=) _ (4)
m%xz:pk (WASS(Xk , X, ) — var(X)] ))
py k=1
= Al fap(P)ll

st 0<pl) <1, )
where WASS(,

variance; fu,(P

-) is the Wasserstein distance; var(-) is the

) is the auxiliary approximation function
estrictions apply.
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with fo,(z) = . where v is a

(rexp(—ula+2)) (1 +exp(—o(1—a+1))
scalar value determining the appr0x1mate level; P is the fea-
ture selection probability matrix, P;; = pj ;|- || is the Fro-
benius norm.

By solving the transformed objective function Eqn. (2),
we can obtain the feature selection probability matrix P. If
p,g) > 0.5, the k-th feature is selected as the forming feature
of the i-th concept.

Step 2: Value-Range Determination. This step determines
the value ranges associated with the selected features to
generate human-friendly concept meaning. Suppose the
k-th feature is selected as the component of the i-th concept,
and its positive sample set is X If the selected feature is
categorical, the item that appears most frequently in X (,)
the value of this feature in the i-th concept. The quantile sta-
tistics are adopted if the selected feature is ordinal (either
continuous or discrete). As the positive samples might be
noisy, using quantile statistics can avoid this issue to some
extent. Then, the value range is defined as an interval:
[25% percentile of X,i , 75% percentile of xU >]

4.2 Causal Structure Learning

Concepts are extracted in the previous step; however, not all
concepts contribute to the label prediction. This subsection
aims to explore the causal relationships between the con-
cepts and the model predicted labels, and select the impor-
tant concepts for further analysis.

The important concepts contribute to the label prediction,
leading to a causal relationship between the important con-
cepts and the predicted label. Therefore, in this section, we
explore the causal structure between the concepts and
f-label. One effective approach for exploring the causal
structure between variables is the causal discovery model. In
general, causal discovery estimates a directed acyclic graph
(DAG) from data, which reflects the causal relationships
between variables. Let G denote a directed acyclic graph. A
causal graph can be expressed as G = < V,E > , where V is
a set of nodes representing the extracted concepts and
f-label,ie., V = {A, Ay, ---, An,, Ly}, A; is the i-th concept,
Ly is the f-label, and E is a set of arcs with each arc V; — V;
(A; — Aj or A; — Ly) describing a causal relation between
two nodes. For notation clarity, we use V; to denote the i-th
element in V. In summary, the inputs of our causal discovery
model are the transformed concept-level data A and f-labels,
denoted as D,, where D, € R"™*Wetl) g a concatenation of A
and L;, and the output is the causal graph G indicating the
causal relationships among { Ay, As, ..., An,, Ls}.

Causal structure learning aims at learning a causal graph
and ensuring all the directions of the causal graph are deter-
mined. In other words, the learned graph is a causal graph
instead of a Bayesian network or Markov equivalent classes.
Therefore, we adopt the Structural equational likelihood
framework (SELF) [5], which dissolves the ambiguity from
the Markov equivalent classes, and provides a unified and
theoretically robust methodology for causal structure explora-
tion. SELF focuses on the noise estimation, by maximizing the
global likelihood of the entire Bayesian network while pre-
serving local statistical independence between noise and
cause variables.

8803

In detail, for a node V; € V, it can be presented by the
causal mechanism: V; = F (II(V;)) + e;, where F; is the
causal function of V;, I1(V;) is the parent nodes of Vj, and e;
is the randomized noise which is independent of II(V;)
(e; LII(V;)). Then given the data D, we can construct a
causal graph G and corresponding structural equations F;
for all variables in A; and L; by maximizing the score func-
tion, which is defined as:

Ne+1

D) = Z log (P(e; = V; — Fy(TI(V;))) = log n,
3)
where M is a penalty, d, is the number of total coeffi-

cients used in {F; }ACH In particular, L; ¢ II(A;), which

means that the f-label can not be the cause of concepts.
After the causal discovery on the transformed dataset, the
learned causal graph directly reveals the causal relationships
between the concepts and the f-labels. The concepts, which
have the causal path to the f-label L, are selected as impor-
tant concepts for the effect analysis in the next subsection.

4.3 Concept Effect Analysis

Analyzing the effect of concepts helps understand the different
roles that the concepts play in the target model's
label prediction. With the causal graph available, Pearl’s graph-
ical causal model (GCM) [32] is adopted to measure the causal
effect of concepts on the model’s predicted labels. The core of
GCM is the intervention, which, in our case, aims to study how
the predicted label changes when we forcibly restrict all the
samples containing or not containing one specific concept.
Mathematically, GCM utilizes the do-calculus to model the
causal effects. In particular, the adjusted model prediction after
intervention on the i-th concept is denoted as p(Ly|do(A4;)),
where do(A;) = 1 means forcibly making all samples contain
the i-th concept A;, and, similarly, do(A;) = 0 indicates forcing
all samples not to contain the i-th concept. Based on the inter-
vention, the effect of the i-th concept is formulated as:

Ey; = p(Ly = 1|do(A;) = 1) — p(Ly = 1|do(4;) = 0).
4)

Binary labels are considered in Eqn. (4). When there are multi-
ple labels, they can be automatically transformed to binary
labels by one-hot encoding, and when the label is continuous,
the Eqn. (4) can be transformed into the expectation version:

Ey, = E[Ls|do(A;) = 1] — E[Ly¢|do(A;) = 0].

After defining the concept effect by the do-calculus, the
complete identification algorithm (ID-algorithm) [37] is
adopted to transforms the above do-calculus expression
into a regular probability expression. We use a toy example,
whose causal graph is shown in Fig. 2, to illustrate how to
identify the effect. In Fig. 2, the second concept A, has some
confounded paths to Ly, which means A, and L; have some
common causes, A; and Aj. Therefore, according to the
back-door criteria [32], the probability of L; after interven-
tion on A, is formulated as:

p(Lyldo(A)) = Y p(LylAs, Ay, As) P(A1)p(As). ®)

Authorized licensed use limited to: Purdue University. Downloaded on October 19,2023 at 20:23:3§U‘?@3 from IEEE Xplore. Restrictions apply.
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As A, Ay

Fig. 2. An example of causal graph.

Compared with Aj, there is no confounded path between L;
and A;, A3, As. Thus the probability of L after intervention
is: p(Ly|do(A;)) = p(Lyf|A;), where i = 1,3, 4.

Overall, after calculating the effect of each concept on the
f-label, the model-f related concepts can be ranked based
on these effects, which provide concept-level model inter-
pretations from the perspective of causality.

5 EXPERIMENTS

In this section, we conduct experiments on synthetic and real-
world datasets to validate the following aspects: (1) CMIC can
extract high-quality concepts. (2) CMIC can provide concept-
level reasoning and interpretations to explain the perfor-
mance differences of different classifiers.

5.1 Experiments on Synthetic Dataset
Since there are no ground truth concepts in the real-world
datasets, we experiment on the synthetic dataset, whose data
are generated from the pre-defined concepts, to evaluate the
concept extraction procedure quantitatively.

5.1.1 Data Generation

The synthetic data generation contains two steps: (1) Con-
cept-level data generation; (2) Feature-level Data Generation.
Concept-Level Data Generation. In this step, the concept-
level dataset is generated according to the predefined causal
graph, shown in Fig. 3. The procedure for generating the
four concepts and the label is as follows: A;, A, A3, Ay ~
Bernoulli(0.5), Ly ~ Bernoulli(logit(—A; +3A4;—2A43 + 4A4)),
where logit denotes the logistic function. After repeating
the above procedures 100 times, we obtain the concept-level
synthetic data A € R'"** and the label vector L; € R'".

Feature-Level Data Generation. The concept meaning is
defined in Table 2, where d; represents the i-th feature, and
its value range is specified by its following interval. The
concept meanings, along with the concept-level data, deter-
mine the value range of each feature in each sample, and
thus the feature values can be sampled accordingly.

To better describe the feature-level data generation pro-
cedure, the sample, whose concept-level data is [1,0,1,0], is
taken as an example. According to Table 2, the value range
for each feature is: {d; : [-1,1],ds : [-5,3], ds ¢ [10,14] or

A3 /AZ
A, Ly A,

Fig. 3. Causal graph to generate synthetic concept.
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TABLE 2
Synthetic Data Generation: Concept Meaning
Concept Meaning
A] d]Z [*1,1], d23 [*5.3}
AQ dgl [10, 14], d_1 [5, 7}
Ag d52 [97 11], dﬁ: [10‘ 14]
A3 d72 [15, 17]

dy & 15,7],ds : [9,11],dg : [10,14],d7 ¢ [15,17]}. The feature-
level data is generated by the following procedures.

e For the features whose value range does not contain
¢ notation, their values are uniformly sampled on
the specified interval. In this example, the values of
feature di,ds,ds,ds are uniformly sampled from
intervals [—1, 1], [-5, 3], [9, 11], [10, 14], respectively.

e For the features whose value range contains the ¢
notation and the “or” logic, they are first sampled from
a predefined range, named as open range. Then, we
check whether the generated values satisfy the “or”
condition. If not, we repeat the sampling procedure
until satisfying. In this example, the values of d3 and d,
are first uniformly sampled from the open range
[—20, 20], and then we check whether the sampled val-
ues satisfy the “or” condition.

e For the features whose value range only contains ¢
condition, their values are uniformly sampled from
the open range excluding the interval marked by ¢ .
In this example, the open range is [—20, 20], and the
value of d; is uniformly sampled from the interval
[—20,15) N (17, 20].

5.1.2 Experiment Settings

In the following, the baselines and the evaluation metric
adopted in the experiment are introduced.

Baselines. We compare our proposed concept extraction
method with spectral bi-clustering [10], [25], which simulta-
neously clusters rows and columns of the data matrix. Each
cluster of rows and columns determines a sub-matrix of the
original data matrix in bi-clustering. Thus, each sub-matrix
can be viewed as a concept, and the concept-level data can
be acquired accordingly.

Evaluation Metric. Since the concept-level transformation
is based on the clustering results, evaluation metrics that
are commonly used in clustering can be adopted. In this
experiment, we adopt the Adjusted Rand Index (ARI) [21]
as the evaluation metric, and a higher ARI score indicates a
better performance.

5.1.3 Results and Analysis

Fig. 4 shows the results of our proposed CMIC method and
the bi-clustering method. The cell of the i-th row and the j-th
column is the ARI score between the i-th ground truth con-
cept and the j-th extracted concept. In other words, each cell
represents the ARI score between the i-th column in the
ground truth concept-level data A and the j-th columnin A",
where A” is the transformed concept-level data either by
CMIC or bi-clustering. The left subplot shows the ARI results
of our proposed method, and the right one shows the results
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Fig. 4. ARI Score between ground truth concepts and the extracted concepts by different extraction methods.

of the baseline method, where the y-axis label “GT Concepts”
denotes the ground truth concepts. The hyper-parameter A of
CMIC in Eqn. (2) is setas 0.1.

From Fig. 4, it can be observed that the concepts
extracted by our proposed method can cover more ground
truth concepts than the baseline method of bi-clustering.
One possible reason is that, bi-clustering performs hard
clustering on all the features, which limits concepts” expres-
siveness. In contrast, in our proposed method, one feature
can be included in multiple concepts, which brings more
flexibility to concept extraction.

5.2 Experiments on Real-World Datasets

In this section, we experiment on two real-world datasets to
qualitatively examine the following: (1) The extracted con-
cepts are meaningful; (2) Explain why different classifiers
perform differently at the concept level.

5.2.1 Dataset

In this experiment, two publicly available real-world data-
sets are adopted, including the Bank Marketing dataset and
Divorce dataset.

Bank Marketing. This dataset is first introduced in [31],
which records results of the direct marketing campaigns
(phone call) on 4522 clients.! In this dataset, there are 17
attributes related to clients’” demographic information such
as age, job, marital status, phone call duration, previous and
current campaign information, and the outcome of the previ-
ous campaign. The class label is binary, indicating whether
the product (bank term deposit) was subscribed.

Divorce. This dataset was collected in a study about
divorce [47]. In the study, divorced couples and couples with
happy marriages are required to answer 54 questions, scaled
from 0 to 5, related to their marriage. The classification label is
binary, indicating whether they are divorced or married cou-
ples. Overall, there are 170 records available in the dataset.?

1. https:/ /archive.ics.uci.edu/ml/datasets /Bank+Marketing
2. https:/ /archive.ics.uci.edu/ml/datasets/Divorce+Predictors+
data+set
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TABLE 3
F1 Score of Models on Real-World Datasets
SVM DT RF NN Ada
Bank Marketing 0.47 0.41 0.45 0.41 0.39
Divorce 0.42 0.89 0.98 0.98 0.98

5.2.2 Experimental Settings

As none of the existing methods achieve both the two goals
(1) automatic concept extraction, (2) concept-level black-box
model interpretation, we qualitatively show the interpreta-
tion generated by our proposed CMIC framework for the fol-
lowing classifiers: SVM [6], Decision Tree (DT) [4], Random
Forest (RF) [3], Neural Network (NN) [16], and AdaBoost
(Ada) [12]. Those classifiers’ classification quality is listed in
Table 3. From the table, in the Bank Marketing dataset, the
adopted classifiers all have low-performance scores, while
most of the classifiers work well in the Divorce dataset. In
the rest of this subsection, this phenomenon’s explanations
will be provided by using the interpretations generated by
our CMIC framework.

5.2.3 Result Analysis

Figs. 5 and 6 show the generated causal graphs of different
classifiers on two datasets. The ground truth label causal
graph is obtained by running the SELF algorithm, men-
tioned in Section 4.2, on the original data. The node marked
as L (the red node) in each sub-figure denotes the classifier’s
output label, and the node named as A4, is the i-th extracted
concept. The edges between the direct cause of f-label and
f-label L; are marked as blue.

From the figure, the causal graphs of different classifiers
vary, which, to a certain degree, explains why the classifiers
have low classification quality. Compared with the causal
graph of the ground-truth label, Figs. 5f and 6c, none of the
classifiers embed all relevant concepts; even worse, some clas-
sifiers predict the label based on some irrelevant concepts.

We also list the execution time of CMIC on two datasets
in Table 4. From the table, it can be observed that it takes

Authorized licensed use limited to: Purdue University. Downloaded on October 19,2023 at 20:23:36 UTC from IEEE Xplore. Restrictions apply.
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Fig. 6. Causal graph results on divorce dataset.

more time on the Bank Marketing dataset. The reason is that
the Bank Marketing dataset is much larger than the Divorce
dataset, which leads to more time consumed in the concept
extraction component.

Besides the causal graph, the effects of relevant concepts
associated with each classifier are shown in Table 5. The NA
indicates that the concept is not relevant. The positive effect
means the appearance of this concept would increase the

probability of the label being positive, and the negative effect
Authorized licensed use limited to: Purdue University.

ownloaded on October 19,2023 at 20:23:36 UTC from IEEE

leads in the opposite direction. It is observed that classifiers
with high prediction quality have similar concept effects
with the ground truth.

We also conduct an additional experiment to validate the
extracted concepts by applying intervention to the original
data. Specifically, the concept of the one data record is
flipped by changing the corresponding features within/out
of the concept meaning scope. Based on the modified data,

the classifiers then make the Erediction. If the concept is
plore. Restrictions apply.
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TABLE 4 TABLE 6
Running Time Label Prediction Change Portion
Bank Marketing Divorce Dataset Concept SVM DT RF NN Ada
Running Time () 149.96 10.21 A 9.5% 241% 152% T4%  6.6%
Bank As 10.1% 20.1% 10% 81% 4.1%
Ay 9.5% 46.6% 38.1% 18.2% 31.8%
indeed relevant and its extract meaning is meaningful, the . A, 38.2% 21.8% 0.6% 12%  0.6%
prediction will differ from the original one. Table 6 shows Divorce 4 38.2% 45.3% 37.6% 29.4% 40.0%

the change portion of the predicted label when intervention
on the most relevant concepts. From the table, when flip-
ping the concept, most of the classifier prediction changes,
indicating the relevance of the concepts.

5.2.4 Concept Meaning

Tables 7 and 8 list the detailed meanings of the concepts that
are the direct cause of the f-label on the Bank Marketing
dataset and Divorce dataset, respectively. In Table 8, Q;
denotes the i-th question, and the following interval repre-
sents the range of its answers in the concept. For example,
Q1 is “If one of us apologizes when our discussion deterio-
rates, the discussion ends”, and @) is “I know we can ignore
our differences, even if things get hard sometimes”. More
details of each are available on the data source page.

From the previous concept effect table, Table 5, concept Ag
is the most important concept, which positively affects the
label. By checking the concept meaning in Table 7, it indicates
that married aged people, who don’t have housing loans and
didn’t receive the previous marketing campaign, tend to sub-
scribe to the bank product, if the duration of their last contact
is long. This case coincides with our common sense: Married
old people without housing loans usually have generous sav-
ings or pensions, and the long duration of the last contact indi-
cates their willingness to subscribe. The results validate that
our CMIC framework is able to extract high-quality concepts
and provide reasonable model interpretations.

6 CONCLUSION

Interpreting machine learning models at the concept level
assists in providing more understandable reasoning of the
model prediction. In this work, we propose the CMIC frame-
work, which automatically extracts meaningful concepts, and
discovers the causal relations between the concepts and
model predicted labels to explain the model prediction. In the
proposed CMIC framework, the concepts which serve as the
cause of the model predicted label contribute to the model
prediction, and the causal effects indicate their importance in
model prediction. In the experiments, we quantitatively and
qualitatively evaluate the extracted concepts as well as the
generated interpretation using our CMIC framework. Results
show that CMIC can generate meaningful concept-level
model interpretations, which could also explain the behaviors
of different classifiers.

Future Work. In this work, we focus on automatically
extracting the meaningful concepts and analyzing the effect
of the concepts on the prediction in a post-hoc manner.
There are some future directions: (1) As the learned con-
cept-based explanations, to some degree, indicate the rea-
sons for different performances, utilizing the learned
explanations to improve machine learning training is one of
the future directions. (2) Concept extraction is the basis of
our framework, therefore how to extract more human-

TABLE 5
The Effect of the Concept to the Prediction

Dataset Concept SVM DT RF NN Ada GT
Ao —0.10 —-0.24 —0.18 —0.09 —0.08 —0.12
Ay 0.07 0.12 0.14 0.12 0.11 0.13
As 0.21 0.14 0.12 0.01 0.11 NA
Ag 0.23 0.25 0.27 0.30 0.32 0.24
Alp —0.09 —-0.23 -0.17 —0.09 —0.08 —0.11
Az 0.06 0.07 0.10 0.04 0.05 0.06
Asr NA NA NA NA NA 0.01

Bank Asg NA NA NA —0.09 NA NA
Aqg NA NA NA NA 0.13 NA
Ass NA —0.49 —0.25 —0.17 —0.15 —0.28
Ass —0.05 —0.09 —0.08 —0.08 —0.08 —0.08
Asg —0.11 NA —0.23 —0.11 —0.10 —0.15
Aso -0.02 NA —0.04 -0.07 —0.06 —0.04
Ass 0.01 —0.01 —0.01 —0.06 —0.03 —0.02
Asy —0.08 —-0.13 NA —0.16 —0.08 —0.06
Ay —0.61 NA NA NA NA 0.51

Divorce Ay —0.55 —0.62 —0.71 —0.71 -0.71 —0.72
Ay —0.56 —0.65 —0.73 —0.73 —0.71 —0.72
A 0.48 NA NA NA NA NA
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TABLE 7
Detected Concepts and Their Meanings on Bank Marketing Dataset

Concept

Concept Meaning

Ay

last contact duration: [23.25, 92.0];

number of contacts performed during this campaign and for this client: [14.5, 25.75];

number of days that passed by after the client was last contacted from a previous campaign: [-1];
number of contacts performed before this campaign and for this client: [0];

job admin.: 0; job entrepreneur: 0; job student: 0; education primary: 0;

outcome of the previous marketing campaign unknown: 1

A

age: [45, 71]; number of contacts performed during this campaign and for this client: [1.0, 2.0]
number of contacts performed before this campaign and for this client: [2.0, 9.0]

job housemaid: 0; marital single: 0; education unknown: 0;

outcome of the previous marketing campaign, success: 1

As

age: [25, 36]; average yearly balance: [3.75, 683.5]; job admin.: 0; job management: 0;
job retired: 0; job self-employed: 0; job student: 0; job technician: 0; marital single: 1;
outcome of the previous marketing campaign failure: 0

Ag

age: [65, 79]; has housing loan?: 0; last contact duration: [206.0, 503.25];
marital single: 0; education tertiary: 0;
outcome of the previous marketing campaign, failure: 1;

has personal loan?: 1; last contact duration campaign: [22.5, 93.0] ;

number of contacts performed during this campaign and for this client pdays: [14.75, 25.0];

number of days that passed by after the client was last contacted from a previous campaign previous: -1;
number of contacts performed before this campaign and for this client: 0

has credit in default?: 0; has personal loan?: 0; job management:0; job entrepreneur: 0; education primary: 0;
number of contacts performed during this campaign and for this client: [1.0, 1.25];
contact communication type is cellular: 1

has housing loan?: 0; last contact duration: [266.25, 961.75] ;

number of contacts performed during this campaign and for this client: [1.0, 2.0];
number of contacts performed before this campaign and for this client: [0.0, 2.25];
job admin.: 0; job management: 0; job self-employed: 0; marital divorced: 0;
outcome of the previous marketing campaign, other: 0;

average yearly balance: [119.75, 821.75]; job retired: 0;
job services: 0; education tertiary: 1;
outcome of the previous marketing campaign: success: 0

number of contacts performed before this campaign and for this client: [7.75, 18.25]
job student: 0; outcome of the previous marketing campaign is success: 0;

last contact duration: [59.5, 265.75]; marital divorced: 1; education primary: 0;
contact communication type is telephone: 0; contact communication type is unknown: 0;
number of days that passed by after the client was last contacted from a previous campaign: -1;

age: [32, 47]; number of contacts performed during this campaign and for this client: [8.5, 21.75];
number of days that passed by after the client was last contacted from a previous campaign previous: -1;
number of contacts performed before this campaign and for this client: 0; job admin.: 0;

outcome of the previous marketing campaign unknown: 0

last contact duration: [27.0, 93.0]; job entrepreneur: 0; marital divorced: 0;
number of contacts performed during this campaign and for this client: [3.0, 25.25];

last contact duration: [148.5, 281.75];

number of contacts performed during this campaign and for this client: 1;
job blue collar: 0; job entrepreneur: 0; job housemaid: 0; job management: 0;
marital divorced: 0; outcome of the previous marketing campaign, failure: 1

has personal loan?: 0; job retired: 0; education primary: 0; education primary: 0; job unemployed: 0;
outcome of the previous marketing campaign is failure: 0

number of contacts performed before this campaign and for this client: [3.75, 10.5]; job blue-collar: 0;
job management: 0;contact communication type is telephone: 0;
outcome of the previous marketing campaign is success: 0;
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TABLE 8
Detected Concepts and Their Meanings on Divorce Dataset

Concept

Concept Meaning

A

Q1:10.0, 0.0]; Q8: [0.0, 0.0]; Q21: [0.0, 0.0]; Q22: [0.0, 0.0]; Q28: [0.0, 0.0];
Q29: [0.0, 0.0] ; Q30: [0.0, 0.0]; Q35: [0.0, 0.0] ; Q36: [0.0, 0.0];
Q38: [0.0, 1.0]; Q44: [0.0, 0.0]; Q46: [0.75, 3.0 ; Q54: [0.0, 1.0];

A

Q1: 0.0, 0.0] ; Q8: [0.0, 0.0]; Q9: [0.0, 0.0]; Q35: [0.0, 0.0];
(Q40: [0.0, 0.0] ; Q52: [0.0, 2.0]; Q54: [0.0, 0.0]

Ay

Q3, Q10, Q11, Q13, Q14, Q15, Q16, Q18, Q19, Q20, Q23, Q24, Q32, Q33, Q37, Q53: [0.0, 1.0]
4, Q5,Q7,Q8, Q21, Q22, Q25, Q26, Q27, Q28, Q29, Q17, Q34, Q35, Q43: [0.0, 0.0];

Q0, Q9, Q30, Q39, Q31, Q40, Q48: [0.0, 2.0];

Q12, Q36, Q38, Q41, Q42, Q44, Q49, Q50: [1.0, 2.0]; Q46: [0.0, 3.0]; Q47: [2.0, 3.0];

A3

Q1: [3.0, 3.01; Q2: [2.0, 2.25]; Q3: [2.0, 3.01; Q4: [2.0, 2.0]; Q5: [2.75, 3.01; Qé: [2.0, 2.0];

Q7: [2.0, 2.25]; Q8: [3.0, 3.0]; Q10: [2.0, 2.0]; Q13: [3.0, 3.0]; Q15: [3.0, 3.0]; Q12: [2.0, 2.25];
Q14: [2.0, 2.01; Q16: [2.0, 2.01; Q17: [2.0, 3.01; Q18: [3.0, 3.01; Q22: [2.0, 3.0]; Q23: [1.75, 2.0]
Q25: [2.0, 2.25]; Q28: [2.0, 2.0]; Q31: [3.0, 4.01; Q32: [3.75, 4.0]; Q33: [3.0, 4.0]; Q34: [4.0, 4.0];
Q35: [3.75, 4.01; Q36: [4.0, 4.01; Q37: [3.75, 4.0]; Q38: [4.0, 4.01; Q40: [4.0, 4.0]; Q41: [4.0, 4.0];

(Q43: [4.0, 4.0]; Q48: [3.75, 4.0]; Q54: [3.75, 4.0];

readable concepts is still the future direction. (3) In this
work, the explanations are interpreted in a global view.
Another future direction is to generate easy-to-understand
explanations for a single sample from the causal aspect.
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