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Abstract—The knowledge concept prerequisites describing the
dependencies are critical for fundamental tasks such as material
recommendations and there are a huge amount of concepts in
Massive Open Online Courses (MOOCs). Thus it is necessary
to develop automatic prerequisite relation annotation methods.
Recently, a few methods have shown their effectiveness in discov-
ering knowledge concept prerequisites in Moocs automatically.
However, they suffer from two common issues, i.e., knowledge
concepts are not thoroughly learnt, and informative supervision
sources are ignored. To overcome these issues, we propose an
end-to-end framework to incorporate the rich heterogeneous
information in MOQOCsS, including the semantic, contextual and
structural information of the learning materials as well as student
video watching behaviors. Such useful information is not only
used to derive entity representations but also as supervision
to improve the prerequisite learning task. Experimental results
on two public datasets show that the proposed framework
outperforms state-of-the-art baselines in terms of precision, recall
and F1 values and improves up to 9% in terms of F1 metrics.
Besides, ablation study demonstrates the effectiveness of the
proposed framework.

Index Terms—education data mining, deep learning, prereq-
uisite relation prediction

I. INTRODUCTION

The knowledge concept prerequisite relation, which is the
dependency between a pair of knowledge concepts and de-
termines the order of knowledge concept learning, not only
plays an important role in course organizations and learning
routine planning but also helps to improve the performance
of the fundamental tasks in the education domain such as
learning material recommendation [14] in MOOCs. However,
because of the huge volume of learning materials on MOOC
platforms, it is inefficient to manually label all the prerequisite
pairs. Therefore, it is essential to investigate how to find the
knowledge concept prerequisites automatically in MOOC:s.

Although several approaches such as [1], [2], [4], [10]-[13],
[15], [16], [18], [22] have been proposed to solve this chal-
lenging task, they still suffer from the following key issues:
insufficient learning of knowledge concepts and ignoring infor-
mative supervision sources. Existing methods ignore important
information such as taxonomy among knowledge concepts,
videos and courses and student video watching behavior,
which are highly related to the representation learning of
knowledge concepts. Moreover, besides labeled data, there is
abundant “weak” supervision information such as a knowledge
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concept appearing in a lecture video and the order of videos in

a course, which provides extra supervision for the prerequisite

learning task while is ignored in previous methods.

To address the aforementioned issues, we propose to lever-
age much richer heterogeneous information in MOOC:s via the
the Heterogeous Information Enhanced Prerequisite Learning
(HIEPL) framework to enhance entity representation learning
and introduce supplementary supervisions to further improve
the performance of the prerequisite learning task. The HIEPL
framework is able to fuse the heterogeneous information
effectively and jointly learn the representations of knowledge
concepts, lecture videos and courses. In particular, the HIEPL
framework consists of five components, including fext encod-
ing, hierarchical co-representation learning, order aware rep-
resentation learning, heterogeneous graph based reasoning,
and multitask prerequisite relation learning. The first four
components are used for entity representation learning, and the
last one is used to classify the knowledge concept pairs with
auxiliary supervisions. Experimental results on two real-world
datasets show that the proposed HIEPL framework outper-
forms state-of-the-art baselines, which demonstrate the effec-
tiveness of the proposed HIEPL framework by incorporating
the heterogeneous information into the prerequisite learning
task. The contributions of this paper can be summarized as:
« We demonstrate the importance of utilizing richer hetero-

geneous information by both fusing the information in

representation learning and introducing extra supervisions
to enhance the performance of the knowledge concept
prerequisite learning task.

o We propose a novel end-to-end deep learning framework
HIEPL, which is able to learn the embeddings of different
types of entities simultaneously combining the heteroge-
neous information and take informative supervisions into
the model learning.

o Comprehensive experiments are performed on two real-
world datasets to evaluate the effectiveness of the proposed
HIEPL framework and demonstrate the importance of using
heterogeneous information in the prerequisite learning task.

II. NOTATIONS AND PROBLEM STATEMENT

Definition 1 (Knowledge Concept): A knowledge concept
refers to a key term that describes or summarizes the knowl-
edge [9]. The set of all knowledge concepts can be represented
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as K, and |K| is the number of all the knowledge concepts.
For each knowledge concept k € IC, it has a description. Let
I, represent the number of words of the knowledge concept &,
and the the description of knowledge concept k is represented
by dy = {w',i}ﬁ’;l, where w?, is the i, word in the description.

Definition 2 (Lecture Video): Each lecture video consists of
several knowledge concepts and has its subtitle. Let V' denote
the set of all lecture videos and |V| be the number of all lecture
videos. For each lecture video v € V, we use d,, = {wf,}i”zl
to denote its subtitle, where wfj is the 7;;, word of the subtitle
d,, and [, represents the number of the words of the subtitles
of the lecture video v.

Definition 3 (Course): Each course includes a sequence of
lecture videos and an introduction of the course, which briefly
summarizes the main contents of the course. We use C to
denote the set of all courses and |C| to represent the number
of all courses. For each course ¢ € C,d. = {wi}i;l represents
the introduction of course ¢, where wi denotes the 7;, word
in the course introduction d., and [. is the number of words
in the course introduction d..

Definition 4 (Student Watching Behavior): Each student
watches a series of course videos, which will generate a
watching behavior sequence. S is used to denote the set of
all the students, and |S| is the number of students. For each
student s € S, the sequence of videos watched by the student
is denoted as vy = {vg}f: 1» where vi € V represents the iy,
video watched by the student s, and /7 denotes the number of
videos watched by the student s.

Definition 5 (Knowledge Concept Occurrence): For each
video v € V, the sequence of knowledge concepti occurred
in the video k, can be described as k, = {kfj}fgl, where
ki is the 4., knowledge concept in the video v, and (¥ is the
number of total knowledge concept occurrence in the video v.

Definition 6 (Lecture Video Occurrence): For each course
c € Cv the lecture video series v, can be denoted as v, =
{viYle |, where v is the iy, video occurred in course ¢ and
I? is the number of videos included in course c.

Definition 7 (Knowledge Concept Prerequisite): If under-
standing the knowledge concept k; should be on the basis
of understanding the knowledge concept k;, then concept k;
is the prerequisite of concept k;, we use R(k; — k;) = 1
to represent that the concept k; is the prerequisite of the
knowledge concept k;. R = {R(k; — k;)} is used to denote
the known training knowledge concept prerequisite set.

Problem 1 (Knowledge Concept Prerequisite Learning):
Given the knowledge concept set /C, the lecture video set V),
the course set C, the video watching sequence set {VS}Li‘l,
the knowledge concept sequence set {kU}L‘;‘l, the video oc-
currence sequence set {Vc}‘cc:‘l, the known training knowledge
concept prerequisite set R and two knowledge concepts:

k1, ke € K, the goal is to predict if R(ky — ko) = 1.

t
{ Multi-task Prerequisite Learning }
‘ hé
Heterogenous Graph Based Reasoning

-b{ Order Aware Representation Learning
Student S
video

sequence > {

Lecture Knowledge Knowledge Lecture
Video concept concept video
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course

Fig. 1. The overview of the architecture of the proposed HIEPL framework

III. METHODOLOGY
A. Overview

The architecture of the proposed HIEPL framework is
shown in Figure 1, which consists of five components: a text
encoding component, a hierarchical co-representation learning
component, an order aware representation learning component,
a heterogeneous graph based reasoning component, and a
multi-task prerequisite learning component. The first four
components are used to fuse the heterogeneous information
to learn the representations of different kinds of entities, and
the last component is used to determine if one concept from
the given concept pair is the prerequisite of the other or not.

B. Text Encoding

To obtain the vector representations of the textual materials,
we adopt a pre-trained BERT [3] as the feature extractor. For
a given sentence d = {w;}!_,, where w; refers to the iz,
word in the sentence, and [ is the number of words, its vector
representation extracted by BERT [3] as follows:

d = feerr(d), (D

where fpprr(-) represents the average pooling of the output
of the last layer of the BERT [3] model, d € R% is the
outputted vector representations of the sentence d, and d; is
the dimensionality of the vector.

The outputted vector of the BERT model is fed into a fully
connected layer to perform dimension reduction:

d=FCy(d) = W,d + by, )

where F'C.(-) denotes the fully connected layer function,
W, € R%*" and b, € R" are the weight matrix and bias
vector need to be learned during the training, and / represents
the dimension of the outputted text embedding.

Since we take the heterogeneous information as the input,
for the text of the knowledge concept &, the lecture video v and
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the course ¢, their corresponding vector representations can be

derived as: dy, = FCy(fprrr(dy)),dv = FCi(ferrT(dy)),
and d. = FC:(fprrr(d.)), respectively.

C. Hierarchical Co-representation Learning

To capture the inner relations among knowledge concepts,
lecture videos and courses. we adopt the co-attention mech-
anism [23] between the knowledge concepts and the lecture
videos and between the lecture videos and the courses.

Given a knowledge concept occurrence sequence {k;}i;l
in lecture video v, we can derive the knowledge concept
sequence aware video representation, which can fuse the
knowledge concept contextual information and the lecture
video v representation using the defined Cooatt(-) ! function in
[23]. First, we get the sequence representations H¥ € Rl: 2k
by feeding it into a bidirectional Long Short-term Memory
(BiLSTM) ! [6],

H" = BiLSTM,(k,) = BiLSTM.({d.} ), (3

where diz is the text embedding of k:; € k,. Similarly, for the
video v, which also can be considered as a sequence, we can
obtain its representation H, € R'*?" via BiLST M,

H, = BiLSTM.(d,). 4)

Then H, and HY are fed into the Coatt(:) function to
derive the co-representation of the lecture video v:

U, = Coatt(H,, H"), (5)

where U, € R'**" is the knowledge concept sequence aware
representation of the lecture video v.

By combining the knowledge concept aware and textual
representations of video v, a video summary vector S,, € R!*"
can be derived as:

Sv = FCS([Uv @D dv]) = ([Uv @ dv])ws + bs» (6)

where F'Cs denotes the fully connected layer, and W, €
R5»>*P and b, € RY" are the learnable weights and bias.

Similarly, the course summary vector of a course ¢ can be
derived given the lecture video sequence v.. The derivation
of the summary vector S, is shown as follows:

S, = FCs([U.®d.]),U. = Coatt(H.,HY),

HY = BiLSTM,(v.),H, = BiLSTM.(d,).  (7)

D. Order Aware Representation Learning

The occurrence order of the knowledge concepts has been
found to be an important indicator, which provides important
information in the prerequisite learning [16]. Thus, we learn
the order aware representation of the knowledge concepts and
the lecture videos by using both the occurrence order in the
learning materials and the student video watching behaviors.

!"The details can be found in the Appendix at https://www.dropbox.com/sh/
79plfdqg6xg10fy/AACLOGOHrESQqdOilOYBd7P0a?dl=0
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Knowledge Concepts. To learn the order aware representa-
tions of the knowledge concepts, the knowledge concept occur-
rence sequences k, are put into a BILSTM to obtain an order
aware embedding first, whose contextual aware representation
matrix can be represented as:

0, = FC,(BiLSTM"(k,)), ®)

where the iy, knowledge concept k! in the sequence k, is
represented by its textual embedding dj,. O, € R *" denotes
the contextual matrix which is the concatenation of the hidden
state vectors of the sequence k,, outputted by the BiLST M.
FC,(-) represents the fully connected layer.

Let M, represent a matrix that is the concatenation of all
the contextual vectors of knowledge concept k extracted from
{0, : v € V}, then the contextual aware representation of the
knowledge concept can be defined as:

Nk = att(Mk,Tk), (9)

where N, € R!*" denotes the contextual aware representa-
tion of the knowledge concept k and att(-) is the attention
operation defined in Eq. 10.

VattWattM;rtt
Vh

where My, € RV X" represents a matrix concatenated by
Ny vectors of size h and vqy € RY is a vector. Wy €
R"*" is the weight matrix needs to be learned.

att(Mate, Varr) = softmax( Mgz, (10)

Lecture Videos. Similar with learning the order aware knowl-
edge concept representation, the order aware video represen-
tation of lecture video v using only lecture video occurrence
sequence v, can be represented as:

O, = FC,(BiLSTM?(v.)),

NS = att(MS, S,),
where O, is the contextual matrix of the sequence which is
the concatenation of the hidden state vectors of the sequence
v, outputted by the BiLSTM?. The input embedding for
the BiLSTMY? of the video v} in the sequence is S,. M¢
represents the matrix which is the concatenation of contextual
vectors of video v extracted from {O. : ¢ € C} and N¢ is the
contextual aware representation of the lecture video wv.

Since the order of lecture videos is well organized for
learning, we use the lecture video occurrence sequence as the
reference sequence and the order aware video representations
derived by such sequences as the reference representations.
The order aware video representation derived by the video or-
der is used to calculate the attention weight during the process
of deriving the order aware video representation by the student
behaviors and the final order aware video representation.

Let M? denote the concatenation of all the vectors of video
v in the student video watching behavior sequences outputted
by the F'C,((BiLSTMY()) function using N¢ as the input
of v. Then the order aware representation of lecture video v
derived by the student video learning behavior sequences can
be calculated by:

an

N} = att(M),N¢), (12)
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where NY € R1*" is the order aware representation of lecture
video v derived by the student behaviors. Thus, the final order
aware representation of the video v can be represented as:

N, = att([Nj & NJJ, NY) (13)

where N, € R'*" is the order aware representation of the
lecture video wv.

E. Heterogeneous Graph Based Reasoning

To further exploit the useful structural information among
knowledge concepts, we construct a heterogeneous graph and
apply graph neural network to pass messages among nodes.

Let G =< N, & > denotes the heterogeneous graph.

N=Kuyuc,
E=E1UEUEUELUESUEs.

N is the node set and £ represents the edge set which is the
union of the video occurrence, video order, knowledge concept
occurrence, knowledge concept order, student video watching
order and knowledge concept prerequisites .

To enable the information propagates over the constructed
heterogeneous graph, the message passing mechanism in [5] is
applied. The message passing mechanism includes two steps:
aggregation and combination. The aggregation step aggregates
the information of the neighbors of a node n € N, which can
be represented as:

(14)

15)

where eTL € R'" is the aggregated representation of node
n in layer i. N denotes the set of neighbour nodes of the
node n in &, where r € {1,2,3,4,5,6}. FC.,(-) is a fully
connected layer.

The combination step combines the representation of the
aggregated representation of node n in layer ¢ and the repre-
sentation of that node in layer ¢ — 1 to obtain the embedding
of node n in layer ¢, which can be formulated as:

el = FC.(ei7Y) +ei, (16)
where e!, € R1*" denotes the node embedding of node 7 in
layer i. FC.(-) is a fully connected layer for transformation.
The final representation of the node n can be obtained after
3 times message passing, which is: e,, = e3. Different types
of nodes in the graph G have different initial representations
(€9) described as:

Ng, ne€ K:,
e ={N,, ncV, a7
S., necC.

FE. Multitask Prerequisite Learning

Given two knowledge concepts k1 and ko, a two-layer fully
connected network can be used to determine if k; is the
prerequisite of k2, which is represented as:

R(ky = k2) = FCp([ex, © ey,]) (18)
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R(ky — ky) is the predicted probability that k; is a prereq-
uisite of k. F'C,(-) is a two-layer fully connected network
where the activation functions are the ReLU and the sigmoid
function separately. e;, and ey, are the knowledge concept
representations of k; and ko defined in Eq. 16 with ¢ = 3.
To learn the parameters in the proposed model, we introduce
three auxiliary tasks in addition to the knowledge concept
prerequisite learning. Those three auxiliary tasks are:

o Predict if a video appears in a course.
o Predict if a video appears ahead the other video.
« Predict if a knowledge concept appears in a video.

Let R(7); denote the predicted result of pair j of the Task 4,
which can be formulated as:

R(i); = FCL([ej, ®ej,]), (19)

where e;, and e;, are the representations of the entity pair
defined in Eq. 16 with i 3. FC}(-) share the same
architecture as F'Cy(-). In addition, the parameters of the
first layer are shared between FC}(-) and FC3(-) as well
as between F'Cy(-) and FC7(-).

The average cross-entropy defined in Eq. 20 is used as the
loss function for each task.

L) = fﬁ S (slog(d;) + (1—y;)log(1—4;), (20)

y; €Y

where ) and 37 are the ground truth label set and the predicted
probability set for each task. y; and 7; denote the ground truth
label and predicted probability of the sample j. |)| represents
the number of samples in set ).

The total loss is formulated as the weighted sum of the
losses for those tasks, which can be denoted as:

11—«
£:aﬁp+TZ£,¢7 Q1)
where £, and £; denotes the loss represented by Eq. 20 for the
knowledge concept prerequisite learning task and the auxiliary
Task ¢ (1 = {1,2,3}). 0 < a < 1 is the balance parameter.
The model parameters are learned during the training phase
by optimizing the loss function L.

IV. EXPERIMENTS
A. Datasets

We construct two datasets for evaluation from the public
available MOOCCube dataset [22]>. We divide the labeled
prerequisites into two subsets according to the domains they
belong to and obtain two datasets with positive prerequisite
samples in the mathematics and computer science. The reverse
of the positive pairs are considered as the negative samples.
Since the prerequisite relations are sparse, we also randomly
sample the knowledge concept pairs in each of the domain
to obtain more negative samples with a pre-defined positive
sample ratio. The statistics of the original MOOCCube and
the two constructed datasets are shown in the Appendix .

Zhttp://moocdata.cn/data/MOOCCube
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TABLE I
MODEL PERFORMANCE ON THE PREREQUISITE PREDICTION TASK

‘ CS ‘ Math
Model | recall | precision | F1 | recall | precision | Fl
MOOC-LR | 0.467 0.640 0.540 | 0.482 0.650 0.553
MOOC-XG | 0.500 0.563 0.530 | 0.510 0.565 0.536
DNN 0.542 0.580 0.560 | 0.579 0.579 0.579
PREREQ 0.676 0.580 0.624 | 0.668 0.593 0.628
HIEPL-B 0.680 0.660 0.670 | 0.678 0.660 0.669
HIEPL-C 0.678 0.654 0.665 | 0.680 0.665 0.672
HIEPL-S 0.542 0.580 0.560 | 0.575 0.573 0.574
HIEPL | 0.688 | 0.676 | 0.682 | 0.694 | 0.680 | 0.687

B. Methods for Comparison

The proposed HIEPL is compared with the several meth-
ods ! to evaluate its effectiveness. Since the proposed frame-
work works in a supervised learning setting, only the super-
vised knowledge concept prerequisite learning models proven
to achieve better performance are compared. The models we
compared include: MOOC-LR [16], MOOC-XG [16], PRE-
REQ [18] and Deep Neural Network (DNN). To investigate
the effects of different components of the HIEPL, we also
compare it with its three variations: HIEPL-B, HIEPL-C and
HIEPL-S by removing the student video watching behav-
iors, co-representation learning and supplementary supervision
component in the HIEPL respectively.

C. Experimental Setting

The HIEPL framework is implemented using PyTorch [17].
The model parameters are randomly initialized, and then the
Adam optimizer [7] is used to learn the model parameters
with the learning rate of 0.0001. The batch size is set to 32
for training and 128 for testing, and the maximum number of
epoch is 500. To avoid the issue of overfitting, dropout [20]
with a rate of 0.2 and early stop are applied. The size of the
outputted representation vectors by the text encoder is set to
32 (h = 32). The balance parameter in Eq. 21 is set to 0.5
(=0.5)%.

To evaluate the effectiveness of the proposed model, we
construct the datasets in the two domains by sampling the
negative samples with a positive sample ratio of 0.2. For each
positive sample, we need to randomly sample three negative
pairs in addition to the reverse pair of it. For each domain,
we sample three different datasets. Five-fold cross validation
is used to evaluate the performance of those models. The
performance of the models are measured by precision, recall
and F1 value. The average metrics of the fifteen runs in each
domain are reported.

D. Experimental Results

The experimental results are shown in Table. I. We can
observe that HIEPL outperforms all the baselines. Although

3The implementation details can be found in the Appendix. Both
the Appendix and the code are available at https://www.dropbox.com/sh/
z9plfdqg6xg10fy/AACLOGOHrESQqdOilOYBd7P0a?dl=0
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the MOOC-LR and the MOOC-XG model consider features
in three different aspects: semantic, context and structure, the
performance of those two models is still among the worst ones.
The inferior performance of those two models may indicate
the limited ability of manually designed features to capture
useful information related with the prerequisite learning task.

The performance of the DNN model is better than MOOC-
LR and MOOC-XG, which demonstrates that the pre-trained
word embeddings can capture the signal related with the
prerequisite learning. However, it is beaten by the PREREQ
model, which also uses the textual information. The reason
may be that the pre-trained embeddings are trained on a large
scale corpus with great generalization ability on different tasks
but not specifically optimized for the prerequisite learning task.
Thus, those embeddings may capture the shared characteristics
of different NLP tasks such as the similarity of the input,
which is also informative in the prerequisite learning task.
However, it can not capture the informative signal specific of
the prerequisite learning task such as the dependencies utilized
in the PREREQ.

As for the PREREQ, it learns the knowledge concept repre-
sentations by jointly modeling the dependencies and semantic
information and achieves the best performance among all those
four baselines. The superior performance of PREREQ among
all the baselines shows that both the semantic information and
dependencies are useful for prerequisite learning and fusing
information from different sources effectively helps improve
the knowledge concept prerequisite learning task.

E. Ablation Study

To investigate the effects of different parts of the proposed
HIEPL framework, we perform ablation study by comparing
the HIEPL framework with its three variations. The results
are shown in Table. I. The performance of all reduced models
degrades compared with the full model, which shows the
effects of related parts in the proposed HIEPL framework.

The decreased performance of the HIEPL-B compared with
HIEPL shows the impacts of the student watching behaviors
in the prerequisite learning task, where the student video
watching behaviors can help bridge the knowledge concepts in
different courses. The behavior patterns can also help reveal
the prerequisite relations and further improve the performance
of the knowledge concept prerequisite learning task. The
hierarchical co-representation learning can help transfer and
fuse information among courses, lecture videos and knowledge
concepts and therefore benefit the prerequisite learning task,
which may account for the worse performance of the HIEPL-
C compared with the HIEPL framework. The HIEPL-S is
the worst model among those three reduced models, which
demonstrates the importance and necessity of utilizing auxil-
iary supervision to optimize the HIEPL framework with only
a small number of labeled prerequisites.

V. RELATED WORK

The prerequisite mining methods can be divided into statis-
tics based methods and learning based methods. In the statis-
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tics based methods, such as [1], [2], metrics are manually
designed and thresholds are applied to determine the prereq-
uisite relationship. Although using different features and ways
to make decision, the workflow of existing learning learning
based prerequisite mining methods [10]-[13], [15], [16], [18],
[19] can be summarized as two steps: the knowledge concept
representation learning step and then prerequisite relation-
ship determination step. Recently, several publicly available
datasets [4], [11], [22] are released, which also help advance
the development of supervised prerequisite learning meth-
ods. Different from the aforementioned prerequiste learning
methods, the proposed HIEPL framework can automatically
learn the knowledge concept representations by fusing rich
information from heterogeneous sources in an end-to-end
manner and utilize the heterogeneous information as extra
supervision.

Our work is also related to the co-attention and graph neural
network. The co-representation learning is inspired by the
method in [23] which has been proven effective in capturing
the relevant information. The graph neural networks [5], [8],
[21] have achieved great success by its ability of transforming
information among nodes in a graph to meaningful repre-
sentations. In the proposed HIEPL framework, we use the
message passing mechanism proposed in [5] to transform the
information among different nodes.

VI. CONCLUSIONS

Identifying the knowledge concept prerequisite relations
is important for many fundamental tasks in MOOCs such
as learning material recommendation. Although some efforts
have been devoted to this topic, the existing methods still
suffer from two issues: insufficient learning of knowledge con-
cepts and ignoring informative supervision sources, which can
be addressed by utilizing heterogeneous information, including
the semantic, contextual and structural information as well as
student behavior. To this end, we propose a novel end-to-end
HIEPL framework, which can fully exploit the heterogeneous
information in context of obtaining the entity representations
and additional sources for supervision. Experiments conducted
on two real-world datasets show that the proposed HIEPL
framework outperforms the baselines in terms of multiple
evaluation metrics. These results confirm the effectiveness of
the proposed framework of incorporating the heterogeneous
information into the prerequisite learning task.
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