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Climate change is one of the greatest challenges facing humanity, and we, as machine learning (ML) experts,
may wonder how we can help. Here we describe how ML can be a powerful tool in reducing greenhouse
gas emissions and helping society adapt to a changing climate. From smart grids to disaster management,
we identify high impact problems where existing gaps can be filled by ML, in collaboration with other fields.
Our recommendations encompass exciting research questions as well as promising business opportunities.
We call on the ML community to join the global effort against climate change.

CCS Concepts: • General and reference → Surveys and overviews; • Computing methodologies →
Machine learning; Artificial intelligence; • Applied computing → Operations research; Computers in other

domains; Physical sciences and engineering;

Additional Key Words and Phrases: Climate change, mitigation, adaptation, machine learning, artificial

intelligence
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1 INTRODUCTION

The effects of climate change are increasingly visible.1 Storms, droughts, fires, and flooding have
become stronger and more frequent [239]. Global ecosystems are changing, including the natu-
ral resources and agriculture on which humanity depends. The 2018 intergovernmental report on
climate change estimated that the world will face catastrophic consequences unless global green-
house gas (GHG) emissions are eliminated within 30 years [372]. Yet year after year, these emis-
sions rise.
Addressing climate change involves mitigation (reducing emissions) and adaptation (prepar-

ing for unavoidable consequences). Both are multifaceted issues. Mitigation of GHG emissions
requires changes to electricity systems, transportation, buildings, industry, and land use. Adapta-
tion requires planning for resilience and disaster management, given an understanding of climate
and extreme events. Such a diversity of problems can be seen as an opportunity: there are many
ways to have an impact.

In recent years, machine learning (ML) has been recognized as a broadly powerful tool for
technological progress. Despite the growth ofmovements applyingML and artificial intelligence
(AI) to problems of societal and global good,2 there remains the need for a concerted effort to
identify how these tools may best be applied to tackle climate change. Many ML practitioners
wish to act, but are uncertain how. On the other side, many fields have begun actively seeking
input from the ML community.
This article aims to provide an overview ofwhereML can be appliedwith high impact in the fight

against climate change, through either effective engineering or innovative research. The strategies

1For a layman’s introduction to the topic of climate change, see [32, 696].
2See the AI for social good movement (e.g., [71, 323]), ML for the developing world [163], the computational sustainability
movement (e.g., [184, 296, 297, 401, 471], the American Meteorological Society’s Committee on AI Applications to Environ-
mental Science, and the field of Climate Informatics (www.climateinformatics.org.) [548], as well as the relevant survey
papers [231, 251, 403].
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wehighlight include climatemitigation and adaptation, aswell asmeta-level tools that enable other
strategies. In order to maximize the relevance of our recommendations, we have consulted experts
across many fields (see Acknowledgments) in the preparation of this article.

1.1 Who is this Article Written For?

We believe that our recommendations will prove valuable to several different audiences (detailed
below). Given the wide diversity of technical areas involved, we do not assume any prior famil-
iarity with application domains (such as agriculture or electric grids) and have tried to provide
relevant keywords and background reading within each section of the article. While we use basic
terminology from ML, knowledge of the specific ML techniques we reference is not necessary to
understand any of our key points. For an overall introduction to ML, see e.g., [78].

Researchers and engineers: We identify many problems that require conceptual innovation and
can advance the field of ML, as well as being highly impactful. For example, we highlight how
climate models afford an exciting domain for interpretable ML (see Section 8.1). We encourage
researchers and engineers across fields to use their expertise in solving urgent problems relevant
to society.

Entrepreneurs and investors: We identify many problems where existing ML techniques could
have a major impact without further research, and where the missing piece is deployment. We re-
alize that some of the recommendations we offer here will make valuable startups and nonprofits.
For example, we highlight techniques for providing fine-grained solar forecasts for power com-
panies (see Section 2.1), tools for helping reduce personal energy consumption (see Section 11.2),
and predictions for the financial impacts of climate change (see Section 14). We encourage en-
trepreneurs and investors to fill what is currently a wide-open space.

Corporate leaders: We identify problems where ML can lead to massive efficiency gains if
adopted at scale by corporate players. For example, we highlightmeans of optimizing supply chains
to reduce waste (see Section 5.1) and software/hardware tools for precision agriculture (see Sec-
tion 6.2). We encourage corporate leaders to take advantage of opportunities offered by ML to
benefit both the world and the bottom line.

Local and national governments: We identify problems where ML can improve public services,
help gather data for decision-making, and guide plans for future development. For example, we
highlight intelligent transportation systems (see Section 3.4), techniques for automatically assess-
ing the energy consumption of buildings in cities (see Section 4.2), and tools for improving disaster
management (see Section 9.4). We encourage policymakers to consider opportunities for working
with ML experts and building ML capacity in relevant public sector bodies. We further encourage
public entities to release data that may be relevant to climate change mitigation and adaptation
goals. (For further policy-related recommendations on this topic, see e.g., [406].)

1.2 How to Read this Article

The article is broken into sections according to application domain (see Table 1). To help the reader,
we have also included the following flags at the level of individual strategies.

• High Leverage denotes bottlenecks that domain experts have identified in climate change

mitigation or adaptation and that we believe to be particularly well-suited to tools from ML.
These areas may be especially fruitful for ML practitioners wishing to have an outsized im-
pact, though applications not marked with this flag are also valuable and should be pursued.
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• Long-term denotes applications that will have their primary impact after 2040. While

extremely important, these may in some cases be less pressing than those which can help
act on climate change in the near term.
• Uncertain Impact denotes applications where the impact on GHG emissions is uncertain

(for example, rebound effects may apply3) or where there is potential for undesirable side
effects (negative externalities).

These flags should not be taken as definitive; they represent our understanding of more rigorous
analyses within the domains we consider, combined with our subjective evaluation of the potential
role of ML in these various applications.
Despite the length of the article, we cannot cover everything. There will certainly be many

applications that we have not considered, or that we have erroneously dismissed. We look forward
to seeing where future work leads.

1.3 A Call for Collaboration

All of the problems we highlight in this article require collaboration across fields. Collaboration
reduces the chance of failure modes such as working on a problem that is not actually impactful,
overly simplifying a complicated issue, or using advanced computational tools when simple tools
will do the job.

Collaboration is also essential to ensure that innovations will be deployed with the intended
impact. Relevant stakeholders should be involved in the full pipeline of problem scoping and de-
velopment, so that the final solution is well-tailored to the setting in which it will be used. For
example, code can be written using a language and a platform that are already popular with the
intended users, or can be integrated into an existing, widely used tool.
We realize that finding partners, as well as relevant resources such as data, can often be difficult.

We encourage readers to visit the website that accompanies this article, www.climatechange.ai,
where we offer additional resources, as well as opportunities for knowledge-sharing and
networking.

1.4 The Broader Picture

We emphasize thatML is not a silver bullet. The applications we highlight are impactful, but no one
solution will “fix” climate change. There are also many areas of action where ML is inapplicable,
and we omit these entirely. Moreover, while we focus here on ways in which ML can help address
climate change, ML can also be applied in ways that make climate change worse. For instance, ML
is used widely to accelerate activities such as fossil fuel exploration and extraction [303, 406, 814],
while some ML models are themselves energy-intensive to train and run [69, 459, 720, 764].4

Finally, technology is not in itself enough to solve climate change, nor is it a replacement for
other aspects of climate action such as policy. Many technological tools useful in addressing cli-
mate change have been available for years but have yet to be adopted at scale by society. While we
hope that ML will be useful in accelerating effective strategies for climate action, humanity also
must decide to act.

3Rebound effects occur when increased efficiency results in higher demand, partially or completely negating the benefits
of efficiency gains [45]. For example, lowering the energy required to produce a product can lead to lower costs, which in
turn can increase the consumption of the product. In such cases, specific policies, such as pricing mechanisms or caps on
GHG emissions, can help to limit rebound effects. See also the literature on induced demand and the Jevons paradox.
4It is worth noting that many ML methods cited in this article require only minimal energy to train and run (e.g., can be
run on a laptop or phone).
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Table 1. Climate Change Solution Domains, Corresponding to Sections of this Article, Matched

with Selected Areas of ML that are Relevant to Each
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2 ELECTRICITY SYSTEMS BY PRIYA L. DONTI

AI has been called the new electricity, given its potential to transform entire industries [591]. In-
terestingly, electricity itself is one of the industries that AI is poised to transform. Many electricity
systems are awash in data, and the industry has begun to envision next-generation systems (smart

grids) driven by AI and ML [559, 623, 661, 814].
Electricity systems5 are responsible for about a quarter of human-caused GHG emissions each

year [370]. Moreover, as buildings, transportation, and other sectors seek to replace GHG-emitting
fuels (Section 3–4), demand for low-carbon electricity will grow. To reduce emissions from elec-
tricity systems, society must

• Rapidly transition to low-carbon6 electricity sources (such as solar, wind, hydro, and nuclear)
and phase out carbon-emitting sources (such as coal, natural gas, and other fossil fuels).
• Reduce GHG emissions associated with existing fossil fuel and electricity infrastructure,
since the transition to low-carbon power will not happen overnight.
• Implement these changes across all countries and contexts, as electricity systems are
everywhere.

ML can contribute on all fronts by informing the research, deployment, and operation of elec-
tricity system technologies (Figure 1). Such contributions include accelerating the development of
clean energy technologies, improving forecasts of demand and clean energy, improving electricity
system optimization, and enhancing system monitoring. These contributions require a variety of
ML paradigms and techniques, as well as close collaborations with the electricity industry and
other experts to integrate insights from operations research, electrical engineering, physics, chem-
istry, the social sciences, and other fields.

2.1 Enabling Low-Carbon Electricity

Low-carbon electricity sources are essential to tackling climate change. These sources come in
two forms: variable and controllable. Variable sources fluctuate based on external factors; for in-
stance, solar panels produce power only when the sun is shining, and wind turbines only when the
wind is blowing. On the other hand, controllable sources such as nuclear or geothermal plants can
be turned on and off (though not instantaneously7). These two types of sources affect electricity
systems differently, presenting distinct opportunities for ML techniques.

2.1.1 Variable Sources. Most electricity is delivered to consumers using a physical network
called the electric grid, where the power generated must equal the power consumed at every mo-
ment. This means that solar panels, wind turbines, and other variable electricity generators are
supported by some mix of natural gas plants, storage, or other controllable sources ready to buffer
changes in their output (e.g., when unexpected clouds block the sun or the wind blows less strongly
than predicted). Today, this buffer is often provided by coal and natural gas plants run in a CO2-
emitting standby mode called spinning reserve. In the future, this role is expected to be played by

5Throughout this section, we use the term “electricity systems” to refer to the procurement of fuels and raw materials for
electric grid components; the generation and storage of electricity; and the delivery of electricity to end-use consumers.
For primers on these topics, see [96, 141, 437, 817, 848].
6We use the term “low-carbon” here instead of “renewable” because of this article’s explicit focus on climate change goals.
Renewable energy is produced from inexhaustible or easily replenished energy sources such as the sun, wind, or water, but
need not necessarily be carbon-free (as in the case of some biomass [149]). Similarly, not all low-carbon energy is renewable
(as in the case of nuclear energy).
7Nuclear power plants are often viewed as inflexible since they can take hours or days to turn on or off, and are often left
on (at full capacity) to operate as baseload. That said, nuclear power plants may have some flexibility to change their power
generation for load-following and other electric grid services, as in the case of France [491].

ACM Computing Surveys, Vol. 55, No. 2, Article 42. Publication date: February 2022.
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Fig. 1. Selected opportunities to reduce GHG emissions from electricity systems using ML, as described in

Section 2.

energy storage technologies such as batteries (Section 3.3), pumped hydro, or power-to-gas [226];
see [27] for an overview.8 ML can both reduce emissions from today’s standby generators and
enable the transition to carbon-free systems by helping improve necessary technologies (namely
forecasting, scheduling, and control) and by helping create advanced electricity markets that ac-
commodate both variable electricity and flexible demand.

Forecasting supply and demand. High Leverage

Since variable generation and electricity demand both fluctuate, they must be forecast ahead of
time to inform real-time electricity scheduling and longer-term system planning. Better short-
term forecasts can allow system operators to reduce their reliance on polluting standby plants
and to proactively manage increasing amounts of variable sources. Better long-term forecasts can
help system operators (and investors) determine where and when variable plants should be built.

8It is worth noting that in systems with many fossil fuel plants, storage may increase emissions depending on how it is
operated [47, 347].
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Whilemany system operators today use basic forecasting techniques, forecastswill need to become
increasingly accurate, span multiple horizons in time and space, and better quantify uncertainty
to support these use cases. ML can help on all these fronts.
To date, many ML methods have been used to forecast electricity supply and demand. These

methods have employed historical data, physical model outputs, images, and even video data to
create short- to medium-term forecasts of solar power [9, 19, 161, 478, 524, 771, 818], wind power
[216, 285, 450, 512], “run-of-the-river” hydro power [623], demand [351, 429, 458, 673], or more
than one of these [402, 857] at aggregate spatial scales. These methods span various types of su-
pervisedML, fuzzy logic, and hybrid physical models, and take different approaches to quantifying
(or not quantifying) uncertainty. At a more spatially granular level, some work has attempted to
understand specific categories of demand, for instance by clustering households [63, 421] or by dis-
aggregating electricity signals using game theory, optimization, regression, and/or online learning
[24, 409, 473].
While much of this previous work has used domain-agnostic techniques, ML algorithms

of the future will need to incorporate domain-specific insights. For instance, since weather
fundamentally drives both variable generation and electricity demand, ML algorithms forecasting
these quantities should draw from innovations in climate modeling and weather forecasting
(Section 8) and in hybrid physics-plus-ML modeling techniques [161, 818, 822]. Such techniques
can help improve short- to medium-term forecasts, and are also necessary for ML to contribute
to longer-term (e.g., year-scale) forecasts since weather distributions shift over time [404]. In
addition to incorporating system physics, ML models should also directly optimize for system
goals [198, 220, 842]. For instance, the authors of [198] use a deep neural network to produce
demand forecasts that optimize for electricity scheduling costs rather than forecast accuracy; this
notion could be extended to produce forecasts that minimize GHG emissions. In non-automated
settings where power system control engineers (partially) determine how much power each
generator should produce, interpretable ML and automated visualization techniques could help
engineers better understand forecasts and thus improve how they schedule low-carbon generators.
More broadly, understanding the domain value of improved forecasts is an interesting challenge.
For example, previous work has characterized the benefits of specific solar forecast improvements
in a region of the United States [523]; further study in different contexts and for different types of
improvements could help better direct ML work in the forecasting space.

Improving scheduling and flexible demand. High Leverage

When balancing electricity systems, system operators use a process called scheduling and dispatch
to determine how much power every controllable generator should produce. This process is slow
and complex, as it is governed by NP-hard optimization problems such as unit commitment and
optimal power flow that must be coordinated across multiple time scales (from sub-second to days
ahead). Further, scheduling will become even more complex as electricity systems include more
storage, variable generators, and flexible demand, since operators will need to manage even more
system components while simultaneously solving scheduling problems more quickly to account
for real-time variations in electricity production. Scheduling processes must therefore improve
significantly for operators to manage systems with a high reliance on variable sources.
ML can help improve the existing (centralized) process of scheduling and dispatch by speeding

up power system optimization problems and improving the quality of optimization solutions [333,
608]. For instance, ML can be used to approximate or simplify existing optimization problems
[75, 242, 311, 871], find good starting points for optimization [52, 196, 382], identify redundant
constraints [541], learn from the actions of power system control engineers [197], or do some
combination of these [858]. Dynamic scheduling [225, 546] and (safe) reinforcement learning

ACM Computing Surveys, Vol. 55, No. 2, Article 42. Publication date: February 2022.
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(RL) could also be used to balance the electric grid in real time; in fact, some electricity system
operators have started to pilot similar methods at small, test case-based scales [520].
While many modern electricity systems are centrally coordinated, recent work has examined

how to (at least partially) decentralize scheduling and dispatch using energy storage, flexible de-
mand, low-carbon generators, and other resources connected to the electric grid. One strategy
is to explicitly design local control algorithms; for instance, recent work has controlled energy
storage and solar inverters using supervised learning techniques trained on historical optimization
data [191, 192, 410, 411]. Another strategy is to let storage, demand, and generation respond to
real-time prices9 that reflect (for example) how emissions-intensive electricity currently is. In this
case, ML can help both to design real-time prices and to respond to these prices. Previous work has
used RL and dynamic programming to set real-time electricity prices [30, 90] and more broadly
for power market design [30, 881]. Techniques such as (deep) RL [291, 292, 810, 881], agent-based
models [173, 662, 663, 863], online optimization [99], and dynamic programming [704] can then
help maximize profits for decentralized storage, demand, and generation, given real-time prices.
See also [30] for an overview of deep learning techniques for demand response. In general, much
more work is needed to test and scale existing decentralized solutions; barring deployment on real
systems, platforms such as PowerTAC [638] and Grid2Op [519] can provide large-scale simulated
environments on which to perform these tests.

Accelerating materials science. High Leverage Long-term

Scientists are working to develop new materials that can better store or otherwise harness energy
from variable natural resources. For instance, creating solar fuels (synthetic fuels produced from
sunlight or solar heat) could allow us to capture solar energy when the sun is shining and then
store this energy for later use. However, the process of discovering new materials can be slow
and imprecise; the physics behind materials are not completely understood, so human experts of-
ten manually apply heuristics to understand a proposed material’s physical properties [49, 105].
ML can automate this process by combining existing heuristics with experimental data, physics,
and reasoning to apply and even extend existing physical knowledge. For instance, recent work
has used tools from ML, AI, optimization, and physics to figure out a proposed material’s crystal
structure, with the goal of accelerating materials discovery for solar fuels [49, 298, 773]. Other
work seeking to improve battery storage technologies has combined first-principles physics calcu-
lations with support-vector regression to design conducting solids for lithium-ion batteries [257].
(Additional applications of ML to batteries are discussed in Section 3.3.) Recent work has also pro-
posed the use of ML for scalable simulation of electrocatalysts for power-to-gas applications [894].
More generally in materials science, ML techniques including supervised learning, active learn-

ing, and generative models have been used to help synthesize, characterize, model, and design
materials, as described in reviews [105, 490] and more recent work [299]. As discussed in [105],
novel challenges for ML in materials science include coping with moderately sized datasets and
inferring physical principles from trained models [800]. In addition to advancing technology, ML
can inform policy for acceleratedmaterials science; for instance, previous work has applied natural
language processing to patent data to understand the solar panel innovation process [813].We note
that while our focus here has been on electricity system applications, ML for accelerated science
may also have significant impacts outside electricity systems, e.g., by helping design alternatives
to cement (Section 5.2) or create better CO2 sorbents (Section 7.1).

9For discussions and examples of different types of advanced electricity markets, see [109, 483, 484, 877].
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Additional applications.

There are many additional opportunities for ML to advance variable power generation. For in-
stance, it is important to ensure that low-carbon variable generators produce energy as efficiently
and profitably as possible. Prior work has attempted to maximize electricity production by con-
trolling solar panels [1, 3, 678] or wind turbine blades [2, 833] using RL or Bayesian optimization.
Other work has used graphical models to detect faults in rooftop solar panels [377] and genetic
algorithms to optimally place wind turbines within a wind farm [188]. ML can also help control
batteries located at solar and wind farms to increase these farms’ profits, for instance by storing
their electricity when prices are low and then selling it when prices are high; prior work has used
ML to forecast electricity prices [460, 838] or RL to control batteries based on current and historical
prices [825].
ML can also help integrate rooftop solar panels into the electric grid, particularly in the United

States and Europe. Rooftop solar panels are connected to a part of the electric grid called the
distribution grid, which traditionally did not have many sensors because it was only used to de-
liver electricity “one-way” from centralized power plants to consumers. However, rooftop solar
and other distributed energy resources have created a “two-way” flow of electricity on distribution
grids. Since the locations and sizes of rooftop solar panels are often unknown to electricity system
operators, previous work has used computer vision techniques on satellite imagery to generate size
and location data for rooftop solar panels [165, 514, 868]. Further, to ensure that the distribution
system runs smoothly, recent work has employed techniques such as matrix completion and deep
neural networks to estimate the state of the system when there are few sensors [199, 388, 626].

2.1.2 Controllable Sources. Controllable low-carbon electricity sources can help achieve cli-
mate change goals while requiring very few changes to how the electric grid is run (since today’s
fossil fuel power plants are also controllable). ML can support existing controllable technologies
while accelerating the development of new technologies such as nuclear fusion power plants.

Managing existing technologies.

Many controllable low-carbon technologies are already commercially available; these technologies
include geothermal, nuclear fission, and (in some cases10) dam-based hydropower. ML can provide
valuable input in planningwhere these technologies should be deployed and can also helpmaintain
already-operating power plants. For instance, recent work has proposed to use ML to identify
and manage sites for geothermal energy, using satellite imagery and seismic data [593]. Previous
work has also used multi-objective optimization to place hydropower dams in a way that satisfies
both energy and ecological objectives [856]. Finally, ML can help maintain nuclear fission reactors
(i.e., nuclear power plants) by detecting cracks and anomalies from image and video data [129] or
by preemptively detecting faults from high-dimensional sensor and simulation data [107]. (The
authors of [794] speculate that ML and high performance computing could also be used to help
simulate nuclear waste disposal options or even design next-generation nuclear reactors.)

Accelerating fusion science. High Leverage Long-term

Nuclear fusion reactors [577] have the potential to produce safe and carbon-free electricity using
a virtually limitless hydrogen fuel supply, but currently consume more energy than they produce
[146]. While considerable scientific and engineering research is still needed, ML can help accel-
erate this work by, e.g., guiding experimental design and monitoring physical processes; see also
[360]. Fusion reactors require intelligent experimental design because they have a large number

10Dam-based hydropower may produce methane, primarily due to biomass that decomposes when a hydro reservoir floods,
but the amount produced varies between power plants [753].
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of tunable parameters; ML can help prioritize which parameter configurations should be explored
during physical experiments. For instance, Google and TAE Technologies have developed a human-
in-the-loop experimental design algorithm enabling rapid parameter exploration for TAE’s reactor
[53].
Physically monitoring fusion reactors is also an important application for ML. Modern reactors

attempt to super-heat hydrogen into a plasma state and then stabilize it, but during this process, the
plasma may experience rapid instabilities that damage the reactor. Prior work has tried to preemp-
tively detect disruptions for tokamak reactors, using supervised learning methods such as support-
vectormachines, adaptive fuzzy logic, decision trees, and deep learning [110, 413, 567, 811, 846, 850]
on previous disruption data. While many of these methods are tuned to work on individual reac-
tors, recent work has shown that deep learning may enable insights that generalize to multiple
reactors [413]. More generally, rather than simply detecting disruptions, scientists need to un-
derstand how plasma’s state evolves over time, e.g., by finding the solutions of time-dependent
magnetohydrodynamic equations [57]; speculatively, ML could help characterize this evolution
and even help steer plasma into safe states through reactor control. ML models for such fusion
applications would likely employ a combination of simulated11 and experimental data, and would
need to account for the different physical characteristics, data volumes, and simulator speeds or
accuracies associated with different reactor types.

2.2 Reducing Current-System Impacts

While switching to low-carbon electricity sources will be essential, in the meantime, it will also be
important to mitigate emissions from the electricity system as it currently stands. Some methods
for mitigating current-system impacts include cutting emissions from fossil fuels, reducing waste
from electricity delivery, and flexibly managing demand to minimize its emissions impacts.

Reducing life-cycle fossil fuel emissions. High Leverage Uncertain Impact

Reducing emissions from fossil fuels is a necessary stopgap while society transitions towards
low-carbon electricity. In particular, ML can help prevent the leakage of methane (an extremely
potent GHG) from natural gas pipelines and compressor stations. Previous and ongoing work has
used sensor and/or satellite data to proactively suggest pipeline maintenance [213, 898] or detect
existing leaks [81, 749, 823, 826], and there is a great deal of opportunity in this space to improve
and scale existing strategies. In addition to leak detection, ML can help reduce emissions from
freight transportation of solid fuels (Section 3), identify and manage storage sites for CO2

sequestered from power plant flue gas (Section 7.2), and optimize power plant parameters to
reduce CO2 emissions. In all these cases, projects should be pursued with great care so as not to
impede or prolong the transition to a low-carbon electricity system; ideally, projects should be
preceded by system impact analyses to ensure that they will indeed decrease GHG emissions.

Reducing system waste.

As electricity gets transported from generators to consumers, some of it gets lost as resistive
heat on electricity lines. While some of these losses are unavoidable, others can be significantly
mitigated to reduce waste and emissions. ML can help prevent avoidable losses through predictive
maintenance, e.g., by suggesting proactive electricity grid upgrades (see also Sections 5.3 and 9.2).
Prior work has performed predictive maintenance using long short-termmemory (LSTM) [76],
bipartite ranking [702], and neural network-plus-clustering techniques [581] on electric grid data,
and future work will need to improve and/or localize these approaches to different contexts.

11Plasma simulation frameworks for tokamak reactors include RAPTOR [236, 237], ASTRA [624], CRONOS [35], PTRANSP
[100], and IPS [250].
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Modeling emissions.

Flexibly managing household, commercial, industrial, and electric vehicle (EV) demand (as well
as energy storage) can help minimize electricity-based emissions (Sections 3, 4, 5, and 11), but do-
ing so involves understanding what the emissions on the electric grid actually are at any moment.
Specifically, marginal emissions factors capture the emissions effects of small changes in demand
at any given time. To inform consumers about marginal emissions factors, initiatives such as Watt-
Time [832] and the electricityMap project [789] have used ML and regression-based techniques
to forecast marginal emissions based on electricity and weather data. Recent work has also used
ML for trend extraction and feature selection within marginal emissions forecasting models [476].
Great Britain’s National Grid ESO uses ensemble models to forecast average emissions factors,
which measure the aggregate emissions intensity of all power plants [576]. There is still much
room to improve the performance of these methods, as well as to forecast related quantities such
as electricity curtailments (i.e., the wasting of usually low-carbon electricity for grid balancing pur-
poses). As most existing methods produce point estimates, it would also be important to quantify
the uncertainty of these estimates to ensure that load-shifting techniques indeed decrease (rather
than increase) emissions.

2.3 Ensuring Global Impact

Much of the discussion around electricity systems often focuses on settings such as the United
States with near universal electricity access and relatively abundant data. However, many places
that do not share these attributes are still integral to tackling climate change [370] and warrant se-
rious consideration. To ensure global impact, ML can help improve electricity access and translate
electricity system insights from high-data to low-data contexts.

Improving clean energy access.

Improving access to clean electricity can address climate change while simultaneously improving
social and economic development [430, 431]. Specifically, clean electricity provided via electric
grids, microgrids, or off-grid methods can displace diesel generators, wood-burning stoves, and
other carbon-emitting energy sources. Figuring out what clean electrification methods are best
for different areas can require intensive, on-the-ground surveying work, but ML can help provide
input to this process in a scalable manner. For instance, previous work has used image processing,
clustering, and optimization techniques on satellite imagery to inform electrification initiatives
[219]. ML can also help operate rural microgrids through accurate forecasts of demand and power
production [120, 601] as well as tailored optimization and control schemes [493], since small
microgrids are even harder to balance than country-scale electric grids. Generating data to aid
energy access policy and better managing energy access strategies are therefore two areas in
which ML may have promising applications.

Approaching low-data settings. High Leverage

While ML methods have often been applied to grids with widespread sensors, system operators in
many countries do not collect or share system data. Although these data availability practices may
evolve, it may meanwhile be beneficial to use ML techniques such as transfer learning to trans-
late insights from high-data to low-data settings (especially since all electric grids share the same
underlying system physics). Developing data-efficient ML techniques will likely also be useful in
low-data settings; for instance, in [680], the authors enforce physical or other domain-specific con-
straints on weakly supervised ML models, allowing these models to learn from very little labeled
data.
ML can also help generate information within low-data settings. For instance, recent work has

estimated the layout of electricity grids in regions where they are not explicitly mapped, using
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computer vision and graph search techniques on satellite imagery [278, 359]. Companies have
also used satellite imagery to measure power plant CO2 emissions [114, 301] (also see Section 6.1).
Other recent work has modeled electricity consumption using regression-based techniques on cel-
lular network data [85], which may prove useful in settings with many cellular towers but few
electric grid sensors. Although low-data settings are generally underexplored by the ML commu-
nity, electricity systems research in these settings presents opportunities for both innovative ML
and climate change mitigation.

2.4 Discussion

Data-driven and critical to climate change, electricity systems hold many opportunities for ML
research and practice. At the same time, applications in this space hold many potential pitfalls; for
instance, innovations that seek to reduce GHG emissions in the oil and gas industries could actually
increase emissions by making them cheaper to emit [814]. Given these domain-specific nuances,
working in this area requires close collaborations with electricity system decision-makers andwith
practitioners in fields including electrical engineering, the natural sciences, and the social sciences.
Interpretable ML may also enable practitioners to better understand, apply, and audit models in
real-world settings. Similarly, it will be important to develop hybrid ML models that explicitly ac-
count for system physics (see e.g., [132, 164, 304, 680, 843]), directly optimize for domain-specific
goals [198, 220, 842], or otherwise incorporate or scale existing domain knowledge. Finally, since
many modern electric grids are not data-abundant (although they may be data-driven), under-
standing how to apply data-driven insights to these grids may be the next grand challenge for ML
in electricity systems.

3 TRANSPORTATION BY LYNN H. KAACK

Transportation systems form a complex web that is fundamental to an active and prosperous so-
ciety. Globally, the transportation sector accounts for about a quarter of energy-related CO2 emis-
sions [372]. In contrast to the electricity sector, however, transportation has not made significant
progress to lower its CO2 emissions [154] andmuch of the sector is regarded as hard to decarbonize
[162]. This is because of the high energy density of fuels required for many types of vehicles, which
constrains low-carbon alternatives, and because transport policies directly impact end-users and
are thus more likely to be controversial.
Passenger and freight transportation are each responsible for about half of transport GHG emis-

sions [712]. Both freight and passengers can travel by road, by rail, bywater, or by air (referred to as
transport modes). Different modes carry vastly different carbon emission intensities.12 At present,
more than two-thirds of transportation emissions are from road travel [712], but air travel has the
highest emission intensity and is responsible for an increasingly large share. Strategies to reduce
GHG emissions13 from transportation consist of [712]:

• reducing transport activity;
• improving vehicle efficiency;
• alternative fuels and electrification; and
• modal shift (shifting to lower-carbon options, like rail).

Each of these mitigation strategies offers opportunities for ML (Figure 2). While many of us
probably think of autonomous vehicles (AVs) and ride-sharing when we think of transport and

12Carbon intensity is measured in grams of CO2-equivalent per person-km or per ton-km, respectively.
13For general resources on how to decarbonize the transportation sector, see the AR5 chapter on transportation [712], and
[240, 407, 784].
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Fig. 2. Selected opportunities to reduce GHG emissions from transportation using ML, as described in

Section 3.

ML, these technologies have uncertain impacts on GHG emissions [820], potentially even increas-
ing them. We discuss these disruptive technologies in Section 3.1 but show that ML can play a role
for decarbonizing transportation that goes much further. ML can improve vehicle engineering, en-
able intelligent infrastructure, and provide policy-relevant information. Many interventions that
reduce GHG emissions in the transportation sector require changes in planning, maintenance, and
operations of transportation systems, even though the GHG reduction potential of those measures
might not be immediately apparent. ML can help in implementing such interventions, for example,
by providing better demand forecasts. Typically, ML strategies are most effective in tandem with
strong public policies. While we do not cover all ML applications in the transportation sector, we
aim to include those areas that can conceivably reduce GHG emissions.

3.1 Reducing Transport Activity

A colossal amount of transport occurs each day across the world, but much of this mileage occurs
inefficiently, resulting in needless GHG emissions. With the help of ML, the number of vehicle-
miles traveled can be reduced by making long trips less necessary, increasing loading, and opti-
mizing vehicle routing. Here, we discuss the first two in depth—for a discussion of ML and routing,
see for example [873].

Understanding transportation data.

Many areas of transportation lack data, and decision-makers often design infrastructure and policy
with uncertain information. In recent years, new types of sensors have become available, and ML
can turn this raw data into useful information. Traditionally, traffic is monitored with ground-
based counters that are installed on selected roads. A variety of technologies are used, such as
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inductive loop detectors or pneumatic tubes. Traffic is sometimesmonitored with video systems, in
particular when counting pedestrians and cyclists, which can be automated with computer vision
[870]. Since counts on most roads are often available only over short time frames, these roads are
modeled by looking at known traffic patterns for similar roads. ML methods, such as SVMs and
neural networks, have made it easier to classify roads with similar traffic patterns [270, 454, 796].
As ground-based counters require costly installation and maintenance, many countries do not
have such systems. Vehicles can also be detected in high-resolution satellite images with high
accuracy [177, 390, 566, 747], and image counts can serve to estimate average vehicle traffic [405].
Similarly, ML methods can help with imputing missing data for precise bottom-up estimation of
GHG emissions [583] and they are also applied in simulation models of vehicle emissions [46].

Modeling demand. High Leverage

Modeling demand and planning new infrastructure can significantly shape how long trips are and
which transport modes are chosen by passengers and shippers—for example, discouraging sprawl
and creating new transportation links can both reduce GHG emissions. ML can provide informa-
tion about mobility patterns, which is directly necessary for agent-based travel demand models,
one of the main transport planning tools [864]. For example, ML makes it possible to estimate
origin-destination demand from traffic counts [504], and it offers newmethods for spatio-temporal
road traffic forecasting—which do not always outperform other statistical methods [223] but may
transfer well between areas [776]. Also, short-term forecasting of public transit ridership can im-
prove with ML; see for example [158, 586]. ML is particularly relevant for deducing information
from novel data—for example, learning about the behavior of public transit users from smart card
data [280, 515]. Also, mobile phone sensors provide new means to understand personal travel de-
mand and the urban topology, such as walking route choices [795]. Similarly, ML-based modeling
of demand can help mitigate climate change by improving operational efficiency of modes that
emit significant CO2, such as aviation. ML can help predict runway demand and aircraft taxi time
in order to reduce the excess fuel burned in the air and on the ground due to congestion in airports
[379, 474].

Shared mobility. Uncertain Impact

In the passenger sector, shared mobility (such as on-demand ride services or vehicle-sharing14), is
undoubtedly disrupting the way people travel and think about vehicle ownership, and ML plays
an integral part in running and optimizing these services (e.g., [768, 837]). However, it is largely
unclear what the impact of this development will be on GHG emissions. For example, shared cars
can actually cause more people to travel by car, as opposed to using public transportation. Simi-
larly, on-demand taxi services add mileage when traveling without a customer, possibly negating
any GHG emission savings [765]. On the other hand, shared mobility can lead to higher utiliza-
tion of each vehicle, which means a more efficient use of materials [341]. The use of newer and
more efficient vehicles, ideally electric ones, could increase with vehicle-sharing concepts, reduc-
ing GHG emissions. Some of the issues raised above could also perhaps be overcome by making
taxis autonomous. Such vehicles also might integrate better with public transportation, and offer
new concepts for pooled rides, which substantially reduce the emissions per person-mile.
MLmethods can help to understand the energy impact of sharedmobility concepts. For example,

they can be used to predict if a customer decides to share a ride with other passengers from an on-
demand ride service [133]. For decision-makers it is important to have access to timely location-
specific empirical analysis to understand if a ride share service is taking away customers from

14In this section, we discuss shared cars; see Section 3.4 for bike shares and electric scooters.
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low-carbon transit modes and increasing the use of cars. Some local governments are beginning
to require data-sharing from these providers (see Section 4.3).
Car-sharing services using AVs could yield GHG emission savings when they encourage people

to use public transit for part of the journey [552] or with autonomous EVs [408]. However, using
autonomous shared vehicles alone could increase the total vehicle-miles traveled and therefore do
not necessarily lead to lower emissions as long as the vehicles have internal combustion engines (or
electrical engines on a “dirty” electrical grid) [131, 495]. We see the intersection of shared mobility,
autonomous and EVs, and smart public transit—prioritizing low-carbon vehicle technologies and
shared transportation—as a path where ML can make a contribution to shaping future mobility.
See also Section 3.2 for more on AVs.
When designing and promoting new mobility services, it is important that industry and public

policy prioritize lowering GHG emissions. Misaligned incentives in the early stages of technolog-
ical development could result in the lock-in to a service with high GHG emissions [36, 44].

Freight routing and consolidation. High Leverage

Bundling shipments together, which is referred to as freight consolidation, dramatically reduces
the number of trips (and therefore the GHG emissions). The same is true for changing routing
so that trucks do not have to return empty. As rail and water modes require much larger loads
than trucks, consolidation also enables shipments to use these modes for part of the journey [407].
Freight consolidation and routing decisions are often taken by third-party logistics service providers
and other freight forwarders, such as in the less-than-truckload market, which deals with ship-
ments of smaller sizes. ML offers opportunities to optimize this complex interaction of shipment
sizes, modes, origin-destination pairs, and service requirements. Many problem settings are ad-
dressed with methods from the field of operations research. There is evidence that ML can improve
upon these methods, in particular mixed-integer linear programming [70]. Other proposed and de-
ployed applications of ML include predicting arrival times or demand, identifying and planning
around transportation disruptions [279], and clustering suppliers by their geographical location
and common shipping destinations. Proposed planning approaches include designing allocation
algorithms and freight auctions, and ML has for example been shown to help pick good algorithms
and parameters to solve auction markets [708].

Alternatives to transport. Uncertain Impact

Disruptive technologies that are based on ML could replace or reduce transportation demand. For
example, additive manufacturing (AM) or 3-D printing has (limited) potential to reduce freight
transport by producing lighter goods and enabling production closer to the consumer [407]. ML
can be a valuable tool for improving AM processes [859]. ML can also help to improve virtual com-
munication [733]. If passenger trips are replaced by telepresence, travel demand can be reduced,
as has been shown for example in public agencies [34] and for scientific teams [518]. However, it
is uncertain to what extent virtual meetings replace physical travel, or if they may actually give
rise to more face-to-face meetings [762].

3.2 Improving Vehicle Efficiency

Most vehicles are not very efficient compared to what is technically possible: for example, aircraft
carbon intensity is expected to decline by more than a third with respect to 2012, simply by virtue
of newermodels replacing aging jets [713]. Both the design of the vehicle and theway it is operated
can increase the fuel economy. Here, we discuss how ML can help design more efficient vehicles
and the impacts that autonomous driving may have on GHG emissions. Encouraging drivers to
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adopt more efficient vehicles is also a priority; while we do not focus on this here, ML plays a role
in studying consumer preferences in vehicle markets [103].

Designing for efficiency.

There aremanyways to reduce the energy a vehicle uses—such asmore efficient engines, improved
aerodynamics, hybrid electric engines, and reducing the vehicle’s weight or tire resistance. These
different strategies require a broad range of engineering techniques, many of which can benefit
from ML. For example, ML is applied in advanced combustion engine design [384]. Hybrid EVs,
which are more efficient than combustion engines alone, rely on power management methods that
can be improved with ML [15]. Aerodynamic efficiency improvements need turbulence modeling
that is often computationally intensive and relies heavily on ML-based surrogate models [865].
Aerodynamic improvements can not only be made by vehicle design but also by rearranging load.
Lai et al. [461] use computer vision to detect aerodynamically inefficient loading on freight trains.
AM (3-D printing) can produce lighter parts in vehicles, such as road vehicles and aircraft, that
reduce energy consumption [341, 407]. ML is applied to improve those processes, for example
through failure detection [722, 730] or material design [309].

Autonomous vehicles. Uncertain Impact

ML is essential in the development of AVs, including in such basic tasks as following the road
and detecting obstacles [87].15 While AVs could reduce energy consumption—for example, by re-
ducing traffic congestion and inducing efficiency through eco-driving—it is also possible that AVs
will lead to an increase in overall road traffic that nullifies efficiency gains. (For an overview of
possible energy impacts of AVs, see [95, 820], and for broader impacts on mobility, see [327].)
Two advantages of AVs in the freight sector promise to cut GHG emissions: First, small AVs, such
as delivery robots and drones, could reduce the energy consumption of last-mile delivery [758],
though they come with regulatory challenges [517]. Second, trucks can reduce energy consump-
tion by platooning (driving very close together to reduce air resistance), thereby alleviating some
of the challenges that come with electrifying long-distance road freight [318]. Platooning relies on
autonomous driving and communication technologies that allow vehicles to brake and accelerate
simultaneously.
ML can help to develop AV technologies specifically aimed at reducing energy consumption. For

example, Wu et al. [851, 852] develop AV controllers based on RL to smooth out traffic involving
non-AVs. Their studies of emergent behaviors in mixed-autonomy environments aim to under-
stand the impact that varying shares of AVs can have on potentially reducing congestion-related
energy consumption ML methods can also help to understand driving practices that are more en-
ergy efficient. For example, Jiménez et al. [392] use data from smart phone sensors to identify
driving behavior that leads to higher energy consumption in EVs.

3.3 Alternative Fuels and Electrification

Electric vehicles. High Leverage

EV technologies—using batteries, hydrogen fuel cells, or electrified roads and railways—are re-
garded as a primary means to decarbonize transport. EVs can have very low GHG emissions—
depending, of course, on the carbon intensity of the electricity. ML is vital for a range of different
problems related to EVs. Rigas et al. [684] detail methods bywhichML can improve charge schedul-
ing, congestion management, and vehicle-to-grid algorithms. ML methods have also been applied

15Providing details on the general role of ML for AVs is beyond the scope of this article.
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to battery energy management (for example charge estimation [330] or optimization in hybrid EVs
[15]), and to detect faults and lateral misalignment in wireless charging of EVs [780].

As more people drive EVs, understanding their use patterns will become more important. Mod-
eling charging behavior will be useful for grid operators looking to predict electric load. For this
application, it is possible to analyze residential EV charging behavior from aggregate electricity
load (energy disaggregation, see also Section 4.1) [827]. Also, in-vehicle sensors and communica-
tion data are increasingly becoming available and offer an opportunity to understand travel and
charging behavior of EV owners, which can for example inform the placement of charging stations
[779] or alternatives such as battery swapping stations.
Battery EVs are typically not used for more than a fraction of the day, allowing them to act as en-

ergy storage for the grid at other times, where charging and discharging is controlled for example
by price signals [265] (see Sections 2.1.1 and 2.2). There is much potential for ML (e.g., RL [810])
to improve such vehicle-to-grid technology, which, like other mechanisms for grid energy storage
(see Section 2.1.1), can help to reduce GHG emissions from electricity generation. Vehicle-to-grid
technology comes with private and social financial benefits. However, consumers are expected to
be reluctant to agree to such services, as they might not want to compromise their driving range
[343].
Finally, ML can also play a role in the research and development of batteries, a decisive technol-

ogy for EV costs and usability. Work in this area has focused on predicting battery state, degra-
dation, and remaining lifetime using supervised learning techniques, fuzzy logic, and clustering
[42, 104, 218, 358, 414, 725, 735, 819, 854]. However, many models developed in academia are based
on laboratory data that do not account for real-world factors such as environmental conditions
[735, 819, 854]. By contrast, industry lags behind in ML modeling, but real-world operational data
are readily available. Merging these two perspectives could yield significant benefits for the field.

Alternative fuels. Long-term

Much of the transportation sector is highly dependent on liquid fossil fuels. Aviation, long-distance
road transportation, and ocean shipping require fuels with high energy density and thus are not
conducive to electrification [162]. Electrofuels [98], solar fuels (Section 2.1.1), biofuels [6], hydro-
gen [111, 803], and perhaps natural gas [792] offer alternatives, but the use of these fuels is con-
strained by factors such as cost, land-use, and (for hydrogen and natural gas) incompatibility with
current infrastructure [162]. Electrofuels and biofuels have the potential to serve as low-carbon
drop-in fuels that retain the properties of fossil fuels, such as high energy density, while retain-
ing compatibility with the existing fleet of vehicles and the current fuel infrastructure [407]. Fuels
such as electrofuels and hydrogen can be produced using electricity-intensive processes and can be
stored at lower cost than electricity. Thus, as a form of energy storage, these fuels could provide
services to the electricity grid by enabling flexible power use and balancing variable electricity
generators (Section 2.1.1). Given their relative long-term importance and early stage of develop-
ment, they present a critical opportunity to mitigate climate change. ML techniques may present
opportunities for improvement at various stages of research and development of alternative fuels
(similar to applications in Section 2.1.1).

3.4 Modal Shift

Shifting passengers and freight to low carbon-intensity modes is one of the most important means
to decarbonize transport. This modal shift in passenger transportation can for example involve
providing people with public transit, which requires analyzing mode choice and travel demand
data. ML can also make low-carbon freight modes more competitive by helping to coordinate
intermodal transport.
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Passenger preferences.

ML can improve our understanding about passengers’ travel mode choices, which in turn informs
transportation planning, such as where public transit should be built. Some recent studies have
shown that supervised ML based on survey data can improve passenger mode choice models
[322, 571, 597]. Seo et al. propose to conduct long-term travel surveys with online learning, which
reduces the demand on respondents, while obtaining high data quality [724]. Sun et al. [770] use
SVMs and neural networks for analyzing preferences of customers traveling by high speed rail in
China. There is also work on inferring people’s travel modes and destinations from social media
or various mobile phone sensors such as GPS (transportation mode detection), e.g., [156, 798]. Also
in the freight sector, ML has been applied to analyze modal trade-offs, for example, by imputing
data on counterfactual mode choices [706].

Enabling low-carbon options. High Leverage

In order to incentivize more users to choose low-carbon transport modes, their costs and service
quality can be improved. Many low-carbon modes must be integrated with other modes of trans-
portation to deliver the same level of service. For example, when traveling by train, the trip to
and from the station will often be by car, taxi, bus, or bike. There are many opportunities for ML
to facilitate a better integration of modes, both in the passenger and freight sectors. ML can also
help to improve the operation of low-carbon modes, for example, by reducing the operations and
maintenance costs of rail [383] and predicting track degradation [746].
Bike sharing and electric scooter services can offer low-carbon alternatives for urban mobility

that do not require ownership and integrate well with public transportation. ML studies help to
understand how usage patterns for bike stations depend on their immediate urban surroundings
[364]. ML can also help solve the bike sharing rebalancing problem, where shared bikes accumu-
late in one location and are lacking in other locations, by improving forecasts of bike demand
and inventory [675]. Singla et al. [739] propose a pricing mechanism based on online learning
to provide monetary incentives for bike users to help rebalancing. By producing accurate travel
time estimates, ML can provide tools that help to integrate bike shares with other modes of trans-
portation [281]. Many emerging bike and scooter sharing services are dockless, which means that
they are parked anywhere in public space and can block sidewalks [25]. ML has been applied to
monitor public sentiment about such bike shares via tweets [775]. ML could also provide tools and
information for regulators to ensure that public space can be used by everyone [741].
Coordination between modes resulting in faster and more reliable transit times could increase

the amount of people or goods traveling on low-carbonmodes such as rail. ML algorithms could be
applied to make public transportation faster and easier to use. For example, there is a rich literature
exploring ML methods to predict bus arrival times and their uncertainty [18, 526]. Often freight is
packaged so that it can switch between different modes of transport easily. Such intermodal trans-
portation relies on low-carbon modes such as rail and water for part of the journey [407]. ML can
contribute by improving predictions of the estimated time of arrival (for example, of freight trains
[56]) or the weight or volume of expected freight (for example, for roll-on/roll-off transport—often
abbreviated as Ro-Ro [560]). Intelligent transport systems of different modes could be combined
and enable more efficient multimodal freight transportation [407].
Some modes with high GHG emissions, such as trucks, can be particularly cost-competitive in

regions with lax enforcement of regulation, as they can benefit from overloading and not obeying
labor or safety rules [407]. ML can assist public institutions with enforcing their regulations. For
example, image recognition can help law enforcement detect overloading of trucks [888].
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3.5 Discussion

Decarbonizing transport is essential to a low-carbon society, and there are numerous applica-
tions where ML can make an impact. This is because transportation causes a large share of GHG
emissions, but reducing them has been slow and complex. Solutions are likely very technical, are
highly dependent on existing infrastructure, and require detailed understanding of passengers’ and
freight companies’ behavior. ML can help decarbonize transportation by providing data, gaining
knowledge from data, planning, and automation. Moreover, ML is fundamental to shared mobil-
ity, AVs, EVs, and smart public transit, which, with the right incentives, can be used to enable
significant reductions in GHG emissions.

4 BUILDINGS & CITIES BY NIKOLA MILOJEVIC-DUPONT & LYNN H. KAACK

Buildings offer some of the lowest-hanging fruit when it comes to reducing GHG emissions. While
the energy consumed in buildings is responsible for a quarter of global energy-related emissions
[372], a combination of easy-to-implement fixes and state-of-the-art strategies16 could reduce emis-
sions for existing buildings by up to 90% [802]. It is possible today for buildings to consume almost
no energy [595].17 Many of these energy efficiency measures actually result in overall cost savings
[754] and simultaneously yield other benefits, such as cleaner air for occupants. This potential
can be achieved while maintaining the services that buildings provide—and even while extending
them to more people, as climate change will necessitate. For example, with the changing climate,
more people will need access to air conditioning in regions where deadly heat waves will become
common [553, 554].

Two major challenges are heterogeneity and inertia. Buildings vary according to age, con-
struction, usage, and ownership, so optimal strategies vary widely depending on the context. For
instance, buildings with access to cheap, low-carbon electricity may have less need for expensive
features such as intelligent light bulbs. Buildings also have very long lifespans; thus, it is necessary
both to create new, energy-efficient buildings, and to retrofit old buildings to be as efficient as
possible [150]. Urban planning and public policy can play a major role in reducing emissions by
providing infrastructure, financial incentives, or energy standards for buildings [536].18

ML provides critical tools for supporting both building managers and policymakers in their
efforts to reduce GHG emissions (Figure 3). At the level of building management, ML can help
select strategies that are tailored to individual buildings, and can also contribute to implementing
those strategies via smart control systems (Section 4.1). At the level of urban planning, ML can be
used to gather and make sense of data to inform policymakers (Section 4.2). Finally, we consider
how ML can help cities as a whole to transition to low-carbon futures (Section 4.3).

4.1 Optimizing Buildings

In designing new buildings and improving existing ones, there are numerous technologies that
can reduce GHG emissions, often saving money in the process [276, 499, 595, 754, 802]. ML can
accelerate these strategies by (i) modeling data on energy consumption and (ii) optimizing energy
use (in smart buildings).

16The IPCC classifies mitigation actions in buildings into four categories: carbon efficiency (switching to low-carbon fuels or
to natural refrigerants); energy efficiency (reducing energywaste through insulation, efficient appliances, better heating and
ventilation, or other similar measures); system and infrastructure efficiency (e.g., passive house standards, urban planning,
and district cooling and heating); and service demand reduction (behavioral and lifestyle changes) [499].
17There are even high-rise buildings, e.g., the Tower Raiffeisen-Holding NÖ-Vienna office, or large university buildings,
e.g., the Technical University also in Vienna, that achieve such performance.
18For example, see the case of New York City, which mandated that building owners collectively reduce their emissions by
40% by 2040: https://www.nytimes.com/2019/04/17/nyregion/nyc-energy-laws.html.
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Fig. 3. Selected opportunities to reduce GHG emissions from buildings and cities using ML, as described in

Section 4.

Modeling building energy.

An essential step towards energy efficiency is making sense of the increasing amounts of data
produced by meters and home energy monitors (see for example [723]). This can take the form
of energy demand forecasts for specific buildings, which are useful for power companies (Sec-
tion 2.1.1) and in evaluating building design and operation strategies [20]. Traditionally, energy
demand forecasts are based on models of the physical structure of a building that are essentially
massive thermodynamics computations. ML has the potential to speed up these computations
greatly, either by ignoring physical knowledge of the building entirely [452, 617], by incorporating
it into the computation [195], or by learning to approximate the physical model to reduce the need
for expensive simulation (surrogate models) [274]. Learning how to transfer the knowledge gained
from modeling one building to another can make it easier to render precise estimations of more
buildings. For instance, Mocanu et al. [544] modeled building load profiles with RL and deep belief
networks using data on commercial and residential buildings; they then used approximate RL and
transfer learning to make predictions about new buildings, enabling the transfer of knowledge
from commercial to residential buildings, and from gas- to power-heated buildings.
Within a single building, understanding which appliances drive energy use (energy disaggrega-

tion) is crucial for targeting efficiency measures, and can motivate behavioral changes. Promising
ML approaches to this problem include hidden Markov models [445], sparse coding algorithms
for structured prediction [443], harmonic analysis that picks out the “signatures” of individual
appliances [750], and deep neural networks [423].
To verify the success or failure of energy efficiency interventions, statistical ML offers methods

for causal inference. For example, Burlig et al. [102] used Lasso regression on hourly electricity
consumption data from schools in California to find that energy efficiency interventions fall short
of the expected savings. Such problems could represent a useful application of deep learning meth-
ods for counterfactual prediction [332].
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Smart buildings. High Leverage

Intelligent control systems in buildings can decrease their carbon footprint both by reducing the
energy consumed and by providing means to integrate lower-carbon sources into the electricity
mix [277]. Specifically, ML can reduce energy usage by allowing devices and systems to adapt
to usage patterns. Further, buildings can respond to signals from the electricity grid, providing
flexibility to the grid operator and lowering costs to the consumer (Section 2.1.1).

Many critical systems inside buildings can be made radically more efficient. While this is also
true for various appliances such as refrigerators and lightbulbs, we focus on the example of heat-
ing, ventilation, and air conditioning (HVAC) systems, both because they are notoriously in-
efficient and because they account for more than half of the energy consumed in buildings [499].
There are several promising ways to enhance HVAC operating performance, each providing sub-
stantial opportunities for using ML: forecasting what temperatures are needed throughout the
system, better control to achieve those temperatures, and fault detection. Forecasting tempera-
tures, as with modeling energy use in buildings, has traditionally been performed using detailed
physical models of the system involved; however, ML approaches such as deep belief networks can
potentially increase accuracy with less computational expense [4, 255] (see also Section 5.3). For
control, Kazmi et al. [417] used deep RL to achieve a scalable 20% reduction of energy while requir-
ing only three sensors: air temperature, water temperature, and energy use (see also Section 5.3 for
similarly substantial gains in datacenter cooling). Finally, ML can automate building diagnostics
and maintenance through fault-detection. For example, the energy efficiency of cooling systems
can degrade if refrigerant levels are low [435]; ML approaches are well-suited to detect faults in
these systems.Wang et al. [829] treated HVAC fault-detection as a one-class classification problem,
using only temperature readings for their predictions. Deep autoencoders can be used to simplify
information about machine operation so that deep neural networks can then more easily predict
multiple kinds of faults [387].
Many systems within buildings—such as lights and heating—can also adjust how they operate

based on whether a building or room is occupied, thereby improving both occupant comfort and
energy use [614]. ML can help these systems dynamically adapt to changes in occupancy patterns
[669]. Moreover, occupancy detection itself represents an opportunity for ML algorithms, ranging
from decision trees [193, 882] to deep neural networks [896] that take input from occupancy
sensors [193], WiFi signals [896, 897], or appliance power consumption data [882]. Energy
game-theoretic frameworks can also incentivize occupants to actively minimize their energy
demand, and ML can help here to develop tailored incentives based on different energy usage
behaviors [159].

In Section 2.1.1, we discussed how using variable low-carbon energy can mean that the supply
and price of electricity vary over time. Thus, energy flexibility in buildings is increasingly useful
to schedule consumption when supply is high [683]. For this, automated demand-side response
[357] can respond to electricity prices, smart meter signals, or learned user preferences [393]. Edge
computing can be used to process data from distributed sensors and other Internet of Things devices,
and deep RL can then use this data to efficiently schedule energy use [489], at the level of single
or multiple buildings, or at the microgrid and grid level [631].
While smart building technologies have the capability to significantly increase efficiency, we

should note that there are potential drawbacks [346]. First, smart building devices and connection
networks, like wireless sensor networks, consume energy themselves. Deep neural networks
can be used to monitor and optimize such operations [39]. Second, rebound effects are likely
to happen in certain cases [45], leading to additional building energy consumption typically
ranging between 10 and 20% [671]. Third, if control systems optimize for costs, interventions
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do not necessarily translate into energy efficiency measures or GHG reductions. Therefore,
public policies are needed to mandate, support and complement the actions of individual building
managers [499]. Another concern in the case of widespread adoption of smart meters is the impact
on mineral use and embodied energy use arising from their production [736]. Finally, smart home
applications present security and privacy risks [144] that require adequate regulation.

4.2 Urban Planning

For many impactful mitigation strategies—such as district heating and cooling, neighborhood plan-
ning, and large-scale retrofitting of existing buildings—coordination at the district and city level is
essential. Policymakers use instruments such as building codes, retrofitting subsidies, investments
in public utilities, and public–private partnerships in order to reduce GHG emissions without com-
promising equity. Where energy-use data on individual buildings exist, ML can be used to derive
higher-level patterns. However, many regions of the world have almost no energy consumption
data, which can make it difficult to design targeted mitigation strategies. ML is uniquely capa-
ble of predicting energy consumption and GHG mitigation potential at scale from other types of
available data, thereby guiding policy design [536].

Modeling energy use across buildings.

Urban Building Energy Models (UBEMs) provide simplified information on the energy use of
all buildings across a city. These are different from individual buildingmodels, whichmodel energy
use of only specific buildings, but with finer details and temporal granularity (Section 4.1). While
UBEMs have yet to be adopted at scale, they are expected to become fundamental for enabling
localized action by city planners [677]. UBEMs can for example be used for planning and operating
district heating and cooling, where a central plant supplies many households in a district. In turn,
district heating and cooling reduces HVAC energy consumption and can provide flexible load [808],
but it needs large amounts of data at the district level for implementation and operation.
UBEMs include features such as the location, geometries, and various other attributes of

interest like building footprint, usage, material, roof type, immediate surroundings, and the like.
ML can be used to held predict energy consumption from such features. For example, Kolter
and Ferreira used Gaussian process regression to predict energy use from features such as
property class or the presence of central air conditioning [444]. Based on energy data disclosed
by residents of New York City, Kontokosta and colleagues used various ML methods to predict
the energy use of the city’s 1.1 million buildings [448], analyzed the effect of energy disclosure
on the demand [610], and developed a system for ranking buildings based on energy efficiency
[611]. Zhang et al. [879] matched residential energy consumption survey data with public use
microdata samples to estimate residential energy consumption at the neighborhood level. Using
five commonly accessible features of buildings and climate, Robinson et al. predict commercial
building energy use across large American cities [689].
Beyond energy prediction, buildings’ features can be used by ML algorithms to pinpoint which

buildings have the highest retrofit potential. Simple building characteristics and surrounding en-
vironmental factors—both potentially available at scale—can be used [83, 432].

There have also been attempts to upscale individual-building energy models to the district scale.
Using deep neural networks for hybrid ML-physical modelling, Nutkiewicz et al. provided precise
energy demand forecasts that account for inter-building energy dynamics and urban microclimate
factors for all buildings on a campus [589].

Gathering infrastructure data. High Leverage

Specifics about building infrastructure can often be predicted using ML techniques. Remote
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sensing is key to inferring infrastructure data [79, 224, 339, 496, 535, 868] as satellite data19 present
a source of information that is globally available and largely consistent worldwide. For example,
using remote sensing data, Geiß et al. [273] clustered buildings into types to assess the potential
of district heat in a German town.
The resolution of infrastructure data ranges from coarse localization of all buildings at the global

scale [224], to precise 3D reconstruction of a neighborhood [79]. It is possible to produce a global
map of human settlement footprints at meter-level resolution from satellite radar images [224].
For this, Esch et al. used highly automated learners, which make classification at such scale possi-
ble by retraining locally. Segmentation of high-resolution satellite images can now generate exact
building footprints at a national scale [535]. Energy-relevant building attributes, such as the pres-
ence of photovoltaic panels, can also be retrieved from these images [868] (see Section 2.1.1). To
generate 3Dmodels, LiDAR data are often used to retrieve heights or classify buildings at city scale
[339, 496], but its collection is expensive. Recent research showed that heights can be predicted
even without such elevation data, as demonstrated by [77, 537], who predicted these from real
estate records, census data and features characterizing the neighborhood of each building. Studies,
which for now are small scale, aim for complete 3D reconstruction with class labels for different
components of buildings [79].

4.3 The Future of Cities

Since most of the resources of the world are ultimately channeled into cities, municipal govern-
ments have a unique opportunity tomitigate climate change. City governments regulate (and some-
times operate) transportation, buildings, and economic activity. They handle such diverse issues as
energy, water, waste, crime, health, and noise. Recently, data and ML have become more common
for improving efficiency in such areas, giving rise to the notion of smart city. While the phrase
smart city encompasses a wide array of technologies [579], here we discuss only applications that
are relevant to reducing GHG emissions.

Data for smart cities. High Leverage

Increasingly, important aspects of city life come with digital information that can make the city
function in a more coordinated way. Habibzadeh et al. [319] differentiate between hard-sensing, i.e.,
fixed-location-dedicated sensors like traffic cameras, and soft-sensing, for example, from mobile
devices. Hard sensing is the primary data collection paradigm in many smart city applications,
as it is adapted to precisely meet the application requirements. However, there is a growing
volume of data coming from soft sensing, due to the widespread adoption of personal devices like
smartphones that can provide movement data and geotagged pictures.20 Urban computing [886]
is an emerging field looking at data analytics in urban spaces, and aiming to yield insights for
data-driven policies. For example, clustering anonymized credit card payments makes it possible
to model different communities and lifestyles—of which the sustainability can be assessed [181].
Jiang et al. provides a review of urban computing from mobile phone traces [391].21 Relevant
information on the urban space can also be learned from social media activity, e.g., on Twitter, as
reviewed in [367, 703]. There are, however, numerous challenges in making sense of this wealth
of data (see [558]), and privacy considerations are of paramount importance when collecting or
working with many of these data sources.

19See [893] for a review of different sources of data and deep learning methods for processing them.
20Note that management of any such private data, even if they are anonymized, poses challenges [153].
21See https://www.microsoft.com/en-us/research/project/urban-computing/ for more applications of urban computing.
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First, cities need to obtain relevant data on activities that directly or indirectly consume energy,
and such data are often proprietary. To obtain these data, the city of Los Angeles now requires all
mobility as a service providers, i.e., vehicle-sharing companies, to use an open-source application
programming interface. Data such as location, use, and condition of all those vehicles, which can be
useful in guiding regulation, are thus transmitted to the city [134]. ML can also distill information
on urban issues related to climate change through web-scraping and text-mining, e.g., [775]. As
discussed above (Section 4.2), ML can also be used to infer infrastructure data.
Second, smart city applications must transmit high volumes of data in real-time. ML is key to

preprocessing large amounts of data in large sensor networks, allowing only what is relevant to
be transmitted, instead of all the raw data that is being collected [480, 672, 804]. Similar techniques
also help to reduce the amount of energy consumed during transmission itself [563].
Third, urban policy-making based on intelligent infrastructure faces major challenges with

data management [286]. Smart cities require the integration of multiple large and heterogeneous
sources of data, for which ML can be a valuable tool, which includes data matching [89, 190], data
fusion [885], and ensemble learning [451].

Low-emissions infrastructure.

When smart city projects are properly integrated into urban planning, they can make cities more
sustainable and foster low-carbon lifestyles (see [563, 602, 853] for extensive reviews on this topic).
Different types of infrastructure interact, meaning that planning strategies should be coordinated
to achieve mitigation goals. For instance, urban sprawl influences the energy use from transport,
as wider cities tend to be more car-oriented [151, 189, 228]. ML-based analysis has shown that the
development of efficient public transportation is dependent on both the extent of urban sprawl
and the local development around transportation hubs [547, 737].
Cities can reduce GHG emissions by coordinating between infrastructure sectors and better

adapting services to the needs of the inhabitants. ML and AI can help, for example, to coordinate
district heating and cooling networks, solar power generation, and charging stations for EVs and
bikes [602], and can improve public lighting systems by regulating light intensity based on histor-
ical patterns of foot traffic [169]. Due to inherent variability in energy demand and supply, there
is a need for uncertainty estimation, e.g., using Markov chain Monte Carlo methods or Gaussian
processes [602].
Currently, most smart city projects for urban climate change mitigation are implemented in

wealthier regions such as the United States, China, and the European Union.22 The literature on
city-scale mitigation strategies is also strongly biased towards the Global North [466], while key
mitigation challenges are expected to arise from the Global South [570]. Infrastructure models
described in Section 4.2 could be used to plan low-carbon neighborhoods without relying on ad-
vanced smart city technologies. To transfer strategies across cities, it is possible to cluster similar
cities based on climate-relevant dimensions [326, 494]. Creutzig et al. [151] related the energy use
of 300 cities worldwide to historical structural factors such as fuel taxes (which have a strong im-
pact on urban sprawl). Other relevant applications include groupings of transportation systems
[326] using a latent class choice model, or of street networks [494] to identify common patterns
in urban development using hierarchical clustering.

22See, for example, the European Union H2020 smart cities project: https://ec.europa.eu/inea/en/horizon-2020/smart-cities-
communities.
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4.4 Discussion

We have shown many different ways that ML can help to reduce GHG emissions from buildings
and cities. A central challenge in this sector is the availability of high-quality data for training
the algorithms, which rarely go beyond main cities or represent the full spectrum of building
types. Techniques for obtaining these data, however, can themselves be an important application
for ML (e.g., via computer vision algorithms to parse satellite imagery). Realizing the potential of
data-driven urban infrastructure can advance mitigation goals while improving the well-being of
citizens [50, 150, 802].

5 INDUSTRY BY ANNAWALDMAN-BROWN

Industrial production, logistics, and building materials are leading causes of difficult-to-eliminate
GHG emissions [162]. Fortunately for ML researchers, the global industrial sector spends billions
of dollars annually gathering data on factories and supply chains [310]—aided by improvements in
the cost and accessibility of sensors and other data-gathering mechanisms (such as QR codes and
image recognition). The availability of large quantities of data, combined with affordable cloud-
based storage and computing, indicates that industry may be an excellent place for ML to make a
positive climate impact.
ML demonstrates considerable potential for reducing industrial GHG emissions under the fol-

lowing circumstances:

• When there is enough accessible, high-quality data around specific processes or transport
routes.
• When firms have an incentive to share their proprietary data and/or algorithms with re-
searchers and other firms.
• When aspects of production or shipping can be readily fine-tuned or adjusted, and there are
clear objective functions.
• When firms’ incentives align with reducing emissions (for example, through efficiency gains,
regulatory compliance, or high GHG prices).

In particular, ML can potentially reduce global emissions (Figure 4) by helping to streamline supply
chains, improve production quality, predict machine breakdowns, optimize heating and cooling
systems, and prioritize the use of clean electricity over fossil fuels [74, 227, 416, 880]. However,
it is worth noting that greater efficiency may increase the production of goods and thus GHG
emissions (via rebound effects) unless industrial actors have sufficient incentives to reduce overall
emissions [748].

5.1 Optimizing Supply Chains

In 2006, at least two Scottish seafood firms flew hundreds of metric tons of shrimp from Scotland
to China and Thailand for peeling, then back to Scotland for sale—because they could save
on labor costs [147]. This indicates the complexity of today’s globalized supply chains, i.e., the
organizational processes and shipping networks that are required to bring a product from
producer to final consumer. ML can help reduce emissions in supply chains by intelligently
predicting supply and demand, identifying lower-carbon products, and optimizing shipping
routes. (For details on shipping and delivery optimization, see Section 3.) However, for many of
these applications to reduce emissions, firms’ financial incentives must also align with climate
change mitigation through carbon pricing or other policy mechanisms.

Reducing overproduction. Uncertain Impact

The production, shipment, and climate-controlled warehousing of excess products is a major
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Fig. 4. Selected opportunities to reduce GHG emissions in industry using ML, as described in Section 5.

source of industrial GHG emissions, particularly for time-dependent goods such as perishable food
or retail goods that quickly fall out of fashion [828]. Global excess inventory in 2011 amounted
to about $8 trillion worth of goods, according to the Council of Supply Chain Management Pro-
fessionals [847]. This excess may be in part due to mis-estimation of demand, as the same or-
ganization noted that corporate sales estimates diverged from actual sales by an average of 40%
[847]. ML may be able to mitigate these issues of overproducing and/or overstocking goods by
improving demand forecasting [12, 797]. For example, the clothing industry sells an average of
only 60% of its wares at full price, but some brands can sell up to 85% due to just-in-time manufac-
turing and clever intelligence networks [294]. As online shopping and just-in-time manufacturing
become more prevalent and websites offer more product types than physical storefronts, better
demand forecasts will be needed on a regional level to efficiently distribute inventory without
letting unwanted goods travel long distances only to languish in warehouses [685]. Nonetheless,
negative side effects can be significant depending on the type of product and regional character-
istics; just-in-time manufacturing and online shopping are often responsible for enabling prod-
uct fads with shorter lifespans, in addition to smaller and faster shipments of goods (mostly by
road) that lack the energy efficiency of freight aggregation and slower shipping methods such as
rail [685, 799].

Recommender systems.

Recommender systems can potentially direct consumers and purchasing firms toward climate-
friendly options, as long as one can obtain information about GHG emissions throughout the
entire life-cycle of some product. The challenge here lies in hunting down usable data on every
relevant material and production process from metal ore extraction through production, shipping,
and eventual use and disposal of a product [336, 674]. One must also convince companies to share
proprietary data to help other firms learn from best practices. If these datasets can be acquired,
ML algorithms could hypothetically assist in identifying the cleanest options.

Reducing food waste. High Leverage

Globally, society loses or wastes 1.3 billion metric tons of food each year, which translates to one-

third of all food produced for human consumption [316]. In developing countries, 40% of food
waste occurs between harvest and processing or retail, while over 40% of food waste in industrial-
ized nations occurs at the end of supply chains, in retail outlets, restaurants, and consumers’ homes
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[316]. ML can help reduce food waste by optimizing delivery routes and improving demand fore-
casting at the point of sale (see Section 5.1), as well as improving refrigeration systems [532] (see
Section 5.3). ML can also potentially assist with other issues related to food waste, such as helping
develop sensors to identify when produce is about to spoil, so it can be sold faster or removed from
a storage crate before it ruins the rest of the shipment [256].

5.2 Improving Materials

Climate-friendly construction. High Leverage Long-term

Cement and steel production together account for over 10% of all global GHG emissions [243]; the
cement industry alone emits more GHGs than every country except the USA and China [477]. ML
can help minimize these emissions by reducing the need for carbon-intensive materials, by trans-
forming industrial processes to run on low-carbon energy, and even by redesigning the chemistry
of structural materials. To reduce the use of cement and steel, researchers have combined ML with
generative design to develop structural products that require less raw material, thus reducing the
resulting GHG emissions [416]. Novel manufacturing techniques such as 3D printing allow for the
production of unusual shapes that use less material but may be impossible to produce through
traditional metal-casting or poured concrete; ML and finite element modeling have been used to
simulate the physical processes of 3D printing in order to improve the quality of finished products
[62].

Assuming future advances in materials science, ML research could potentially draw upon open
databases such as the Materials Project [380] and the UCI Machine Learning Repository [271] to
invent new, climate-friendly materials [830]. Using semi-supervised generative models and con-
crete compression data, for example, Ge et al. proposed novel, low-emission concrete formulas
that could satisfy desired structural characteristics [271].

Climate-friendly chemicals. High Leverage Long-term

Researchers are also experimenting with supervised learning and thermal imaging systems to
rapidly identify promising catalysts and chemical reactions [140, 686], as described in Section 2.1.1.
Firms are unlikely to adopt newmaterials or change existing practices without financial incentives,
so widespread adoption might require subsidies for low-carbon alternatives or penalties for high
GHG emissions.
Ammonia production for fertilizer use relies upon natural gas to heat up and catalyze the

reaction, and accounts for around 2% of global energy consumption [551]. To develop cleaner
ammonia, chemists may be able to invent electrochemical strategies for lower-temperature
ammonia production [551, 849]. Given the potential of ML for predicting chemical reactions
[140], ML may also be able to help with the discovery of new materials for electrocatalysts and/or
proton conductors to facilitate ammonia production.

5.3 Production and Energy

ML can potentially assist in reducing overall electricity consumption, streamlining factories’
HVAC systems, and developing models for electrifying industrial processes so they can be run
on low-carbon energy instead of coal, oil, or natural gas [305]. Again, the higher the incentives
for reducing carbon emissions, the more likely that firms will optimize for low-carbon energy use.
New factory equipment can be very expensive to purchase and set up, so firms’ cost–benefit calcu-
lations may dissuade them from retrofitting existing factories to run using low-carbon electricity
or to save a few kilowatts [288, 633, 778]. Given the heterogeneity across industrial sectors and
the secrecy of industrial data, firms will also need to tailor the requisite sensors and data analysis
systems to their individual processes. ML will become a much more viable option for industry
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when factory workers can identify, develop, implement, and monitor their own solutions inter-
nally instead of relying upon outside experts [337]. The ML community can assist by building
accessible, customizable industry tools (i.e., “low-code” or “no-code” user interfaces) tailored for
people without a strong background in data science.

Adaptive control. High Leverage

On the production side, ML can potentially improve the efficiency of HVAC systems and other
industrial control mechanisms—if given necessary data about all relevant processes. To reduce
GHG emissions from HVAC systems, researchers have suggested combining optimization-based
control algorithms with ML techniques such as image recognition, regression trees, and time delay
neural networks [5, 202] (see also 4.1). DeepMind has used RL to optimize cooling centers for
Google’s internal servers by predicting and optimizing the power usage effectiveness, thus lowering
HFC emissions and reducing cooling costs [227, 268]. Deep neural networks could also be used for
adaptive control in a variety of industrial networking applications [8], enabling energy savings
through self-learning about devices’ surroundings.

Predictive maintenance.

ML could also contribute to predictive maintenance (see also Sections 2.2 and 9.2) by more accu-
rately modelling the wear and tear of machinery that is currently in use, and interpretable ML
could assist factory owners in developing a better understanding of how best to minimize GHG
emissions for specific equipment and processes. For example, creating a digital twinmodel of some
industrial equipment or process could enable a manufacturer to virtually experiment with a new
piece of code before uploading it to the factory floor, and to test out scenarios for lower GHG emis-
sions without slowing down production [290, 777]. Digital twins can also reduce production waste
by identifying broken or about-to-break machines before the actual factory equipment starts pro-
ducing damaged products. Industrial systems can employ similar models to predict which pipes
are liable to spring leaks, thus minimizing the direct release of GHGs such as HFCs and natural
gas.

Using cleaner electricity. High Leverage

ML may be particularly useful for enabling more flexible operation of industrial electrical loads,
through optimizing a firm’s demand response to electricity prices (see also Section 2). Such opti-
mization can contribute to cutting GHG emissions as long as firms have a financial incentive to
optimize for minimal emissions, maximal low-carbon energy, or minimum overall power usage.
Demand response optimization algorithms can help firms adjust the timing of energy-intensive
processes such as cement crushing [880] and powder-coating [43] to take advantage of electric-
ity price fluctuations, although published work on the topic has to date used relatively little ML.
Online algorithms for optimizing demand response can reduce overall power usage for computer
servers by dynamically shifting the internet traffic load of data providers to underutilized servers,
although most of this research, again, has focused on minimizing costs rather than GHG emissions
[99, 352]. Berral et al. proposed a framework that demonstrates how such optimization algorithms
might be combined with RL, digitized controls, and feedback systems to enable the autonomous
control of industrial processes [74].

5.4 Discussion

Given the globalized nature of international trade and the urgency of climate change, decarboniz-
ing the industrial sector is becoming a key priority for both policymakers and factory owners
worldwide. Many companies are now writing decarbonization strategies in response to increasing
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pressure from governments, financial institutions, and stockholders (see, e.g., [620, 793]). These
strategies are evolving rapidly, using ML alongside many approaches not covered here.
As we have seen, there are a number of highly impactful applications where ML can help re-

duce GHG emissions in industry, with several caveats. First, incentives for cleaner production and
distribution are not always aligned with reduced costs, though policies can play a role in aligning
these incentives. Second, despite the proliferation of industrial data, much of the information is
proprietary, low-quality, or very specific to individual machines or processes; practitioners esti-
mate that 60%–70% of collected industrial data goes unused [138, 310]. Before investing in exten-
sive ML research, researchers should be sure that they will be able to eventually access and clean
any data needed for their algorithms. Finally, misjudgments can be very costly for manufacturers
and retailers, leading most managers to adopt risk-averse strategies towards relatively untested
technologies such as ML [337]. For this reason, ML algorithms that determine industrial activities
should be robust enough to guarantee both performance and safety, along with providing both
interpretable and reproducible results [338, 709].

6 FARMS & FORESTS BY ALEXANDRE LACOSTE

Plants, microbes, and other organisms have been drawing CO2 from the atmosphere for millions
of years. Most of this carbon is continually broken down and recirculated through the carbon
cycle, and some is stored deep underground, e.g., as fossil fuels, but a large amount of carbon is
sequestered in the biomass of trees, peat bogs, and soil. Our current economy encourages practices
that are freeing much of this sequestered carbon through deforestation and unsustainable agricul-
ture. On top of these effects, cattle and rice farming generate methane, a GHG far more potent than
CO2 itself. Overall, land use by humans is estimated to be responsible for about a quarter of global
GHG emissions [370] (and this may be an underestimate [511]). In addition to this direct release
of carbon through human actions, the permafrost is now melting, peat bogs are drying, and forest
fires are becoming more frequent as a consequence of climate change itself – all of which release
yet more carbon [573].
The large scale of this problem allows for a similar scale of positive impact. According to one es-

timate [335], about a third of GHG emissions reductions could come from better land management
and agriculture. ML can play an important role in some of these areas. Precision agriculture could
reduce carbon release from the soil and improve crop yield, which in turn could reduce the need
for deforestation. Satellite images make it possible to estimate the amount of carbon sequestered
in a given area of land, as well as track GHG emissions from it. ML can help monitor the health
of forests and peatlands, predict the risk of fire, and contribute to sustainable forestry (Figure 5).
These areas represent highly impactful applications, in particular, of sophisticated computer vision
tools, though care must be taken in some cases to ensure that ML tools are used in ways aligned
with decarbonization.

6.1 Remote Sensing of Emissions High Leverage

Having real-time maps of GHGs could help us quantify emissions from agriculture and forestry
practices, which remain relatively uncertain [371], as well as monitor emissions from other sectors
(Section 2.2).

Such informationwould be valuable in guiding regulations or incentives that could lead to better
land use practices. For example, data on emissions make it possible to set effective targets, and
pinpointing the sources of emissions makes it possible to enforce regulations.
While GHGs are invisible to our eyes, they must by definition interact with sunlight. This

means that we can observe these compounds with hyperspectral cameras [428, 711]. These
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Fig. 5. Selected opportunities to reduce GHG emissions from land use using ML, as described in Section 6.

cameras can record up to several hundred different wavelengths (instead of simply red, green,

and blue [RGB]), providing information on the interaction between light and individual chemi-
cals. Many satellites are equipped with such cameras and can perform, to some extent, estimations
of CO2, CH4 (methane), H2O, and N2O (nitrous oxide) emissions [73, 378]. While extremely useful
for studying climate change, most of these satellites have very coarse spatial resolution and large
temporal and spatial gaps, making them unsuitable for precise tracking of emissions. Standard
satellite imagery provides RGB images with much higher resolution, which could be used in an
ML algorithm to fill the gaps in hyperspectral data and obtain more precise information about
emissions.23 Some preliminary work [378] has studied this possibility, but this remains largely an
open problem with high potential impact.

6.2 Precision Agriculture High Leverage Uncertain Impact

Crop production is a significant source of GHG emissions. This might come as a surprise, since
plants take up CO2 from the air. However, modern industrial crop production involves more than
just growing plants. First, the land is generally stripped of existing vegetation, releasing carbon
sequestered there. Second, the process of tilling exposes topsoil to the air, thereby releasing car-
bon that had been bound in soil aggregates and disrupting organisms in the soil that contribute to
sequestration. Finally, because such farming practices strip soil of nutrients, nitrogen-based fertil-
izers must be added back to the system. Synthesizing these fertilizers consumes massive amounts
of energy, about 2% of global energy consumption [551] (see Section 5.2). Moreover, while some
of this nitrogen is absorbed by plants or retained in the soil, some is converted to nitrous oxide,24

a GHG that is about 300 times more potent than CO2.
Such industrial agriculture approaches are ultimately based on making farmland more uniform

and predictable. This allows it to be managed at scale using basic automation tools like tractors,
but can be both more destructive and less productive than approaches that work with the natural

23Satellites with higher resolution hyperspectral cameras are beginning to deploy, including GHGSat satellites in already
orbit and plans by Carbon Mapper, Bluefield Technologies, and the Environmental Defense Fund to launch satellites in
coming years [81, 113, 534]. Even once this technology comes online, ML will remain useful to cover gaps and to estimate
emissions of other GHGs.
24Some fertilizer additionally often ends up in waterways, which can contaminate drinking water and induce blooms of
toxic algae [687].
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heterogeneity of land and crops. Increasingly, there is demand for sophisticated tools which would
allow farmers to work at scale, but adapt to what the land needs. This approach is often known as
“precision agriculture.”

Smarter robotic tools can help enable precision agriculture. Robots are under development, for
example, with the ability to perform mechanical weeding, targeted pesticide application, and vac-
uuming of pests [766], as well as the collection of large datasets for continual improvement [68].
Many corporate players now exist in the space of ML-aided robotics for precision agriculture
[80, 212, 742, 788]. There remains significant room for development, since many tasks remain
challenging for robots, and furthermore there are a large number of specific tasks and agricultural
settings to consider.
There are many additional ways in which ML can contribute to precision agriculture. Intelli-

gent irrigation systems can save large amounts of water while reducing pests that thrive under
excessive moisture [335]. ML can also help in disease detection, weed detection, and soil sensing
[482, 699, 821]. ML can guide crop yield prediction [866] and even macroeconomic models that
help farmers predict crop demand and decide what to plant at the beginning of the season [503].
These problems often haveminimal hardware requirements, as devices such asUnmannedAerial

Vehicles (UAVs) with hyperspectral cameras can be used for all of these tasks.
Globally, agriculture constitutes a $2.4 trillion industry [785], and there is already a signifi-

cant economic incentive to increase efficiency. However, efficiency gains do not necessarily trans-
late into reduced GHG emissions (e.g., via rebound effects increasing consumption of particularly
emissions-intensive products). Moreover, significantly reducing emissions may require a shift in
agricultural paradigms, for example, widespread adoption of regenerative agriculture, silvopasture,
and tree intercropping [335]. ML tools for policymakers and agronomists [126] could potentially
encourage climate-positive action: for example, remote sensing with UAVs and satellites could per-
form methane detection and carbon stock estimation, which could be used to incentivize farmers
to sequester more carbon and reduce emissions.

6.3 Monitoring Peatlands High Leverage

Peatlands (a type of wetland ecosystem) cover only 3% of the Earth’s land area, yet hold twice
the total carbon in all the world’s forests, making peat the largest source of sequestered carbon on
Earth [612].When peat dries, however, it releases carbon through decomposition and also becomes
susceptible to fire [245, 612]. A single peat fire in Indonesia in 1997 is reported to have released
emissions comparable to 20%–50% of global fossil fuel emissions during the same year [606].
Monitoring peatlands and protecting them from artificial drainage or droughts is essential to

preserve the carbon sequestered in them [349, 400]. In [538], ML was applied to features extracted
from remote sensing data to estimate the thickness of peat and assess the carbon stock of tropical
peatlands. A central database for peatland-monitoring has been established, but considerable data
gaps remain [121]. Advanced ML could potentially help develop precise monitoring tools at low
cost, as well as predicting the risk of fire.

6.4 Managing Forests

Estimating carbon stock. High Leverage

Modeling (and pricing) carbon stored in forests requires us to assess howmuch is being sequestered
or released across the planet. Since most of a forest’s carbon is stored in above-ground biomass
[693], tree species and heights are a good indicator of the carbon stock.
The height of trees can be estimated fairly accurately with LiDAR devices mounted on UAVs, but

this technology is not scalable and many areas are closed to UAVs. To address this challenge, ML
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can be used to predict the LiDAR’s outcome from satellite imagery [48, 599, 693]. From there, the
learned estimator can perform predictions at scale. Despite progress in this area, there is still signif-
icant room for improvement. For example, LiDAR data are often not equally distributed across re-
gions or seasons. Hence domain adaptation and transfer learning techniques may help algorithms
to generalize better.

Automating afforestation. Long-term Uncertain Impact

Planting trees, also called afforestation, can be a means of sequestering CO2 over the long term.
According to one estimate, up to 0.9 billion hectares of extra canopy cover could theoretically be
added [60] globally. However, care must be taken when planting trees to ensure a positive impact.
Afforestation that comes at the expense of farmland (or ecosystems such as peat bogs) could result
in a net increase of GHG emissions. Moreover, planting trees without regard for local conditions
and native species can reduce the climate impact of afforestation as well as negatively affecting
biodiversity.
ML can be helpful in automating large-scale afforestation by locating appropriate planting sites,

monitoring plant health, assessing weeds, and analyzing trends. For example, startups like Den-
dra Systems and Droneseed are developing UAVs that are capable of planting seed packets more
quickly and cheaply than traditional methods [176, 204], while Restor uses ML to learn from past
afforestation projects about effective strategies for ecosystem restoration [681].

Managing forest fires.

Besides their potential for harming people and property, forest fires release CO2 into the atmo-
sphere (which in turn increases the rate of forest fires [839]). On the other hand, small forest fires
are part of natural forest cycles. Preventing them causes biomass to accumulate on the ground
and increases the chances of large fires, which can then burn all trees to the ground and erode top
soil, resulting in high CO2 emissions, biodiversity loss, and a long recovery time [550]. Drought
forecasting [682] is helpful in predicting regions that are more at risk, as is estimating the water
content in the tree canopy [94]. In [266, 267], RL is used to predict the spatial progression of fire.
This helps firefighters decide when to let a fire burn and when to stop it [355]. With good tools
to evaluate regions that are more at risk, firefighters can perform controlled burns and cut select
areas to prevent the progression of fires.

Reducing deforestation. High Leverage

Only 17% of the world’s forests are legally protected [506]. The rest are subject to deforestation,
which contributes to approximately 10% of global GHG emissions [370] as vegetation is burned
or decays. About 80% percent of global deforestation is the result of agriculture (clearing land for
pasture or crop production), while other significant causes include mining, logging, and urban
development [353].
Tools for tracking deforestation can provide valuable data for informing policymakers, as well

as law enforcement in cases where deforestation may be conducted illegally. ML can be used with
remote sensing imagery to pinpoint changes in forest cover [241, 329, 369], or proxies for defor-
estation such as smoke from fires set to clear vegetation [505], as well as to differentiate selective
cutting from clearcutting [342, 487]. ML can also be used with audio instead of visual data; one
such project installs (old) smartphones powered by solar panels in the forest, which enables the
detection of chainsaw sounds within a one-kilometer radius [657].
ML can also be used to help build incentive structures for sustainable forest management. Some

companies are usingML-enabled tools to quantify the carbon impact of forestry decisions, enabling
landowners to choose more beneficial actions as well as profit by selling carbon offsets [578, 603].
ML can also help in proving that tracts of forest are indeed being preserved (integrating data
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sources such as satellite imagery, UAV-based monitoring, and indigenous participatory mapping),
thereby providing verification of carbon credits or other incentive structures for land custodians
or owners [264, 501].

6.5 Discussion

Farms and forests make up a large portion of global GHG emissions, but reducing these emissions
is challenging. The scope of the problem is highly globalized, but the necessary actions are highly
localized. Many applications also involve a diversity of stakeholders. Agriculture, for example, in-
volves a complex mix of large-scale farming interests, small-scale farmers, agricultural equipment
manufacturers, and chemical companies. Each stakeholder has different interests, and each often
has access to a different portion of the data that would be useful for impactful ML applications.
Interfacing between these different stakeholders is a practical challenge for meaningful work in
this area.

7 CARBON DIOXIDE REMOVAL BY ANDREW S. ROSS & EVAN D. SHERWIN

Even if we could cut emissions to zero today, we would still face significant climate consequences
from GHGs already in the atmosphere. Eliminating emissions entirely may also be tricky, given
the sheer diversity of sources (such as airplanes and cows). Instead, many experts argue that to
meet critical climate goals, global emissions must become net-negative—that is, we must remove
more CO2 from the atmosphere than we release [259, 269]. Although there has been significant
progress in negative emissions research [260, 540, 575, 580, 707], the actual CO2 removal industry
is still in its infancy. As such, many of the ML applications we outline in this section are either
speculative or in the early stages of development or commercialization.
Many of the primary candidate technologies for CO2 removal directly harness the same nat-

ural processes which have (pre-)historically shaped our atmosphere. One of the most promising
methods is simply allowing or encouraging more natural uptake of CO2 by plants (whose ML
applications we discuss in Section 6). Other plant-based methods include bioenergy with carbon
capture and biochar, where plants are grown specifically to absorb CO2 and then burned in a way
that sequesters it (while creating energy or fertilizer as a useful byproduct) [155, 575, 690]. Finally,
the waymost of Earth’s CO2 has been removed over geologic timescales is the slow process of min-
eral weathering, which also initiates further CO2 absorption in the ocean due to alkaline runoff
[718]. These processes can both be massively accelerated by human activity to achieve necessary
scales of CO2 removal [575]. However, although these biomass, mineral, and ocean-based methods
are all promising enough as techniques to merit mention, they may have drawbacks in terms of
land use and potentially serious environmental impacts, and (more relevantly for this article) they
would not likely benefit significantly from ML.

7.1 Direct Air Capture Long-term

Another approach is to build facilities to extract CO2 from power plant exhaust, industrial pro-
cesses, or even ambient air [701]. While this direct air capture (DAC) approach faces technical
hurdles, it requires little land and has, according to current understanding, minimal negative envi-
ronmental impacts [152]. The basic idea behind DAC is to blow air onto CO2 sorbents (essentially
like sponges, but for gas), which are either solid or in solution, then use heat-powered chemical
processes to release the CO2 in purified form for sequestration [575, 707]. Several companies have
recently been started to pilot these methods [112, 136, 293].
While CO2 sorbents are improving significantly [117, 872], issues still remainwith efficiency and

degradation over time, offering potential (though still speculative) opportunities for ML. ML could
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be used (as in Section 2.1.1) to accelerate materials discovery and process engineering workflows
[105, 299, 490, 653] to maximize sorbent reusability and CO2 uptake while minimizing the energy
required for CO2 release. MLmight also help to develop corrosion-resistant components capable of
withstanding high temperatures, as well as optimize their geometry for air-sorbent contact (which
strongly impacts efficiency [350]).

7.2 Sequestering CO2 High Leverage Long-term Uncertain Impact

Once CO2 is captured, it must be sequestered or stored, securely and at scale, to prevent re-release
back into the atmosphere. The best-understood form of CO2 sequestration is direct injection into
geologic formations such as saline aquifers, which are generally similar to oil and gas reservoirs
[575]. A Norwegian oil company has successfully sequestered CO2 from an offshore natural gas
field in a saline aquifer for more than twenty years [895]. Another promising option is to sequester
CO2 in volcanic basalt formations, which is being piloted in Iceland [744].

ML may be able to help with many aspects of CO2 sequestration. First, ML can help identify and
characterize potential storage locations. Oil and gas companies have had promising results using
ML for subsurface imaging based on raw seismograph traces [31]. These models and the data be-
hind them could likely be repurposed to help trap CO2 rather than release it. Second, ML can help
monitor and maintain active sequestration sites. Noisy sensor measurements must be translated
into inferences about subsurface CO2 flow and remaining injection capacity [119]; recently, [542]
found success using convolutional image-to-image regression techniques for uncertainty quantifi-
cation in a global CO2 storage simulation study. Deep learning can also help speed up simulation
of carbon dioxide plume migration in sequestration reservoirs [836]. Additionally, it is important
to monitor for CO2 leaks [557]. ML techniques have recently been applied to monitoring potential
CO2 leaks from wells [125]; computer vision approaches for emissions detection (see [826] and
Section 6.1) may also be applicable.

7.3 Discussion

Given limits on howmuch more CO2 humanity can safely emit and the difficulties associated with
eliminating emissions entirely, CO2 removal may have a critical role to play in tackling climate
change. Promising applications for ML in CO2 removal include informing research and develop-
ment of novel component materials, characterizing geologic resource availability, and monitoring
underground CO2 in sequestration facilities. Although many of these applications are speculative,
the industry is growing, which will create more data and more opportunities for ML approaches
to help.

8 CLIMATE PREDICTION BY KELLY KOCHANSKI

The first global warming prediction was made in 1896, when Arrhenius estimated that burning fos-
sil fuels could eventually release enough CO2 to warm the Earth by 5◦C. The fundamental physics
underlying those calculations has not changed, but our predictions have become far more detailed
and precise. The predominant predictive tools are climate models, known as General Circulation
Models or Earth System Models.25 These models inform local and national government decisions
(see IPCC reports [370–372]), help people calculate their climate risks (see Sections 11 and 9) and
allow us to estimate the potential impacts of solar geoengineering (see Section 10).

Recent trends have created opportunities for ML to advance the state-of-the-art in climate pre-
diction (Figure 6). First, new and cheaper satellites are creating petabytes of climate observation

25Learn about climate modeling from climate.be/textbook [300] or Climate Literacy, youtu.be/XGi2a0tNjOo.
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Fig. 6. Schematic of a climate model, with selected opportunities to improve climate change predictions

using ML, as described in Section 8.

data.26 Second, massive climate modeling projects are generating petabytes of simulated climate
data.27 Third, climate forecasts are computationally expensive [115] (the simulations in [415] took
three weeks to run on NCAR supercomputers), while ML methods are becoming increasingly fast
to train and run, especially on next-generation computing hardware. As a result, climate scien-
tists have recently begun to explore ML techniques, and are starting to team up with computer
scientists to build new and exciting applications.

8.1 Uniting Data, ML, and Climate Science

Climate models represent our understanding of Earth and climate physics. We can learn about
the Earth by collecting data. To turn that data into useful predictions, we need to condense it
into coherent, computationally tractable models. ML models are likely to be more accurate or less
expensive than other models where: (1) there are plentiful data, but it is hard to model systems
with traditional statistics, or (2) there are good models, but they are too computationally expensive
to use in production.

8.1.1 Data for Climate Models. When data are plentiful, climate scientists build data-driven
models. In these areas, ML techniques may solve many problems that were previously

26E.g., NASA’s Earth Science Data Systems program, earthdata.nasa.gov, and ESA’s Earth Online, earth.esa.int.
27E.g., the Coupled Model Intercomparison Project, cmip.llnl.gov [230, 781] and Community Earth System Model Large
Ensemble [415].
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challenging. These include black box problems, for instance sensor calibration [468], and classifi-
cation of observational data, for instance classifying land cover or identifying pollutant sources in
satellite imagery [457, 469]. More applications like these are likely to appear as satellite databases
grow. The authors of [548] describe many opportunities for data scientists to assimilate data from
diverse field and remote sensing sources, many of which have since been explored by climate
informatics researchers.
Numerous authors, such as [287], have identified geoscience problems that would be aided by

the development of benchmark datasets. Efforts to develop such datasets include EnviroNet [565],
the IS-GEO benchmark datasets [211], and ExtremeWeather [652]. We expect the collection of
curated geoscience datasets to continue to grow; this process might even be accelerated by ML
optimizations in data collection systems [287]. We strongly encourage modellers to dive into the
data in collaboration with domain experts. We also recommend that modellers who seek to learn
directly from data see [354] for specific advice on fitting and over-fitting climate data.

8.1.2 Accelerating Climate Models. Many climate prediction problems are irremediably data-
limited. No matter how many weather stations we construct, how many field campaigns we run,
or howmany satellites we deploy, the Earth will generate at most one year of new climate data per
year. Existing climate models deal with this limitation by relying heavily on physical laws, such
as thermodynamics [214, 300]. These models are structured in terms of coupled partial differential
equations that represent physical processes like cloud formation, ice sheet flow, and permafrost
melt. ML models provide new techniques (e.g., [658]) for solving such systems efficiently.

Clouds and aerosols. High Leverage

Recent work has shown how deep neural networks could be combined with existing thermody-
namics knowledge to fix the largest source of uncertainty in current climate models: clouds. Bright
clouds block sunlight and cool the Earth; dark clouds catch outgoing heat and keep the Earth warm
[371, 729]. These effects are controlled by small-scale processes such as cloud convection and
atmospheric aerosols (see uses of aerosols for cloud seeding and solar geoengineering in Section
10). Physical models of these processes are far too computationally expensive to include in global
climate models—but ML models are not. Gentine et al. trained a deep neural network to emulate
the behavior of a high-resolution cloud simulation, and found that the network gave similar
results for a fraction of the cost [275] and was stable in a simplified global model [670]. Existing
scientific model structures do not always offer great trade-offs between cost and accuracy. Neural
networks trained on those scientific models produce similar predictions, but offer an entirely
new set of compromises between training cost, production cost, and accuracy. Replacing select
climate model components with neural network approximators may thus improve both the cost
and the accuracy of global climate models. Additional work is needed to identify more climate
model components that could be replaced by neural networks (we highlight other impactful
components below), to optimize those models, and to automate their training workflows (see
examples in [676]).

Ice sheets and sea level rise. High Leverage

The next most important targets for climate model improvements are ice sheet dynamics and sea
level rise. The Arctic and Antarctic are warming faster than anywhere else on Earth, and their
climates control the future of global sea level rise and many vulnerable ecosystems [370, 372].
Unfortunately, these regions are dark and cold, and until recently they were difficult to observe.
In the past few years, however, new satellite campaigns have illuminated them with hundreds
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of terabytes of data.28 These data could make it possible to use ML to solve some of the field’s
biggest outstanding questions. In particular, models of mass loss from the Antarctic ice-sheet are
highly uncertain [449] and models of the extent of Antarctic sea ice do not match reality well [263].
The most uncertain parts of these models, and thus the best targets for improvement, are snow
reflectivity, sea ice reflectivity, ocean heat mixing, and ice sheet grounding line migration rates
[328, 354, 449]. Computer scientists who wish to work in this area could build models that learn
snow and sea ice properties from satellite data, or use new video prediction techniques to predict
short-term changes in the sea ice extent.

8.1.3 Working with Climate Models. ML could also be used to identify and leverage relation-
ships between climate variables. Pattern recognition and feature extraction techniques could al-
low us to identify more useful connections in the climate system, and regression models could
allow us to quantify non-linear relationships between connected variables. For example, Nowack
et al. demonstrated that ozone concentrations could be computed as a function of temperature,
rather than physical transport laws, which led to considerable computational savings [587].
The best climate predictions are synthesized from ensembles of 20+ climate models [782]. Mak-

ing good ensemble predictions is an excellent ML problem. Monteleoni et al. proposed that online
ML algorithms could create better predictions of one or more target variables in a multi-model
ensemble of climate models [549]; this idea has been refined in [530, 763]. More recently, Ander-
son and Lucas used random forests to make high-resolution predictions from a mix of high- and
low-resolution models, which could reduce the costs of building multi-model ensembles [23].

In the further future, the Climate Modeling Alliance has proposed to build an entirely new
climate model that learns continuously from data and from high-resolution simulations [717]. The
proposed model would be written in Julia, in contrast to existing models which are mostly written
in C++ and Fortran. At the cost of a daunting translation workload, they aim to build a model that
is more accessible to new developers and more compatible with ML libraries.

8.2 Forecasting Extreme Events

For most people, extreme event prediction means the local weather forecast and a few days’
warning to stockpile food, go home, and lock the shutters. Weather forecasts are shorter-term
than climate forecasts, but they produce abundant data. Weather models are optimized to track the
rapid, chaotic changes of the atmosphere; since these changes are fast, tomorrow’s weather fore-
cast is made and tested every day. Climate models, in contrast, are chaotic on short time scales, but
their long-term trends are driven by slow, predictable changes of ocean, land, and ice (see [734]).29

As a result, climate model output can only be tested against long-term observations (at the scale
of years to decades). Intermediate time scales, of weeks to months, are exceptionally difficult to
predict, although Cohen et al. [139] argue that ML could bridge that gap by making good predic-
tions on four to six week timescales [363]. Thus far, however, weather modelers have had hundreds
of times more test data than climate modelers, and began to adopt ML techniques earlier. Numer-
ous MLweather models are already running in production. For example, Gagne et al. recently used
an ensemble of random forests to improve hail predictions within a major weather model [262].
A full review of the applications of ML for extreme weather forecasting is beyond the scope of

this article. Fortunately, that review has already been written, see [529]. The authors describe ML

28See, e.g., icebridge.gsfc.nasa.gov and pgc.umn.edu/data/arcticdem.
29This is one of several reasons why climate models produce accurate long-term predictions in spite of atmospheric chaos.
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systems that correct bias, recognize patterns, and predict storms. Moving forward, they envision
human experts working alongside automated forecasts.

8.2.1 Storm Tracking. Climate models cannot predict the specific dates of future events, but
they can predict changes in long-term trends like drought frequency and storm intensity. Infor-
mation about these trends helps individuals, corporations, and towns make informed decisions
about infrastructure, asset valuation and disaster response plans (see also Section 9.4). Identify-
ing extreme events in climate model output, however, is a classification problem with a twist: all
of the available datasets are strongly skewed because extreme events are, by definition, rare. ML
has been used successfully to classify some extreme weather events. Researchers have used deep
learning to classify [488], detect [652], and segment [456] cyclones and atmospheric rivers, as well
as tornadoes [463], in historical climate datasets. Tools for more event types would be useful, as
would online tools that work within climate models, labelled datasets for predicting future events,
and statistical tools that quantify the uncertainty in new extreme event forecasts.

8.2.2 Local Forecasts. High Leverage

Forecasts are most actionable if they are specific and local. ML is widely used to make local fore-
casts from coarse 10–100 km climate orweathermodel predictions; various authors have attempted
this using support vector machines, autoencoders, Bayesian deep learning, and super-resolution
convolutional neural networks (e.g., [481]). Several groups are now working to translate high-
resolution climate forecasts into risk scenarios. For example, ML can predict localized flooding
patterns from past data [625], which could inform individuals buying insurance or homes. Since
MLmethods like neural networks are effective at predicting local flooding during extreme weather
events [740], these could be used to update local flood risk estimates to benefit individuals. The
start-up Jupiter Intelligence is working to make climate predictions more actionable by translating
climate forecasts into localised flood and temperature risk scores.

8.3 Discussion

ML may change the way that scientific modeling is done. The examples above have shown that
many components of large climate models can be replaced withMLmodels at lower computational
costs. From an ML standpoint, learning from an existing model has many advantages: modelers
can generate new training and test data on-demand, and the new ML model inherits some com-
munity trust from the old one. This is an area of active ML research. Several papers have explored
data-efficient techniques for learning dynamical systems [658], including physics-informed neural
networks [659] and neural ordinary differential equations [132]; applications of physics-informed
ML in climate science are now maturing rapidly [373, 412]. In the further future, researchers are
developing ML approaches for a wide range of scientific modeling challenges, including crash
prediction [497], adaptive numerical meshing [389], uncertainty quantification [464, 486], and per-
formance optimization [786]. If these strategies are effective, they may solve some of the largest
structural challenges facing current climate models.
NewMLmodels for climate will bemost successful if they are closely integrated into existing sci-

entific models. This has been emphasized, again and again, by authors who have laid future paths
for artificial intelligence within climate science [287, 470, 529, 670, 676, 717]. New models need to
leverage existing knowledge to make good predictions with limited data. In 10 years, we will have
more satellite data, more interpretable ML techniques [791], hopefully more trust from the scien-
tific community, and possibly a new climate model written in Julia. For now, however, ML models
must be creatively designed to work within existing climate models. The best of these models are
likely to be built by close-knit teams including both climate and computational scientists.
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Fig. 7. Selected opportunities to accelerate societal adaptation to climate change using ML, as described in

Section 9.

9 SOCIETAL IMPACTS BY KRIS SANKARAN

Changes in the atmosphere have impacts on the ground. The expected societal impacts of climate
change include prolonged ecological and socioeconomic stresses as well as brief, but severe, so-
cietal disruptions. For example, impacts could include both gradual decreases in crop yield and
localized food shortages. If we can anticipate climate impacts well enough, then we can prepare
for them by asking:

• How do we reduce vulnerability to climate impacts?
• How do we support rapid recovery from climate-induced disruptions?

A wide variety of strategies have been put forward, from robust power grids to food shortage
prediction (Figure 7), and while this is good news for society, it can be overwhelming for an ML
practitioner hoping to contribute. Fortunately, a few critical needs tend to recur across strategies—
it is by meeting these needs that ML has the greatest potential to support societal adaptation
[251, 296, 648]. From a high level, these involve

• Sounding alarms: Identifying and prioritizing the areas of highest risk, by using evidence of
risk from historical data.
• Providing annotation: Extracting actionable information or labels from unstructured raw
data.
• Promoting exchange: Making it easier to share resources and information to pool and reduce
risk.

These unifying threads will appear repeatedly in the sections below, where we review strategies
to help ecosystems, infrastructure, and societies adapt to climate change, and explain how ML
supports each strategy (Figure 7).
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We note that the projects involved vary in scale from local to global, from infrastructure up-
grades and crisis preparedness planning to international ecosystemmonitoring and disease surveil-
lance. Hence, we anticipate valuable contributions by researchers who have the flexibility to formu-
late experimental approaches, by industrial engineers and entrepreneurs who have the expertise
to translate prototypes into wide-reaching systems, and by civil servants who lead many existing
climate adaptation efforts.

9.1 Ecology

Changes in climate are increasingly affecting the distribution and composition of ecosystems. This
has profound implications for global biodiversity, as well as agriculture, disease, and natural re-
sources such as wood and fish. ML can help by supporting efforts to monitor ecosystems and
biodiversity.

Monitoring ecosystems. High Leverage

To preserve ecosystems, it is important to knowwhich are most at risk. This has traditionally been
done via manual, on-the-ground observation, but the process can be accelerated by annotation
of remote sensing data [91, 92, 513, 637] (see also Section 6.1). For example, tree cover can be
automatically extracted from aerial imagery to characterize deforestation [362, 528]. At the scale
of regions or biomes, analysis of large-scale simulations can illuminate the evolution of ecosystems
across potential climate futures [238, 438]. Amore direct source of data is offered by environmental
sensor networks, made from densely packed but low-cost devices [184, 331, 361]. To monitor ocean
ecosystems, marine robots are useful, because they can be used to survey large areas on demand
[208, 306].
For a system to have the most real-world impact, regardless of the underlying data source, it is

necessary to “personalize” predictions across a range of ecosystems. Amodel trained on the Sahara
would almost certainly fail if deployed in the Amazon. Hence, these applications may motivate ML
researchers interested in heterogeneity, data collection, transfer learning, and rapid generalization.
In sensor networks, individual nodes fail frequently, but are redundant by design—this is an op-
portunity for research into anomaly detection and missing data imputation [178, 345]. In marine
robotics, improved techniques for sampling regions to explore and automatic summarization of
expedition results would both provide value [160, 246]. Finally, beyond aiding adaptation by prior-
itizing at-risk environments, the design of effectivemethods for ecosystemmonitoringwill support
the basic science necessary to shape adaptation in the long-run [231, 297, 521].

Monitoring biodiversity. High Leverage

Accurate estimates of species populations are the foundation on which conservation efforts are
built. Camera traps and aerial imagery have increased the richness and coverage of sampling
efforts. ML can help infer biodiversity counts from image-based sensors. For instance, camera
traps take photos automatically whenever a motion sensor is activated—computer vision can be
used to classify the species that pass by, supporting a real-time, less labor-intensive species count
[64, 585, 643]. It is also possible to use aerial imagery to estimate the size of large herds [805] or
count birds [282]. In underwater ecosystems, ML has been used to identify plankton automatically
from underwater cameras [232] and to infer fish populations from the structure of coral reefs [867].

Citizen science can also enable dataset collection at a scale impossible in individual studies
[93, 533, 634, 767]. For example, by leveraging public enthusiasm for birdwatching, eBird has
logged more than 140 million observations [767], which have been used for population and migra-
tion studies [424]. Computer vision algorithms that can classify species from photographs have
furthered such citizen science efforts bymaking identifications easier andmore accurate [660, 806],

ACM Computing Surveys, Vol. 55, No. 2, Article 42. Publication date: February 2022.



42:42 D. Rolnick et al.

though these face challenges such as class imbalances in training data [807]. Work with citizen sci-
ence data poses the additional challenge that researchers have no control over where samples come
from. To incentivize observations from undersampled regions, mechanisms from game theory can
be applied [860], and even when sampling biases persist, estimates of dataset shift can minimize
their influence [128].

Monitoring biodiversity may be paired with interventions to protect rare species or control
invasive pests. ML is providing new solutions to assess the impact of ecological interventions
[13, 502, 664] and prevent poaching [860].

9.2 Infrastructure

Physical infrastructure is so tightly woven into the fabric of everyday life—like the buildings we
inhabit and lights we switch on—that it is easy to forget that it exists (see Section 4). The fact that
something so basic will have to be rethought in order to adapt to climate change can be unsettling,
but viewed differently, the sheer necessity of radical redesign can inspire creative thinking.
We first consider the impacts of climate change on the built environment. Shifts in weather

patterns are likely to put infrastructure under more persistent stress. Heat and wind damage roads,
buildings, and power lines. Rising water tables near the coast will lead to faults in pipelines. Urban
heat islandswill be exacerbated and it is likely that therewill be an increased risk of flooding caused
by heavy rain or coastal inundations, resulting in property damage and traffic blockages [604].
A clear target is construction of physical defenses, for example, “climate proofing” cities with

new coastal embankments and increased storm drainage capacity. However, focusing solely on
defending existing structures can stifle proactive thinking about urban and social development—
for example, floating buildings are being tested in Rotterdam—and one may alternatively consider
resilience and recovery more broadly [621, 731]. From this more general perspective of improving
social processes, ML can support two types of activities: design and maintenance.

Designing infrastructure. Long-term

How can infrastructure be (re)designed to dampen climate impacts? In road networks, it is pos-
sible to incorporate flood hazard and traffic information in order to uncover vulnerable stretches
of road, especially those with few alternative routes [314]. If traffic data are not directly available,
it is possible to construct proxies from mobile phone usage and city-wide CCTV streams—these
are promising in rapidly developing urban centers [252, 381]. Overall flood hazard maps can be
improved using ML [455], and it is also possible to leverage data from real-world flooding events
[616], and to send localized predictions to those at risk [841]. For electrical, water, and waste col-
lection networks, the same principle can guide investments in resilience—using proxy or historical
data about disruptions to anticipate vulnerabilities [564, 574, 600, 609]. Robust components can re-
place those at risk; for example, adaptive islands, parts of an energy grid that continue to provide
power evenwhen disconnected from the network, prevent cascading outages in power distribution
[235].
Infrastructure is long-lived, but the future is uncertain, and planners must weigh immediate

resource costs against future societal risks [248]. One area that urgently needs adaptation strategies
is the consistent access to drinkingwater, which can be jeopardized by climate variability [174, 366].
Investments in water infrastructure can be optimized; for example, a larger dam might cost more
up front, but would have a larger storage capacity, giving a stronger buffer against drought. To
delay immediate decisions, infrastructure can be upgraded in phases—the technical challenge is
to discover policies that minimize a combination of long-term resource and societal costs under
plausible climate futures, with forecasts being updated as climates evolve [289, 651, 727].
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Maintaining infrastructure. High Leverage

What types of systems can keep infrastructure functioning well under increased stress? Two
strategies for efficiently managing limited maintenance resources are predictive maintenance and
anomaly detection; both can be applied to electrical, water, and transportation infrastructure (see
also Sections 2.2 and 5.3). In predictive maintenance, operations are prioritized according to the
predicted probability of a near-term breakdown [201, 581, 702, 751]. For anomaly detection, fail-
ures are discovered as soon as they occur, without having to wait for inspectors to show up, or
complaints to stream in [51, 186].

The systems referenced here have required the manual curation of data streams, structured and
unstructured. The data are plentiful, just difficult to glue together. Ideas from the missing data,
multimodal data, and AutoML communities have the potential to resolve some of these issues.

9.3 Social Systems

While less tangible, the social systems we construct are just as critical to the smooth functioning
of society as any physical infrastructure, and it is important that they adapt to changing climate
conditions. First, consider what changes these systems may encounter. Decreases in crop yield,
due to drought and other factors, will pose a threat to food security, as already evidenced by long
periods of drought in North America, West Africa, and East Asia [157, 636]. More generally, com-
munities dependent on ecosystem resources will find their livelihoods at risk, and this may result
in mass migrations, as people seek out more supportive environments.
At first, these problems may seem beyond the reach of algorithmic thinking, but investments

in social infrastructure can increase resilience. ML can amplify the reach and effectiveness of this
infrastructure. See also Section 12 for perspective on howML can support the function and analysis
of complex social environments.

Food security. High Leverage

Data can be used to monitor the risk of food insecurity in real time, to forecast near-term shortages,
and to identify areas at risk in the long-term, all of which can guide interventions. For real-time
and near-term systems, it is possible to distill relevant signals from mobile phones, credit card
transactions, and social media data [171, 434, 645]. These have emerged as low-cost, high-reach
alternatives tomanual surveying. The idea is to trainmodels that link these large, but decontextual-
ized, data with ground truth consumption or survey information, collected on small representative
samples. This process of developing proxies to link small, rich datasets with large, coarse ones can
be viewed as a type of semi-supervised learning, and is fertile ground for research.
For longer-term warnings, spatially localized crop yield predictions are needed. These can be

generated by aerial imagery or meteorological data (see Section 6.2), if they can be linked with
historical yield data [123, 824]. Automatic crop type mapping can also be a valuable tool for yield
prediction [426, 427]. On the ground, it is possible to perform crop-disease identification from plant
photos—this can alert communities to disease outbreaks, and enhance the capacity of agricultural
inspectors. For even longer-run risk evaluation, it is possible to simulate crop yield via biological
and ecological models [446, 698, 783], presenting another opportunity for blending large scale
simulation with ML [605, 835].
Beyond sounding alarms, ML can improve resilience of food supply chains. As detailed in Sec-

tion 5, ML can reduce waste along these chains; we emphasize that for adaptation, it is important
that supply chains also be made robust to unexpected disruptions [203, 568, 639, 665].

Resilient livelihoods.

Individuals whose livelihoods depend on one activity, and who have less access to community
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resources, are those who are most at risk [7, 692]. Resilient livelihoods can be promoted through
increased diversification, cooperation, and exchange, all of which can be facilitated by ML sys-
tems. For example, they can guide equipment and information sharing in farming cooperatives,
via growers’ social networks [37]. Mobile money efforts can increase access to liquid purchasing
power; they can also be used to monitor economic health [253, 644]. Skill-matching programs
and online training are often driven by data, with some programs specifically aiming to benefit
refugees [54, 516, 646] (see also Section 13).

Supporting displaced people. Long-term Uncertain Impact

Human populations move in response to threats and opportunities, and ML can be used to pre-
dict large-scale migration patterns. Work in this area has relied on accessible proxies, like social
media, where users’ often self-report location information, or aerial imagery, from which the ex-
tent of informal settlement can be gauged [82, 376, 650, 869]. More than quantifying migration
patterns, there have been efforts directly aimed at protecting refugees, either through improving
rescue operations [492, 628] or monitoring negative public sentiment [647]. It is worth cautioning
that immigrants and refugees are vulnerable groups, and systems that surveil them can easily be
exploited by bad actors. Designing methodology and governance mechanisms that allow vulner-
able populations to benefit from such data, without putting them at additional risk, should be a
research priority.

Assessing health risks.

Climate change will affect exposure to health hazards, and ML can play a role in measuring
and mitigating their impacts across subpopulations. Two of the most relevant expected shifts are
(1) heat waves will become more frequent and (2) outdoor and indoor air quality will deteriorate
[324, 710]. These exposures have either direct or indirect effects on health. For example, prolonged
heat episodes both directly cause heat stroke and can trigger acute episodes in chronic conditions,
like heart or respiratory disease [194, 719].
Careful data collection and analysis have played a leading role in epidemiology and public health

efforts for generations. It should be no surprise that ML has emerged as an important tool in
these disciplines, supporting a variety of research efforts, from increasing the efficiency of disease
simulators to supporting the fine-grainedmeasurement of exposures and their health impacts [433,
705].

These disciplines are increasingly focused on the risks posed by climate change specifically. For
example, new sources of data have enabled detailed sensing of urban heat islands [137, 348, 815],
water quality [321, 440], and air pollution [130, 180]. Further, data on health indicators, which
are already collected, can quantitatively characterize observed impacts across regions as well as
illuminate which populations are most at risk to climate-change induced health hazards [831]. For
example, it is known that the young, elderly, and socially isolated are especially vulnerable during
heat waves, and finer-grained risk estimates could potentially drive outreach [622, 697].
Across social applications, there are worthwhile research challenges—guiding interventions

based on purely observational, potentially unrepresentative data poses risks. In these contexts,
transparency is necessary, and ideally, causal effects of interventions could be estimated, to prevent
feedback loops in which certain subgroups are systematically ignored from policy interventions.

9.4 Crisis

Perhaps counterintuitively, natural disasters and health crises are not entirely unpredictable—they
can be prepared for, risks can be reduced, and coordination can be streamlined. Furthermore, while
crises may be some of the most distressing consequences of climate change, disaster response and
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public health are mature disciplines in their own right, and have already benefited extensively
from ML methodology [118, 531, 862].

Managing epidemics.

Climate change will increase the range of vector andwater-borne diseases, elevating the likelihood
that these new environments experience epidemics [324]. Disease surveillance and outbreak fore-
casting systems can be built from web data and specially-designed apps, in addition to traditional
surveys [394, 467, 627]. While non-survey proxies are observational and self-reported, current re-
search attempts to address these issues [472, 588]. Beyond surveillance, point-of-care diagnostics
have enjoyed a renaissance, thanks in part to ML [598, 648]. These are tools that allow health
workers to make diagnoses when specialized lab equipment is inaccessible. An example is malaria
diagnosis based on photos of prepared pathology slides taken with a mobile phone [649]. Ensuring
that these systems reliably and transparently augment extension workers, guiding data collection
and route planning when appropriate, are active areas of study [97, 688].

Disaster response. High Leverage

In disaster preparation and response, two types of ML tasks have proven useful: creating maps
from aerial imagery and performing information retrieval on social media data. Accurate and well-
annotated maps can inform evacuation planning, retrofitting campaigns, and delivery of relief
[59, 200]. Further, this imagery can assist damage assessment, by comparing scenes immediately
pre- and post-disaster [315, 816]. Social media data can contain kernels of insight—places without
water, clinics without supplies—which can inform relief efforts. ML can help properly surface these
insights, compressing large volumes of social media data into the key takeaways, which can be
acted upon by disaster managers [118, 368, 596].

9.5 Discussion

Climate change will have profound effects on the planet, and the ML community can support
efforts to minimize the damage it does to ecosystems and the harm it inflicts on people. This
section has suggested areas of research that may help societies adapt more effectively to these
ever changing realities. We have identified a few recurring themes, but also emphasized the role
of understanding domain-specific needs. The use of ML to support societal resilience would be
a noble goal at any time, but the need for tangible progress towards it may never have been so
urgent as it is today, in the face of the wide-reaching consequences of climate change.

10 SOLAR GEOENGINEERING BY ANDREW S. ROSS

Airships floating through the sky, spraying aerosols; robotic boats crisscrossing the ocean,
firing vertical jets of spray; arrays of mirrors carefully positioned in space, micro-adjusted by
remote control; these images seem like science fiction, but they are actually real proposals for
solar radiation management, commonly called solar geoengineering [375, 418, 419, 728]. Solar
geoengineering, much like the GHGs causing climate change, shifts the balance between how
much heat the Earth absorbs and howmuch it releases. The difference is that it is done deliberately,
and in the opposite direction. The most common umbrella strategy is to make the Earth more
reflective, keeping heat out, though there are also methods of helping heat escape (besides
CO2 removal, which we discuss in Sections 6 and 7).
Solar geoengineering generally comes with a host of potential side effects and governance chal-

lenges. Moreover, unlike CO2 removal, it cannot simply reverse the effects of climate change
(average temperatures may return to pre-industrial levels, but location-specific climates still
change), and also comes with the risk of termination shock (fast, catastrophic warming if humanity
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undertakes solar geoengineering but stops suddenly) [615]. Because of these and other issues, it
is not within the scope of this article to evaluate or recommend any particular technique. How-
ever, the potential for solar geoengineering to moderate some of the most catastrophic hazards of
climate change is well-established [374], and it has received increasing attention in the wake of so-
cietal inaction on mitigation. Although [418] argue that the “hardest and most important problems
raised by solar geoengineering are non-technical,” there are still a number of important technical
questions that ML may be able to help us study.

Overview.

The primary candidate methods for geoengineering are marine cloud brightening [396] (making
low-lying clouds more reflective), cirrus thinning [759] (making high-flying clouds trap less heat),
and stratospheric aerosol injection [668] (which we discuss below). Other candidates (which are
either less effective or harder to implement) include “white-roof” methods [10] and even launching
sunshades into space [29].
Injecting sulfate aerosols into the stratosphere is considered a leading candidate for solar geo-

engineering both because of its economic and technological feasibility [527, 743] and because of a
reason that should resonate with the ML community: we have data. (These data are largely in the
form of temperature observations after volcanic eruptions, which release sulfates into the strato-
sphere when sufficiently large [691].) Once injected, sulfates circulate globally and remain aloft for
1 to 2 years. As a result, the process is reversible, but must also be continually maintained. Sulfates
come with a well-studied risk of ozone loss [210], and they make sunlight slightly more diffuse,
which can impact agriculture [642].

10.1 Understanding and Improving Aerosols

Design. Long-term

The effects and side-effects of aerosols in the stratosphere (or at slightly lower altitudes for cirrus
thinning [308]) vary significantly with their optical and chemical properties. Although sulfates
are the best understood due to volcanic eruption data, many others have been studied, including
zirconium dioxide, titanium dioxide, calcite (which preserves ozone), and even synthetic diamond
[209]. However, the design space is far from fully explored. ML has had recent success in predicting
specific chemical, material, and optical properties without the need for expensive experimentation
or brute-force simulation [105, 299, 490, 653], including in aerosols [465, 500]. Although speculative,
it is conceivable that ML could accelerate the search for aerosols that are chemically nonreactive
but still reflective, cheap, and easy to keep aloft.

Modeling.

One reason that sulfates have been the focus for aerosol research is that atmospheric aerosol
physics is not perfectly captured by current climate models, so having natural data is important
for validation. Furthermore, even if current aerosol models are correct, their best-fit parameters
must still be determined (using historical data), which comes with uncertainty and computational
difficulty. ML may offer tools here, both to help quantify and constrain uncertainty, and to man-
age computational load. As a recent example, [247] use Gaussian processes to emulate climate
model outputs based on nine possible aerosol parameter settings, allowing them to establish plau-
sible parameter ranges (and thus much better calibrated error-bars) with only 350 climate model
runs instead of >100,000. Although this is important progress, ideally we want uncertainty-aware
aerosol simulations with a fraction of the cost of one climate model run, rather than 350. ML may
be able to help here too (see Section 8 for more details).
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10.2 Engineering a Control System High Leverage Long-term Uncertain Impact

Efficient emulations and error-bars will be essential for what MacMartin and Kravitz [508] call
“The Engineering of Climate Engineering.” According to [508], any practical deployment of geo-
engineering would constitute “one of the most critical engineering design and control challenges
ever considered: making real-time decisions for a highly uncertain and nonlinear dynamic system
with many input variables, manymeasurements, and a vast number of internal degrees of freedom,
the dynamics of which span a wide range of timescales.” Bayesian and neural network-based ap-
proaches could facilitate the fast, uncertainty-aware nonlinear system identification this challenge
might require. Additionally, there has been recent progress in RL for control [21, 84, 545], which
could be useful for fine-tuning geoengineering interventions such as deciding where and when to
release aerosols. For an initial attempt at analyzing stratospheric aerosol injection as a RL problem
(using a neural network climate model emulator), see [170].

10.3 Modeling Impacts Long-term

Of course, optimizing interventions requires defining objectives, and the choices here are far from
clear. Although it is possible to stabilize global mean temperature and even regional temperatures
through geoengineering, it is most likely impossible to preserve all relevant climate characteristics
in all locations. Furthermore, climate model outputs do not tell the full story; ultimately, the goal of
climate engineering is to minimize harm to people, ecosystems, and society. It is therefore essential
to develop robust tools for estimating the extent and distribution of these potential harms. There
has been some recent work in applying ML to assess the impacts of geoengineering. For example,
[179] use deep neural networks to estimate the effects of aerosols on human health, while [148]
use them to estimate the effects of solar geoengineering on agriculture. References [101, 187] use
relatively simple local and polynomial regression techniques but applied to extensive empirical
data to estimate the past and future effects of temperature change on economic production. More
generally, the field of Integrated Assessment Modeling [422, 840] aims to map the outputs of a
climate model to societal impacts; for a general discussion of potential opportunities for applying
ML to integrated assessment models (IAMs), see Section 12.2.

10.4 Discussion

Any consideration of solar geoengineering raises many moral questions. It may help certain re-
gions at the expense of others, introduce risks like termination shock, and serve as a “moral haz-
ard”: widespread awareness of its very possibility may undermine mainstream efforts to cut emis-
sions [485]. Because of these issues, there has been significant debate about whether it is ethically
responsible to research this topic [420, 640]. However, although it creates new risks, solar geoengi-
neering could actually be a moderating force against the terrifying uncertainties climate change
already introduces [374, 509], and ultimately many environmental groups and governmental bod-
ies have come down on the side of supporting further research [145, 258, 592]. In this section, we
have attempted to outline some of the technical challenges in implementing and evaluating solar
geoengineering. We hope the ML community can help geoengineering researchers tackle these
challenges.

11 INDIVIDUAL ACTION BY NATASHA JAQUES

Individuals may worry that they are powerless to affect climate change, or lack clarity on which
of their behaviors are most important to change. In fact, there are actions which can meaningfully
reduce each person’s carbon footprint, and, if widely adopted, could have a significant impact on
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mitigating global emissions [335, 845]. AI can help to identify those behaviors, inform individuals,
and provide constructive opportunities by modeling individual behavior.

11.1 Understanding Personal Carbon Footprint

We as individuals are constantly confronted with decisions that affect our carbon footprint, but we
may lack the data and knowledge to know which decisions are most impactful. Fortunately, ML
can help determine an individual’s carbon footprint from their personal and household data [790].
For example, natural language processing can be used to extract the flights a person takes from
their email, or determine specific grocery items purchased from a bill, making it possible to pre-
dict the associated emissions. Systems that combine this information with data obtained from the
user’s smartphone (e.g., from a ride-sharing app) can then help consumers who wish to identify
which behaviors result in the highest emissions. Given such a MLmodel, counterfactual reasoning
can potentially be used to demonstrate to consumers how much their emissions would be reduced
for each behavior they changed. As a privacy-conscious alternative, emissions estimates could be
directly incorporated into grocery labels [562] or interfaces for purchasing flights. Such informa-
tion can empower people to understand how they can best help mitigate climate change through
behavior change.
Residences are responsible for a large share of GHG emissions [372] (see also Section 4). A

large meta-analysis found that significant residential energy savings can be achieved [215], by
targeting the right interventions to the right households [14, 16, 17]. ML can predict a household’s
emissions in transportation, energy, water, waste, foods, goods, and services, as a function of its
characteristics [399]. These predictions can be used to tailor customized interventions for high-
emissions households [398]. Changing behavior both helps mitigate climate change and benefits
individuals; studies have shown that many carbon mitigation strategies also provide cost savings
to consumers [399].
Household energy disaggregation breaks down overall electricity consumption into energy use

by individual appliances (see also Section 4.1) [33], which can help facilitate behavior change [772].
For example, it can be used to inform consumers of high-energy appliances of which they were
previously unaware. This alone could have a significant impact, since many devices consume a
large amount of electricity evenwhen not in use; standby power consumption accounts for roughly
8% of residential electricity demand [507]. A variety of ML techniques have been used to effectively
disaggregate household energy, such as spectral clustering, Hidden Markov Models, and neural
networks [33].
ML can also be used to predict the marginal emissions of energy consumption in real time, on

a scale of hours [832], potentially allowing consumers to effectively schedule activities such as
charging an EV when the emissions (and prices [439]) will be lowest [143]. Combining these pre-
dictions with disaggregated energy data allows for the efficient automation of household energy
consumption, ideally through products that present interpretable insights to the consumer
(e.g., [721, 760]). Methods like RL can be used to learn how to optimally schedule household ap-
pliances to consume energy more efficiently and sustainably [543, 679]. Multi-agent learning has
also been applied to this problem, to ensure that groups of homes can coordinate to balance energy
consumption to keep peak demand low [662, 863].

11.2 Facilitating Behavior Change High Leverage

ML is highly effective at modeling human preferences, and this can be leveraged to help mitigate
climate change. Using ML, we can model and cluster individuals based on their climate knowledge,
preferences, demographics, and consumption characteristics (e.g., [66, 116, 166, 261, 861]), and thus
predict who will be most amenable to new technologies and sustainable behavior change. Such
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techniques have improved the enrollment rate of customers in an energy savings program by
2–3x [14]. Other works have used ML to predict how much consumers are willing to pay to avoid
potential environmental harms of energy consumption [167], finding that some groupswere totally
insensitive to cost and would pay the maximum amount to mitigate harm, while other groups were
willing to pay nothing. Given such disparate types of consumers, targeting interventions toward
particular households may be especially worthwhile; all the more so because data show that the
size and composition of household carbon footprints varies dramatically across geographic regions
and demographics [399].
Citizens who would like to engage with policy decisions, or explore different options to reduce

their personal carbon footprint, can have difficulty understanding existing laws and policies due to
their complexity. They may benefit from tools that make policy information more manageable and
relevant to the individual (e.g., based on where the individual lives). There is the potential for natu-
ral language processing to derive understandable insights from policy texts for these applications,
similar to automated compliance checking [67, 876].
Understanding individual behavior can help signal how it can be nudged. For example, path

analysis has shown that an individual’s psychological distance to climate change (on geographic,
temporal, social, and uncertainty dimensions) fully mediates their level of climate change con-
cern [397]. This suggests that interventions minimizing psychological distance to the effects of
climate change may be most effective. Similarly, ML has revealed that cross-cultural support for
international climate programs is not reduced, even when individuals are exposed to information
about other countries’ climate behavior [65]. To make the effects of climate change more real for
consumers, and thus help motivate those who wish to act, image generation techniques such as
CycleGANs have been used to visualize the potential consequences of extreme weather events on
houses and cities [716]. Gamification via deep learning has been proposed to further allow indi-
viduals to explore their personal energy usage [447]. All of these programs may be an incredibly
cost-effective way to reduce energy consumption; behavior change programs can cost as little as
3 cents to save a kilowatt hour of electricity, whereas generating one kWh would cost 5–6 cents
with a coal or wind power plant, and 10 cents with solar [207, 313].

11.3 Discussion

While individuals can sometimes feel that their contributions to climate change are dwarfed by
other factors, in reality individual actions can have a significant impact in mitigating climate
change. ML can aid this process by empowering consumers to understand which of their behav-
iors lead to the highest emissions, automatically scheduling energy consumption, and providing
insights into how to facilitate behavior change.

12 COLLECTIVE DECISIONS BY TEGAN MAHARAJ

& NIKOLA MILOJEVIC-DUPONT

Addressing climate change requires swift and effective decision-making by groups at multiple
levels—communities, unions, NGOs, businesses, governments, intergovernmental organizations,
and many more. Such collective decision-making encompasses many kinds of action—for example,
negotiating international treaties to reduce GHG emissions, designing carbon markets, building
resilient infrastructure, and establishing community-owned solar farms. These decisions often in-
volve multiple stakeholders with different goals and priorities, requiring difficult trade-offs. The
economic and societal systems involved are often extremely complex, and the impacts of climate-
related decisions can play out globally across long time horizons. To address some of these chal-
lenges, researchers are using empirical and mathematical methods from fields such as policy anal-
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ysis, operations research, economics, game theory, and computational social science; there are
many opportunities for ML to support and supplement these methods.

12.1 Modeling Social Interactions

When designing climate change strategies, it is critical to understand how organizations and in-
dividuals act and interact in response to different incentives and constraints. Agent-based mod-

els (ABMs) [168, 222] represent one approach used in simulating the actions and interactions
of agents (people, companies, etc.) in their environment. ABMs have been applied to a multitude
of problems relevant to climate change, in particular to study low-carbon technology adoption
[320, 584, 656, 878]. For example, when modeling solar PV adoption [875], agents may represent
individuals who act based on factors such as financial interest and the behavior of their peers
[88, 655]; the goal is then to study how these agents interact in response to different conditions,
such as electricity rates, subsidy programs, and geographical considerations. Here, ML can help
identify the roles of these conditions directly from data [58]. Other applications of ABMs include
modeling how behavior under social norms changes with external pressures [715], how the econ-
omy and climate may evolve given a diversity of political and economic beliefs [272], and how
individuals may migrate in response to environmental changes [787]. While agent and environ-
ment models in ABMs are often hand-designed by experts, ML can help integrate data-driven
insights into these models [874], for example, by learning rules or models for agents based on ob-
servational data [312, 875], or by using unsupervised methods such as variational autoencoders
or generative adversarial networks to discover salient features useful in modeling a complex envi-
ronment. While the hope of learning or tuning behavior from data is promising for generalization,
many data-driven approaches lose the interpretability for which ABMs are valued; work in inter-
pretable ML methods could potentially help with this.
In addition to ABMs, techniques from game theory can be valuable in modeling behavior, e.g., to

explore cooperation in the face of a depleting resource [344]. Multi-agent RL can also be applied to
understand the behavior of groups of agents who need to cooperate; see [607] for an overview and
[385, 475] for recent examples. Combined with mechanism design,30 such approaches can be used
to design methods for cooperation that lead to mutually beneficial outcomes, for example when
formalizing procedures around international climate agreements [522, 641].

12.2 Informing Policy

The actions required to address climate change, both in mitigation and adaptation, require making
policies31 at the local, national, and international levels [756]. Various institutions act as policy
makers: for instance, governments, international organizations, non-governmental organizations,
standards committees, and professional institutions. Tools from policy analysis—the process of
evaluating the outcomes of past policies and assessing future policy alternatives32—can help in-
form the choices these institutions make. Policy analysis uses quantitative tools from statistics,
economics, and operations research such as cost–benefit analysis, uncertainty analysis, and multi-
criteria decision-making to inform the policymaking process; see [555, 618] for an introduction.
ML can provide data for policy analysis, help improve existing tools for assessing policy options,
and provide new tools for evaluating the effects of policies.

30Mechanism design is often called “inverse game theory”—rather than determining optimal strategies for players, mech-
anism design seeks to design games such that certain strategies are incentivized.
31Policy can refer, for example, to laws, measures, standards, or best practices.
32The former is often referred to as ex-post policy analysis and the latter as ex-ante policy analysis.
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Gathering data. High Leverage

When creating policies, decision-makers must often negotiate fundamental uncertainties in the
underlying data. ML can help alleviate some of this uncertainty by providing data. For instance, as
detailed elsewhere in this article, ML can help pinpoint sources of emissions (Sections 2.2 and 6.1),
approximate traffic patterns (Section 3.1), identify infrastructure at risk (Section 9.2), and mine
information from companies’ financial disclosures (Section 14). Natural language processing, net-
work analysis, and clustering techniques can also be used to analyze social media data to under-
stand public opinions and discourse around climate change [436, 812, 844]. These data can then be
used to identify areas of intervention, compute the benefits and costs of a project, or evaluate the
effectiveness of a policy after it has been implemented.

Assessing policy options.

Decision-makers often construct mathematical models to help them assess or tradeoff between dif-
ferent policy alternatives. ML is particularly relevant to approaches that model large and complex
socio-economic systems to assess outcomes of particular strategies, as well as optimization-based
tools that help with navigating the decision.
Policy-makers often wish to analyze how different policy alternatives may contribute to achiev-

ing a particular objective. Computational approaches such as simulation and (partial) equilibrium
models can be used to compare different policy options, assess the effects of underlying assump-
tions, or propose strategies that are consistent with the objectives of decision-makers. Of particu-
lar relevance to climate change mitigation are IAMs, which incorporate economic models, climate
models, and policy information (see [840] for an overview). IAMs are used to explore future societal
pathways that are consistent with climate goals (e.g., 1.5◦Cmean global temperature increase), and
play a prominent role in the IPCC assessments [561]. While these models can simulate interactions
between many variables in great detail, this comes at the cost of computational complexity and
presents opportunities for ML. Much as with Earth system models (Section 8), ML can be applied
within any of the various sub-models that make up an IAM. One set of applications involves deriv-
ing results at the appropriate spatial resolution, since different components of an IAM operate at
different scales. Outputs with high resolutionmay be aggregated via clusteringmethods to provide
insights [183], while at coarser resolution, statistical downscaling can help to disaggregate data to
an appropriate spatial resolution, as seen in applications such as crop yield [249], wind speed [479]
or surface temperature [481]. ML also has the potential to help with sensitivity and uncertainty
analysis [386], with finding numerical solutions for computational expensive submodels [206, 714],
and assessing the validity of the models [556].
In addition to assessing the outcomes of various policies, policymakers may also employ

optimization-based tools to figure out what decisions to make. For example, combinatorial op-
timization is a powerful tool used widely for decision-making in operations research. See [70] for
a survey of how ML can be employed to help solve combinatorial optimization problems.
Tools from the field of multi-criteria decision-making can also help policymakers manage trade-

offs between different policies by reconciling competing objectives and minimizing negative side-
effects; in particular, in cases where policy objectives and constraints can be mathematically for-
malized,multi-objective optimization can provide a pragmatic approach to making decisions. Here,
a decision-maker would formulate their decision-making process as an optimization problem by
combining multiple optimization objectives subject to physical or other types of constraints; the
goal is to then find a solution (or set of solutions) that is Pareto-optimal with respect to all of the
objective functions. However, finding these solutions is often computationally expensive. Prac-
titioners have applied bio-inspired algorithms such as particle swarm, genetic, or evolutionary
algorithms to search for or compute Pareto-optimal solutions that satisfy the constraints. This
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approach has been applied in a number of climate change-related fields, including energy and in-
frastructure planning [38, 325, 525, 635, 732, 856], industry [122, 334], land use [462, 809], and more
[127, 317, 539, 761]. Previous work has also employed parallel surrogate search, assisted by ML, to
efficiently solve multi-objective optimization problems [11]. Optimization algorithms which have
been successful in the context of hyperparameter tuning (e.g., Bayesian optimization [726, 745])
or guided search algorithms (e.g., tree search algorithms [738]) could also potentially be applied
to this problem.

Evaluating policy effects. High Leverage

When creating new policies, decision-makers may wish to understand previous policies (e.g., from
other jurisdictions) and how these policies performed. ML can help analyze previous policy ac-
tions automatically and at scale by improving computational text analysis. In particular, natural
language processing methods are already used in the field of political science to analyze political
texts and legislation [307]; these approaches could be promising for systematically studying cli-
mate change policies. Causal inference techniques can also help assess the effect of a particular
policy or climate-related event from observed outcomes. ML can play a role in causal inference
[41, 340, 619], including in the context of policy problems [40, 453] and in climate-relevant sce-
narios such as estimating the effects of temperature on human mortality [356] and the effects of
World Bank projects on vegetative cover [883].

12.3 Designing Markets

In economics, GHG emissions can be seen as a negative externality: while a changing climate results
in a cost for society, this cost is often not reflected in the market price of goods or services that
cause GHG emissions. This is problematic, since organizations and individuals making decisions
solely on the basis of market prices will tend to favor cheaper goods, even if those goods emit a
large amount of GHGs. Market-based tools33 such as cap-and-trade aim to enforce prices reflecting
the societal cost of GHGs and thus encourage socially beneficial behavior through market forces.
ML can help in understanding the impacts of market instruments; assessing their effectiveness at
reducing emissions; and supporting a swift, effective and fair implementation.34

Predicting carbon prices.

There are several approaches to pricing GHG emissions. Carbon taxes and quotas aim to influence
the behavior of organizations by shaping supply and demand within an existing market. By con-
trast, cap-and-trade approaches such as those within the European Union involve a completely
new market, an Emissions Trading Scheme, within which companies can buy and sell a limited
number of GHG emissions permits. Prices within such cap-and-trade markets are highly sensi-
tive to control elements such as the number of permits released at a given time. ML can be used
to analyze prices within these markets, for example by predicting prices via supervised learning
[769, 834, 890, 892] or analyzing the main drivers of prices via hierarchical clustering [891].

Non-carbon markets.

Market design can influence GHG emissions even in settings where such emissions are not directly
penalized. For instance, dynamic pricing in electricity markets—varying the price of electricity to
consumers based on, e.g., how much wind power is available—can shape demand for low-carbon
energy sources (see Section 2.1.1). Following seminal research on modeling pricing in markets as
a bandit problem [700], many works have applied bandit and other RL algorithms to determine

33For background on market-based strategies, see [217, 755, 757].
34For a review on ML for energy economics and finance, see [283].

ACM Computing Surveys, Vol. 55, No. 2, Article 42. Publication date: February 2022.



Tackling Climate Change with Machine Learning 42:53

prices or other market values. For example, RL has been applied to predict bids [654] and market
power [572] in electricity markets, and to set dynamic prices in more general settings [510]. ML
can also help solve auctions in supply chains [708].

Assessing market effects.

When designing market-based strategies, it is necessary to understand how effectively each strat-
egy will reduce emissions, as well as how the underlying socio-technical system may be af-
fected. Studies have considered effects of carbon pricing on economic growth and energy intensity
[233, 234], or on electricity prices [569]. Effects of pricing mechanisms can also be indirect, as com-
panies’ strategic decisions can have longer-term effects. ML can be useful in analyzing these effects.
For example, self-organizing maps have been used to analyze how R&D investment in green tech-
nologies changes in response to fuel prices [55], while a game theoretical framework using neural
networks has been used to study the optimal production strategies for companies under carbon
quotas [884].
To ensure that market-based strategies are effective and equitable, it is important to understand

their distributional effects, as certain social groups or classes of stakeholders may be affected more
than others. For example, a flat carbon tax on gasoline will have a larger effect on lower-income
populations, as fuel expenses are a bigger share of their total budget. Here, clustering can help
identify permit allocation schemes that maximize social welfare [855], and supervised learning
has been used to predict winners and losers from changing electricity tariff schemes [302]. He-
donic pricing can also help identify how much different consumers may be willing to pay for a
environmental good or a service, which is a noisy measure for the monetary value of that good or
service; these values are typically inferred using regression or ML techniques on historical mar-
ket data [175, 594, 613, 629]. It is also important to analyze which organizations or individuals
can actually participate in a given market. For example, carbon markets can be more flexible if
viable offsets exist, including those offered by landowners who sequester carbon through forest
conservation and management; ML has been used to examine the factors influencing the financial
viability of such projects [425].

12.4 Discussion

The complexity, scale, and fundamental uncertainty inherent in the problems of climate change
can pose challenges for collective decision-making.ML can help supplement existingmathematical
frameworks that are employed to alleviate some of these challenges, including agent-basedmodels,
IAMs, multi-objective optimization, and market design tools. Interpretable and fair ML techniques
may be of particular importance in this context, as they may enable decision-makers to more
effectively and equitably employ insights from ML models. While these quantitative assessment
tools can provide useful input to the decision-making process, it is worth noting that decisions
regarding climate change may ultimately depend on qualitative discussions around norms, values,
or equity considerations that may not be captured in quantitative models.

13 EDUCATION BY ALEXANDRA LUCCIONI

Access to quality education is a key part of sustainable development, with significant benefits for
climate and society at large. Education contributes to improving quality of life, helps individuals
make informed decisions, and trains the next generation of innovators. Education is also para-
mount in helping people across societies understand and address the causes and consequences
of climate change and provides the skills and tools necessary for adapting to its impacts. For in-
stance, education can both improve the resilience of communities, particularly in developing coun-
tries that will be disproportionately affected by climate change [801], and empower individuals,
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especially from developed countries, to adopt more sustainable lifestyles [244]. As climate change
itself may diminish educational outcomes for some populations, due to its negative effects on
agricultural productivity and household income [666, 667], this makes providing high-quality ed-
ucational interventions globally all the more important.

AI in Education. Long-term

There are a number of ways that AI andML can contribute to education and teaching—for instance,
by improving access to educational opportunities, helping personalize the teaching process, and
stepping in when teachers have limited time. The field of Artificial Intelligence in EDucation

(AIED) has existed for over 30 years, and until recently relied on explicitly modeling content,
learners, and tutoring strategies based on psychological theories of learning. However, AIED is
increasingly incorporating data-driven insights derived from ML techniques.
One important area of AIED research has been Intelligent Tutoring Systems (ITSs), which

can adapt their behavior in real time according to the needs of individuals or to support collabo-
rative learning [124]. While ITSs have traditionally been defined and constructed by hand, recent
approaches have applied ML techniques such as multi-armed bandit techniques to adaptively per-
sonalize sequences of learning activities [135], LSTMs to generate questions to evaluate language
comprehension [205], and RL to improve the strategies used within the ITS [365, 441]. However,
there remains much work to be done to bridge the performance gap between digital and human
tutors, and ML-based approaches have an important role to play in this endeavor—for example,
via natural language processing techniques for creating conversational agents [295], learner ana-
lytics for classifying student profiles, [695], and adaptive learning approaches to propose relevant
educational activities and exercises [774].35

While ITSs generally focus on individualized or small-group instruction, AIED can also help
provide tools that improve educational outcomes at scale for larger groups of learners. For instance,
scalable, adaptive online courses could give hundreds of thousands of learners access to learning
resources that they would not usually have in their local educational facilities [694]. Furthermore,
giving teachers guidance derived from computational teaching algorithms or heuristics could help
them design better educational curricula and improve student learning outcomes [172]. In this
context, AIED applications can be used either as a standalone tool for independent learners or as
an educational resource that frees up teachers to have more one-on-one time with students. Key
considerations for creatingAIED tools that can be applied across the globe include adapting to local
technological and cultural needs, addressing barriers such as access to electricity and internet [430,
431], and taking into account students’ computing skills, language, and culture [106, 590].

Learning about climate.

Research has shown that educational activities centered on climate change and carbon footprints
can engage learners in understanding the connection between personal and collective actions and
their impact on global climate, and can enable individuals tomake climate-friendly lifestyle choices
such as reducing energy use [142]. There have also been proposals for interactive websites explain-
ing climate science as well as educational interventions focusing on local and actionable aspects
of sustainable development [22]. In these contexts, ML can help create personalized educational
tools, for instance by generating images of potential future impacts of extreme weather events
based on a learner’s address [716] or by anchoring an individual’s learning experience in a digital
replica of their real-life location and allowing them to explore the way that climate change will
impact a specific location [28].

35For further background on this area, see [395, 582, 630].
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14 FINANCE BY ALEXANDRA LUCCIONI

The rise and fall of financial markets is linked to many events, both sporadic (e.g., the 2008 global
financial crisis) and cyclical (e.g., the price of gas over the years), with profits and losses that can
be measured in the billions of dollars and can have global consequences. Climate change poses a
substantial financial risks to global assets measured in the trillions of dollars [185], and it is hard
to forecast where, how, or when climate change will impact the stock price of a given company, or
even the debt of an entire nation. While financial analysts and investors focus on pricing risk and
forecasting potential earnings, the majority of the current financial system is based on quarterly or
yearly performance. This fails to incentivize the prediction of medium or long-term risks, which
include most climate change-related exposures such as physical impacts on assets or distribution
chains, legislative impacts on profit generation, and indirect market consequences such as supply
and demand.36

Climate investment.

Climate investment, the current dominant approach in climate finance, involves investing money
in low-carbon assets [229]. The dominant ways in which major financial institutions take this
approach are by creating “green” financial indexes that focus on low-carbon energy, clean tech-
nology, and/or environmental services [182] or by designing carbon-neutral investment portfolios
that remove or under-weight companies with relatively high carbon footprints [284]. This invest-
ment strategy is creating major shifts in certain sectors of the market (e.g., utilities and energy)
towards renewable energy alternatives, which are seen as having a greater growth potential than
traditional energy sources such as oil and gas [72]. While this approach currently does not utilize
ML directly, we see the potential in applying deep learning both for portfolio selection (based on
features of the stocks involved) and investment timing (using historical patterns to predict future
demand), to maximize both the impact and scope of climate investment strategies.

Climate analytics. High Leverage

The other main approach to climate finance is climate analytics, which aims to predict the finan-
cial effects of climate change, and is still gaining momentum in the mainstream financial com-
munity [229]. Since this is a predictive approach to addressing climate change from a financial
perspective, it is one where ML can potentially have greater impact. Climate analytics involves
analyzing investment portfolios, funds, and companies in order to pinpoint areas with heightened
risk due to climate change, such as timber companies that could be bankrupted by wildfires or wa-
ter extraction initiatives that could see their sources polluted by shifting landscapes. Approaches
used in this field include: natural language processing techniques for identifying climate risks
and investment opportunities in disclosures made by companies [254, 442, 498, 752] as well as for
analyzing the evolution of climate coverage in the media to dynamically hedge climate change
risk [221]; econometric approaches for developing arbitrage strategies that take advantage of the
carbon risk factor in financial markets [26]; and ML approaches for forecasting the price of carbon
in emission exchanges37 [887, 889].

To date, the field of climate finance has been largely neglectedwithin the larger scope of financial
research and analysis. This leaves many directions for improvement, such as (1) improving existing
traditional portfolio optimization approaches; (2) in-depth modeling of variables linked to climate
risk; (3) designing a statistical climate factor that can be used to project the variation of stock prices

36For further reading regarding the impact of climate change on financial markets, see [61, 86, 108].
37Carbon pricing, e.g., via CO2 cap-and-trade or a carbon tax, is a commonly-suggested policy approach for getting firms
to price future climate change impacts into their financial calculations. For an introduction to these topics, see [632] and
also Section 12.3.
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given a compound set of events; and (4) identifying direct and indirect climate risk exposure in
annual company reports. ML plays a central role in these strategies, and can be a powerful tool in
leveraging the financial sector to mitigate climate change and in reducing the financial impacts of
climate change on society.

15 CONCLUSION

ML, like any technology, does not always make the world a better place—but it can. In the fight
against climate change, ML has significant contributions to offer across domain areas. ML can en-
able automatic monitoring through remote sensing (e.g., by pinpointing deforestation, gathering
data on buildings, and assessing damage after disasters). It can accelerate the process of scien-
tific discovery (e.g., by suggesting new materials for batteries, construction, and carbon capture).
ML can optimize systems to improve efficiency (e.g., by consolidating freight, designing carbon
markets, and reducing food waste). And it can accelerate computationally expensive physical sim-
ulations through hybrid modeling (e.g., climate models and energy scheduling models). These and
other cross-cutting themes are shown in Table 2. We emphasize that in each application, ML is
only one part of the solution; it is a tool that enables other tools across fields.
Applying ML to tackle climate change has the potential both to benefit society and to advance

the field of ML. Many of the problems we have discussed here highlight cutting-edge areas of ML,
such as interpretability, causality, and uncertainty quantification. Moreover, meaningful action
on climate problems requires dialogue with fields within and outside computer science and can
lead to interdisciplinary methodological innovations, such as improved physics-constrained ML
techniques.
The nature of climate-relevant data poses challenges and opportunities. For many of the applica-

tionswe identify, data can be proprietary or include sensitive personal information.Where datasets
exist, they may not be organized with a specific task in mind, unlike typical ML benchmarks that
have a clear objective. Datasets may include information from heterogeneous sources, which must
be integrated using domain knowledge. Moreover, the available data may not be representative of
global use cases. For example, forecasts of electricity demand based on a dataset from the US will
not necessarily generalize to India, where patterns of demandmay be different. Tools from transfer
learning and domain adaptation will likely prove essential in low-data settings. For some tasks, it
may also be feasible to augment learning with carefully simulated data. Of course, the best option
if possible is always more real data; we strongly encourage public and private entities to release
datasets and to solicit involvement from the ML community.
For those looking to use ML to help tackle climate change, we provide further resources via the

Climate Change AI initiative (www.climatechange.ai), and we offer the following roadmap:

• Learn. Identify how your skills may be useful—we hope this article is a starting point. Re-
member that often the most impactful work lies in solving well-defined, domain-specific
bottlenecks, and is not always flashy.
• Collaborate. Find collaborators, who may be researchers, entrepreneurs, established com-
panies, or policy makers. Every domain discussed here has experts who understand its op-
portunities and pitfalls, even if they are not experts in ML.
• Listen. Listen towhat your collaborators and other stakeholders say is needed for addressing
the problem effectively. Keep in mind that complex methodologies are not always needed.
• Deploy.Work with deployment partners to ensure a pathway to impact for your work, and
incorporate deployment-related considerations during development.

We call upon the ML community to use its skills as part of the global effort against climate change.
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Table 2. Cross-Cutting Objectives that are Relevant to Many Climate Change Domains
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