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As artificial intelligence (AI) and particularly machine learn-
ing (ML) are increasingly being deployed across society1, 
there has been a surge of interest in understanding the effects 

that ML may have on climate action2–4. To explicitly and consis-
tently account for ML in long-term climate and energy projections, 
and in the design of appropriate policies, the research community 
needs to develop a holistic and operational understanding of the 
different ways in which ML can positively and negatively impact 
climate change mitigation and adaptation strategies. In particular, 
those impacts that are easiest to measure are likely not those with 
the largest effects. This can lead to challenges in terms of estimating 
macro-scale effects, understanding underlying dynamics and trends, 
and prioritizing actions to align ML with climate strategies. To aid 
in addressing these challenges, we present a systematic framework 
(Figs. 1–3) for categorizing the different kinds of impacts of ML on 
global GHG emissions, including computing-related impacts, the 
immediate impacts of ML applications and the system-level changes 
ML induces.

Although the effects of digital technologies on environmental 
sustainability and GHG emissions have previously been concep-
tualized (for example, refs. 5,6), this line of work has been largely 
overlooked in the discussion around AI and ML. Moreover, existing 
frameworks need to be extended to include aspects that are unique 
to ML. Recent work has discussed such ML-specific aspects in part, 
describing applications of ML for tackling climate change7, applica-
tions of ML that increase emissions8,9 and the energy consumption 
of ML through software and hardware9–11. A few pieces have engaged 
with both the positive and negative effects of ML on climate2,3,12–16, 
but none have explicitly provided an overview of the different 
mechanisms by which ML may impact emissions. By presenting a 
unified framework and detailed overview of these mechanisms, we 
intend to provide a starting point for research, policy-making and 
organizational action aiming to better align ML with climate change 
strategies, as well as augment the broader literature on responsible 
AI (see, for example, refs. 17–19).

Related literature on assessing the impacts of information 
and communications technologies (ICT) has often distinguished 
between the energy- and hardware-related GHG emissions of ICT 
(‘direct’ impacts) and the emissions impacts of ICT’s applications 
(‘indirect’ impacts)5,6,20–22. We build on this work and similarly dis-
tinguish between the computing-related GHG emissions of ML and 
the emissions reductions and increases resulting from applications 
of ML (Fig. 1). Given that ML encompasses a particularly novel 
and transformative set of software and analytics approaches with 
nuanced downstream effects, our framework covers three main cat-
egories. The first involves the GHG emissions resulting from com-
puting, caused by both the electricity used for ML computations and 
the embodied emissions associated with computing hardware. The 
second involves the ‘immediate’ GHG emissions effects tied to the 
short-term outcomes of applications of ML. The third involves the 
structural or ‘system-level’ GHG effects induced by these applica-
tions. Drawing a clear line between these latter two application-level 
effects is difficult, with different classifications available throughout 
the literature (see ref. 20 for an overview); our distinction is adapted 
from ref. 5 and ref. 6, and, although imperfect, is important for fram-
ing the discussion of the overall impacts and associated levers of 
ML. We report quantitative assessments where available and where 
we believe these estimates are representative, and we discuss the cur-
rent state of research on impact assessment. We then use our frame-
work to propose a roadmap for assessing and forecasting impacts, 
and discuss approaches for shaping the impacts of ML. In terms of 
scope, our framework predominantly focuses on algorithm-related 
impacts, and omits impacts relating to data collection and manage-
ment, ICT and digitalization more broadly2,20,23–25.

Computing-related impacts
We illustrate two different viewpoints that are relevant to assess-
ing direct computing-related impacts. The first is a ‘use-phase’ view 
that aims to assess the energy use of individual ML model instan-
tiations by capturing aspects of the use, development and design of 
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these models. The second is a top-down view that aims to estimate 
the total global GHG emissions associated with ML workloads, 
capturing both the sourcing of the electricity used to power com-
putations and embodied emissions from materials extraction and 
manufacturing.

ML model development and deployment. Creating and running 
an ML model uses computing power, and therefore energy, with 
the amount varying dramatically between different algorithms 
and different stages in the development and use of an ML model. 
Although many models used in practice are relatively small and can 
be trained and run on a laptop (such as linear classifiers or decision 
trees), state-of-the-art performance on more complex tasks is often 
achieved with very large models, typically using deep learning. The 
size of the largest deep learning models (measured in number of 
parameters), and likely the size of the average model, is growing rap-
idly, leading to much larger demand for computing resources26–28.

To illustrate how ML models differ so drastically in the energy 
they consume and better understand approaches to reduce their 
energy consumption, it is necessary to take a deeper dive into the 
life-cycle stages of an ML model: model inference (or use), model 
training, and model development and tuning. Model inference 
describes the stage where the model is in use in the world. For 
instance, given new inputs (such as images), the model labels those 
inputs (for example, it identifies whether an image is of a cat or a 
dog) according to a function that it has learned. The goal of the 
model training stage is to learn the underlying function that (for 
example) maps from inputs to labels by analysing a dataset to 
choose a set of parameters that define the function. During model 

development and tuning, a researcher will typically train many dif-
ferent model variants on different datasets to devise a variant that 
works best in the given problem setting.

We created a schematic overview of relative energy require-
ments and frequency of each stage of the ML model life cycle  
(Fig. 2). Model inference is the least energy-intensive process in the 
ML model life cycle, but it is likely to occur the most frequently. For 
instance, classifying toxic comments29,30 or the contents of images31 
on social media requires little power each time a model is used, 
but may be used on the order of billions of times a day. Also larger 
models, such as Google’s machine translation system, may process 
more than 100 billion words per day32. Those computing require-
ments can add up: at Facebook the carbon footprint for inference 
outweighs that for training for certain use cases33. The training stage 
may require many passes over the dataset, often denoted as ‘epochs’, 
with each epoch performing full model inference on each exam-
ple, as well as computing updates to correct the model’s prediction 
for future iterations. In the case of deep learning, for example, this 
means that the amount of computation required to process each 
example during training is typically about three times as much as 
is required during inference for a given model34. Training an ML 
model is thus more energy intensive than using it, but is done much 
less frequently. Ref. 30 reported that ML models in Facebook’s data 
centres are retrained anywhere from hourly to multi-monthly. 
The most energy-intensive stage of the ML model life cycle is 
model development, which requires training many different mod-
els. Modern ML models that use neural networks are particularly 
energy intensive in the development phase as they have many more 
possible model configurations than their predecessors, and it is not 
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Fig. 1 | Framework for assessing the GHG emissions impacts of ML. We distinguish between three categories (A, B and C) with different kinds of potential 
emissions impacts, estimation uncertainties, and associated decarbonization levers. Green lines denote effects relating to reductions in GHG emissions, 
magenta lines relate to increases in emissions, and grey lines symbolize uncertain and/or negligible effects. We provide specifics of Category A of this 
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well understood how those configurations should be set to perform 
well on a given dataset, except through trial-and-error experimenta-
tion and validation (‘hyperparameter search’), which often involves 
thousands of training runs. In the most extreme cases, the GHG 
emissions associated with developing certain large, cutting-edge 
models can be comparable to, for example, the lifetime carbon emis-
sions of a car10, although such computationally intensive processes 
are performed rarely and by the fewest entities.

The computational requirements of ML models are often 
described in floating point operations (FLOPs), or the num-
ber of additions and multiplications of scalar values required to 
obtain a result. The precise mapping from FLOPs to energy draw 
is hardware- and algorithm-dependent, but more FLOPs gener-
ally corresponds to higher energy use. ResNet-5035, a popular deep 
learning model for image classification, requires about 4 billion 
FLOPs (and 65 ms) to map a 224 × 224 pixel input image to a label, 
with an error rate of 24.6% (ref. 36). A less computationally efficient 
version, ResNet-152, requires about 11 billion FLOPs (and 150 ms) 
per image, and obtains only a slightly better error rate of 23.0%. This 
case illustrates a trade-off in energy-efficient ML: is it worth the 
more than 2.5 times increase in FLOPs, and corresponding energy 
consumption, to reduce the error rate by 1.6%? Will the benefits 
necessarily justify the costs from both an emissions and a broader 
societal perspective37–39?

Software tools for measuring ML model energy use40 and carbon 
emissions41,42 are already available, metrics for reporting model accu-
racy as a function of computational budget have been proposed43,44 
and benchmarks measuring training and inference efficiency have 
been established45,46. Reference 28 proposed that the amortized com-
putational energy cost of models should be measured across the ML 
model life cycle to enable a cost–benefit analysis of different use 
phases (for example increasing training computation to decrease 
inference computation). However, such reporting is still not standard  

for researchers and ML software maintainers. Standardized report-
ing is essential to include efficiency considerations during model 
development and make energy consumption a criterion when 
choosing between different ML approaches in practice.

As larger neural network models have become more prominent 
in certain areas of ML, research into improving the efficiency of ML 
models has started to expand via methods such as model compres-
sion31,47, devising methods that require fewer training examples to 
learn a good function48, reducing retraining frequency and cost49–51, 
and conditional use of simpler models in place of more complex 
ones when examples are less challenging and thus require less com-
putation52. The ML research community has also begun to discuss 
the implications of compressing models and other approaches for 
improving ML model efficiency on broader performance character-
istics53. However, the vast majority of ML research and development 
still focuses on improving model accuracy, rather than balancing 
accuracy and energy use11.

Computing infrastructure. The global ICT sector—consist-
ing of all data centres, data transmission networks and connected 
devices—accounted for around 700 Mt of CO2-equivalent in 2020, 
corresponding to around 1.4% of global GHG emissions54,55. 
Around two-thirds of the sector’s emissions come from operational 
energy use (Scope 1 and 2 in the Greenhouse Gas Protocol), with 
the remainder resulting from materials extraction, manufacturing, 
transportation and the end-of-life phase (Scope 3)55. Although these 
emissions are relatively small today, especially compared with other 
sectors and services, policymakers and researchers are increasingly 
concerned that these emissions could increase as a result of rapid 
growth in the demand for digital technologies and services, includ-
ing emerging technologies such as AI/ML.

Only a fraction of emissions from the ICT sector is attributable 
to AI and ML (Fig. 2), but its exact share is not known due to chal-
lenges in boundary definition and a lack of data and established 
methodology. From the limited information available, we hypoth-
esize that the majority of ML-related workloads today are probably 
taking place in cloud and hyperscale data centres, with a smaller 
share occurring on distributed devices such as personal computers. 
Cloud and hyperscale data centres account for 0.1–0.2% of global 
GHG emissions56–58, and it is likely that less than one-quarter of 
their workloads and traffic are currently ML-related based on esti-
mates for infrastructure-as-a-service and platform-as-a-service59 
and IP traffic related to big data60. Over the coming years, edge 
devices such as smartphones are also expected to handle an increas-
ing volume of inference tasks to reduce latency and dependence on 
network connectivity61, with uncertain effects on overall energy use 
and emissions.

While the amount of computing needed for each of the largest 
ML training runs is growing rapidly27, the extent to which effi-
ciency improvements in computing (doubling every 2–3 years)62,63 
can limit overall ML-related energy use in data centres is uncertain. 
For example, Facebook’s overall data centre energy use increased 
rapidly over the past few years (+40% per year)64, while comput-
ing demands for ML training (for example, +150% per year; ref. 65) 
and inference (for example, +105% per year; ref. 66) have grown 
even faster. At the same time, by some measures, Facebook’s opera-
tional GHG footprint (accounting for renewable energy purchases) 
fell by more than 90% between 2016 and 202064, due in part to  
energy-efficiency improvements and increased renewable electric-
ity procurement.

Energy efficiency has played a central role in limiting the growth 
in data centre energy demand more generally. Between 2010 and 
2018, global data centre energy use rose by only 6%, despite a 550% 
increase in workloads and computing instances56. There have been 
strong efficiency improvements in servers, storage, networking and 
infrastructure, as well as a shift away from smaller, less-efficient data 
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centres towards large cloud and hyperscale data centres23,67, which 
have higher virtualization, more efficient cooling and increased use 
of specialized ‘AI accelerator’ hardware such as application-specific 
integrated circuits (ASICs) and graphics processing units (GPUs). 
For instance, a 2017 study found that Google’s custom ASIC, the 
Tensor Processing Unit (TPU), was on average 30–80 times more 
energy efficient than contemporary CPUs or GPUs68. However, 
the use of GPUs and ASICs for ML applications could drasti-
cally increase the power density of data centre racks, which may 
in turn require liquid cooling technologies and increase water use. 
Although energy use across all data centres has been flat over the 
past decade, energy use by large data centres has grown by around 
20% annually, and this trend is expected to continue57. Limiting 
overall growth in data centre energy demands over the next decade 
will therefore require even stronger energy-efficiency improve-
ments. For instance, operators can increase utilization and virtu-
alization to maximize the energy efficiency of existing hardware 
and infrastructure while replacing hardware when advisable from 
a life-cycle perspective with the most efficient option. Companies 
and governments will also need to invest in research, development 
and demonstration (RD&D) for efficient next-generation comput-
ing and communications technologies56.

Some of the largest data centre operators are now purchasing 
as much renewable electricity as they consume on a global annual 
basis57; however, this does not guarantee that their data centres 
are actually fully powered by renewable sources all the time. More 
ambitious approaches to low-carbon electricity include shifting 
flexible workloads to times of day (or locations) with higher shares 
of renewables generation69 and replacing on-site diesel generators 
with battery storage.

Computing hardware and infrastructure is also responsible for 
‘embodied’ emissions from raw materials extraction and manufac-
turing, as well as emissions from transportation and the end-of-life 
phase (Scope 3). For decentralized computing (for example, desk-
tops, laptops, smartphones), embodied emissions account for 
40–80% of devices’ life-cycle GHG emissions, whereas for data cen-
tres this is typically less than 10% (refs. 55,70–72). Servers in large data 
centres are typically replaced every 3–4 years, which can result in 
higher operational efficiency56,73; however, shorter lifespans could 
also increase the share of life-cycle emissions from manufacturing, 
which can be mitigated by reusing servers and equipment (such 
as older GPUs for inference). As data centres become increasingly  

efficient and powered by clean electricity, the relative importance 
of emissions from non-operational life-cycle phases will grow— 
particularly embodied emissions in computing hardware and data 
centre building construction33,74.

Immediate application impacts
The broad applicability of ML algorithms means that they can be 
used both in applications that alleviate bottlenecks in addressing cli-
mate change, and in applications that may counteract climate action. 
In ref. 7, a number of settings in which ML can enable or accelerate 
climate change mitigation and adaptation strategies were described. 
These applications span many different areas such as energy, trans-
portation and land use (Fig. 3). For example, via data mining and 
remote sensing, ML has been used to translate raw data such as 
text documents or satellite imagery into usable insights for RD&D, 
policy-making and systems planning—for example by tracking 
deforestation75, evaluating susceptibility to coastal inundation76 and 
gathering information on corporate climate risk77. By accelerating 
the search for experimental parameters in scientific discovery, ML 
has been used to aid in the design of next-generation batteries and 
other materials78. By learning from time series, ML has been used 
to forecast renewable power production79, crop yields80 and trans-
portation demands81. By controlling and improving the operational 
efficiency of complex systems, such as industrial heating and cooling 
systems82, ML can be used to save resources and energy. ML has also 
been used to speed up time-intensive physics-based simulations for 
building design83 and climate modelling84. Predictive maintenance 
approaches leveraging ML can also be relevant to climate change 
mitigation when they are applied to low-carbon systems to improve 
efficiency, reduce costs or build resilience85.

Although ML is often seen as a ‘futuristic’ technology, most of 
these applications are possible with current ML techniques, and 
many are already being deployed1,7. In addition, areas of cutting-edge 
ML research such as interpretable and probabilistic ML86,87, 
physics-integrated ML88 and transfer learning89 can both enable new 
applications and better support integration within existing systems. 
To support the development and deployment of this kind of work, 
it will be crucial to facilitate interdisciplinary and applied research 
via science policy, advance the technological readiness of applications 
through RD&D programmes and adapt current regulatory environ-
ments to mitigate bottlenecks in deployment in relevant sectors and 
industries. This includes targeted funding and research programmes, 
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testbeds and demonstration projects, public procurement pro-
grammes and relevant data management initiatives.

As a general-purpose tool, ML has also been applied in ways that 
may make climate goals harder to achieve. One such effect is when 
ML is used to decrease the cost of emissions-intensive activities, 
thereby potentially increasing their consumption. For example, ML 
has been used to accelerate oil and gas exploration and extraction 
by decreasing production costs and boosting reserves8, which could 
in turn lead to greater use of fossil fuels. Likewise, ML is used in 
the ‘Internet of Cows’ to help manage livestock at scale90, which can 
increase cattle farming, an activity already responsible for about 9% 
of GHG emissions91. A potential approach to reduce or avoid the 
emissions increases associated with such applications is to require 
ML solutions providers to account for and report the emissions 
impacts of the applications they support, even if only at the level of 
order-of-magnitude or qualitative assessments where more detailed 
numbers are infeasible to obtain. Such reporting can also help 
address phenomena such as dual use, where stakeholders may use 
the same ML algorithm for multiple purposes (for example, both in 
ways that help climate action and in ways that hinder it).

The total immediate impact of ML applications on GHG emis-
sions is extremely difficult to estimate due to the lack of data on 
the deployment rate of ML, the diversity of application areas and 
the lack of procedures to appropriately attribute emissions effects 
to the use of ML algorithms. Although some scientific reviews exist 
within isolated fields or sectors, the only attempts to provide overall 
numbers are from ML solutions providers in the private sector92–94 
(these studies are not peer-reviewed and do not disclose all meth-
odologies). We also note that ML can be used with the motivation to 
elevate the profile of sustainability-related activities in corporations 
in a way that could provide a false impression of overall organiza-
tional sustainability12.

System-level impacts
While the previous section describes ML applications that are 
directly beneficial or detrimental to climate change mitigation, 
many societal ML applications may not have clear immediate 
impacts on climate change. However, many of these applications 
can have broader societal implications beyond their immediate 
impact, and these system-level effects can influence GHG emissions 
both positively and negatively. Although these kinds of impact may 
be hard to quantify, they have the potential to outweigh immediate 
application impacts and are extremely important to consider when 
evaluating ML use cases.

One pathway to system-level impacts occurs when ML enables 
changes to a technology that in turn affect the ways in which that 
technology is used. For example, rebound effects can occur when 
ML increases the efficiency of a service. Although the improved 
efficiency may result in lower GHG emissions per use, a decrease 
in cost may lead to increased consumption of the same (or another) 
good. This can eat into GHG benefits from efficiency gains or even 
counteract them95. Such rebound effects can be direct, for example 
by allowing a manufacturing plant to use ML-enabled efficiency 
gains to increase production of the same goods, thereby (partially) 
negating emissions savings. Even larger impacts can be expected 
from more structural types of rebound effects12,96, which occur 
(for example) with ML-enabled autonomous driving. Specifically, 
autonomous vehicles can improve fuel efficiency, but they may 
also lead to higher rates of individualized vehicle travel, potentially 
increasing overall energy use and emissions if autonomous vehicles 
are not shared and/or electrified97–100.

Given the role of ML as an accelerator of technological devel-
opment, it may also induce path dependencies that affect climate 
change mitigation. For instance, the phenomenon of ‘lock-in’ refers 
to a scenario in which a particular technology reaches markets first 
and prevents competitors from entering the market101. Depending 

on how it is applied, ML may end up entrenching the role of a poten-
tially inferior technology in a way that prevents others, for example 
low-carbon technologies, from entering the market. For instance, 
the adoption of autonomous vehicles may ingrain the role of trucks 
and private cars as the dominant means of transportation, instead 
of enabling infrastructure and space for less emissions-intensive 
rail, public transit and micromobility options98. On the other hand, 
ML may help break path-dependency effects or create a first-mover 
advantage for a technology that is beneficial to the climate. The 
potential effects of ML on such path dependencies in the context of 
climate change mitigation should be carefully analysed.

Another avenue to system-level impact occurs when ML technol-
ogies influence broader lifestyle changes across society, for example 
by changing the demand for goods and services96. A likely nega-
tive example here is in advertising, where ML algorithms such as 
recommender systems can be used to increase the consumption of 
goods and services with embodied GHG emissions. Given that ML 
is fuelled by data, its use could also incentivize increasingly large 
data infrastructures, which can come with their own carbon foot-
print and systemic implications. Various other paradigm-changing 
applications of ML have highly unclear effects from a climate per-
spective—such as in automatic translation tools, virtual assistants 
and augmented or virtual reality.

These examples demonstrate how important it is to assess the 
impacts of an ML application at the system level, rather than only 
estimating marginal effects, and to design public policy to shape sys-
tem effects. Such policy levers include requiring climate impacts to 
be considered within regulations surrounding ML-driven emerging 
technologies102, and implementing carbon pricing or other mecha-
nisms to incentivize GHG emissions reductions and avoid rebound 
effects when ML is applied for efficiency. Such climate-cognizant 
technology assessment should build on and complement frame-
works for responsible innovation103,104 and responsible AI17–19.

A roadmap for assessing and forecasting impacts
We have discussed the extent to which it is currently possible to 
estimate the GHG emissions associated with ML above. However, 
holistic and realistic predictions of the impact of ML across several 
areas of our framework will require new reporting standards, more 
data collection, novel measurement methodologies and bench-
marking frameworks, and new approaches for developing forecasts 
and scenarios. Moreover, given the heterogeneous nature of the 
capabilities, impacts and generalizability of different digitalization 
technologies, ML and other forms of data analytics warrant sepa-
rate consideration within impact assessment and attribution frame-
works for digital technologies. Such efforts could, for example, build 
on and extend existing methods and standards for life-cycle assess-
ment (LCA) of ICT to devise approaches that take such heterogene-
ity into account (see for example, ref. 105 for a LCA of direct effects 
and ref. 21 for indirect effects, as well as refs. 106,107 for standards). We 
call on the academic fields of LCA, industrial ecology and others 
to extend their work to actively grapple with the task of assessing 
the impacts related to ML, accounting for the ML-specific consider-
ations raised in our framework (Figs. 1–3). Our framework lays out 
the factors that are relevant for LCA and, depending on the scope of 
the analysis, can provide a basis on which to estimate the emissions 
of a company, a particular product, or a policy.

When assessing the GHG emissions impacts of ML, it is impor-
tant to compare ML approaches to alternatives. Such alternatives are 
not constrained to other ML models; they can also be other types of 
analytics approaches that fulfil the same purpose, or can be human 
decision-making. As ML has enabled many innovations that other 
methods were unable to attain, in some cases the baseline may be a 
world where such innovations did not exist at all. The choice of an 
appropriate baseline depends on the aim of the analysis, as well as 
the category of the impacts being assessed.
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To estimate computing-related impacts (Category A of our 
framework), better access to information will be crucial. For 
example, although is relatively straightforward to estimate the 
computing-related GHG emissions resulting from individual runs 
of AI systems, the usage patterns in practice are typically opaque. 
Where appropriate, practitioners could disclose information about 

such usage patterns, as well as other inputs relevant to comput-
ing GHG emissions impacts resulting from ML system develop-
ment, training/fine-tuning and inference (for example, specifics 
about the model type and size, training requirements for model 
development and the type of pre-trained model used, the type and  
location of computing infrastructure used and the frequency of 

Table 1 | Levers to reduce the GHG emissions impacts associated with ML computing and applications

Lever type Computing-related (algorithm, infrastructure) Application-related (immediate, systemic)

Public sector

Economic instruments Implement economy-wide or sector-specific carbon pricing to incentivize emissions reductions and mitigate rebound effectsa

RD&D Support research in energy-efficient MLa Support interdisciplinary and applied ML research for 
climate-relevant applications of MLa

Support RD&D in energy-efficient, specialized and 
low-resource hardwarea

Provide mechanisms to advance the technological readiness 
of climate-beneficial ML applications (for example, testbeds, 
demonstration projects, public procurement programmes)b

Support RD&D in data centre operational efficiencya

Regulation Employ a climate-cognizant technology assessment lens within AI strategies and when regulating ML-driven emerging 
technologiesc

Implement clean electricity mandates (for example, low-carbon 
portfolio standards)a

Employ regulatory approaches to constrain sector-specific GHG 
emissionsa

Implement efficiency standards for data centre hardware and 
infrastructurea

Reduce deployment barriers in relevant sectors and industries for 
AI applications that are beneficial to the climateb

Best practices and 
standards

Develop interoperability standards for commercial ML approaches to prevent lock-in to particular solutions providers and 
facilitate a decentralized solutions provider spaceb

Develop and implement standardized metrics for 
evaluating model efficacy that include energy efficiencya

Require meaningful civic and stakeholder engagement in scoping, 
developing, and deploying ML-driven projectsa

Implement data governance standards that spur impactful work 
and are mindful of privacy and ownershipb

Develop best practices and systematic approaches to weigh 
benefits and costs for ML applicationsc

Monitoring and 
reporting

Develop measurement methodologies and guidance to estimate and report ML-related GHG emissionsb

Mandate appropriate life-cycle transparency and reporting of GHG emissions for ML use cases, including both computing and 
application-related impactsb

Capacity building Build in-house public-sector capacity in ML to facilitate governance and deploymentb

Promote ML education and literacy among climate-relevant entities and in the public sectora

Incentivize ML workforce shifts towards climate-oriented entities 
(for example, via placement programmes)b

Private sector

Corporate climate  
action

Adopt organizational carbon pricing strategies that account for both computing- and application-related emissions (for 
example, Scope 1, 2 and 3 emissions, including those from cloud computing as well as from products and services)b

Reduce wasteful model retraining and executiona Adjust business models to avoid ML applications that drive GHG 
emissions increasesa

Make energy efficiency a central criterion in evaluating 
model efficacya

Encourage ML applications that drive GHG emissions reductionsa

Reduce GHG emissions across supply chains and product 
life cycle (including embodied emissions)a

Measure and engage in voluntary reporting of the emissions 
impacts of ML products and servicesb

Maximize energy efficiency in data centres and support 
related RD&Da

Shift computing loads to geographies and times with lower 
carbon-intensity of the grida

Purchase low-carbon electricity and invest in energy 
technologies to decarbonize the grida

Develop standardized ML platforms to facilitate rapid 
company-wide adoption of energy efficiency improvementsc

aPolicies that are ready to implement or already exist. bPolicies that can be developed today. cMore analysis needed to develop policies. General policy levers are set in italics.
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training/retraining/fine-tuning and inference). This information 
can help provide an understanding of industry trends and aid in 
the development of best practices and benchmarks for trade-offs 
between different approaches. We discuss feasibility considerations 
around reporting requirements in the next section. To estimate the 
total computing-related GHG emissions, an important data point 
is the share of the total computing load in data centres that can 
be attributed to ML, ideally distinguished by the relevant model 
life-cycle stages. This information would allow for a top-down esti-
mate of global computing-related impacts and underlying dynam-
ics, but is not made public by data centre operators at present.

There are currently limited quantitative estimates available 
about the immediate impacts of ML applications (Category B). 
The lack of established methodology poses a central bottleneck 
here. Research and practice need to establish how to estimate the 
marginal and counterfactual benefit that ML could have if intro-
duced in established processes, including distinguishing between 
use cases that would not exist without ML versus those where ML 
provides improvements to an existing use case. For such efforts, it 
will be important to develop a more fine-grained taxonomy of ML 
systems and application areas that can help to generalize beyond 
single case studies and also help stakeholders assess the costs and 
benefits of new projects a priori. We provide a starting point for 
developing such an approach, as illustrated in Fig. 3, encompass-
ing such diverse potential effects of ML as accelerated technological 
innovation, more informed decision-making via improved analyt-
ics and increased energy efficiency of industry operations. In addi-
tion, obtaining better data will be difficult, yet particularly crucial, 
considering the potentially large magnitude and uncertainty around 
those developments. To estimate impacts more broadly and system-
atically, reviewing, synthesizing and generalizing case studies will 
be important, and where data cannot be easily obtained, approaches 
such as stakeholder surveys or expert elicitation might help  
to fill gaps.

Perhaps the most important impacts, yet most difficult to assess, 
are the system-level impacts (Category C). ML is a fast-growing 
enabling technology that has the potential to affect present and 
future societal and technological trajectories and thus needs to be 
appropriately accounted for in forecasting and scenario analysis. ML 
can influence many input factors of climate and energy system mod-
els, such as efficiency, production and consumption rates, learning 
rates, resource constraints, financial assumptions and so on, which 
make ML a ‘wild card’ that could introduce large transformations in 
different ways. How to appropriately factor that uncertainty into cli-
mate and energy system models is yet to be established. Importantly, 
ML builds on digital infrastructure, yet the impact assessment of 
digitalization is itself at an early stage (especially when it comes to 
estimating the impacts of how digital technologies are applied)106,107. 
Energy and climate models, such as energy system models developed 
by the International Energy Agency and the US Energy Information 
Administration, or the Shared Socioeconomic Pathways used by 
the IPCC, generally do not explicitly or systematically account for 
digitalization, let alone the effects introduced by ML. One excep-
tion is perhaps the inclusion of autonomous vehicles in scenarios, 
for example, by the US Energy Information Administration100. Our 
framework can be used as a starting point, and is sufficiently general 
to provide a comprehensive framing for incorporating current and 
future ML effects within scenario analysis.

Aligning ML with climate change mitigation
Given the multi-faceted relationship of ML with climate change, 
many different kinds of approaches from the public and private 
sectors are needed to shape its impacts. This will require progress 
in both climate policy and AI policy, coupled with algorithmic 
and hardware innovation and the development of adequate impact 
assessment methodologies. We outline a number of strategies that 

can address the different emissions effects laid out in our frame-
work (Table 1).

Despite not addressing ML explicitly, general climate policy 
approaches such as carbon pricing may be effective in driving the 
development and use of ML in a manner that is aligned with climate 
change mitigation. Science policy approaches that foster low-carbon 
technologies may also facilitate uses of ML that enable or improve 
these technologies (although they may not necessarily address 
ML-specific barriers). To address more technology-specific oppor-
tunities and risks, it will be important for climate change to become 
a major consideration within AI innovation and deployment poli-
cies. This includes (1) promoting the research, development and 
deployment of ML applications that are beneficial to the climate,  
(2) requiring transparency and accountability for those use 
cases that could increase emissions or otherwise counteract cli-
mate change goals, as well as on computational energy use, and  
(3) employing climate-cognizant technology assessment for ML use 
cases that are not traditionally within the realm of climate policy, 
but where decisions today may have important implications for 
future climate impacts. Many of the associated policy approaches in 
Table 1 can be developed and implemented starting today.

Furthermore, mandating emissions measurement and report-
ing for ML use cases—considering the impacts of both computing 
and applications—can enable these emissions to be regulated via 
climate policy approaches, and further shape the design of targeted 
policies. Such reporting requirements, however, need to be care-
fully designed on the basis of an understanding of where top-down 
measurement might suffice to inform regulatory approaches, 
what is feasible to estimate given present measurement method-
ologies, and the costs and burdens associated with reporting (see, 
for example, ref. 108 regarding costs for enterprises). Such require-
ments should also be implemented with an eye towards prevent-
ing strategic behaviour such as the ‘hiding’ of emissions in cloud 
computing servers109. Climate-related reporting for ML-based sys-
tems could potentially be more easily implemented where other 
AI reporting requirements are planned (such as those proposed in  
the EU110).

Finally, we note that ML expertise today is often concentrated 
among a limited set of actors, raising potential challenges with 
respect to the governance and implementation of ML in the context 
of climate change. For instance, the use of ML in certain contexts 
may yield or exacerbate societal inequities, for example, by widen-
ing the digital divide37,111, through algorithmic bias112 or by shifting 
power from public to large private entities by virtue of who controls 
relevant data or intellectual capital. Strategies to address such gaps 
include strengthening small and medium-sized ML solutions pro-
viders, developing incentives such as placement programmes and 
dedicated education to shift the ML workforce towards public and 
climate-relevant entities, developing interoperability standards to 
prevent lock-in to particular solutions providers and developing 
best practices for when state-of-the-art ML models versus other 
(simpler) alternatives should be used. Fostering meaningful civic 
engagement processes for the scoping, design and deployment of 
projects (and associated data collection and provision efforts) will 
also be critical to ensuring that ML approaches are both effective 
and avoid potential pitfalls113.

The ultimate effect of ML on the climate is far from predestined, 
and societal decisions will play a large role in shaping its overall 
impacts114,115. This will require a holistic portfolio of approaches 
across policy, industry and academia to incentivize uses of ML that 
support climate change strategies while mitigating the impacts of 
use cases that may counteract climate change goals. Most impor-
tantly, society cannot wait to act: with the rapidly growing preva-
lence of ML and the increasing urgency of climate change, we now 
have a critical window of opportunity to shape the impacts of ML 
for decades to come.
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