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Abstract—The knowledge concept prerequisites describing the
dependencies are critical for fundamental tasks such as material
recommendations and there are a huge amount of concepts in
Massive Open Online Courses (MOOCs). Thus it is necessary
to develop automatic prerequisite relation annotation methods.
Recently, a few methods have shown their effectiveness in discov-
ering knowledge concept prerequisites in Moocs automatically.
However, they suffer from two common issues, i.e., knowledge
concepts are not thoroughly learnt, and informative supervision
sources are ignored. To overcome these issues, we propose an
end-to-end framework to incorporate the rich heterogeneous
information in MOOCs, including the semantic, contextual and
structural information of the learning materials as well as student
video watching behaviors. Such useful information is not only
used to derive entity representations but also as supervision
to improve the prerequisite learning task. Experimental results
on two public datasets show that the proposed framework
outperforms state-of-the-art baselines in terms of precision, recall
and F1 values and improves up to 9% in terms of F1 metrics.
Besides, ablation study demonstrates the effectiveness of the
proposed framework.

Index Terms—education data mining, deep learning, prereq-
uisite relation prediction

I. INTRODUCTION

The knowledge concept prerequisite relation, which is the

dependency between a pair of knowledge concepts and de-

termines the order of knowledge concept learning, not only

plays an important role in course organizations and learning

routine planning but also helps to improve the performance

of the fundamental tasks in the education domain such as

learning material recommendation [14] in MOOCs. However,

because of the huge volume of learning materials on MOOC

platforms, it is inefficient to manually label all the prerequisite

pairs. Therefore, it is essential to investigate how to find the

knowledge concept prerequisites automatically in MOOCs.

Although several approaches such as [1], [2], [4], [10]–[13],

[15], [16], [18], [22] have been proposed to solve this chal-

lenging task, they still suffer from the following key issues:

insufficient learning of knowledge concepts and ignoring infor-

mative supervision sources. Existing methods ignore important

information such as taxonomy among knowledge concepts,

videos and courses and student video watching behavior,

which are highly related to the representation learning of

knowledge concepts. Moreover, besides labeled data, there is

abundant “weak” supervision information such as a knowledge

concept appearing in a lecture video and the order of videos in

a course, which provides extra supervision for the prerequisite

learning task while is ignored in previous methods.

To address the aforementioned issues, we propose to lever-

age much richer heterogeneous information in MOOCs via the

the Heterogeous Information Enhanced Prerequisite Learning

(HIEPL) framework to enhance entity representation learning

and introduce supplementary supervisions to further improve

the performance of the prerequisite learning task. The HIEPL

framework is able to fuse the heterogeneous information

effectively and jointly learn the representations of knowledge

concepts, lecture videos and courses. In particular, the HIEPL

framework consists of five components, including text encod-
ing, hierarchical co-representation learning, order aware rep-
resentation learning, heterogeneous graph based reasoning,

and multitask prerequisite relation learning. The first four

components are used for entity representation learning, and the

last one is used to classify the knowledge concept pairs with

auxiliary supervisions. Experimental results on two real-world

datasets show that the proposed HIEPL framework outper-

forms state-of-the-art baselines, which demonstrate the effec-

tiveness of the proposed HIEPL framework by incorporating

the heterogeneous information into the prerequisite learning

task. The contributions of this paper can be summarized as:

• We demonstrate the importance of utilizing richer hetero-

geneous information by both fusing the information in

representation learning and introducing extra supervisions

to enhance the performance of the knowledge concept

prerequisite learning task.

• We propose a novel end-to-end deep learning framework

HIEPL, which is able to learn the embeddings of different

types of entities simultaneously combining the heteroge-

neous information and take informative supervisions into

the model learning.

• Comprehensive experiments are performed on two real-

world datasets to evaluate the effectiveness of the proposed

HIEPL framework and demonstrate the importance of using

heterogeneous information in the prerequisite learning task.

II. NOTATIONS AND PROBLEM STATEMENT

Definition 1 (Knowledge Concept): A knowledge concept

refers to a key term that describes or summarizes the knowl-

edge [9]. The set of all knowledge concepts can be represented
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as K, and |K| is the number of all the knowledge concepts.

For each knowledge concept k ∈ K, it has a description. Let

lk represent the number of words of the knowledge concept k,

and the the description of knowledge concept k is represented

by dk = {wi
k}lki=1, where wi

k is the ith word in the description.

Definition 2 (Lecture Video): Each lecture video consists of

several knowledge concepts and has its subtitle. Let V denote

the set of all lecture videos and |V| be the number of all lecture

videos. For each lecture video v ∈ V , we use dv = {wi
v}lvi=1

to denote its subtitle, where wi
v is the ith word of the subtitle

dv , and lv represents the number of the words of the subtitles

of the lecture video v.

Definition 3 (Course): Each course includes a sequence of

lecture videos and an introduction of the course, which briefly

summarizes the main contents of the course. We use C to

denote the set of all courses and |C| to represent the number

of all courses. For each course c ∈ C, dc = {wi
c}lci=1 represents

the introduction of course c, where wi
c denotes the ith word

in the course introduction dc, and lc is the number of words

in the course introduction dc.

Definition 4 (Student Watching Behavior): Each student

watches a series of course videos, which will generate a

watching behavior sequence. S is used to denote the set of

all the students, and |S| is the number of students. For each

student s ∈ S , the sequence of videos watched by the student

is denoted as vs = {vis}l
v
s
i=1, where vis ∈ V represents the ith

video watched by the student s, and lvs denotes the number of

videos watched by the student s.

Definition 5 (Knowledge Concept Occurrence): For each

video v ∈ V , the sequence of knowledge concepts occurred

in the video kv can be described as kv = {kiv}l
k
v
i=1, where

kiv is the ith knowledge concept in the video v, and lkv is the

number of total knowledge concept occurrence in the video v.

Definition 6 (Lecture Video Occurrence): For each course

c ∈ C, the lecture video series vc can be denoted as vc =
{vic}l

v
c
i=1, where vic is the ith video occurred in course c and

lvc is the number of videos included in course c.

Definition 7 (Knowledge Concept Prerequisite): If under-

standing the knowledge concept kj should be on the basis

of understanding the knowledge concept ki, then concept ki
is the prerequisite of concept kj , we use R(ki → kj) = 1
to represent that the concept ki is the prerequisite of the

knowledge concept kj . R = {R(ki → kj)} is used to denote

the known training knowledge concept prerequisite set.

Problem 1 (Knowledge Concept Prerequisite Learning):
Given the knowledge concept set K, the lecture video set V ,

the course set C, the video watching sequence set {vs}|S|s=1,

the knowledge concept sequence set {kv}|V |v=1, the video oc-

currence sequence set {vc}|C|c=1, the known training knowledge

concept prerequisite set R and two knowledge concepts:

k1, k2 ∈ K, the goal is to predict if R(k1 → k2) = 1.

Fig. 1. The overview of the architecture of the proposed HIEPL framework

III. METHODOLOGY

A. Overview

The architecture of the proposed HIEPL framework is

shown in Figure 1, which consists of five components: a text

encoding component, a hierarchical co-representation learning

component, an order aware representation learning component,

a heterogeneous graph based reasoning component, and a

multi-task prerequisite learning component. The first four

components are used to fuse the heterogeneous information

to learn the representations of different kinds of entities, and

the last component is used to determine if one concept from

the given concept pair is the prerequisite of the other or not.

B. Text Encoding

To obtain the vector representations of the textual materials,

we adopt a pre-trained BERT [3] as the feature extractor. For

a given sentence d = {wi}li=1, where wi refers to the ith
word in the sentence, and l is the number of words, its vector

representation extracted by BERT [3] as follows:

d̃ = fBERT (d), (1)

where fBERT (·) represents the average pooling of the output

of the last layer of the BERT [3] model, d̃ ∈ R
db is the

outputted vector representations of the sentence d, and db is

the dimensionality of the vector.

The outputted vector of the BERT model is fed into a fully

connected layer to perform dimension reduction:

d = FCt(d̃) = Wtd̃+ bt, (2)

where FCt(·) denotes the fully connected layer function,

Wt ∈ R
db×h and bt ∈ R

h are the weight matrix and bias

vector need to be learned during the training, and h represents

the dimension of the outputted text embedding.

Since we take the heterogeneous information as the input,

for the text of the knowledge concept k, the lecture video v and
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the course c, their corresponding vector representations can be

derived as: dk = FCt(fBERT (dk)),dv = FCt(fBERT (dv)),
and dc = FCt(fBERT (dc)), respectively.

C. Hierarchical Co-representation Learning

To capture the inner relations among knowledge concepts,

lecture videos and courses. we adopt the co-attention mech-

anism [23] between the knowledge concepts and the lecture

videos and between the lecture videos and the courses.

Given a knowledge concept occurrence sequence {kiv}l
k
v
i=1

in lecture video v, we can derive the knowledge concept

sequence aware video representation, which can fuse the

knowledge concept contextual information and the lecture

video v representation using the defined Coatt(·) 1 function in

[23]. First, we get the sequence representations Hk
v ∈ R

lkv×2h

by feeding it into a bidirectional Long Short-term Memory

(BiLSTM) 1 [6],

Hk
v = BiLSTMc(kv) = BiLSTMc({di

k}l
k
v
i=1), (3)

where di
k is the text embedding of kiv ∈ kv . Similarly, for the

video v, which also can be considered as a sequence, we can

obtain its representation Hv ∈ R1×2h via BiLSTMc:

Hv = BiLSTMc(dv). (4)

Then Hv and Hk
v are fed into the Coatt(·) function to

derive the co-representation of the lecture video v:

Uv = Coatt(Hv,H
k
v), (5)

where Uv ∈ R
1×4h is the knowledge concept sequence aware

representation of the lecture video v.

By combining the knowledge concept aware and textual

representations of video v, a video summary vector Sv ∈ R
1×h

can be derived as:

Sv = FCs([Uv ⊕ dv]) = ([Uv ⊕ dv])Ws + bs, (6)

where FCs denotes the fully connected layer, and Ws ∈
R

5h×h and bs ∈ R
1×h are the learnable weights and bias.

Similarly, the course summary vector of a course c can be

derived given the lecture video sequence vc. The derivation

of the summary vector Sc is shown as follows:

Sc = FCs([Uc ⊕ dc]),Uc = Coatt(Hc,H
v
c ),

Hv
c = BiLSTMc(vc),Hc = BiLSTMc(dc). (7)

D. Order Aware Representation Learning

The occurrence order of the knowledge concepts has been

found to be an important indicator, which provides important

information in the prerequisite learning [16]. Thus, we learn

the order aware representation of the knowledge concepts and

the lecture videos by using both the occurrence order in the

learning materials and the student video watching behaviors.

1The details can be found in the Appendix at https://www.dropbox.com/sh/
z9plfdqg6xg10fy/AACL0G0HrE5QqdOiIOYBd7P0a?dl=0

Knowledge Concepts. To learn the order aware representa-

tions of the knowledge concepts, the knowledge concept occur-

rence sequences kv are put into a BiLSTM to obtain an order

aware embedding first, whose contextual aware representation

matrix can be represented as:

Ov = FCo(BiLSTMk
o (kv)), (8)

where the ith knowledge concept kiv in the sequence kv is

represented by its textual embedding dk. Ov ∈ R
lv×h denotes

the contextual matrix which is the concatenation of the hidden

state vectors of the sequence kv outputted by the BiLSTMk
o .

FCo(·) represents the fully connected layer.
Let Mk represent a matrix that is the concatenation of all

the contextual vectors of knowledge concept k extracted from

{Ov : v ∈ V}, then the contextual aware representation of the

knowledge concept can be defined as:

Nk = att(Mk,dk), (9)

where Nk ∈ R
1×h denotes the contextual aware representa-

tion of the knowledge concept k and att(·) is the attention

operation defined in Eq. 10.

att(Matt,vatt) = softmax(
vattWattM

T
att√

h
)Matt, (10)

where Matt ∈ R
NM×h represents a matrix concatenated by

NM vectors of size h and vatt ∈ R1×h is a vector. Watt ∈
Rh×h is the weight matrix needs to be learned.

Lecture Videos. Similar with learning the order aware knowl-

edge concept representation, the order aware video represen-

tation of lecture video v using only lecture video occurrence

sequence vc can be represented as:

Oc = FCo(BiLSTMv
o (vc)),

Nc
v = att(Mc

v,Sv),
(11)

where Oc is the contextual matrix of the sequence which is

the concatenation of the hidden state vectors of the sequence

vc outputted by the BiLSTMv
o . The input embedding for

the BiLSTMv
o of the video vic in the sequence is Sv . Mc

v

represents the matrix which is the concatenation of contextual

vectors of video v extracted from {Oc : c ∈ C} and Nc
v is the

contextual aware representation of the lecture video v.
Since the order of lecture videos is well organized for

learning, we use the lecture video occurrence sequence as the

reference sequence and the order aware video representations

derived by such sequences as the reference representations.

The order aware video representation derived by the video or-

der is used to calculate the attention weight during the process

of deriving the order aware video representation by the student

behaviors and the final order aware video representation.
Let Mb

v denote the concatenation of all the vectors of video

v in the student video watching behavior sequences outputted

by the FCo((BiLSTMv
o ()) function using Nc

v as the input

of v. Then the order aware representation of lecture video v
derived by the student video learning behavior sequences can

be calculated by:

Nb
v = att(Mb

v,N
c
v), (12)
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where Nb
v ∈ R

1×h is the order aware representation of lecture

video v derived by the student behaviors. Thus, the final order

aware representation of the video v can be represented as:

Nv = att([Nc
v ⊕Nb

v],N
c
v) (13)

where Nv ∈ R
1×h is the order aware representation of the

lecture video v.

E. Heterogeneous Graph Based Reasoning

To further exploit the useful structural information among

knowledge concepts, we construct a heterogeneous graph and

apply graph neural network to pass messages among nodes.

Let G =< N , E > denotes the heterogeneous graph.

N = K ∪ V ∪ C,
E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6.

(14)

N is the node set and E represents the edge set which is the

union of the video occurrence, video order, knowledge concept

occurrence, knowledge concept order, student video watching

order and knowledge concept prerequisites 1.

To enable the information propagates over the constructed

heterogeneous graph, the message passing mechanism in [5] is

applied. The message passing mechanism includes two steps:

aggregation and combination. The aggregation step aggregates

the information of the neighbors of a node n ∈ N , which can

be represented as:

ein =
6∑

r=1

1

|N r
n |

∑
j∈N r

n

FCr(e
i−1
j ), (15)

where ein ∈ R
1×h is the aggregated representation of node

n in layer i. N r
n denotes the set of neighbour nodes of the

node n in Er, where r ∈ {1, 2, 3, 4, 5, 6}. FCr(·) is a fully

connected layer.

The combination step combines the representation of the

aggregated representation of node n in layer i and the repre-

sentation of that node in layer i− 1 to obtain the embedding

of node n in layer i, which can be formulated as:

ein = FCc(e
i−1
n ) + ein, (16)

where ein ∈ R
1×h denotes the node embedding of node n in

layer i. FCc(·) is a fully connected layer for transformation.

The final representation of the node n can be obtained after

3 times message passing, which is: en = e3n. Different types

of nodes in the graph G have different initial representations

(e0n) described as:

e0n =

⎧⎪⎨
⎪⎩

Nk, n ∈ K,
Nv, n ∈ V,
Sc, n ∈ C.

(17)

F. Multitask Prerequisite Learning

Given two knowledge concepts k1 and k2, a two-layer fully

connected network can be used to determine if k1 is the

prerequisite of k2, which is represented as:

R̂(k1 → k2) = FCp([ek1 ⊕ ek2 ]) (18)

R̂(k1 → k2) is the predicted probability that k1 is a prereq-

uisite of k2. FCp(·) is a two-layer fully connected network

where the activation functions are the ReLU and the sigmoid

function separately. ek1
and ek2

are the knowledge concept

representations of k1 and k2 defined in Eq. 16 with i = 3.

To learn the parameters in the proposed model, we introduce

three auxiliary tasks in addition to the knowledge concept

prerequisite learning. Those three auxiliary tasks are:

• Predict if a video appears in a course.

• Predict if a video appears ahead the other video.

• Predict if a knowledge concept appears in a video.

Let ˆR(i)j denote the predicted result of pair j of the Task i,
which can be formulated as:

R̂(i)j = FCi
p([ej1 ⊕ ej2 ]), (19)

where ej1 and ej2 are the representations of the entity pair

defined in Eq. 16 with i = 3. FCi
p(·) share the same

architecture as FCp(·). In addition, the parameters of the

first layer are shared between FC1
p(·) and FC3

p(·) as well

as between FCp(·) and FC2
p(·).

The average cross-entropy defined in Eq. 20 is used as the

loss function for each task.

L(Y, Ŷ) = − 1

|Y|
∑
yj∈Y

(yj log(ŷj)+(1−yj)log(1− ŷj), (20)

where Y and Ŷ are the ground truth label set and the predicted

probability set for each task. yj and ŷj denote the ground truth

label and predicted probability of the sample j. |Y| represents

the number of samples in set Y .

The total loss is formulated as the weighted sum of the

losses for those tasks, which can be denoted as:

L = αLp +
1− α

3

∑
i

Li, (21)

where Lp and Li denotes the loss represented by Eq. 20 for the

knowledge concept prerequisite learning task and the auxiliary

Task i (i = {1, 2, 3}). 0 ≤ α ≤ 1 is the balance parameter.

The model parameters are learned during the training phase

by optimizing the loss function L.

IV. EXPERIMENTS

A. Datasets

We construct two datasets for evaluation from the public

available MOOCCube dataset [22]2. We divide the labeled

prerequisites into two subsets according to the domains they

belong to and obtain two datasets with positive prerequisite

samples in the mathematics and computer science. The reverse

of the positive pairs are considered as the negative samples.

Since the prerequisite relations are sparse, we also randomly

sample the knowledge concept pairs in each of the domain

to obtain more negative samples with a pre-defined positive

sample ratio. The statistics of the original MOOCCube and

the two constructed datasets are shown in the Appendix 1.

2http://moocdata.cn/data/MOOCCube
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TABLE I
MODEL PERFORMANCE ON THE PREREQUISITE PREDICTION TASK

CS Math

Model recall precision F1 recall precision F1

MOOC-LR 0.467 0.640 0.540 0.482 0.650 0.553
MOOC-XG 0.500 0.563 0.530 0.510 0.565 0.536

DNN 0.542 0.580 0.560 0.579 0.579 0.579
PREREQ 0.676 0.580 0.624 0.668 0.593 0.628

HIEPL-B 0.680 0.660 0.670 0.678 0.660 0.669
HIEPL-C 0.678 0.654 0.665 0.680 0.665 0.672
HIEPL-S 0.542 0.580 0.560 0.575 0.573 0.574

HIEPL 0.688 0.676 0.682 0.694 0.680 0.687

B. Methods for Comparison

The proposed HIEPL is compared with the several meth-

ods 1 to evaluate its effectiveness. Since the proposed frame-

work works in a supervised learning setting, only the super-

vised knowledge concept prerequisite learning models proven

to achieve better performance are compared. The models we

compared include: MOOC-LR [16], MOOC-XG [16], PRE-

REQ [18] and Deep Neural Network (DNN). To investigate

the effects of different components of the HIEPL, we also

compare it with its three variations: HIEPL-B, HIEPL-C and

HIEPL-S by removing the student video watching behav-

iors, co-representation learning and supplementary supervision

component in the HIEPL respectively.

C. Experimental Setting

The HIEPL framework is implemented using PyTorch [17].

The model parameters are randomly initialized, and then the

Adam optimizer [7] is used to learn the model parameters

with the learning rate of 0.0001. The batch size is set to 32

for training and 128 for testing, and the maximum number of

epoch is 500. To avoid the issue of overfitting, dropout [20]

with a rate of 0.2 and early stop are applied. The size of the

outputted representation vectors by the text encoder is set to

32 (h = 32). The balance parameter in Eq. 21 is set to 0.5

(α = 0.5) 3 .

To evaluate the effectiveness of the proposed model, we

construct the datasets in the two domains by sampling the

negative samples with a positive sample ratio of 0.2. For each

positive sample, we need to randomly sample three negative

pairs in addition to the reverse pair of it. For each domain,

we sample three different datasets. Five-fold cross validation

is used to evaluate the performance of those models. The

performance of the models are measured by precision, recall

and F1 value. The average metrics of the fifteen runs in each

domain are reported.

D. Experimental Results

The experimental results are shown in Table. I. We can

observe that HIEPL outperforms all the baselines. Although

3The implementation details can be found in the Appendix. Both
the Appendix and the code are available at https://www.dropbox.com/sh/
z9plfdqg6xg10fy/AACL0G0HrE5QqdOiIOYBd7P0a?dl=0

the MOOC-LR and the MOOC-XG model consider features

in three different aspects: semantic, context and structure, the

performance of those two models is still among the worst ones.

The inferior performance of those two models may indicate

the limited ability of manually designed features to capture

useful information related with the prerequisite learning task.

The performance of the DNN model is better than MOOC-
LR and MOOC-XG, which demonstrates that the pre-trained

word embeddings can capture the signal related with the

prerequisite learning. However, it is beaten by the PREREQ
model, which also uses the textual information. The reason

may be that the pre-trained embeddings are trained on a large

scale corpus with great generalization ability on different tasks

but not specifically optimized for the prerequisite learning task.

Thus, those embeddings may capture the shared characteristics

of different NLP tasks such as the similarity of the input,

which is also informative in the prerequisite learning task.

However, it can not capture the informative signal specific of

the prerequisite learning task such as the dependencies utilized

in the PREREQ.

As for the PREREQ, it learns the knowledge concept repre-

sentations by jointly modeling the dependencies and semantic

information and achieves the best performance among all those

four baselines. The superior performance of PREREQ among

all the baselines shows that both the semantic information and

dependencies are useful for prerequisite learning and fusing

information from different sources effectively helps improve

the knowledge concept prerequisite learning task.

E. Ablation Study

To investigate the effects of different parts of the proposed

HIEPL framework, we perform ablation study by comparing

the HIEPL framework with its three variations. The results

are shown in Table. I. The performance of all reduced models

degrades compared with the full model, which shows the

effects of related parts in the proposed HIEPL framework.

The decreased performance of the HIEPL-B compared with

HIEPL shows the impacts of the student watching behaviors

in the prerequisite learning task, where the student video

watching behaviors can help bridge the knowledge concepts in

different courses. The behavior patterns can also help reveal

the prerequisite relations and further improve the performance

of the knowledge concept prerequisite learning task. The

hierarchical co-representation learning can help transfer and

fuse information among courses, lecture videos and knowledge

concepts and therefore benefit the prerequisite learning task,

which may account for the worse performance of the HIEPL-

C compared with the HIEPL framework. The HIEPL-S is

the worst model among those three reduced models, which

demonstrates the importance and necessity of utilizing auxil-

iary supervision to optimize the HIEPL framework with only

a small number of labeled prerequisites.

V. RELATED WORK

The prerequisite mining methods can be divided into statis-

tics based methods and learning based methods. In the statis-
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tics based methods, such as [1], [2], metrics are manually

designed and thresholds are applied to determine the prereq-

uisite relationship. Although using different features and ways

to make decision, the workflow of existing learning learning

based prerequisite mining methods [10]–[13], [15], [16], [18],

[19] can be summarized as two steps: the knowledge concept

representation learning step and then prerequisite relation-

ship determination step. Recently, several publicly available

datasets [4], [11], [22] are released, which also help advance

the development of supervised prerequisite learning meth-

ods. Different from the aforementioned prerequiste learning

methods, the proposed HIEPL framework can automatically

learn the knowledge concept representations by fusing rich

information from heterogeneous sources in an end-to-end

manner and utilize the heterogeneous information as extra

supervision.

Our work is also related to the co-attention and graph neural

network. The co-representation learning is inspired by the

method in [23] which has been proven effective in capturing

the relevant information. The graph neural networks [5], [8],

[21] have achieved great success by its ability of transforming

information among nodes in a graph to meaningful repre-

sentations. In the proposed HIEPL framework, we use the

message passing mechanism proposed in [5] to transform the

information among different nodes.

VI. CONCLUSIONS

Identifying the knowledge concept prerequisite relations

is important for many fundamental tasks in MOOCs such

as learning material recommendation. Although some efforts

have been devoted to this topic, the existing methods still

suffer from two issues: insufficient learning of knowledge con-

cepts and ignoring informative supervision sources, which can

be addressed by utilizing heterogeneous information, including

the semantic, contextual and structural information as well as

student behavior. To this end, we propose a novel end-to-end

HIEPL framework, which can fully exploit the heterogeneous

information in context of obtaining the entity representations

and additional sources for supervision. Experiments conducted

on two real-world datasets show that the proposed HIEPL

framework outperforms the baselines in terms of multiple

evaluation metrics. These results confirm the effectiveness of

the proposed framework of incorporating the heterogeneous

information into the prerequisite learning task.
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