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There is great interest in how the growth of artificial intelligence and machine learning may affect global GHG emissions.
However, such emissions impacts remain uncertain, owing in part to the diverse mechanisms through which they occur, posing
difficulties for measurement and forecasting. Here we introduce a systematic framework for describing the effects of machine
learning (ML) on GHG emissions, encompassing three categories: computing-related impacts, immediate impacts of applying
ML and system-level impacts. Using this framework, we identify priorities for impact assessment and scenario analysis, and

suggest policy levers for better understanding and shaping the effects of ML on climate change mitigation.

s artificial intelligence (AI) and particularly machine learn-

ing (ML) are increasingly being deployed across society’,

there has been a surge of interest in understanding the effects
that ML may have on climate action’*. To explicitly and consis-
tently account for ML in long-term climate and energy projections,
and in the design of appropriate policies, the research community
needs to develop a holistic and operational understanding of the
different ways in which ML can positively and negatively impact
climate change mitigation and adaptation strategies. In particular,
those impacts that are easiest to measure are likely not those with
the largest effects. This can lead to challenges in terms of estimating
macro-scale effects, understanding underlying dynamics and trends,
and prioritizing actions to align ML with climate strategies. To aid
in addressing these challenges, we present a systematic framework
(Figs. 1-3) for categorizing the different kinds of impacts of ML on
global GHG emissions, including computing-related impacts, the
immediate impacts of ML applications and the system-level changes
ML induces.

Although the effects of digital technologies on environmental
sustainability and GHG emissions have previously been concep-
tualized (for example, refs. >°), this line of work has been largely
overlooked in the discussion around Al and ML. Moreover, existing
frameworks need to be extended to include aspects that are unique
to ML. Recent work has discussed such ML-specific aspects in part,
describing applications of ML for tackling climate change’, applica-
tions of ML that increase emissions® and the energy consumption
of ML through software and hardware’"'. A few pieces have engaged
with both the positive and negative effects of ML on climate>>'*"',
but none have explicitly provided an overview of the different
mechanisms by which ML may impact emissions. By presenting a
unified framework and detailed overview of these mechanisms, we
intend to provide a starting point for research, policy-making and
organizational action aiming to better align ML with climate change
strategies, as well as augment the broader literature on responsible
Al (see, for example, refs. '7-"%).

Related literature on assessing the impacts of information
and communications technologies (ICT) has often distinguished
between the energy- and hardware-related GHG emissions of ICT
(‘direct’ impacts) and the emissions impacts of ICT’s applications
(‘indirect’ impacts)>“**~*>. We build on this work and similarly dis-
tinguish between the computing-related GHG emissions of ML and
the emissions reductions and increases resulting from applications
of ML (Fig. 1). Given that ML encompasses a particularly novel
and transformative set of software and analytics approaches with
nuanced downstream effects, our framework covers three main cat-
egories. The first involves the GHG emissions resulting from com-
puting, caused by both the electricity used for ML computations and
the embodied emissions associated with computing hardware. The
second involves the ‘immediate’ GHG emissions effects tied to the
short-term outcomes of applications of ML. The third involves the
structural or ‘system-level’ GHG effects induced by these applica-
tions. Drawing a clear line between these latter two application-level
effects is difficult, with different classifications available throughout
the literature (see ref.”” for an overview); our distinction is adapted
from ref.” and ref. %, and, although imperfect, is important for fram-
ing the discussion of the overall impacts and associated levers of
ML. We report quantitative assessments where available and where
we believe these estimates are representative, and we discuss the cur-
rent state of research on impact assessment. We then use our frame-
work to propose a roadmap for assessing and forecasting impacts,
and discuss approaches for shaping the impacts of ML. In terms of
scope, our framework predominantly focuses on algorithm-related
impacts, and omits impacts relating to data collection and manage-

ment, ICT and digitalization more broadly>***->.

Computing-related impacts

We illustrate two different viewpoints that are relevant to assess-
ing direct computing-related impacts. The first is a ‘use-phase’ view
that aims to assess the energy use of individual ML model instan-
tiations by capturing aspects of the use, development and design of

'Data Science Lab, Hertie School, Berlin, Germany. 2Energy and Technology Policy Group, Department of Humanities, Social and Political Sciences, ETH
Zurich, Zurich, Switzerland. 3Institute of Science, Technology, and Policy, ETH Zurich, Zurich, Switzerland. “School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, USA. *Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, USA. ¢International Energy
Agency, Paris, France. ’Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany. 8Sustainability Economics of Human
Settlements, Technical University Berlin, Berlin, Germany. °School of Computer Science, McGill University, Montreal, Quebec, Canada. °Mila - Quebec Al

Institute, Montreal, Quebec, Canada. ™e-mail: kaack@hertie-school.org

518 NATURE CLIMATE CHANGE | VOL 12 | JUNE 2022 | 518-527 | www.nature.com/natureclimatechange


mailto:kaack@hertie-school.org
http://orcid.org/0000-0003-3630-3102
http://orcid.org/0000-0002-8503-7464
http://orcid.org/0000-0003-2798-0726
http://orcid.org/0000-0003-4376-0790
http://orcid.org/0000-0002-5710-3348
http://orcid.org/0000-0002-2855-393X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41558-022-01377-7&domain=pdf
http://www.nature.com/natureclimatechange

NATURE CLIMATE CHANGE

System-level
impacts

Increasing precision in GHG
emissions estimates

Lock-in and
path dependency

PERSPECTIVE

Increasing effect on
GHG emissions

Rebound

effects

Communication
and education

Computing-related
impacts

Operational and embodied

Consumer

behaviour Energy supply

HE=W

ML algorithm
Inference, training, development

O
Forestry and
other land use

Other systemic
effects

Fig. 1| Framework for assessing the GHG emissions impacts of ML. We distinguish between three categories (A, B and C) with different kinds of potential
emissions impacts, estimation uncertainties, and associated decarbonization levers. Green lines denote effects relating to reductions in GHG emissions,
magenta lines relate to increases in emissions, and grey lines symbolize uncertain and/or negligible effects. We provide specifics of Category A of this
framework in Fig. 2 and Category B in Fig. 3. Icons adapted with permission from the IEA.

these models. The second is a top-down view that aims to estimate
the total global GHG emissions associated with ML workloads,
capturing both the sourcing of the electricity used to power com-
putations and embodied emissions from materials extraction and
manufacturing.

ML model development and deployment. Creating and running
an ML model uses computing power, and therefore energy, with
the amount varying dramatically between different algorithms
and different stages in the development and use of an ML model.
Although many models used in practice are relatively small and can
be trained and run on a laptop (such as linear classifiers or decision
trees), state-of-the-art performance on more complex tasks is often
achieved with very large models, typically using deep learning. The
size of the largest deep learning models (measured in number of
parameters), and likely the size of the average model, is growing rap-
idly, leading to much larger demand for computing resources**.
To illustrate how ML models differ so drastically in the energy
they consume and better understand approaches to reduce their
energy consumption, it is necessary to take a deeper dive into the
life-cycle stages of an ML model: model inference (or use), model
training, and model development and tuning. Model inference
describes the stage where the model is in use in the world. For
instance, given new inputs (such as images), the model labels those
inputs (for example, it identifies whether an image is of a cat or a
dog) according to a function that it has learned. The goal of the
model training stage is to learn the underlying function that (for
example) maps from inputs to labels by analysing a dataset to
choose a set of parameters that define the function. During model

development and tuning, a researcher will typically train many dif-
ferent model variants on different datasets to devise a variant that
works best in the given problem setting.

We created a schematic overview of relative energy require-
ments and frequency of each stage of the ML model life cycle
(Fig. 2). Model inference is the least energy-intensive process in the
ML model life cycle, but it is likely to occur the most frequently. For
instance, classifying toxic comments®~ or the contents of images*!
on social media requires little power each time a model is used,
but may be used on the order of billions of times a day. Also larger
models, such as Google’s machine translation system, may process
more than 100 billion words per day*. Those computing require-
ments can add up: at Facebook the carbon footprint for inference
outweighs that for training for certain use cases®. The training stage
may require many passes over the dataset, often denoted as ‘epochs,
with each epoch performing full model inference on each exam-
ple, as well as computing updates to correct the model’s prediction
for future iterations. In the case of deep learning, for example, this
means that the amount of computation required to process each
example during training is typically about three times as much as
is required during inference for a given model™. Training an ML
model is thus more energy intensive than using it, but is done much
less frequently. Ref.* reported that ML models in FacebooK’s data
centres are retrained anywhere from hourly to multi-monthly.
The most energy-intensive stage of the ML model life cycle is
model development, which requires training many different mod-
els. Modern ML models that use neural networks are particularly
energy intensive in the development phase as they have many more
possible model configurations than their predecessors, and it is not
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Fig. 2 | Computing-related GHG emissions impacts of ML. The ICT
sector accounts for around 1.4% of GHG emissions today, of which

ML probably accounts for a small, but unknown, share (indicated by

blue shading). Computing-related impacts of ML can be assessed from
different perspectives. The majority of ML-related GHG emissions
probably come from computing loads in large data centres, with a smaller
share from distributed computing (for example, personal computers and
smartphones); these GHG emissions result both from operational energy
use during computation and from other phases of the hardware life cycle
(including embodied emissions). We further break down operational
energy use throughout different stages of the model life cycle, with this
energy use differing depending on the problem setting and usage patterns.

well understood how those configurations should be set to perform
well on a given dataset, except through trial-and-error experimenta-
tion and validation (‘hyperparameter searcl’), which often involves
thousands of training runs. In the most extreme cases, the GHG
emissions associated with developing certain large, cutting-edge
models can be comparable to, for example, the lifetime carbon emis-
sions of a car'’, although such computationally intensive processes
are performed rarely and by the fewest entities.

The computational requirements of ML models are often
described in floating point operations (FLOPs), or the num-
ber of additions and multiplications of scalar values required to
obtain a result. The precise mapping from FLOPs to energy draw
is hardware- and algorithm-dependent, but more FLOPs gener-
ally corresponds to higher energy use. ResNet-50%, a popular deep
learning model for image classification, requires about 4 billion
FLOPs (and 65ms) to map a 224 x 224 pixel input image to a label,
with an error rate of 24.6% (ref.*). A less computationally efficient
version, ResNet-152, requires about 11 billion FLOPs (and 150 ms)
per image, and obtains only a slightly better error rate of 23.0%. This
case illustrates a trade-off in energy-efficient ML: is it worth the
more than 2.5 times increase in FLOPs, and corresponding energy
consumption, to reduce the error rate by 1.6%? Will the benefits
necessarily justify the costs from both an emissions and a broader
societal perspective” -2

Software tools for measuring ML model energy use*’ and carbon
emissions'"* are already available, metrics for reporting model accu-
racy as a function of computational budget have been proposed***
and benchmarks measuring training and inference efficiency have
been established’**. Reference * proposed that the amortized com-
putational energy cost of models should be measured across the ML
model life cycle to enable a cost-benefit analysis of different use
phases (for example increasing training computation to decrease
inference computation). However, such reporting is still not standard
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for researchers and ML software maintainers. Standardized report-
ing is essential to include efficiency considerations during model
development and make energy consumption a criterion when
choosing between different ML approaches in practice.

As larger neural network models have become more prominent
in certain areas of ML, research into improving the efficiency of ML
models has started to expand via methods such as model compres-
sion’"*, devising methods that require fewer training examples to
learn a good function*, reducing retraining frequency and cost*-"!,
and conditional use of simpler models in place of more complex
ones when examples are less challenging and thus require less com-
putation®”. The ML research community has also begun to discuss
the implications of compressing models and other approaches for
improving ML model efficiency on broader performance character-
istics™. However, the vast majority of ML research and development
still focuses on improving model accuracy, rather than balancing
accuracy and energy use'’.

Computing infrastructure. The global ICT sector—consist-
ing of all data centres, data transmission networks and connected
devices—accounted for around 700 Mt of CO,-equivalent in 2020,
corresponding to around 1.4% of global GHG emissions™>.
Around two-thirds of the sector’s emissions come from operational
energy use (Scope 1 and 2 in the Greenhouse Gas Protocol), with
the remainder resulting from materials extraction, manufacturing,
transportation and the end-of-life phase (Scope 3)*. Although these
emissions are relatively small today, especially compared with other
sectors and services, policymakers and researchers are increasingly
concerned that these emissions could increase as a result of rapid
growth in the demand for digital technologies and services, includ-
ing emerging technologies such as AI/ML.

Only a fraction of emissions from the ICT sector is attributable
to Al and ML (Fig. 2), but its exact share is not known due to chal-
lenges in boundary definition and a lack of data and established
methodology. From the limited information available, we hypoth-
esize that the majority of ML-related workloads today are probably
taking place in cloud and hyperscale data centres, with a smaller
share occurring on distributed devices such as personal computers.
Cloud and hyperscale data centres account for 0.1-0.2% of global
GHG emissions ™, and it is likely that less than one-quarter of
their workloads and traffic are currently ML-related based on esti-
mates for infrastructure-as-a-service and platform-as-a-service®
and IP traffic related to big data®. Over the coming years, edge
devices such as smartphones are also expected to handle an increas-
ing volume of inference tasks to reduce latency and dependence on
network connectivity®, with uncertain effects on overall energy use
and emissions.

While the amount of computing needed for each of the largest
ML training runs is growing rapidly”, the extent to which effi-
ciency improvements in computing (doubling every 2-3 years)*>*
can limit overall ML-related energy use in data centres is uncertain.
For example, FacebooKk’s overall data centre energy use increased
rapidly over the past few years (+40% per year)*, while comput-
ing demands for ML training (for example, +150% per year; ref. )
and inference (for example, +105% per year; ref.*) have grown
even faster. At the same time, by some measures, FacebooK’s opera-
tional GHG footprint (accounting for renewable energy purchases)
fell by more than 90% between 2016 and 2020%, due in part to
energy-efficiency improvements and increased renewable electric-
ity procurement.

Energy efficiency has played a central role in limiting the growth
in data centre energy demand more generally. Between 2010 and
2018, global data centre energy use rose by only 6%, despite a 550%
increase in workloads and computing instances®. There have been
strong efficiency improvements in servers, storage, networking and
infrastructure, as well as a shift away from smaller, less-efficient data
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Fig. 3 | Immediate application impacts of ML. ML applications are grouped by their functional role (left) and the associated GHG emissions impacts
(right). ML can both reduce emissions (indicated in green) and increase emissions (pink). This diagram differentiates ML applications for addressing
climate change in more detail using the findings in ref.’; however, the net effect of those applications addressing climate change versus those accelerating

emissions-intensive industries is unclear.

centres towards large cloud and hyperscale data centres**’, which
have higher virtualization, more efficient cooling and increased use
of specialized ‘Al accelerator’ hardware such as application-specific
integrated circuits (ASICs) and graphics processing units (GPUs).
For instance, a 2017 study found that Google’s custom ASIC, the
Tensor Processing Unit (TPU), was on average 30-80 times more
energy efficient than contemporary CPUs or GPUs®. However,
the use of GPUs and ASICs for ML applications could drasti-
cally increase the power density of data centre racks, which may
in turn require liquid cooling technologies and increase water use.
Although energy use across all data centres has been flat over the
past decade, energy use by large data centres has grown by around
20% annually, and this trend is expected to continue”. Limiting
overall growth in data centre energy demands over the next decade
will therefore require even stronger energy-efficiency improve-
ments. For instance, operators can increase utilization and virtu-
alization to maximize the energy efficiency of existing hardware
and infrastructure while replacing hardware when advisable from
a life-cycle perspective with the most efficient option. Companies
and governments will also need to invest in research, development
and demonstration (RD&D) for efficient next-generation comput-
ing and communications technologies™.

Some of the largest data centre operators are now purchasing
as much renewable electricity as they consume on a global annual
basis”’; however, this does not guarantee that their data centres
are actually fully powered by renewable sources all the time. More
ambitious approaches to low-carbon electricity include shifting
flexible workloads to times of day (or locations) with higher shares
of renewables generation® and replacing on-site diesel generators
with battery storage.

Computing hardware and infrastructure is also responsible for
‘embodied’ emissions from raw materials extraction and manufac-
turing, as well as emissions from transportation and the end-of-life
phase (Scope 3). For decentralized computing (for example, desk-
tops, laptops, smartphones), embodied emissions account for
40-80% of devices’ life-cycle GHG emissions, whereas for data cen-
tres this is typically less than 10% (refs.*>’°~"?). Servers in large data
centres are typically replaced every 3-4years, which can result in
higher operational efficiency**”*; however, shorter lifespans could
also increase the share of life-cycle emissions from manufacturing,
which can be mitigated by reusing servers and equipment (such
as older GPUs for inference). As data centres become increasingly

efficient and powered by clean electricity, the relative importance
of emissions from non-operational life-cycle phases will grow—
particularly embodied emissions in computing hardware and data
centre building construction®"*.

Immediate application impacts

The broad applicability of ML algorithms means that they can be
used both in applications that alleviate bottlenecks in addressing cli-
mate change, and in applications that may counteract climate action.
In ref.”, a number of settings in which ML can enable or accelerate
climate change mitigation and adaptation strategies were described.
These applications span many different areas such as energy, trans-
portation and land use (Fig. 3). For example, via data mining and
remote sensing, ML has been used to translate raw data such as
text documents or satellite imagery into usable insights for RD&D,
policy-making and systems planning—for example by tracking
deforestation”, evaluating susceptibility to coastal inundation™ and
gathering information on corporate climate risk”. By accelerating
the search for experimental parameters in scientific discovery, ML
has been used to aid in the design of next-generation batteries and
other materials’. By learning from time series, ML has been used
to forecast renewable power production”, crop yields® and trans-
portation demands®'. By controlling and improving the operational
efficiency of complex systems, such as industrial heating and cooling
systems®’, ML can be used to save resources and energy. ML has also
been used to speed up time-intensive physics-based simulations for
building design®’ and climate modelling®. Predictive maintenance
approaches leveraging ML can also be relevant to climate change
mitigation when they are applied to low-carbon systems to improve
efficiency, reduce costs or build resilience®.

Although ML is often seen as a ‘futuristic’ technology, most of
these applications are possible with current ML techniques, and
many are already being deployed"”. In addition, areas of cutting-edge
ML research such as interpretable and probabilistic ML,
physics-integrated ML* and transfer learning® can both enable new
applications and better support integration within existing systems.
To support the development and deployment of this kind of work,
it will be crucial to facilitate interdisciplinary and applied research
via science policy, advance the technological readiness of applications
through RD&D programmes and adapt current regulatory environ-
ments to mitigate bottlenecks in deployment in relevant sectors and
industries. This includes targeted funding and research programmes,
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testbeds and demonstration projects, public procurement pro-
grammes and relevant data management initiatives.

As a general-purpose tool, ML has also been applied in ways that
may make climate goals harder to achieve. One such effect is when
ML is used to decrease the cost of emissions-intensive activities,
thereby potentially increasing their consumption. For example, ML
has been used to accelerate oil and gas exploration and extraction
by decreasing production costs and boosting reserves®, which could
in turn lead to greater use of fossil fuels. Likewise, ML is used in
the ‘Internet of Cows’ to help manage livestock at scale®, which can
increase cattle farming, an activity already responsible for about 9%
of GHG emissions’’. A potential approach to reduce or avoid the
emissions increases associated with such applications is to require
ML solutions providers to account for and report the emissions
impacts of the applications they support, even if only at the level of
order-of-magnitude or qualitative assessments where more detailed
numbers are infeasible to obtain. Such reporting can also help
address phenomena such as dual use, where stakeholders may use
the same ML algorithm for multiple purposes (for example, both in
ways that help climate action and in ways that hinder it).

The total immediate impact of ML applications on GHG emis-
sions is extremely difficult to estimate due to the lack of data on
the deployment rate of ML, the diversity of application areas and
the lack of procedures to appropriately attribute emissions effects
to the use of ML algorithms. Although some scientific reviews exist
within isolated fields or sectors, the only attempts to provide overall
numbers are from ML solutions providers in the private sector’-!
(these studies are not peer-reviewed and do not disclose all meth-
odologies). We also note that ML can be used with the motivation to
elevate the profile of sustainability-related activities in corporations
in a way that could provide a false impression of overall organiza-
tional sustainability.

System-level impacts

While the previous section describes ML applications that are
directly beneficial or detrimental to climate change mitigation,
many societal ML applications may not have clear immediate
impacts on climate change. However, many of these applications
can have broader societal implications beyond their immediate
impact, and these system-level effects can influence GHG emissions
both positively and negatively. Although these kinds of impact may
be hard to quantify, they have the potential to outweigh immediate
application impacts and are extremely important to consider when
evaluating ML use cases.

One pathway to system-level impacts occurs when ML enables
changes to a technology that in turn affect the ways in which that
technology is used. For example, rebound effects can occur when
ML increases the efficiency of a service. Although the improved
efficiency may result in lower GHG emissions per use, a decrease
in cost may lead to increased consumption of the same (or another)
good. This can eat into GHG benefits from efficiency gains or even
counteract them®. Such rebound effects can be direct, for example
by allowing a manufacturing plant to use ML-enabled efficiency
gains to increase production of the same goods, thereby (partially)
negating emissions savings. Even larger impacts can be expected
from more structural types of rebound effects'>*, which occur
(for example) with ML-enabled autonomous driving. Specifically,
autonomous vehicles can improve fuel efficiency, but they may
also lead to higher rates of individualized vehicle travel, potentially
increasing overall energy use and emissions if autonomous vehicles
are not shared and/or electrified”'*.

Given the role of ML as an accelerator of technological devel-
opment, it may also induce path dependencies that affect climate
change mitigation. For instance, the phenomenon of lock-in’ refers
to a scenario in which a particular technology reaches markets first
and prevents competitors from entering the market'”’. Depending
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on how it is applied, ML may end up entrenching the role of a poten-
tially inferior technology in a way that prevents others, for example
low-carbon technologies, from entering the market. For instance,
the adoption of autonomous vehicles may ingrain the role of trucks
and private cars as the dominant means of transportation, instead
of enabling infrastructure and space for less emissions-intensive
rail, public transit and micromobility options®. On the other hand,
ML may help break path-dependency effects or create a first-mover
advantage for a technology that is beneficial to the climate. The
potential effects of ML on such path dependencies in the context of
climate change mitigation should be carefully analysed.

Another avenue to system-level impact occurs when ML technol-
ogies influence broader lifestyle changes across society, for example
by changing the demand for goods and services™. A likely nega-
tive example here is in advertising, where ML algorithms such as
recommender systems can be used to increase the consumption of
goods and services with embodied GHG emissions. Given that ML
is fuelled by data, its use could also incentivize increasingly large
data infrastructures, which can come with their own carbon foot-
print and systemic implications. Various other paradigm-changing
applications of ML have highly unclear effects from a climate per-
spective—such as in automatic translation tools, virtual assistants
and augmented or virtual reality.

These examples demonstrate how important it is to assess the
impacts of an ML application at the system level, rather than only
estimating marginal effects, and to design public policy to shape sys-
tem effects. Such policy levers include requiring climate impacts to
be considered within regulations surrounding ML-driven emerging
technologies'®, and implementing carbon pricing or other mecha-
nisms to incentivize GHG emissions reductions and avoid rebound
effects when ML is applied for efficiency. Such climate-cognizant
technology assessment should build on and complement frame-
works for responsible innovation'**'** and responsible AI'"-".

A roadmap for assessing and forecasting impacts

We have discussed the extent to which it is currently possible to
estimate the GHG emissions associated with ML above. However,
holistic and realistic predictions of the impact of ML across several
areas of our framework will require new reporting standards, more
data collection, novel measurement methodologies and bench-
marking frameworks, and new approaches for developing forecasts
and scenarios. Moreover, given the heterogeneous nature of the
capabilities, impacts and generalizability of different digitalization
technologies, ML and other forms of data analytics warrant sepa-
rate consideration within impact assessment and attribution frame-
works for digital technologies. Such efforts could, for example, build
on and extend existing methods and standards for life-cycle assess-
ment (LCA) of ICT to devise approaches that take such heterogene-
ity into account (see for example, ref. ' for a LCA of direct effects
and ref.?! for indirect effects, as well as refs. "' for standards). We
call on the academic fields of LCA, industrial ecology and others
to extend their work to actively grapple with the task of assessing
the impacts related to ML, accounting for the ML-specific consider-
ations raised in our framework (Figs. 1-3). Our framework lays out
the factors that are relevant for LCA and, depending on the scope of
the analysis, can provide a basis on which to estimate the emissions
of a company, a particular product, or a policy.

When assessing the GHG emissions impacts of ML, it is impor-
tant to compare ML approaches to alternatives. Such alternatives are
not constrained to other ML models; they can also be other types of
analytics approaches that fulfil the same purpose, or can be human
decision-making. As ML has enabled many innovations that other
methods were unable to attain, in some cases the baseline may be a
world where such innovations did not exist at all. The choice of an
appropriate baseline depends on the aim of the analysis, as well as
the category of the impacts being assessed.
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Table 1| Levers to reduce the GHG emissions impacts associated with ML computing and applications

Lever type Computing-related (algorithm, infrastructure)

Application-related (immediate, systemic)

Public sector

Economic instruments

RD&D Support research in energy-efficient ML?
Support RD&D in energy-efficient, specialized and
low-resource hardware?
Support RD&D in data centre operational efficiency?
Regulation

technologies®

Implement economy-wide or sector-specific carbon pricing to incentivize emissions reductions and mitigate rebound effects?

Support interdisciplinary and applied ML research for
climate-relevant applications of ML?

Provide mechanisms to advance the technological readiness
of climate-beneficial ML applications (for example, testbeds,
demonstration projects, public procurement programmes)®

Employ a climate-cognizant technology assessment lens within Al strategies and when regulating ML-driven emerging

Implement clean electricity mandates (for example, low-carbon Employ regulatory approaches to constrain sector-specific GHG

portfolio standards)?

Implement efficiency standards for data centre hardware and

infrastructure®

Best practices and

standards facilitate a decentralized solutions provider space®

Develop and implement standardized metrics for

evaluating model efficacy that include energy efficiency?

Monitoring and
reporting

emissions?

Reduce deployment barriers in relevant sectors and industries for
Al applications that are beneficial to the climate®

Develop interoperability standards for commercial ML approaches to prevent lock-in to particular solutions providers and

Require meaningful civic and stakeholder engagement in scoping,
developing, and deploying ML-driven projects?

Implement data governance standards that spur impactful work
and are mindful of privacy and ownership®

Develop best practices and systematic approaches to weigh
benefits and costs for ML applications®

Develop measurement methodologies and guidance to estimate and report ML-related GHG emissions®

Mandate appropriate life-cycle transparency and reporting of GHG emissions for ML use cases, including both computing and

application-related impacts®

Capacity building

Build in-house public-sector capacity in ML to facilitate governance and deployment®

Promote ML education and literacy among climate-relevant entities and in the public sector?

Private sector

Corporate climate
action

Reduce wasteful model retraining and execution?

Make energy efficiency a central criterion in evaluating

model efficacy®

Reduce GHG emissions across supply chains and product

life cycle (including embodied emissions)?

Incentivize ML workforce shifts towards climate-oriented entities
(for example, via placement programmes)®

Adopt organizational carbon pricing strategies that account for both computing- and application-related emissions (for
example, Scope 1, 2 and 3 emissions, including those from cloud computing as well as from products and services)®

Adjust business models to avoid ML applications that drive GHG
emissions increases?

Encourage ML applications that drive GHG emissions reductions?

Measure and engage in voluntary reporting of the emissions
impacts of ML products and services®

Maximize energy efficiency in data centres and support

related RD&D?

Shift computing loads to geographies and times with lower

carbon-intensity of the grid®

Purchase low-carbon electricity and invest in energy

technologies to decarbonize the grid®

Develop standardized ML platforms to facilitate rapid
company-wide adoption of energy efficiency improvements®

?Policies that are ready to implement or already exist. *Policies that can be developed today. “More analysis needed to develop policies. General policy levers are set in italics.

To estimate computing-related impacts (Category A of our
framework), better access to information will be crucial. For
example, although is relatively straightforward to estimate the
computing-related GHG emissions resulting from individual runs
of Al systems, the usage patterns in practice are typically opaque.
Where appropriate, practitioners could disclose information about
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such usage patterns, as well as other inputs relevant to comput-
ing GHG emissions impacts resulting from ML system develop-
ment, training/fine-tuning and inference (for example, specifics
about the model type and size, training requirements for model
development and the type of pre-trained model used, the type and
location of computing infrastructure used and the frequency of
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training/retraining/fine-tuning and inference). This information
can help provide an understanding of industry trends and aid in
the development of best practices and benchmarks for trade-offs
between different approaches. We discuss feasibility considerations
around reporting requirements in the next section. To estimate the
total computing-related GHG emissions, an important data point
is the share of the total computing load in data centres that can
be attributed to ML, ideally distinguished by the relevant model
life-cycle stages. This information would allow for a top-down esti-
mate of global computing-related impacts and underlying dynam-
ics, but is not made public by data centre operators at present.

There are currently limited quantitative estimates available
about the immediate impacts of ML applications (Category B).
The lack of established methodology poses a central bottleneck
here. Research and practice need to establish how to estimate the
marginal and counterfactual benefit that ML could have if intro-
duced in established processes, including distinguishing between
use cases that would not exist without ML versus those where ML
provides improvements to an existing use case. For such efforts, it
will be important to develop a more fine-grained taxonomy of ML
systems and application areas that can help to generalize beyond
single case studies and also help stakeholders assess the costs and
benefits of new projects a priori. We provide a starting point for
developing such an approach, as illustrated in Fig. 3, encompass-
ing such diverse potential effects of ML as accelerated technological
innovation, more informed decision-making via improved analyt-
ics and increased energy efficiency of industry operations. In addi-
tion, obtaining better data will be difficult, yet particularly crucial,
considering the potentially large magnitude and uncertainty around
those developments. To estimate impacts more broadly and system-
atically, reviewing, synthesizing and generalizing case studies will
be important, and where data cannot be easily obtained, approaches
such as stakeholder surveys or expert elicitation might help
to fill gaps.

Perhaps the most important impacts, yet most difficult to assess,
are the system-level impacts (Category C). ML is a fast-growing
enabling technology that has the potential to affect present and
future societal and technological trajectories and thus needs to be
appropriately accounted for in forecasting and scenario analysis. ML
can influence many input factors of climate and energy system mod-
els, such as efficiency, production and consumption rates, learning
rates, resource constraints, financial assumptions and so on, which
make ML a ‘wild card’ that could introduce large transformations in
different ways. How to appropriately factor that uncertainty into cli-
mate and energy system models is yet to be established. Importantly,
ML builds on digital infrastructure, yet the impact assessment of
digitalization is itself at an early stage (especially when it comes to
estimating the impacts of how digital technologies are applied)'*'”".
Energy and climate models, such as energy system models developed
by the International Energy Agency and the US Energy Information
Administration, or the Shared Socioeconomic Pathways used by
the IPCC, generally do not explicitly or systematically account for
digitalization, let alone the effects introduced by ML. One excep-
tion is perhaps the inclusion of autonomous vehicles in scenarios,
for example, by the US Energy Information Administration'®. Our
framework can be used as a starting point, and is sufficiently general
to provide a comprehensive framing for incorporating current and
future ML effects within scenario analysis.

Aligning ML with climate change mitigation

Given the multi-faceted relationship of ML with climate change,
many different kinds of approaches from the public and private
sectors are needed to shape its impacts. This will require progress
in both climate policy and AI policy, coupled with algorithmic
and hardware innovation and the development of adequate impact
assessment methodologies. We outline a number of strategies that
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can address the different emissions effects laid out in our frame-
work (Table 1).

Despite not addressing ML explicitly, general climate policy
approaches such as carbon pricing may be effective in driving the
development and use of ML in a manner that is aligned with climate
change mitigation. Science policy approaches that foster low-carbon
technologies may also facilitate uses of ML that enable or improve
these technologies (although they may not necessarily address
ML-specific barriers). To address more technology-specific oppor-
tunities and risks, it will be important for climate change to become
a major consideration within AI innovation and deployment poli-
cies. This includes (1) promoting the research, development and
deployment of ML applications that are beneficial to the climate,
(2) requiring transparency and accountability for those use
cases that could increase emissions or otherwise counteract cli-
mate change goals, as well as on computational energy use, and
(3) employing climate-cognizant technology assessment for ML use
cases that are not traditionally within the realm of climate policy,
but where decisions today may have important implications for
future climate impacts. Many of the associated policy approaches in
Table 1 can be developed and implemented starting today.

Furthermore, mandating emissions measurement and report-
ing for ML use cases—considering the impacts of both computing
and applications—can enable these emissions to be regulated via
climate policy approaches, and further shape the design of targeted
policies. Such reporting requirements, however, need to be care-
fully designed on the basis of an understanding of where top-down
measurement might suffice to inform regulatory approaches,
what is feasible to estimate given present measurement method-
ologies, and the costs and burdens associated with reporting (see,
for example, ref.'” regarding costs for enterprises). Such require-
ments should also be implemented with an eye towards prevent-
ing strategic behaviour such as the ‘hiding’ of emissions in cloud
computing servers'®”. Climate-related reporting for ML-based sys-
tems could potentially be more easily implemented where other
AT reporting requirements are planned (such as those proposed in
the EU').

Finally, we note that ML expertise today is often concentrated
among a limited set of actors, raising potential challenges with
respect to the governance and implementation of ML in the context
of climate change. For instance, the use of ML in certain contexts
may yield or exacerbate societal inequities, for example, by widen-
ing the digital divide’”'", through algorithmic bias''? or by shifting
power from public to large private entities by virtue of who controls
relevant data or intellectual capital. Strategies to address such gaps
include strengthening small and medium-sized ML solutions pro-
viders, developing incentives such as placement programmes and
dedicated education to shift the ML workforce towards public and
climate-relevant entities, developing interoperability standards to
prevent lock-in to particular solutions providers and developing
best practices for when state-of-the-art ML models versus other
(simpler) alternatives should be used. Fostering meaningful civic
engagement processes for the scoping, design and deployment of
projects (and associated data collection and provision efforts) will
also be critical to ensuring that ML approaches are both effective
and avoid potential pitfalls'">.

The ultimate effect of ML on the climate is far from predestined,
and societal decisions will play a large role in shaping its overall
impacts''*'"®. This will require a holistic portfolio of approaches
across policy, industry and academia to incentivize uses of ML that
support climate change strategies while mitigating the impacts of
use cases that may counteract climate change goals. Most impor-
tantly, society cannot wait to act: with the rapidly growing preva-
lence of ML and the increasing urgency of climate change, we now
have a critical window of opportunity to shape the impacts of ML
for decades to come.
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