
Trustworthy Formal Natural Language Specifications

Colin S. Gordon
csgordon@drexel.edu
Drexel University

USA

Sergey Matskevich
sm3372@drexel.edu
Drexel University

USA

Abstract

Interactive proof assistants are computer programs carefully
constructed to check a human-designed proof of a mathe-
matical claim with high confidence in the implementation.
However, this only validates truth of a formal claim, which
may have been mistranslated from a claim made in nat-
ural language. This is especially problematic when using
proof assistants to formally verify the correctness of software
with respect to a natural language specification. The trans-
lation from informal to formal remains a challenging, time-
consuming process that is difficult to audit for correctness.
This paper shows that it is possible to build support for

specifications written in expressive subsets of natural lan-
guage, within existing proof assistants, consistent with the
principles used to establish trust and auditability in proof
assistants themselves. We implement a means to provide
specifications in a modularly extensible formal subset of
English, and have them automatically translated into for-
mal claims, entirely within the Lean proof assistant. Our
approach is extensible (placing no permanent restrictions
on grammatical structure), modular (allowing information
about new words to be distributed alongside libraries), and
produces proof certificates explaining how each word was
interpreted and how the sentence’s structure was used to
compute the meaning.

We apply our prototype to the translation of various Eng-
lish descriptions of formal specifications from a popular text-
book into Lean formalizations; all can be translated correctly
with a modest lexicon with only minor modifications related
to lexicon size.

CCS Concepts: • Software and its engineering→ Spec-

ification languages; •Human-centered computing→
Natural language interfaces.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Onward! ’23, October 25–27, 2023, Cascais, Portugal

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0388-1/23/10. . . $15.00
https://doi.org/10.1145/3622758.3622890

Keywords: Natural language, formal specification, catego-
rial grammar, computational linguistics
ACM Reference Format:

Colin S. Gordon and Sergey Matskevich. 2023. Trustworthy Formal
Natural Language Specifications. In Proceedings of the 2023 ACM

SIGPLAN International Symposium on New Ideas, New Paradigms,

and Reflections on Programming and Software (Onward! ’23), October

25–27, 2023, Cascais, Portugal. ACM, New York, NY, USA, 21 pages.
https://doi.org/10.1145/3622758.3622890

1 Introduction

Proof assistants can establish very high confidence in the
correctness of formal proofs, due to both their rigorous check-
ing and attention to producing independently auditable ev-
idence that the arument is correct [94, 98]. But one of the
unavoidable points of trust for even a carefully-implemented
proof assistant is the specifications themselves: proving the
wrong theorem is of limited use. And only those who can
read both formal and informal specifications can even con-
sider whether this has occurred. This is particularly crucial
for software verification: software specifications typically
originate in natural language, and any accompanying for-
mal specification comes afterwards — which increasingly
occurs for compilers [70], operating systems [61], and other
high-value software. Currently, the only bridge between the
formal and informal specifications is the humans who per-
form the translation. There is no independently checkable
record of this translation aside from the possibility of com-
ments or notes by the translators — themselves largely in
informal (though likely meticulous) natural language. Sim-
ply being familiar with both the specification language and
the intended specification is insufficient by itself to bridge
this gap [37, 38]: relating the two is a separate skill that is
independently challenging to develop.

Ideally, it would be possible to give natural language spec-
ifications directly to the proof assistant, for example:
theorem thm : "addone is monotone" := . . .

Robust support for such specifications could enable signifi-
cant improvements in requirements tracing (machine checked
mappings from natural language to formal results), includ-
ing for artifact evaluation; education, where it could help
students check their understanding of how either mathe-
matics or program specifications are formalized logically;
and even communication with non-technical clients who
might wish to have some confidence that a formalization
they do not themselves fully understand is correct. On the

https://orcid.org/0000-0002-9012-4490
https://orcid.org/0000-0002-8080-7298
https://doi.org/10.1145/3622758.3622890
https://doi.org/10.1145/3622758.3622890

Onward! ’23, October 25–27, 2023, Cascais, Portugal Colin S. Gordon and Sergey Matskevich

last point, Wing’s classic paper introducing formal meth-
ods [134] posits that customers may read the formal spec-
ifications produced from informal requirements, but this
is only possible if the client can make sense of the formal
specification itself. Machine-checked relationships between
natural-language and formalized expressions of software
properties can help bridge this knowledge gap by connect-
ing formal properties to natural language a reader with less
background in a specific formal logic could understand.

This paper develops the core of an extensible approach to
allow specifications like:

theorem thm : pspec [| addone is monotone |] := . . .

(where pspec returns the logical form of the natural language
utterance in quotes). We envision such a system can even-
tually be used for the purposes above, to generate formal
claims about mathematics or programs verified in a proof
assistant, whether specified in a proof assistant’s own logic,
or indirectly through a foundational program logic [5] built
inside a proof assistant; we primarily describe an implemen-
tion in an early version of Lean 4, with some discussion of a
parallel prototype in Coq. Our goal is to enable specification
of formal claims using modularly-extensible fragments of
natural language, within the proof assistant, which are au-
tomatically translated to forms logically equivalent (and in
practice often near-identical) to those a verification expert
may give while accounting for what is easier or more diffi-
cult to prove; proofs (often trivial) relating the expert claim
to the formalization extracted from natural language then
extend the formal proof with a formalized connection to a
description of functionality that may be more easily under-
stood by non-experts in verification, additionally ensuring
that the mathematical formalization is consistent with a less
formal statement.

This is not a job for machine-learning-centric natural lan-
guage processing, which despite the recent trend in work on
“autoformalization” [135] is incompatible with the goals of
using a proof assistant for formal verification. There is no
guarantee a learned translation is sensible, and if a transla-
tion from natural to formal language ends up being surpris-
ing, few machine learning approaches produce an auditable
trail of evidence for why that translation was produced by
the trained model, and no way to precisely fix misunder-
standings of specific words. The current state-of-the-art in
explaining such translations are techniques such as salience
maps, which essentially highlight which input words were
most influential to the system output without providing a
linguistically-grounded reason for the behavior [115]. Mean-
while, proof certificates play a central role in the design of
trustworthy proof assistants [46, 98] and foundational pro-
gram verification [5]. Moreover, as proof assistants are often
used to formalize properties of new mathematics or new
programs, often using new terminology, there will often be
a lack of training data for mapping natural language to a

formal property. Later, we point out additional ways that
the needs of trusted formalization of natural language spec-
ifications run afoul of many of machine learning’s known
limitations, while requiring few of its advantages. (We also
point out limited ways machine learning can play a role in
optimizing the techniques we employ.)

Fortunately the field of linguistics predates machine learn-
ing. Formalizing categorial grammar [2, 11, 68, 117] carefully
in a proof assistant offers a path to a natural, auditable way to
bridge the gap between formal and natural-language specifi-
cation. In this paper we show a prototype demonstrating that
it is possible to parse a string containing a natural language
specification into a semantic representation that can be used
directly in proofs within a proof assistant (i.e., a proposition
in the Calculus of Inductive Constructions), in a linguistically
principled way, using typeclasses [114, 116]. We argue that
this approach is modular and can extend to sophisticated
and substantial subsets of natural language. We also analyze
how the trusted computing base is affected when consider-
ing trust of a formal verification up to the natural language
specification. Unlike many previous attempts at natural lan-
guage interfaces (Section 7.2), our goal is to supplement, not
supplant, traditional proof assistant interfaces.
This paper establishes that the theoretical core is within

reach, that these techniques can capture the grammar and se-
mantics of a small sample of natural language specifications
from a textbook on verified functional programs, and that it
is feasible to implement translation algorithms inside current
proof assistants, as a library (though leading to suggestions
for improvements to those features).

2 Background & Motivation

This section provides a condensed (and therefore somewhat
biased) background in natural language processing and cate-
gorial grammar, from a programming languages perspective.

2.1 Categorial Grammars

Categorial grammars are a family of related techniques [89]
applying ideas from logic to relate the syntax of natural
language with formal representations of what that syntax
denotes — often called logical form — growing out of Lam-
bek’s work [68] in the 1950s (which coined the term). The
core idea is to build a sort of substructural type theory where
base types correspond to grammatical categories (hence cat-
egorial), from which more complex grammatical categories
can be defined. A set of inference rules is then used to define,
simultaneously, how grammatical categories combine into
larger sentence fragments and how those smaller fragments’
meanings (logical forms) are combined into larger meanings.
This process bottoms-out at a lexicon, giving for eachword its
grammatical roles (types) and associated denotations. Thus
categorial grammar is a system of simulatenously parsing
natural language from strings and assigning denotational

Trustworthy Formal Natural Language Specifications Onward! ’23, October 25–27, 2023, Cascais, Portugal

\-Elim
Γ ⊢ 𝐴 ⇒ 𝑎 Δ ⊢ 𝐴\𝐵 ⇒ 𝑓

Γ,Δ ⊢ 𝐵 ⇒ (𝑓 𝑎)

/-Elim
Γ ⊢ 𝐴/𝐵 ⇒ 𝑓 Δ ⊢ 𝐵 ⇒ 𝑎

Γ,Δ ⊢ 𝐴 ⇒ (𝑓 𝑎)

/-Comp
Γ ⊢ 𝐴/𝐵 ⇒ 𝑒 Δ ⊢ 𝐵/𝐶 ⇒ 𝑓

Γ,Δ ⊢ 𝐴/𝐶 ⇒ (𝑒 ◦ 𝑓)

\-Comp
Γ ⊢ 𝐴\𝐵 ⇒ 𝑒 Δ ⊢ 𝐵\𝐶 ⇒ 𝑓

Γ,Δ ⊢ 𝐴\𝐶 ⇒ (𝑓 ◦ 𝑒)
Figure 1. A selection of rules used in this paper, all derivable in CTLs, CCG, and other categorial grammars.

semantics — a process traditionally referred to as semantic

parsing in the computational linguistics literature.
Most prominent in the linguistics community are combi-

natory categorial grammars (CCGs) [117], though also rel-
evant are the categorial type logics (CTLs [20]1). Work on
CCGs epmhasizes appropriate constructs for linguistic ends,
while CTLs hew close to Lambek’s view [68] of categorial
grammars as substructural logics for linguistics. While these
reflect very different philosophical and practical aims, for our
present purposes the distinction is immaterial: it is widely
held, and in some cases formalized [42, 63], that rules used
in CCGs (including the variant with the most sophisticated
linguistic treatments [9]) correspond to theorems in particu-
lar CTLs [80]. In this work we use only principles common
across all categorial grammars, including CCGs and CTLs.
All categorial grammars parse by combining sentence

fragments based on their grammatical types. These types
include both atomic primitives (such as noun phrases) as
well as more complex types, called slash-types that indicate
a predicate argument structure (which are used to model,
for example, most classes of verbs). Oversimplifying slightly,
categorial grammars treat parsing as logical deduction in
a residuated non-commutative linear logic.2 This is essen-
tially a family of linear logics without the structural rule for
freely commuting the order of assumptions, thus modeling
sensitivity to word order, and picking up as a consequence
two forms of implication corresponding to whether an im-
plication expects its argument to the left or to the right.3
The model for the logic is a sequence of words, and types
correspond to the grammatical role of a sentence fragment.
𝐴/𝐵 is the grammatical type for a fragment that, when

given a 𝐵 to its right, forms an𝐴.𝐴\𝐵 is the grammatical type
for a fragment that, when given an 𝐴 to its left, forms a 𝐵. In
both cases, the argument is “under” the slash, and the result
is “above” it.4) These are called slash types. The grammars
include rules to combine adjacent parts of a sentence. The
elimination rules for slash types are the first two in Figure 1.
The judgment Γ ⊢ 𝐶 ⇒ 𝑒 is read as claiming the sequence

1Occasionally also called type-logical grammars (TLGs).
2Technically only CTLs [85] take this as an epistemilogical commitment,
while CCGs [117]) are agnostic, inheriting such a relation via Baldridge and
Kruijff’s work [9].
3It is the presence of the ability to commute assumptions arbitrarily that
allows a single implication to suffice in standard logics.
4We follow CTL notation rather than CCG notation (which always puts
results to the left) as users of proof assistants tend to be familiar with a range
of logics, so the CCG syntax would likely confuse users already familiar
with the Lambek calculus and related systems. This notational choice is
orthogonal to the choice of which rules to employ.

of words Γ can be combined to form a sentence fragment
of grammatical type 𝐶 , whose underlying semantic form —
logical form — is given by 𝑒 . 𝑒 is a term drawn from the
logical language being used to represent sentence meaning,
typically a simply-typed lambda calculus in keeping with
Montague [76–78, 91], though in our work we follow the al-
ternative [15, 24, 103, 119] of targeting a dependently-typed
calculus. Figure 1 also includes forward and backward com-
position; rules tend to come in pairs for each direction. The
rest of the paper can be followed with only the four rules of
this figure, though our implementation includes additional
rules from the formal linguistics literature.
A lexicon gives the grammatical role and semantics for

individual words, providing the starting point for combining
fragments. Categorial grammars push all knowledge specific
to a particular human language into the lexicon, in catego-
rizing how individual words are used. This allows the core
principles to be reused across languages, as evidenced by
wide-coverage lexicons for a variety of natural languages in-
cluding English [53], German [51], Hindi [4], Japanese [75],
Arabic [18], French [82], and Dutch and Italian [1].

Together, these allow filling in choices for the metavari-
ables in the rules above, permitting derivations like that in
Figure 2. Each grammatical type𝐶 corresponds to a particular
type in the underlying lambda calculus and the underlying
semantic type is determined by a systematic translation from
the syntactic grammatical type. Borrowing more notation
from logic (where this idea is known as a Tarski-style uni-
verse [73]), we write ⌊𝐶⌋ for 𝐶’s semantic type. Both slash
types correspond to function types in the lambda calculus:
⌊𝐴/𝐵⌋ = ⌊𝐵\𝐴⌋ = 𝐵 → 𝐴. An invariant of the judgment
Γ ⊢ 𝐶 ⇒ 𝑒 is that in the underlying logic, 𝑒 always has type
⌊𝐶⌋. This invariant explains why it is correct for “four” to
have semantics 4 while “is even” has a function as its se-
mantics. In proof assistants based on type theory, like Coq
and Lean, the set of grammatical types can be given as a
datatype declaration, and the interpretation function as a
function from grammatical types to proof assistant types.

These few rules are enough to formalize a small fragment
of English in ways consistent with linguistics research, and
demonstrate the possibility of interpreting natural language
specifications within a proof assistant, in a well-founded and
extensible way. Our initial choice of rules is limited, but not
fundamentally so. CCGs recognize mildly context-sensitive

languages [57, 64], which are believed to cover the full range
of grammatical constructions in any natural language [118].
All rules of CCGs are encodable in the way we describe, as

Onward! ’23, October 25–27, 2023, Cascais, Portugal Colin S. Gordon and Sergey Matskevich

“four” ⊢ 𝑁𝑃 ⇒ 4
“is” ⊢ (𝑁𝑃\𝑆)/𝐴𝐷𝐽 ⇒ 𝜆𝑝. 𝜆𝑥 . 𝑝 𝑥 “even” ⊢ 𝐴𝐷𝐽 ⇒ even

“is even” ⊢ 𝑁𝑃\𝑆 ⇒ (𝜆𝑥 . even 𝑥)
/-Elim

“four is even” ⊢ 𝑆 ⇒ even 4
\-Elim

Figure 2. A simple semantic parse using categorial grammar.

are the rules of Turing-complete CTLs [21]. Ultimately the
question of which rules are required is an empirical one,
considering both linguistic constructions and the complexity
of recognizing these grammars For this paper we focus on a
small set of rules including those above, which are common
to most categorial grammars. The rules we use in this paper
are intended as a foundation: as the next section points out,
categorial grammars are highly modular, allowing not only
simple additions of new lexical entries, but simple modular
addition of support for new grammatical constructions, of-
ten by direct implementation of treatments that have been
extensively validated in the linguistics literature.

2.2 Formal Grammars for Natural Languages: Why

Categorial Grammars?

Producing formal grammars (categorial or otherwise) for
natural language is technically a slight misnomer. Natural
language is inherently open-ended, allowing new grammat-
ical constructions to become accepted over time, and new
words to be proposed, among other changes; we are ignoring,
for present purposes, matters of pronunciation (phonology
and phonetics) and changes in written form (orthography),
not to mention signed languages. However, as soon as a set
of acceptable words and their uses are fixed into a formal
grammar, that grammar now describes merely a subset of the
actual natural language it models, and by its nature excludes
innovations in the lexicon and grammatical structure. This
has far-reaching effects if our interest is in writing formal
specifications in something approximating natural language:
individual programming projects often invent their own ter-
minology! Thus if we use categorial grammars (or any other
formal theory of grammar) to parse specifications into a
logical form, we are necessarily writing formal specifica-
tions in a formalized subset of natural language,5 rather than
open-ended natural language.
This is an inherent limitation to any approach to mech-

anized manipulation of language meaning.6 The result is
that novel grammatical constructions (or simply some not
accounted for in the design of the grammar), or previously-
unknown words will not be handled at all by the formal

5Hence the double meaning of our title.
6As opposed to mechanized manipulation of language form (text) alone,
as is done in current large language models, where open-endedness is
well-supported (e.g., via the well-known attention [127] mechanism, which
essentially heuristically identifies chunks of input text to copy into the out-
put), but meaning is not (which is why large language models consistently
struggle with basic boolean reasoning [36, 90, 123, 124]).

grammar. This is why the approach we are suggesting is
sometimes called controlled natural language [40, 65].
However, choice of grammar formalism can moderate

these limitations. Rather than attempting to treat all possible
current and future natural language sentences out of the box
(which is impossible), we can choose foundations that are
modularly extensible to new words and new grammatical

constructions, and can grow incrementally over time as termi-
nology or grammar evolves or changes. Categorial gramamrs
are examples of lexicalized grammar formalisms [109]. In
contrast to the context-free grammars that are well-known
in programming languages and software engineering, all
knowledge of how an individual word is used is contained
in the lexicon alone. Whereas a CFG treatment of English
might have separate non-terminals for verb phrases, tran-
sitive verbs, and intransitive verbs, and individual words
would simply be terminals, in categorial grammars all verbs,
including ditransitive verbs (those with direct and indirect
objects) are simply built from noun phrases and slash types.
A good example of a non-trivial modular addition in our
current prototype is in-situ quantification: when a use of
the indefinite article “a” in the middle of a sentence intro-
duces a top-level existential quantifier in the semantics, as
in “addone given 3 returns a natural” — this translates to
∃𝑥 : N. addone(3) = 𝑥 , but knowledge of the existential
handling is isolated to the entry for “a.” Adding this support
to other systems (Section 7.2) is non-trivial.
Because categorial grammars focus on a set of base cat-

egories plus categories that correspond to functions (slash
types), the modularity is improved even beyond other lexical-
ized formalisms, which require a finite set of grammatical cat-
egories. Additional slash-based categories can be introduced
freely. And the menagerie of categorial grammar variants
are largely completely compatible with each other: the rules
for categorial grammar are modular. This is a suitable basis
for tackling a problem whose true empirical needs may not
be fully established for years to come, allowing the system
to evolve in a flexible way.

Categorial grammars have been extensively validated for
modeling a wide array of complex grammatical phenomena
across a diverse array of language families, and the linguis-
tics literature contains decades’ worth of work studying how
to capture subtle linguistic semantic phenomena in these
languages via categorial grammars [1, 13, 20, 55, 83, 85]. This
means that building on (for now) basic categorial grammars
is forward-compatible with decades of thoroughly-validated

Trustworthy Formal Natural Language Specifications Onward! ’23, October 25–27, 2023, Cascais, Portugal

work on detailed linguistic theories accounting for both syn-
tax and semantics of significant natural language fragments.
If it is discovered that an additional grammatical structure is
necessary or useful, we can essentially consult the linguistics
literature and add just the required rules; it is long-standing
practice for the different branches to borrow each others’
innovations; with rare exception, these combinations are
straightforward and require almost no adaptation (and many
have already been explored and validated). This stands in
contrast to most prior work on natural language inspired
programming and specification (Section 7.2), most of which
has broadly either ignored linguistic treatments of natural
language semantics, or built on foundations that had not
yet been thoroughly validated over a period of decades (and
ultimately did not stand up to such scrutiny).
This is especially important considering the three major

ways a formalized, or controlled, fragment of natural lan-
guage can fall short. Any formal subset, as noted, omits some
natural language out of necessity; the linguistics literature
calls this syntactic under-generation: the formalized subset is
a formal language, and undergeneration occurs when syn-
tactically valid text is not accepted as syntactically valid.
There are two related issues, however. One is syntactic over-
generation: accepting text as syntactically valid that would
not generally be accepted as valid by humans. If such text
can be written by mistake, and accepted, it is akin to an
overly-permissive programming language parser: any inter-
pretation is wrong, as the text should have been rejected. The
final major issue is misinterpretation: interpreting syntacti-
cally valid text in the formal subset in a way that disagrees
with reasonable human interpretations would result in a
formal (controlled) natural language subset that is at best
confusing, but more generally significantly error-prone if
used as a tool frontend. While undergeneration is inherent
to formalized natural language, work in linguistics on for-
mal semantics and the interface of syntax and semantics
is evaluated largely on the absence of overgeneration and
misinterpretation. This is a key source in confidence of the
accuracy of our formalization: both the core treatment and
some extensions described in Section 4.2 were read directly
out of authoritative accounts in the linguistics literature.

3 Categorial Grammars for CIC

Specifications

This section describes a model of a very small fragment of
English for describing simple mathematics. Our goal is not to
present a polished and complete natural language fragment
suitable for a wide range of nearly-arbitrary specifications;
such a goal is admirable, but such large-scale projects take
many years to complete [3, 71, 72]. Our goals are instead
to demonstrate the feasibility of adapting extant linguistic
characterizations to natural language specifications; show
that existing proof assistants (e.g., Lean) include enough

machinery to do so now, internally to the tools; and that the
selected approach is modular enough to permit growing the
scope of a system piecewise over an extended period of time.
We describe how to use the typeclass support of modern

proof assistants [114, 116] to perform semantic parsing from
natural language7 to the Calculus of Inductive Constructions
(CIC) [93], or alternatively (see Section 4.3) embedded logics.
This approach naturally supports an open-ended lexicon,
which is essential to modularly expanding the set of words
handled by semantic parsing (Section 4). This ensures the
extended lexicon can grow in tandem with a formal develop-
ment, with organization chosen by developers rather than
dictated by an external tool, and with the proof assistant au-
tomatically checking validity of the lexicon extensions at the
same time it checks validity of the rest of the formalization.
While in principle the translation could be carried out

via an external tool which may offer other benefits, this
approach works in proof assistants today, without additional
toolchain issues or concerns about disagreements between
an external tool and a proof assistant over what is valid.

Our goal is to allow verifiers to either (1) directly specify in
English; or (2) carry out proof developments mostly as they
already would, but to additionally state a specification in a
formalized subset of English, and prove a lemma showing
the traditional specification implies (or is equivalent to) the
translated specification. Both cases result in a validataed,
auditable connection between English and the proofs.
We initially describe a general overview and notation

we use throughout the paper. Section 3.4 describes further
changes which compromise readability but drastically im-
prove parsing performance.

The Basics. Most work on categorial grammars lumps all
entities — frogs, people, books — into a single semantic type
𝐸 for “entities”, with different varieties distinguished by pred-
icates: e.g., three : 𝐸 and Mary : 𝐸, but number(Mary) =

false. This approach is rooted in the assumption that first
order logic is an appropriate semantic model for sentence
meaning. That assumption is plausible for many general
circumstances, popular in formal linguistics, and particu-
larly useful for modeling figurative speech, but stands at
odds with making natural language claims about mathemat-
ical objects defined in intuitionistic type theory. For logical
representations to talk about entities in CIC — which dis-
tinguishes natural numbers, rings, monoids, and so on with
different types — adjustments must be made. Noun phrases
and related syntactic categories must be parameterized by
the semantic (CIC) type of entity they concern.
We follow linguistically-motivated work using intuition-

istic type theories like CIC for exploring possible logical
forms [14, 15, 22, 102–104, 119], in using an alternativemodel

7In this paper, English, but in principle any other natural language with
thorough treatments in categorial grammar [1, 4, 51–53, 75, 82].

Onward! ’23, October 25–27, 2023, Cascais, Portugal Colin S. Gordon and Sergey Matskevich

inductive Cat : Type where

| S -- Sentence/proposition

| NP : forall {x:Type}, Cat

| rSlash : Cat -> Cat -> Cat -- A/B

| lSlash : Cat -> Cat -> Cat -- A\B

| ADJ : forall {x:Type}, Cat

| CN : forall {A:Type}, Cat.

@[simp]

def interp (c:Cat) : Type :=

match c with

| S => Prop

| @NP x => x

| @ADJ x => x -> Prop

| rslash a b => interp b -> interp a

| lslash a b => interp a -> interp b

| @CN x => x -> Prop

Figure 3. Core grammatical categories as an inductive type
Cat and the mapping ⌊−⌋ from grammatical types to seman-
tic types as interp.

where many grammatical categories are indexed by the un-
derlying semantic type to which they refer.
CIC is expressive enough to give the set of grammati-

cal types as a datatype Cat, and to give the interpretation
of those types into semantic types as a recursive function
interpwithin Lean, as shown in Figure 3. Grammatical types
(called categories in the linguistics literature) Cat include
the aforementioned slash types, sentences (𝑆); noun phrases
(NP 𝐴) denoting objects of type𝐴 in CIC; adjectives (ADJ 𝐴)
denoting predicates over such objects8; and common nouns
(CN 𝐴) denoting predicates on 𝐴, both refining the domain
of discourse and imposing constraints on the semantic type
indices of other phrases in the context of a sentence, used
in cases where a sentence must refer to a common class of
objects (i.e., a type), such as “natural numbers” or “rings.” As
mentioned previously, the slash types correspond to function
types (the direction is relevant only in the grammar, not the
semantics), sentences are modeled by propositions (the type
of logical claims), noun phrases of Lean type t correspond
to elements of t, and similarly adjectives correspond to pred-
icates on such types (i.e., elements of t -> Prop). These are
modeled by the function interp, which maps grammatical
types to other Lean types. Common nouns are interpreted
as predicates as well — this permits constructions such as
“even natural” to be parsed as common nouns, with semantics
(𝜆x:Nat, even x). The @[simp] definition marks the defini-
tion for unfolding during typeclass resolution.

8Not all grammatical treatments treat adjectives directly as primitive (some
approaches derive them from other primitive categories), but all frameworks
include some for of adjective which is semantically a predicate.

3.1 Combination Rules

Parsing natural language specifications requires automati-
cally applying rules like /-Elim to combine sentence frag-
ments. Rather than modifying a proof assistant, we can
use existing trusted9 functionality to do this for us: type-
classes [114, 116]. These are a mechanism for parameterizing
function definitions by a set of (often derivable) operations.
Proof assistants such as Coq and Lean permit declaring a
typeclass (roughly, an interface), and declaring implemen-
tations associated with certain types. The implementations
may be parameterized by implementations for other types
(such as defining an ordering on pairs in terms of orderings
for each component of the pair). When a function is called
that relies on a set of operations, the proof assistant attempts
to use a form of higher-order unification to construct an
appropriate implementation. It is possible to encode cate-
gorial grammar rules into typeclasses. Each judgment form
corresponds to a typeclass, and each rule corresponds to an
instance (implementation) of the typeclass.
For now, assume we model the order of composition of

sentence fragments as a binary tree of words stored in leaf
nodes, explicitly modeling the word groupings as bunched
contexts in a substructural logic. Our actual implementation
employs some optimizations (Section 3.4) which hide this
structure and perform all work modulo associativity rules
(Γ, (Δ, Υ) ≡ (Γ,Δ), Υ), but this version (consistent with an
initial prototype) is a useful learning step. We will write # to
join two sequences of words. The constructor one packages
a word into a leaf node.

We define the judgement form Γ ⊢ 𝑇 ⇒ 𝑒 as:

class Synth (ws:tree String) (c:Cat) where

denotation : interp c

attribute [simp] Synth.denotation

If an instance of Synth ws C exists, it comeswith an operation
denote that produces a Lean value of type interp C — ⌊𝐶⌋.
Because 𝑒 is viewed as an output we would like to query, it
is defined as a member of the typeclass, rather than as an
additional index. When deriving a formal specification for
sentence 𝑠 , we will arrange for the typeclass machinery to
locate an instance of Synth s S— checking that the sentence
𝑠 is a grammatically valid sentence — and request its term
denotation when necessary. Translating a specification given
by the list of words ws corresponds to parsing w as a sentence:
finding an instance of Synth ws S. We define an instance for
each rule to encode, such as this one corresponding to \-Elim,
which applies the logical form of the functional to the logical
form of the argument:

9Officially, typeclasses are not part of a trusted computing base, as they
elaborate to record operations before being passed to the core proof checking
apparatus. In practice, they mediate which terms are passed to the core, so
calling them untrusted would be a misnomer [98].

Trustworthy Formal Natural Language Specifications Onward! ’23, October 25–27, 2023, Cascais, Portugal

instance SynthLApp {s1 s2 c1 c2}[L:Synth s1 c1]

[R:Synth s2 (c1 \ c2)] : Synth (s1#s2) c2 where

denotation := R.denotation L.denotation

and for leftward composition (\-Comp):

instance LComp {s s' c1 c2 c3}

[L:Synth s (c1 \ c2)] [R:Synth s' (c2 \ c3)]

: Synth (s#s') (c1 \ c3) where

denotation x := R.denotation (L.denotation x)

The remaining rules of Figure 1 can also be encoded in this
way. The [simp] attribute on denotation ensures it will au-
tomatically be simplified by tactics like simp (roughly a com-
bination of Coq’s simpl and parts of auto).
In addition to exploiting the proof assistant’s built-in

search for parsing, the use of typeclasses means the set of
rules is extensible, meaning additional rules could be added
for additional grammatical coverage or to speed up the pars-
ing process. More critically, however, it allows easy modular
extension of the lexicon with additional words.

3.2 Lexicon

The lexicon is encoded via a typeclass lexicon, which assigns
grammatical types and semantics to individual words rather
than series of words. This is then tied to the Synth typeclass:

class lexicon (w:String) (c:Cat) where

denotation : interp c

attribute [simp] Synth.denotation

instance SynthLex {w:String}{C:Cat}[lexicon w C] :

Synth (one w) C where

denotation := lexicon.denotation w

Lean permits declaring multiple instances for the same word
(e.g., if a word has multiple meanings of different grammat-
ical types), giving essentially a free variant of intersection
types [81] without the coherence issues described by Carpen-
ter [20] (only one definition will be chosen per appearance
of the word). Thus, a dictionary for our approach consists of
a set of instance declarations for lexicon:

instance fourlex : lexicon "four" (@NP Nat) where

denotation := 4

instance evenlex : lexicon "even" (@ADJ Nat) where

denotation := fun x => even x = true

instance n_is_adj {T}: lexicon "is"

(((@NP T) \ S) / (@ADJ T)) where

denotation := fun a n => a n

instance n_is_n_lex {T}: lexicon "is"

(((@NP T) \ S) / (@NP T)) where

denotation := fun a n => a = n

instance given_lex {A B}: lexicon "given"

((@NP (A -> B)) \ ((@NP B) / (@NP A))) where

denotation := fun f arg => f arg

Here we have defined two different meanings for “is” al-
lowing it to be used to apply an adjective (e.g., as in “four

is even”), or to denote equality (as in “four is four”). The
difference between the two, beyond their denotation is the
grammatical types: both expect a noun phrase to the left, and
some other word to the right: an adjective in the first case,
or another noun in the second. Note that in both cases, the
adjective or noun phrase must match the type of underlying
Lean object the the left-side noun phrase refers to: the argu-
ment n is in both cases a variable of type interp (@NP A)=A

because that is the argument of the outermost slash type,
while the second argument in each entry corresponds to
the interpretation of the second slash type’s argument (a
predicate or an additional term, respectively). Coupled with
a development-specific bit of lexicon to name a particular
Lean object of interest:

instance addonelex : lexicon Prop "addone"

(@NP (Nat -> Nat)) where

denotation := addone -- 𝜆x. x + 1

this approach permits giving correct denotations to both:

Jaddone is monotoneK ≡ monotone(addone)
Jaddone given 3 is 4K ≡ (addone 3) = 4

3.2.1 Quantifiers. Quantifiers over 𝐴 can be given gram-
matical type

Quant 𝐴 ≡ (𝑆/(𝑁𝑃𝐴\𝑆)/𝐶𝑁𝐴)

abbreviated with a macro. Thus, a quantifier looks to its
right first for a common noun (corresponding to the word
identifying the Lean type to quantify over), and after that is
combined, the result looks further to the right for a sentence
fragment expecting such a thing to its left. (After binding
with the common noun, the remainder is in fact a continua-
tion [13].) Then adding a lexicon entry for “every”:

instance forall_lex {A}: lexicon "every" (quant A)

where

denotation := fun N P => forall x, N x -> P x

and another for the common noun “natural” (number) allows
correctly parsing sentences like

Jevery natural is evenK ≡ ∀(𝑛 : 𝑛𝑎𝑡). (even 𝑛)

(Recall, we must still be able to state claims that are false.)
The common noun constrains the quantifier to work with
noun phrases referring to natural numbers, also using the
predicate semantics to constrain the claim to those elements
of the quantified type matching the predicate, as in10

Jevery odd natural is evenK ≡ ∀(𝑛 : 𝑛𝑎𝑡). odd 𝑛 → (even 𝑛)

10An additional grammar rule lifts adjectives to noun modifiers𝐶𝑁 /𝐶𝑁 ,
allowing “odd natural” to be parsed as a noun.

Onward! ’23, October 25–27, 2023, Cascais, Portugal Colin S. Gordon and Sergey Matskevich

3.2.2 Coordination. One aspect of natural languagewhich
is the source of some interest is that the words “and” and “or”
(or their equivalents in other languages) can often be used
to combine sentences fragments of widely varying grammat-
ical types. For example, in “four is even and positive” the
word “and” conjoins two adjectives: “even” and “positive.”
Yet in “four is even and is positive” it conjoins two phrases
of grammatical type 𝑁𝑃nat\𝑆 (“is even” and “is positive”).

We can directly adopt a solution from the computational
linguistics literature [20], and formalize that “and” and “or”
apply to any semantic type that is a function into (a function
into. . .) the type Prop of propositions. We define an addi-
tional typeclass to recognize such “Prop-like” grammatical
types inductively, starting with the grammatical types 𝑆 and
𝐴𝐷𝐽 , and inductively including slash types whose result
type is also “Prop-like”, which define an operation to lift
boolean semantics through repeated functions. We then add
a polymorphic lexicon entry for each of “and” and “or” which
assigns them any “Prop-like” type.
Thus in a sentence like “four is even and is positive” the

two conjuncts are recognized as Prop-like (their underlying
semantic type is Nat → Prop), and the operations of the
typeclass recognizing this automatically lift a binary opera-
tion on Prop to a binary operation on predicates — the classic
pointwise lifting of the underlying Heyting algebra [69]. For
“and” this lifts logical conjunction to 𝜆𝑃 . 𝜆𝑄. 𝜆𝑥 . 𝑃 𝑥 ∧𝑄 𝑥 ,
which is exactly what is needed — the grammar rules will
apply this function to the semantics of the even and positive
predicates, and finally 4. Disjunction is handled similarly,
and this generalizes to arbitrarily complex slash types whose
final semantic result is Prop.

3.3 Using Specifications

Defining a function from sentence representations to the
denotations of the words in order is then relatively simple:
@[simp]

def pspec (ws:tree String) [sem:Synth ws S] : Prop :=

sem.denotation

When invoked with a tree of strings s, Lean will search
for an instance of Synth s S — a parse of the string tree as
a complete sentence. The semantics of a sentence has Lean
type Prop (a proposition, or logical claim, to be proven). To
complete the readable surface syntax from the introduction,
rather than hand-constructing data structures, we define a
macro [|. . .|] that takes a sequence of words (technically,
identifiers) and constructs the appropriate representation.
Thus we may translate a range of specifications given

an appropriate lexicon, including those below (sugared into
math notation for space and readability):

Jaddone is monotoneK
≡ ∀𝑥,𝑦 : N. 𝑥 ≤ 𝑦 ⇒ addone 𝑥 ≤ addone 𝑦

Jevery natural is non-negativeK ≡ ∀𝑛 : N. 𝑛 ≥ 0

Jevery natural is non-negative and some natural is evenK
≡ (∀𝑛 : N. 𝑛 ≥ 0) ∧ (∃𝑛 : N. even 𝑛)

In particular, we can observe how these specifications
manifest during interactive proof:

def addone_mono : pspec [|addone is monotone|] :=

by simp

--⊢ ∀ (x y : Nat), x ≤ y → addone x ≤ addone y

intro x y h . . .

i.e., after simplification, a proof may continue either directly,
or by appeal to a separate lemma stated purely formally in
the case the proof’s only goal is to bridge formal and natural
language specifications.
If Lean cannot find a Synth instance for a specification,

the user sees one of two error messages from Lean itself.
One possibility is that Lean has exhaustively explored the
possibilities and no parse exists (this is typical of a specifica-
tion using a word not in the lexicon). The other possibility
is that Lean has reached its timeout for typeclass instance
search. This is linear “fuel”-type timeout parameter that may
adjusted per-file, meaning that if a file using these natural
language specifications requires longer search times, this can
be done locally without forcing an entire development to use
the longer search. Anecdotally, use of this style of specifica-
tion typically does require increasing this parameter, but on
a relatively old 4-core machine from 2015, most of the spec-
ifications discussed in this paper are parsed within the first
author’s reaction time, with Lean never exceeding 25% of a
single core during parsing, with 2.6GB of memory consumed.
Sections 3.4 and 6 address performance in more detail.

3.4 Performance

The performance of semantic parsing depends on both the
underlying typeclass resolution procedure, as well as the
space of derivations that must be explored during parsing
(itself dependent on the data manipulated within rules, as
well as which grammatical rules are included).

The structural rules encoded in the Synth typeclass in-
stances are the primary drivers of search costs, along with
the lexicon instances. Since most words have only one or a
very small number of grammatical roles (in general, not just
in our small prototype [51–53]), we expect that lexicon ambi-
guity will not be a major driver of search costs. Instead, most
costs should arise from exploring the space of derivations.
The direct implementation approach described above be-

comes quite slow for sentences over a few words, so we
apply a number of optimizations, all well-established in the
computational linguistics literature.
We exploit several classic optimizations from work on

parsing natural langauges with Prolog. The first issue is that
given a sentence of length 𝑛, there are (2𝑛!)/((𝑛 + 1)!𝑛!))
ways to associate segments of that sentence into a binary

Trustworthy Formal Natural Language Specifications Onward! ’23, October 25–27, 2023, Cascais, Portugal

tree like that used in the earlier explanation (the 𝑛th Catalan
number). The naïve approach above requires exploring po-
tentially all of these trees in order to yield a complete search
procedure, which is prohibitively expensive for even modest
sentences. The solution is to represent the sentence paren-
thesization without explicitly manifesting unique structures.
There are established techniques for this in the literature
on parsing via logic programming [32, 95], specifically the
technique of difference lists. The idea is that rather than rep-
resenting the parenthesizations as a tree, to represent it as
a span. A difference list is a pair of lists 𝑋 and 𝑌 where 𝑌
is a suffix of 𝑋 , and the difference list then represents the
list segment from the start of 𝑋 to the suffix covered by 𝑌
— [3,4,5] and [5] represents the prefix [3,4], but without
explicitly constructing a fresh set of cons cells: the spine of
the original list of words is reused.
Lean’s use of tabled resolution [114] (roughly, memoiza-

tion) works nicelywith this change in representation, but just
as in Prolog, memoizing based on large structures (specifi-
cally, lists of UTF-8 strings) is expensive. So we also apply the
other standard parsing-via-logic-programming optimization
of representing lists not as explicit lists, but as natural num-
bers representing the starting index of the sublist (roughly,
as how many elements to drop from the list of words being
parsed). So for a locally-fixed list ["three","is","even"],
rather than reprenting the full span as the list, or the explicit
difference list pair of ["three","is","even"] and [], the rep-
resentation of the span is the pair of 0 and 3 (the list segment
starting at index 0 and dropping index 3 and beyond). Even
in unary form this makes the table lookups faster (compar-
ing unary naturals of maximum size/length 𝑛 is faster than
comparing lists of maximum size/length 𝑛 containing strings
which must be compared), but Lean additionally represents
naturals internally via the GMP library, making the compar-
isons even faster: naturals within range of a machine word
are represented as a machine word (plus tag).
Applying this latter optimization unfortunately means

we must also compute word-list indices using typeclasses,
in order to tie lexicon entries stated in terms of words to
spans in terms of natural numbers. It also means that be-
cause the string is no longer an explicit part of the context of
the Synth judgment/typeclass, we must use Lean’s module
boundaries to isolate specification searches from each other.
For each specification we open a new module, declare the
string to parse to the typeclass machinery with a module-
local instance, and then use a variant of spec adapted for
the changes above. This adds a bit of verbosity, but could in
principle be alleviated via macros or additional facilities for
exposing control over clearing the memoization tables; cur-
rently the only such mechanism for this in Lean is that tables
are cleared of anything module-local when that module’s
checking is complete.

Finally, we apply standard techniques [35] to further prune
the search space of instances of spurious ambiguity (search-
ing only over normal form derivations), and impose two
static bounds on the search: limiting how many times coor-
dinators may undergo pointwise lifting, and using Lean’s
existing heartbeat timeout counter, which gives roughly lin-
ear control over typeclass search time.

Worst Cases. The particular grammar rules we are cur-
rentlyworkingwith have only context-free recognition power,
known to require cubic time in the length of the sentence
to parse. The mildly-context-sensitive classes of categorial
grammars favored by linguists have 𝑂 (𝑛6) worst-case pars-
ing cost [57], though in practice the common case can be
made quite fast [26–28].

4 Modularity and Extension: Growing a

Lexicon, Handling More Logics

The previous section described only a small fragment of Eng-
lish suitable for formalizing mathematical claims. Because
categorial grammars are lexicalized grammars (recall Section
2.2) which use a small number of special-purpose rules (like
those in Figure 1) and otherwise leave knowledge of a lan-
guage to per-word entries, they naturally support modular
extension. In particular, the availability of slash types (di-
rected function types) affords significant flexibility to define
new grammatical roles without disrupting the core rules,
and extensions to attach modalities to the slashes [9, 80]
allow further constraints capturing the subtleties of natural
language to be captured solely by giving precise grammatical
types (and semantics) to individual words.

4.1 Managing Words

Adding newwords to a categorial grammar lexicon is concep-
tually as simple as adding the word, particular grammatical
type, and associated denotation to the database. This makes
it easy to extend a system with new concepts (e.g., new al-
gebraic structures); lexicon entries to deal with concepts
defined in a proof assistant library can be distributed as a
part of that library. Conversely, if a word or particular usage
of a word is found to be confusing to humans, leading to
ambiguity, or otherwise problematic, it can be removed from
the lexicon while affecting only inputs that use that word in
that way (i.e., the problematic ones).

In practice the situation will be more complex, but we ex-
pect most extension to require little, if any, special linguistic
knowledge. Assuming a robust core lexicon, it is likely that
most extensions will be additions of words with simpler cat-
egories. Experiments on a large English lexicon showed [52]
that when training on most of lexicon, the unseen words
in a held-out test set were primarily nouns (35.1%) or trans-
formations of nouns (e.g., adjectives, at 29.1%). These are

Onward! ’23, October 25–27, 2023, Cascais, Portugal Colin S. Gordon and Sergey Matskevich

the simplest categories to provide semantics for (types, ob-
jects, and predicates), strongly suggesting that proof assis-
tant users with no special linguistics background could make
most extensions themselves. Similar experiments for a wide-
coverage lexicon of German [51] show over half of unknown
words to be nouns, suggesting this feasibility extends beyond
just English.
Careful readers or prior students of linguistics may have

wondered when matters of verb tense, noun case and num-
ber, grammatical gender,11 etc. would arise. In full linguistic
treatments, these are reflected in additional parameters to
some grammatical categories. So for example, in our setting a
noun phrase would be parameterized not only by the under-
lying referent type, but also by the case, number and so on;
lexicon entries would then carry these through appropriately
(making it possible to for example, require the direct object
of a verb to be in the accusative case rather than nominative).
We have omitted such a treatment here partly because it
would obscure the key ideas while adding little value, partly
because many of these distinctions are less important for our
examples in English (which has fewer syntactic case distinc-
tions than other languages), and partly because some aspects
(like tense) maymake sense only for specific embedded speci-
fication logics. We leave general-purpose treatments of these
issues to future work.

4.2 Supporting Additional Grammatical

Constructions

Formalization of significant fragments of language much
deal with more subtle constructions that what we have de-
scribed so far can handle. However, what we have described
thus far is essentially read directly out of the literature on
linguistic semantics. Linguists have spent many decades
building out knowledge of how to handle more sophisticated
uses of quantification [79, 118] (“every,” “some,” “most”), re-
solving pronoun references [54], discontinuity [84] (where a
word is far from a word it modifies), and much more [20, 85].
Critically, because categorial grammars are lexicalized, most

grammatical constructions require no special handling given
an appropriate base categorial grammar.
Our experience thus far has borne out this claim of mod-

ularity. As we have developed our prototype, we have only
needed to modify or extend the core grammatical types of
Figure 3 for two reasons:

Prepositional Phrases. We added a category for preposi-
tional phrases, indexed by the variety of English preposition
(of, into, etc.). The set of preposition indices is incomplete,
but with the exception of constructions like “of naturals”
(which implies a need for a common noun, as opposed to “of
3”), these simply take a noun phrase to their right and have
the identity function as semantics (i.e., “of 3” simply denotes
11Which does not exist in English, but does in German, French, and other
languages

3). This is the standard treatment of prepositional phrases in
compositional linguistic semantics.

Anaphora / References. Some specifications will use in-
direct references, called anaphora — pronouns (“it”), articles
(“the”), and other words that have no self-contained meaning
but instead refer to concepts used earlier in a sentence. We
have prototyped a refinement of Jacobson-style [54] treat-
ment of anaphora (references to things mentioned earlier
in the sentence, such as pronouns or some uses of “the”);
this involves the addition of another slash type 𝐴 | 𝐵 for
expressions of category 𝐴 if some kind of missing 𝐵 (i.e.,
what is being referred to) is resolved, and isolated the ad-
ditional rules (which increase the size of the search space)
in a separate module (so those rules are not always on), in-
cluding a variant for named variable references. While there
exist many categorial grammar solutions to the problem of
anaphora [42, 54, 79, 84], all of them rely on such an ad-
ditional construction for sentence fragments with missing
referents. Jacobson’s approach is the basis for most other
treatments; unfortunately we are not aware of extensions of
the normal form search pruning we use [35] to this feature,
and consider such optimization future work.

Beyond these changes, which are backwards-compatible
with the exposition in Section 3, we have added additional
logical rules, such as lifting adjectives into noun modifiers
(e.g.,. “even” can be lifted for use as a modifier of “natural”).
Because these are presented as Synth instances are modular
additions to the core (they rely on some rules which slightly
increase parsing time, so are in an optional module that need
not be imported unless pronouns are used). Beyond that, all
extensions are simply lexicon entries, notably all quantifiers,
including uses of “a” and “any” embedded mid-sentence.

4.3 Beyond CIC

While our framing so far has focused on generating speci-
fications which in Lean have type Prop, this is not required.
Categorial grammars require only that their top-level seman-
tic truth type have the structure of a Heyting Algebra [69]:
a type with binary operators for standard logical operators.

Our Lean formalizations in fact makes this generalization:
the core machinery is polymorphic over an arbitrary choice
of Heyting Algebra, with a lexicon split between entries
polymorphic over the Heyting Algebra being targeted (e.g.,
“or” and “and”) and words specific to a given Heyting Algebra
(e.g., an adjective given as a Lean predicate must target
Lean’s Prop).

This means the core idea applies not only to specs of type
Prop, but that this machinery can be readily retargeted to any
logic formalized within the proof assistant, such as LTL [97]
or CTL [29]. This is not itself novel (Section 7 discusses
some prior approaches to this) but working directly within
a formalized proof assistant brings accuracy benefits to such

Trustworthy Formal Natural Language Specifications Onward! ’23, October 25–27, 2023, Cascais, Portugal

efforts. A partial formalization of Dzifcak et al.’s work [34] in
our original Coq prototype [44] revealed that they made use
of invalid lexicon entries: in this paper’s notation, entries
for words with grammatical category 𝐶 whose specified
semantics were not of type interp C.

5 Trust and Auditing

One of the essential criteria for an LCF-style proof assis-
tant is the production of an independently-checkable proof
certificate [98]. While we have proposed using typeclass
machinery to automatically parse and denote, and the type-
class resolution itself is typically not viewed as part of the
trusted computing base (TCB), it does effectively produce a
form of proof certificate. The typeclass machinery explicitly
constructs an instance of the typeclass — an element of the
corresponding record type — and passes it to pspec. So the
proof assistant’s kernel sees (effectively) a categorial gram-
mar proof, constructed via typeclass instances rather than
constructors of an inductive data type (with Synth instance
names in lieu of constructors). This explicit term persists
into the compiled forms Lean already produces, and could
be identified by an independent proof checker that wished
to also validate the natural language interpretation.

We can think of several ways a user might accidentally or
maliciously risk confusing an independent checker. All but
one can easily be detected by a checker aware of the catego-
rial grammar specification typeclasses. The final possibility
amounts to changing the specification in the proof certificate.
First, a user may redefine or extend our core instances

(for Synth) to produce a different denotation. A certificate
checkerwould already ensure these are type-correct. A natural-
language-specification-aware extension could check that the
Synth instances correspond to the desired rules. Or to better
support some of the extensibility arguments made earlier, the
Synth typeclass could be modified to also carry a justification
of its conclusions in a more general substructural logic [42,
63], which would amount to requiring extensions to carry
conservativity proofs over a trusted linguistic base system.
Second, a user may extend the lexicon with additional

words or additional grammatical roles for a given word, in-
troducing ambiguity into the parsing. Checking for ambigu-
ity is relatively straightforward: setting aside indexing by
CIC types, equivalence of grammatical types is decidable,
and a checker could conservatively require that any lexicon
entries with the same index-erased grammatical types have
clearly-distinct indices (in which case they would not unify
during typeclass search under any circumstances). An inde-
pendent checker could verify the absence of ambiguity in
the lexicon, or alternatively surface the use of any ambiguity
in a parsing derivation for human inspection.
Finally, a user could also manipulate the lexicon, for ex-

ample redefining (or misdefining) “monotone” to denote

𝜆𝑓 , True. This is arguably a form of modifying the specifica-
tion by changing definitions, rather than sneaking a broken
proof past a certificate checker. It is analagous to changing
a definition of a property verified by a proof — a working
proof with the wrong definition is wrong, but this leaves be-
hind evidence of the incorrect definition, by leaving evidence
of how “monotone” was interpreted. This would however
require human intervention to detect.

These possible forms of attack highlight the main sources
of trust added when considering natural language specifica-
tions in the approach we describe: the grammatical rules for
combining phrases, well-formedness of the lexicon, and the
definitions of words in the lexicon.
Beyond these, there is the general issue of ambiguity in

parsing. Semantic parsing gives rise to two forms of ambi-
guity: spurious ambiguity (where there are multiple parsing
derivations, but they yield equivalent semantics), and true

ambiguity (where the different derivations yield truly dif-
ferent semantics). Spurious ambiguity is typically tackled
by searching only for normal-form derivations [35], as we
do. Actual ambiguity can arise from multiple lexical entries
with the same grammatical types but different meanings as
in the “attack” described above (for which we described mit-
igations), but can also sometimes arise from matters such
as quantifier scoping: in “every child ate a pizza,” was there
a pizza for each child (the most common reading), or was
there a single pizza shared by all (less common, but accept-
able). There are two approaches to mitigating these. First,
there is linguistic evidence for claiming that there truly is a
most common resolution, and the grammar can be tailored
to prefer that linguistically more common result. For exam-
ple, there is evidence that in English, quantifiers earlier in a
sentence (to the left) tend to outscope those to the right [13],
as in the example above. Moreover, because of how quanti-
fier nesting works formally, this is likely to be even further
emphasized in English for formal specifications. Second, it
is possible in general to perform an exhaustive search to
identify ambiguity (then allowing a rewrite to remove the
ambiguity); Coq’s typeclasses include options to perform
exhaustive search to ensure no ambiguity exists.

6 Case Study: Sorting and Multisets in VFA

Appel’s Verified Functional Algorithms [6] is a textbook on
verification of functional algorithms in Coq. To evaluate our
prototype on non-hand-picked specifications, we translated
formal lemma statements (but not proofs) of specifications
from Chapters 2 and 3 of the book into Lean. These chapters
deal with verification of insertion sort on lists of natural
numbers, initially in terms of list properties (Chapter 2) and
then in terms of an extensional view of lists as an ordered
multiset (Chapter 3). Chapter 2 asks students to prove 5 spe-
cific lemmas about insertion sort and a helper function for
insertion into a sorted list. (It also includes lemmas proving

Onward! ’23, October 25–27, 2023, Cascais, Portugal Colin S. Gordon and Sergey Matskevich

Table 1. Translation experiments with Verified Functional Algorithms specifications.
Ch Original (formal) and Generated (if different)

1

So
rt

Original: “insertion maintains sortedness” (forall a l, sorted l -> sorted (insert a l))
Translated (6s): “insertion of any natural maintains sortedness” (𝛼-equivalent)

2 Original: “insertion sort makes a list sorted” (forall l, sorted (sort l))
Translated (5.32s): “sort sorts any list of naturals” (𝛼-equivalent)

3 [No Original English] (forall x l, Permutation (x::l) (insert x l))
Proposed & Translated (7.4s): “insert is a permutation of cons” (𝛼-equivalent)

4 Original & Translated (1.84s): “sort is a permutation” (forall l, Permutation l (sort l))

5
[No original English] (forall l, sorted (a l) /\ Permutation l (a l))
Proposed & Translated (5.72s): “sort is a sorting permuting algorithm”
(exists a, (forall l, sorted (a l)) /\ (forall l, Permutation l (a l)) /\ a=sort)

6

M
ul
tis
et

Original & Translated (1.27s): “union is associative” (forall a b c, union a (union b c)=union (union a b) c)
7 Original & Translated (1.24s): “union is commutative” (forall a b, union a b = union b a)

8
Original: “insert produces the same contents as merely prepending the inserted element to the front of the list”
(forall x l, contents (insert x l) = contents (x :: l))
Translated∗: “insertion and cons of any value yield equal contents” (𝛼-equivalent)

9 Original & Translated (1.27s): “sort preserves contents” (forall l, contents l = contents sort l)

10 [No original English] (forall l, contents l = contents (sort l) /\ sorted (sort l))
Proposed & Translated (7.18s): “sort preserves contents and sorts” (𝛼-equivalent)

equivalence of two definitions of a sorted predicate, but we
omit these because internals of inductive definitions are not
in the intended scope of the prototype.) 3 of these lemmas
come with explicit English descriptions of the corresponding
lemma statement, while 2 have no direct English correspon-
dence given. Chapter 3 asks students to prove a range of
specific lemmas about multisets, as well as additional specifi-
cations of insertion sort in terms of multisets (where Chapter
2 uses the notion of list permutations). We have translated
5 specifications from Chapter 2, and 5 specifications from
Chapter 3, using our Lean implementation [45]. For each
of these we describe the original text (if given), a proposed
adjustment with justification (if given), the original formal-
ization, and the result of parsing the English into Lean with
our prototype after adding appropriate lexicon entries. In
cases where we changed the original text, we explain why.
The purpose of this case study is to put pressure on the sys-
tem regarding (1) its ability to express precise formal claims
chosen without this system in mind, (2) its ability to (ap-
proximately) relate textbook-level English prose to formal
specifications, and (3) to surface some linguistic issues at play
in formal specification. Table 1 summarizes our experiments.

In general, we reworded a number of examples which had
explicit English translations in VFA, most commonly to be
more explicit about quantification, as in the first example.
Even in this small sample, English specifications tend to
ellide details of what they quantify over. While it would
be possible (due to our categories being indexed by CIC
types) to maintain this ellision, we opted to keep the explicit
quantification in part to minimize how much of English
grammar our prototype required. Our prototype does not
contain a full formalization of the English language (per

the discussion of Section 2.2), but none of the specifications
we consider is beyond grammatical formalization: consider
CCGBank [53], which gives CCG categories and desired
parses for 48,934 English sentences from the Wall Street
Journal, and is the basis of CCG grammars that have been
used to parse even more complex texts, such as all of Alice
in Wonderland [136]. Formalizing a more comprehensive
English grammar is a long-term undertaking. Our goal with
this experiment was to explore both grammatical feasibility
and implementation feasibility for smaller examples.
For Chapter 2, we have translated all five specifications

from English into formal specifications that are logically
equivalent (for 4/5, 𝛼-equivalent) to the hand-written specifi-
cations from the textbook.We also proposed what we feel are
reasonable English equivalents to specifications that were
formalized but not explicity described in English. Example 5
is illustrative: it is clearly logically equivalent to the original,
but because the English uses the indefinite article “a” in a way
that formal linguistic semantics typically treats as introduc-
ing an existential quantifier (e.g., as in “I have a duck”), the
generated formal specification has an existential quantifier.

For Chapter 3, we have translated the specifications from
the main portion of the chapter, omitting an extension treat-
ing an alternative proof approach, where some specifications
are complex strengthened inductive steps which are typically
not the sort one would specify in natural language.12

The one specification we do not translate from that main
section is the specification described in English by “multi-
sets in a nested union can be swapped.” This text is both

12Consider forall l x n, S n = contents l x -> exists
l1 l2, l = l1 ++ x :: l2 /\ contents (l1 ++ l2) x = n

Trustworthy Formal Natural Language Specifications Onward! ’23, October 25–27, 2023, Cascais, Portugal

linguistically interesting, and under-specified. It is ambigu-
ous because, we believe, most readers would not understand
what this meant from the text alone. (Consider if you can
understand it before checking the formalization in a foot-
note.13) It is also linguistically interesting as it refers to the
syntax used to write the property, rather than directly de-
scribing a property of the union operation. We could imagine
a number of ways of making the exact English work in this
case, or rewriting it slightly more generally without recourse
to syntax (e.g., defining “un-nestable” as a lexical entry and
handling it similarly to examples 6 and 7), but we believe the
proper way to address it is with a more thorough study of the
linguistics of how mathematical text refers to syntax — work
which is a separate research agenda unto itself, building on
what we have done here.

One specification, 8, can be formalized, and the parse struc-
ture is not particularly complex, but Lean curently does not
synthesize it because at present it does not pull in the lexi-
cal entries for “yield” or “equal” during typeclass resolution,
for unknown reasons; the lexical categories are not more
complex than other entries, and we can explicitly provide
the entries and obtain semantics 𝛼-equivalent to the origi-
nal, but Lean fails to produce a Synth instance for either of
those 1-word spans of the sentence at a grammatical cate-
gory matching the lexicon entry declaration. We are actively
investigating the cause of this.

Timing. We are limited in the precision of our measure-
ments for timing, as Lean exposes no direct way to measure
the search time for a particular typeclass resolution prob-
lem. The times reported in Table 1 are the time to run lake
build (Lean’s project build command) in the root of the
project, after building the full project, then removing all
intermediate and final build artifacts for the particular speci-
fication, and running lake build again to compile only that
file. These time measurements then include process start-up
time, time to parse the project file and identify the file with
the missing build, and to parse, typecheck (including the
typeclass search), and compile that Lean file. Measurements
were taken on a 2020 1.4GHz MacBook Pro with 16 GB of
RAM. This is enough to show the general range of times for
parsing modest specifications; in a large proof development,
we would not expect parsing of natural language style speci-
fications for top-level specifications (thus likely avoiding the
complexities of finding language for examples like that in
footnote 12) to be a dominant cost.

Beyond Chapters 2 and 3. We have also looked at later
chapters of VFA to anticipate other challenges, grammatical,
semantic, and implementation-related, which must be re-
solved in the long term. The “advanced” portion of Chapter
3, which we did not formalize above, requires pronouns and

13It is formalized as forall a b c, union a (union b c) =
union b (union a c).

textual variable names. We have implemented grammatical
support for named variables in text based on classic gram-
matical treatments of pronoun binding, but extending the
idea of normal form parsing to these models is unresolved
in the computational linguistics literature. Multiple later
chapters also shift from the monomorphic specifications of
early chapters, to polymorphic specifications. These intro-
duce interesting open technical challenges on the categorial
grammar side. There, phrases such as “every tree” (as in bi-
nary search tree) is actually referring to three quantifications,
not one: a quantification over key and value types, as well
as a specific tree with those arbitrary key and value types.
This poses challenges for the decoding function interp, as
well as for the grammatical constraints across the rest of a
sentence. Naïve extension of interp runs into universe size
issues: quantification of a type in Type n lives in Type (n+1).
So straightforward approaches to extending interp run into
problems where different cases should be returning types
in different levels of the universe hierarchy. This does not
occur in traditional linguistics where all entities are of a
single type 𝑒 , or even in prior work on type-theoretical se-
mantics [24, 103], where all types are explicitly assumed to
live in a single universe and polymorphism is not addressed
(as the primary interest there generally remains modeling
general linguistic issues, not mathematical issues). If that
problem were resolved, there is then the problem that the
indices of categories later in the sentence, which would want
to refer to trees with particular key-value types, cannot be
directly indexed by types quantified within the denotation of
another word. Lean has some support for declaring typeclass
instances with certain parameters held abstract, allowing
Synth instances to have arguments of the form [forall T,

Synth . . . ((@NP T) \\ S)], which could have the choice of
T supplied by another entry when computing denotations.

7 Related Work

7.1 Categorial Grammars and Type Theory

Categorial grammars and dependent type theories for natural
language semantics have long histories [68, 119, 126]. Our
proposal differs from that work in our focus on building
a system to describe dependent types directly in a system
where they are required, as opposed to most prior work’s
focus on using dependent types for linguistic outcomes.
Others have used type theories like Lean’s for linguistic

semantics [15, 22, 102, 103, 119], broadly making the argu-
ment that variants of dependent type theory offer a range of
appealing options for modeling natural language semantics,
and fix some percieved deficiencies in the use of a lambda
calculus over first-order logic formulas. This work consis-
tently focused on using this as a means to study linguistics.
The notion of indexing some grammatical categories by the
type of a referent in such an underlying type theory comes

Onward! ’23, October 25–27, 2023, Cascais, Portugal Colin S. Gordon and Sergey Matskevich

from Ranta’s work [104] on studying the linguistics of math-
ematical statements, though this was focused purely on the
study of mathematical language, and not on interfacing with
mathematics work carried out in type theory. Ranta [103],
Kokke [62] and Kiselyov [60] have formalized variants of
categorial grammar with semantics in proof assistants, but
only as object logics of study in order to prove properties
of those systems, rather than as working parsers integrated
with other uses of proof assistants. This leaves much to ex-
plore in integrating categorial grammar with various forms
of type-theoretical language semantics [24], some of which
coincide with common specification patterns.
On the linguistic side, our particular choice to represent

common nouns as typed predicates appears to be new. Tra-
ditional linguistic semantics going back to Montague [76]
assume a single universe of discourse represented by a type
e, with nouns denoting predicates on e , so the noun even nat-
ural would denote a predicate (𝜆x, even x ∧ natural x)).
Traditional type-theoretic semantics treats common nouns
exclusively as types [23, 103] (an even natural there would
be a subset type). Retoré [108] treats common nouns as ei-
ther types or predicates on a single universe of discourse,
depending on the circumstance. We treat them as both simul-

taneously, allowing them to play a role in unification during
parsing while also contributing further refining behaviors.
We believe that this is likely to work better for a wide va-
riety of formalizations, as subset types remain relatively
less-frequently-used in proof assistants; we leave validating
this conjecture to future work.

7.2 Natural Language for (Semi)Formal

Specifications

We are hardly the first to argue for narrowing the gap be-
tween natural language and formal specifications, Nor are
we the first to attempt this via formal grammars that also
model semantics.

Seki et al. [112, 113] is the earliest approach we are aware
of, using an alternative lexicalized grammar formalism
(HPSG [100]) to translate natural langauge to first-order logic.
Their prototype was divorced from any particular use of the
resulting formal specifications.

Dzifcak et al. [34] used CCGs to translate natural language
specifications to CTL∗, though as mentioned earlier their
semantics contain semantic type errors which are caught by
working within a proof assistant that enforces consistency
between grammatical and semantic types (i.e., caught by the
dependent type of Synth.denotation). They also translate
to PDL, reusing some entries by not type-checking their
semantics, enabling the mistakes above.

One recurring theme in formalized natural language inter-
faces to logics is intentionally (by design) reflecting aspects
of the syntax of a target logical language back into their han-
dling of natural language syntax, in a way that superficially
appears to be consistent with the natural language, but in fact

leads to subtly incorrect semantics. For example, PENG [111]
and its derivatives reflect the operator precedence of first-
order logic into its interpretation of English, which is wrong,
leading to misinterpreting phrases like “not yellow or blue”
as in “the signal is not yellow or blue” as (¬yellow) ∨ blue

because negation binds more tightly than disjunction even in

PENG’s English surface syntax, when most English speakers
would interpret the phrase as ¬(yellow∨ blue). Focusing on
actual linguistic treatments of syntax and semantics as we
do leaves such phrases ambiguous; while we have not imple-
mented ambiguity detection, ambiguities cannot be caught if
they are intentionally not modeled. While we have set aside
our Coq prototype [44], Coq’s typeclass implementation has
a flag Typeclasses Unique Solutionswhich verifies there
is exactly one instance (e.g., of Synth) solving a problem, and
fails otherwise; such a feature could be added to Lean and
would then implement ambiguity detection for our encoding
(in addition to its other uses for typeclasses in general).14
PENG also restricts use of adjectives to a single adjective
immediately before a noun, while our grammar is more gen-
eral without much active effort (beyond choosing an estab-
lished, known-generalizable grammatical and semantic ba-
sis): the rule lifting an adjective to a common noun modifier
(𝐶𝑁 /𝐶𝑁) applies, and then handling of phrases like “positive
even prime natural” simply fall out of /-Comp and /-Elim.
The most successful and long-lived prior effort in this

space (in active development for over 20 years), by most
metrics, is Attempto Controlled English (ACE) [40], which is
also emblematic of the philosophy behind most controlled
natural language [39, 65]. ACE is a highly-regimented for-
mal fragment of English [122] which aims to be an edito-

rialized version of English grammar meant specifically for
first-order logic specifications. Its primary implementation
uses unification-based parsing, as in our work and most
categorial grammar work, via Prolog’s definite clause gram-
mars [95, 96]. ACE is widely credited as one of the earliest
attempts to specify software in English [40, 41], by trans-
lating specifications into Prolog clauses, which can then be
used as a knowledge base for queries. This kind of controlled
natural langue interface is a classic application of Prolog,
predating ACE [129]. However, this results in a system that
is disconnected from toolsets that people have ended up
commonly using to specify software implementations: us-
ing an ACE-translated specification in another tool would
require additional engineering work to export the Prolog
representation of the specification to a form used by another
tool (e.g., Z3). While not a fundamental issue, to the best of
our knowledge, this engineering work has never occurred.
ACE and similar systems also attempt to reduce the burden
of growing a lexicon by treating most words as essentially
uninterpreted functions or relations, rather than tying into
existing formal definitions.

14This relies on our use of normalized parse trees.

Trustworthy Formal Natural Language Specifications Onward! ’23, October 25–27, 2023, Cascais, Portugal

A significant philosophical difference between most con-
troled natural language systems and our goals is the designer
expectations for how restrictive the grammar of a system
might be. ACE, PENG, and other systems generally assume
the set of grammatical categories is fixed at system design
time, forever. Per our discussion in Section 4.1, as most lexi-
cal entries have obvious basic categories such as nouns and
adjectives, adding additional lexical entries in those cate-
gories, as in our work, is straightforward. However, adding
new grammatical constructions in these earlier frameworks
requires adding new non-terminals to their grammars. Be-
cause most linguistics research of the past several decades
does not use standard phrase structure grammars (CFGs),
this leaves such extensions in a difficult position: implemen-
tors must either roll their own extensions in a way that has
never been validated by linguists, or are stuck with grammat-
ical treatments that are decades out of date. In contrast, our
experience in Section 4.2 shows that the linguistics literature
on categorial grammars offers modular grammatical exten-
sions to new features which have been extensively-vetted
by linguists, and can often be directly transcribed from the
linguistics literature. This is in addition to the fact that in
many cases these extensions do not require modifying core
rules, but instead follow from additions of individual lexicon
entries (because categorial grammars are lexicalized).
We believe there are two primary reasons that the work

above has not lead to widely-used controlled natural lan-
guage specifications, both of which we avoid. The first is
that prior implementations have been designed to prioritize
parsing and translation over use of the resulting specifi-
cations; most prior work produces Prolog representations
of specifications. This is primarily an engineering problem,
but of the sort that frequently hampers adoption of ideas.
Our implementation is a library for an actively developed
proof assistant that is actively used for specification and
verification of mathematical claims about both software and
mathematics, using features that already exist for purposes
unrelated to natural language interfaces.
The second is that prior work made what we believe are

suboptimal choices regarding which influences from linguis-
tics to incorporate. These include conscious choices like
PENG’s aforementioned reflection of FOL operator prece-
dence into English (similar confusion between natural Eng-
lish interpretation and howwords are repurposed for specific
logics also lead to confusions with LTL [47]). It also includes
cases like Vadera and Meziane’s work [125], where not only
were similar unnatural heuristics reflected back into English
(so users had to remember, and be able to consistently apply,
the implementation’s heuristics for quantification in order
to understand specifications), but time has since revealed the
work they were built on to be far less complete treatments
of the linguistic phenomena than were claimed (in good
faith) at the time. Vadera and Meziane adopted Hess’s [50]
approach to resolving ambiguities in quantifier scoping (an

approach motivated by dismissing as mathematically im-
possible approaches that not only worked mathematically,
but are now accepted as standard, thoroughly empirically
validated treatments [120, 121]). These types of issues are
why we have taken pains to work with an approach to con-
trolled natural language that borrows as heavily as possible
from widely-vetted linguistic theories: while it is relatively
straightforward (though significant work) to choose a syn-
tactic subset of a natural language, without specific efforts to
draw on linguistic theories of meaning with significant em-
pirical validation (and in particular validation of combined
syntax and semantics) it is easy to accidentally (or intention-
ally) formalize a controlled natural language in such a way
that the natural and formal interpretations of text silently di-
verge in critical ways, or unnecessarily restrict the language
to avoid those issues.

This is the key limitation of what may be the most closely-
related work to what we propose here: two systems that
focus on controlled natural language in proof assistants.
The earlier is work on GF-Alfa [48], which used Ranta’s
Grammatical Framework (GF) [105] to add translation from
English to a proof assistant based on Martin-Löf type the-
ory. GF is a toolkit for building bidirectional relationships
between logical form and text: for both parsing, and genera-
tion (discussed in the next subsection). The paper describes
the implementation of writing natural language specifica-
tions, but does not discuss actual use of the feature. The other
system is current, developed contemporaneously with our
earlier Coq prototype: Naproche [33] is an integration into
the Isabelle proof assistant of the ForTheL controlled natu-
ral language [92]. ForTheL is a substantial template-based
controlled natural language. While significant amounts of
undergraduate algebra and set theory have been specified in
ForTheL,15 the language is centered around describing new
definitions (which then act as noun phrases), and notions,
which are predicates usable as common nouns or adjectives.
It is not possible to add additional verbs, so half of our case
study sentences (1, 2, 8, 9, and 10) cannot be specified in
ForTheL without significant rewriting to avoid non-standard
verbs; this applies to many other VFA specifications as well.
In any case, because both systems use ad hoc grammars that
are not based on established linguistic theories, extensions
could easily go awry by over-generating or misinterpreting.
This is slightly less likely with ForTheL specifications than
with GF-based specifications: ForTheL’s grammar is quite
restrictive, while GF grammar definitions encourage regu-
lar expression style descriptions of arbitrary text fragments,
which can easily lead to unexpected parses. These systems,
unlike ours, do permit associating definitions and proofs
with controlled English text (both involve changes to the
proof assistant interfaces specifically for controlled natural

15https://github.com/naproche/FLib

https://github.com/naproche/FLib

Onward! ’23, October 25–27, 2023, Cascais, Portugal Colin S. Gordon and Sergey Matskevich

language interfaces), with the same caveats about grammati-
cal expressivity.We suspect we could also support definitions
by additionally using Lean’s macro facilities (which remain
usable by libraries, without modifying Lean) to register the
definitions, but believe this is actually counter-productive for
type-theory-based systems, as the exact form of an inductive
type and computational behavior of function definitions can
have major impacts on the difficulty of a proof; as earlier, we
recommend instead proving relationships between manual
formal definitions and descriptions translated from English.
Neither of these systems produce anything akin to a proof
certificate recording how English text was translated.
Our use of categorial grammar is in some ways also a

hedge against the possibility that the relevant linguistic the-
ories are further revised or refined; categorial grammars
are naturally open-ended and modular, allowing further re-
finements to be overridden. Picking a basis with extensive
linguistic validation also opens the door, in the future, to
exploiting linguistically-grounded practices in grammar en-
gineering [16, 106] and semantics-aware grammar induc-
tion [66, 67] to ease growing the formalized coverage of the
natural language over time — a path not available to attempts
not rooted in extensive linguistic coverage.

Seki et al.’s early work using HPSG [112, 113], turns out to
be prescient: HPSG is also a lexicalized grammar formalism,
and is now roughly as thoroughly investigated as categorial
grammars [86]; it would be reasonable to pursue our agenda
based on HPSG rather than categorial grammar, though we
believe categorial grammar’s connections to substructural
logic make it a slightly better basis for proof assistant users.
However, at the time, HPSG was nascent: it was first pro-
posed only 3 years before Seki’s initial attempt [113], and
only widely publicized in the year prior to Seki’s work [99].
So at the time, HPSG did not offer the extensive library of
formal treatments of linguistic phenomena that are now
available for both categorial grammars and HPSG.
More recent closely related is work on using natural lan-

guage to describe tests. Most recently, in parallel with this
work, Gordon [43] proposed using categorial grammars to
generate property-based tests [25] from English, using off-
the-shelf CCG tools to generate an abstraction of JavaScript
tests. While using CCGs for parsing in principle makes Gor-
don’s approach extensible like ours, that work’s lexicon is
sufficiently limited that the English accepted is fairly formu-
laic and template-like. Harris and Harris [49] used a variant
of context-free grammars to generate hardware tests ex-
pressed in CTL, realizing an idea first proposed (but never
evaluated) by Nelken and Francez [88].

FromFormal Specifications toNatural Language. More
distantly related is work translating the reverse direction
from formal specifications to English [19, 56], and work on
expressing proofs themselves in (semi-)natural language [31,
130], though these all emphasize highly-restricted fragments

of natural language, rather than using foundations that cap-
ture language structure more generally. In general, categorial
grammars can be used for generation of text from a logical
representation, intuitively by running the parsing unification
process “in reverse,” searching for a parse tree whose seman-
tics are equivalent to the logical form being described [59].
This approach has the advantage of being able to use the
same grammar (combination rules and lexicon) that are used
for parsing, so in principle a grammar grown for parsing
as we have proposed in this paper can be repurposed. This
has been seriously-explored for CCGs in particular [87, 131–
133]. But in practice, this approach to text generation is more
difficult than semantic parsing, because the search space (all
derivations whose semantics match a target) is much larger,
and these approaches do not currently handle quantifiers,
which are essential for formal specifications. Additional chal-
lenges arise in taking human-written formal specifications
as input, as the grammar rules yield unreduced function
applications (so at least 𝛽𝜂-equivalence would need to be
considered), and some semantic treatments related to quanti-
fiers would require considering full logical equivalence in the
target logic (consider the existential in Sentence 7 of Table 1).
Existing tools for translating from formal specifications

to English avoid the difficulties just highlighted by either
restricting the specifications they handle (e.g., specification
languages without quantifiers [19, 56]), or using more ad
hoc treatments of grammar (as in Ranta’s GF, which essen-
tially translates first-order logic to English via a recursive
function from formula syntax trees to strings, filling in a tem-
plate for each node type [107]). GFT was previously used in
the aforementioned GF-Alfa system [48] to translate formal
specifications into English. The case study reported there
suggests that the workflow involved heavy specification-
specific customization of the grammar, in a way supported
by user interface extensions in GF-Alfa, but seemingly requir-
ing significant additional manual effort for each specification
translated to English.

7.3 Controlled Natural Language Beyond

Specifications

Also related is the long history of work on programming in
(controlled) natural language, including both program text
itself [10, 30] and interactions with IDEs [101] manipulating
programs written in standard programming languages (e.g.,
Java). Most prominently, COBOL was intended to make code
“readable by managers or other non-programmers” [110].
Most attempts at programming languages in a natural lan-
guage style were targeted at non-technical or less-technical
users, and at specific domains (such as Applescript [30]),
even if the targeted language was actually quite general
(e.g., COBOL [110]). None of these systems were originally
intended to have user-extensible grammars, though some, in-
cluding COBOL, were later supplemented with token-based
macro preprocessors [128], which have modularity problems

Trustworthy Formal Natural Language Specifications Onward! ’23, October 25–27, 2023, Cascais, Portugal

now well-known from experience with the C preprocessor.
Some of these, notably COBOL and Applescript, have seen
significant use for extended periods of time by many users in
their target domains. Attempts at fully-general natural lan-
guage programming [10] have been less successful, largely
because they lead to cases where the natural language is in-
terpreted unexpectedly [17, 74], and there is no waywithin the
system to correct this misinterpretation. In particular, we can
find no prior system for general-purpose natural language
programmingwhich includes a fall-back to amore traditional
(and less ambiguous) programming language (most efforts
were aimed at non-programmers). Our proposal avoids this
problem: we are proposing to supplement a deeply formal
system for specification and proof with controlled natural
language, not supplant the formal approaches. The intended
users of our approach are experts in formal specification
who wish to record the relationship between (controlled)
natural language and formal specifications. Incompleteness
or unexpected behaviors of our approach (which we have
already argued can be modularly adjusted in general) will
never prevent a Lean user from completing their proof, but
only prevent them from recording the formal-natural rela-
tionship in a rigorous way.

7.4 Autoformalization

What we do in this paper falls under a broad interpretation
of what is now known as autoformalization in the machine
learning community. Current techniques in this space have
promising results, with one system [135] successfully formal-
izing and proving (in Isabelle) 35.2% of a collection of English
Math Olympiad-style problems. While still impressive (there
is no explicit lexicon), this statistic ellides important limita-
tions, including those fundamental to large language models
(mentioned earlier), and specifics of the datasets used (which
extended to pre-university math problems, but also includes
significant primary-school-level math). Most critically, ma-
chine learning approaches currently used for this are built on
techniques which consistently struggle to correctly handle
even slightly-nontrivial boolean reasoning [36, 90, 123, 124]
(let alone more complex logical operations like universal
quantification [8]).

8 Looking Forward

We have presented evidence that it is plausible to support
natural language specifications in current proof assistants by
exploiting existing typeclass machinery, with no additional
tooling required. Carried further, this could be useful inmany
ways. It can reduce the gap between informal and formal
specifications, reducing (though not eliminating) trust in
the manual formalization of requirements. Potentially non-
experts in verification could understand some theorem state-
ments, gaining confidence that a verification result matched
their understanding of desired properties. And this could be

used in educational contexts to help students learn or check
informal-to-formal translations.

Of course, the details matter as well, and it will take time
to realize a prototype that is broadly useful. First and fore-
most, a rich lexicon is required. As explained earlier, at least
the initial lexicon will need to be manually constructed (bor-
rowing grammatical categories from existing lexicons [1, 53],
and filling in the semantics) before it would be fruitful to
adapt techniques for learning lexicons [7, 58, 66] to extend
the manually-crafted base. Guiding this effort would require
a substantial collection of examples of natural-language de-
scriptions of formal claims, both for prioritizing lexicon
growth and for validation that the approach is growing to
encompass real direct descriptions of claims.

Our performance results, while modest in scope, are infor-
mative, highlighting that many specifications are likely to be
parseable in times that are tolerable in interactive settings.
External implementations of parsers could potentially be
used to speed up parsing, and they could emit proof certifi-
cates in the form of explicit construction of our Synth in-
stances. However this requires additional layers of separate
tooling from the typeclass-based approach explored here,
and also risks problems with incompatibilities between tools
and specific proof assistants; working within the proof assis-
tant guarantees all generated semantics are well-typed (even
in the presence of features like implicit arguments and rich
macro support in defining semantic terms), a problem which
has arisen in other settings (as in our discovery that some
of Dzifcak’s lexical entries have type-incompatible seman-
tics [34], or as in Gordon’s report [43] that NLTK’s combina-
tion rules sometimes introduce type errors into semantics).
It is possible that small differences will be required be-

tween standard natural language grammars and those used
by this approach, arising from distinctions important to proof
assistants but irrelevant to colloquial language. This is al-
ready the case, as mentioned, with the indexing of some
grammatical categories with the semantic types of referents,
following Ranta’s early work on formalizing mathematical
prose [104]. This direction offers opportunities to collaborate
with linguists working in syntax and compositional seman-
tics [12, 55, 118]. Such collaborations could both help with
possible novel linguistic features of “semi-formal” natural
language, and offers a setting for applying classical linguistic
techniques in a domain where they provide unique value.
A great deal of work lies ahead, but the potential ben-

efits seem to more than justify further exploration in this
direction.

Acknowledgments

This work was supported in part by the US National Science
Foundation under Grant No.: CCF-2220991 (https://www.nsf.
gov/awardsearch/showAward?AWD_ID=2220991).

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2220991
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2220991

Onward! ’23, October 25–27, 2023, Cascais, Portugal Colin S. Gordon and Sergey Matskevich

References

[1] Lasha Abzianidze, Johannes Bjerva, Kilian Evang, Hessel Haagsma,
Rik van Noord, Pierre Ludmann, Duc-Duy Nguyen, and Johan Bos.
2017. The Parallel Meaning Bank: Towards a Multilingual Corpus
of Translations Annotated with Compositional Meaning Representa-
tions. In EACL.

[2] Kazimierz Ajdukiewicz. 1935. Die syntaktische konnexität. Studia
Philosophica, 1: 1–27. Reprinted in Storrs McCall, ed., Polish Logic
1920–1939, 207–231.

[3] Hiyan Alshawi. 1992. The core language engine. MIT press.
[4] Bharat Ram Ambati, Tejaswini Deoskar, and Mark Steedman. 2018.

Hindi CCGbank: A CCG treebank from the Hindi dependency tree-
bank. Language Resources and Evaluation 52, 1 (2018), 67–100.

[5] Andrew W Appel. 2001. Foundational proof-carrying code. In Pro-

ceedings of the 16th Annual IEEE Symposium on Logic in Computer

Science (LICS 2001). IEEE, 247–256.
[6] Andrew W. Appel. 2022. Verified Functional Algorithms. Software

Foundations, Vol. 3.
[7] Yoav Artzi. 2016. Cornell SPF: Cornell Semantic Parsing Framework.

arXiv:arXiv:1311.3011
[8] Nicholas Asher, Swarnadeep Bhar, Akshay Chaturvedi, Julie Hunter,

and Soumya Paul. 2023. Limits for learning with language models. In
Proceedings of the 12th Joint Conference on Lexical and Computational

Semantics (*SEM 2023). Association for Computational Linguistics,
Toronto, Canada, 236–248. https://doi.org/10.18653/v1/2023.starsem-
1.22

[9] Jason Baldridge and Geert-Jan M. Kruijff. 2003. Multi-modal Com-
binatory Categorial Grammar. In Proceedings of the Tenth Confer-

ence on European Chapter of the Association for Computational Lin-

guistics - Volume 1 (Budapest, Hungary) (EACL ’03). Association for
Computational Linguistics, Stroudsburg, PA, USA, 211–218. https:
//doi.org/10.3115/1067807.1067836

[10] Bruce W. Ballard and Alan W. Biermann. 1979. Programming in
Natural Language: “NLC” as a Prototype. In Proceedings of the 1979

Annual Conference (ACM ’79). Association for Computing Machinery,
New York, NY, USA, 228–237. https://doi.org/10.1145/800177.810072

[11] Yehoshua Bar-Hillel. 1953. A quasi-arithmetical notation for syntactic
description. Language 29, 1 (1953), 47–58.

[12] Chris Barker and Pauline Jacobson (Eds.). 2007. Direct compositional-

ity. Oxford University Press.
[13] Chris Barker and Chung-chieh Shan. 2014. Continuations and natural

language. Vol. 53. Oxford Studies in Theoretical.
[14] Daisuke Bekki. 2012. Dependent Type Semantics: An Introduction.

In Logic and Interactive Rationality (LIRA) Yearbook 2012, Volume 1.
277–300.

[15] Daisuke Bekki. 2014. Representing Anaphora with Dependent Types.
In Logical Aspects of Computational Linguistics - 8th International

Conference, LACL 2014, Toulouse, France, June 18-20, 2014. Proceedings.
14–29. https://doi.org/10.1007/978-3-662-43742-1_2

[16] Emily M. Bender and Guy Emerson. 2021. Computational linguistics
and grammar engineering. In Head-Driven Phrase Structure Grammar:

The Handbook [86].
[17] Alan W Biermann, Bruce W Ballard, and Anne H Sigmon. 1983. An

experimental study of natural language programming. International
journal of man-machine studies 18, 1 (1983), 71–87.

[18] Stephen A Boxwell and Chris Brew. 2010. A Pilot Arabic CCGbank..
In LREC.

[19] David A Burke and Kristofer Johannisson. 2005. Translating formal
software specifications to natural language. In International Confer-

ence on Logical Aspects of Computational Linguistics. Springer, 51–66.
[20] Bob Carpenter. 1997. Type-logical semantics. MIT press.
[21] Bob Carpenter. 1999. The Turing-completeness of multimodal cate-

gorial grammars. JFAK: Essays dedicated to Johan van Benthem on the

occasion of his 50th birthday. Institute for Logic, Language, and Compu-

tation, University of Amsterdam. Available on CD-ROM at http://turing.

wins. uva. nl (1999).
[22] Stergios Chatzikyriakidis and Zhaohui Luo. 2014. Natural Language

Inference in Coq. Journal of Logic, Language, and Information 23
(2014). Issue 4.

[23] Stergios Chatzikyriakidis and Zhaohui Luo. 2017. On the interpreta-
tion of common nouns: Types versus predicates. In Modern perspec-

tives in type-theoretical semantics. Springer, 43–70.
[24] Stergios Chatzikyriakidis, Zhaohui Luo, et al. 2017. Modern perspec-

tives in type-theoretical semantics. Vol. 98. Springer.
[25] Koen Claessen and John Hughes. 2011. QuickCheck: a lightweight

tool for random testing of Haskell programs. In In Proceedings of the

Fifth ACM SIGPLAN International Conference on Functional Program-

ming (ICFP).
[26] Stephen Clark and James R. Curran. 2003. Log-linear Models for

Wide-coverage CCG Parsing. In Proceedings of the 2003 Conference

on Empirical Methods in Natural Language Processing (Conference on

Empirical Methods on Natural Language Processing ’03). Association
for Computational Linguistics, Stroudsburg, PA, USA, 97–104.

[27] Stephen Clark and James R. Curran. 2007. Wide-Coverage Efficient
Statistical Parsing with CCG and Log-Linear Models. Computational

Linguistics 33, 4 (Dec. 2007), 493–552.
[28] Stephen Clark, Julia Hockenmaier, and Mark Steedman. 2002. Build-

ing Deep Dependency Structures with a Wide-coverage CCG Parser.
In Proceedings of the 40th Annual Meeting on Association for Compu-

tational Linguistics (Philadelphia, Pennsylvania) (ACL ’02). Associa-
tion for Computational Linguistics, Stroudsburg, PA, USA, 327–334.
https://doi.org/10.3115/1073083.1073138

[29] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. 1986.
Automatic Verification of Finite-state Concurrent Systems Using
Temporal Logic Specifications. ACM Transactions on Programming

Languages and Systems (TOPLAS) 8, 2 (1986), 244–263.
[30] William R Cook. 2007. Applescript. In Proceedings of the third ACM

SIGPLAN conference on History of programming languages. 1–1.
[31] Marcos Cramer, Bernhard Fisseni, Peter Koepke, Daniel Kühlwein,

Bernhard Schröder, and Jip Veldman. 2009. The naproche project
controlled natural language proof checking of mathematical texts.
In International Workshop on Controlled Natural Language. Springer,
170–186.

[32] Veronica Dahl. 1994. Natural language processing and logic program-
ming. The Journal of Logic Programming 19 (1994), 681–714.

[33] Adrian De Lon, Peter Koepke, Anton Lorenzen, Adrian Marti, Marcel
Schütz, and Makarius Wenzel. 2021. The Isabelle/Naproche natural
language proof assistant. In Automated Deduction–CADE 28: 28th

International Conference on Automated Deduction, Virtual Event, July

12–15, 2021, Proceedings 28. Springer International Publishing, 614–
624.

[34] Juraj Dzifcak, Matthias Scheutz, Chitta Baral, and Paul Schermerhorn.
2009. What to do and how to do it: Translating natural language
directives into temporal and dynamic logic representation for goal
management and action execution. In 2009 IEEE International Confer-

ence on Robotics and Automation. IEEE, 4163–4168.
[35] Jason Eisner. 1996. Efficient Normal-Form Parsing for Combinatory

Categorial Grammar. In 34th Annual Meeting of the Association for

Computational Linguistics. 79–86.
[36] Allyson Ettinger. 2020. What BERT is not: Lessons from a new suite

of psycholinguistic diagnostics for language models. Transactions of
the Association for Computational Linguistics 8 (2020), 34–48.

[37] Kate Finney. 1996. Mathematical notation in formal specification: Too
difficult for the masses? IEEE Transactions on Software Engineering

22, 2 (1996), 158–159.
[38] Kate M Finney and Alex M Fedorec. 1996. An empirical study of

specification readability. In Teaching and Learning Formal Methods.

https://arxiv.org/abs/arXiv:1311.3011
https://doi.org/10.18653/v1/2023.starsem-1.22
https://doi.org/10.18653/v1/2023.starsem-1.22
https://doi.org/10.3115/1067807.1067836
https://doi.org/10.3115/1067807.1067836
https://doi.org/10.1145/800177.810072
https://doi.org/10.1007/978-3-662-43742-1_2
https://doi.org/10.3115/1073083.1073138

Trustworthy Formal Natural Language Specifications Onward! ’23, October 25–27, 2023, Cascais, Portugal

Academic Press.
[39] Norbert E Fuchs. 2009. Controlled Natural Language. In Workshop

on Controlled Natural Language, CNL. Springer.
[40] Norbert E Fuchs, Uta Schwertel, and Sunna Torge. 1999. Controlled

natural language can replace first-order logic. In 14th IEEE Interna-

tional Conference on Automated Software Engineering. IEEE, 295–298.
[41] Norbert E Fuchs and Rolf Schwitter. 1996. Attempto Controlled

English (ACE). In First International Workshop on Controlled Lan-

guage Applications (CLAW) (University of Leuven, Belgium). http:
//attempto.ifi.uzh.ch/site/pubs/papers/CLAW96.ps

[42] Jager Gerhard et al. 2005. Anaphora and type logical grammar. Vol. 24.
Springer Science & Business Media.

[43] Colin S. Gordon. 2022. Towards Property-Based Tests in Natural
Language. In 44th IEEE/ACM International Conference on Software

Engineering: New Ideas and Emerging Results, ICSE (NIER). IEEE. https:
//doi.org/10.1145/3510455.3512781

[44] Colin S. Gordon and SergeyMatskevich. 2022. Natural Language Spec-
ifications in Proof Assistants. Technical Report arXiv cs.PL 2205.07811.
Computing Research Repository (CoRR). https://doi.org/10.48550/
arXiv.2205.07811 arXiv:2205.07811

[45] Colin S. Gordon and Sergey Matskevich. 2023. Artifact for Trustwor-
thy Formal Natural Language Specifications. https://doi.org/10.5281/
zenodo.8329080

[46] Mike Gordon. 2000. From LCF to HOL: a short history. In Proof,

Language, and Interaction: Essays in Honour of Robin Milner. 169–186.
[47] Ben Greenman, Sam Saarinen, Tim Nelson, and Shriram Krishna-

murthi. 2022. Little Tricky Logic: Misconceptions in the Understand-
ing of LTL. The Art, Science, and Engineering of Programming 7, 2
(2022).

[48] Thomas Hallgren and Aarne Ranta. 2000. An extensible proof text
editor. In International Conference on Logic for Programming Artificial

Intelligence and Reasoning. Springer, 70–84.
[49] Christopher B Harris and Ian G Harris. 2015. Generating formal

hardware verification properties from Natural Language documenta-
tion. In Proceedings of the 2015 IEEE 9th International Conference on

Semantic Computing (IEEE ICSC 2015). IEEE, 49–56.
[50] Michael Hess. 1985. HowDoes Natural Language Quantify?. In Second

Conference of the European Chapter of the Association for Computa-

tional Linguistics. Association for Computational Linguistics, Geneva,
Switzerland. https://aclanthology.org/E85-1002

[51] Julia Hockenmaier. 2006. Creating a CCGbank and a wide-coverage
CCG lexicon for German. In Proceedings of the 21st International

Conference on Computational Linguistics and the 44th annual meet-

ing of the Association for Computational Linguistics. Association for
Computational Linguistics, 505–512.

[52] Julia Hockenmaier and Mark Steedman. 2005. CCGbank: User’s Man-

ual. Technical Report.
[53] Julia Hockenmaier and Mark Steedman. 2007. CCGbank: a corpus

of CCG derivations and dependency structures extracted from the
Penn Treebank. Computational Linguistics 33, 3 (2007), 355–396.

[54] Pauline Jacobson. 1999. Towards a variable-free semantics. Linguistics
and philosophy 22, 2 (1999), 117–185.

[55] Pauline I Jacobson. 2014. Compositional semantics: An introduction to

the syntax/semantics interface. Oxford University Press.
[56] Kristofer Johannisson. 2007. Natural language specifications. In

Verification of Object-Oriented Software. The KeY Approach. Springer,
317–333.

[57] Aravind K. Joshi, David J. Weir, and K. Vijay-Shanker. 1990. The Con-
vergence of mildly context-sensitive grammar formalisms. Technical
Report MS-CIS-90-01. University of Pennsylvania (Philadelphia, PA
US), Philadelphia. http://opac.inria.fr/record=b1042789

[58] Makoto Kanazawa. 1995. Learnable classes of categorial grammars.

CSLI Publications, Stanford University.

[59] Martin Kay. 1996. Chart Generation. In 34th Annual Meeting of the

Association for Computational Linguistics. Association for Compu-
tational Linguistics, Santa Cruz, California, USA, 200–204. https:
//doi.org/10.3115/981863.981890

[60] Oleg Kiselyov. 2015. Applicative abstract categorial grammars in
full swing. In JSAI International Symposium on Artificial Intelligence.
Springer, 66–78.

[61] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray,
Thomas Sewell, Rafal Kolanski, and Gernot Heiser. 2014. Comprehen-
sive Formal Verification of an OS Microkernel. ACM Trans. Comput.

Syst. 32, 1, Article 2 (Feb. 2014), 70 pages. https://doi.org/10.1145/
2560537

[62] Wen Kokke. 2015. Formalising type-logical grammar in Agda. In 1st

Workshop on Type Theory and Lexical Semantics.
[63] Geert-Jan M. Kruijff and Jason Baldridge. 2000. Relating categorial

type logics and CCG through simulation. https://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.27.4152 Unpublished manuscript..

[64] Marco Kuhlmann, Alexander Koller, and Giorgio Satta. 2015. Lexical-
ization and Generative Power in CCG. Computational Linguistics 41,
2 (2015), 187–219.

[65] Tobias Kuhn. 2014. A survey and classification of controlled natural
languages. Computational linguistics 40, 1 (2014), 121–170.

[66] Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and Mark
Steedman. 2011. Lexical Generalization in CCG Grammar Induction
for Semantic Parsing. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing (Edinburgh, United Kingdom)
(Conference on Empirical Methods on Natural Language Processing ’11).
Association for Computational Linguistics, Stroudsburg, PA, USA,
1512–1523.

[67] Tom Kwiatkowski, Luke S. Zettlemoyer, Sharon Goldwater, and Mark
Steedman. 2010. Inducing Probabilistic CCG Grammars from Logical
Form with Higher-Order Unification.. In Conference on Empirical

Methods on Natural Language Processing. ACL, 1223–1233.
[68] Joachim Lambek. 1958. The mathematics of sentence structure. The

American Mathematical Monthly 65, 3 (1958), 154–170.
[69] Joachim Lambek. 1988. Categorial and categorical grammars. In

Categorial grammars and natural language structures. Springer, 297–
317.

[70] Xavier Leroy. 2009. A formally verified compiler back-end. Journal
of Automated Reasoning 43, 4 (2009), 363–446.

[71] Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert Mac-
Intyre, Ann Bies, Mark Ferguson, Karen Katz, and Britta Schasberger.
1994. The Penn Treebank: annotating predicate argument struc-
ture. In Proceedings of the workshop on Human Language Technology.
Association for Computational Linguistics, 114–119.

[72] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini.
1993. Building a Large Annotated Corpus of English: The Penn
Treebank. Comput. Linguist. 19, 2 (June 1993), 313–330. http://dl.
acm.org/citation.cfm?id=972470.972475

[73] Per Martin-Löf and Giovanni Sambin. 1984. Intuitionistic type theory.
Vol. 9. Bibliopolis Naples.

[74] Lance A Miller. 1981. Natural language programming: Styles, strate-
gies, and contrasts. IBM Systems Journal 20, 2 (1981), 184–215.

[75] Koji Mineshima, Ribeka Tanaka, Pascual Martínez-Gómez, Yusuke
Miyao, and Daisuke Bekki. 2016. Building compositional semantics
and higher-order inference system for a wide-coverage Japanese CCG
parser. In EMNLP.

[76] Richard Montague. 1970. English as a Formal Language. In Lin-

guaggi nella societa e nella tecnica, Bruno Visentini (Ed.). Edizioni di
Communita, 188–221.

[77] Richard Montague. 1970. Universal grammar. Theoria 36, 3 (1970),
373–398.

[78] Richard Montague. 1973. The proper treatment of quantification
in ordinary English. In Approaches to natural language. Springer,

http://attempto.ifi.uzh.ch/site/pubs/papers/CLAW96.ps
http://attempto.ifi.uzh.ch/site/pubs/papers/CLAW96.ps
https://doi.org/10.1145/3510455.3512781
https://doi.org/10.1145/3510455.3512781
https://doi.org/10.48550/arXiv.2205.07811
https://doi.org/10.48550/arXiv.2205.07811
https://arxiv.org/abs/2205.07811
https://doi.org/10.5281/zenodo.8329080
https://doi.org/10.5281/zenodo.8329080
https://aclanthology.org/E85-1002
http://opac.inria.fr/record=b1042789
https://doi.org/10.3115/981863.981890
https://doi.org/10.3115/981863.981890
https://doi.org/10.1145/2560537
https://doi.org/10.1145/2560537
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.4152
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.4152
http://dl.acm.org/citation.cfm?id=972470.972475
http://dl.acm.org/citation.cfm?id=972470.972475

Onward! ’23, October 25–27, 2023, Cascais, Portugal Colin S. Gordon and Sergey Matskevich

221–242.
[79] Michael Moortgat. 1996. Generalized quantifiers and discontinu-

ous type constructors. In Discontinuous Constituency. NATURAL
LANGUAGE PROCESSING, Vol. 6. Mouton de Gruyter, 181–208.

[80] Michael Moortgat. 1996. Multimodal linguistic inference. Journal of
Logic, Language and Information 5, 3 (01 Oct 1996), 349–385. https:
//doi.org/10.1007/BF00159344

[81] Michael Moortgat. 1999. Constants of grammatical reasoning. In
Constraints and resources in natural language syntax and semantics.
195–219.

[82] Richard Moot. 2015. A type-logical treebank for French. Journal of
Language Modelling 3, 1 (2015), 229–264.

[83] Richard Moot and Christian Retoré. 2012. The logic of categorial gram-

mars: a deductive account of natural language syntax and semantics.
Vol. 6850. Springer.

[84] Glyn Morrill. 1995. Discontinuity in categorial grammar. Linguistics
and Philosophy 18, 2 (1995), 175–219.

[85] Glyn V Morrill. 2012. Type logical grammar: Categorial logic of signs.
Springer Science & Business Media.

[86] StefanMüller, Anne Abeillé, Robert D Borsley, and Jean-Pierre Koenig.
2021. Head-Driven Phrase Structure Grammar: The Handbook. Lan-
guage Science Press.

[87] Crystal Nakatsu and Michael White. 2010. Generating with Discourse
Combinatory Categorial Grammar. Linguistic Issues in Language

Technology 4 (Sep. 2010). https://doi.org/10.33011/lilt.v4i.1221
[88] Rani Nelken and Nissim Francez. 1996. Automatic translation of natu-

ral language system specifications into temporal logic. In International
Conference on Computer Aided Verification. Springer, 360–371.

[89] Richard T. Oehrle, Emmon Bach, and Deirdre Wheeler. 1988. Catego-
rial Grammars and Natural Language Structures. Springer.

[90] Lalchand Pandia and Allyson Ettinger. 2021. Sorting through the
noise: Testing robustness of information processing in pre-trained
language models. In Proceedings of the 2021 Conference on Empirical

Methods in Natural Language Processing. Association for Compu-
tational Linguistics, Online and Punta Cana, Dominican Republic,
1583–1596. https://aclanthology.org/2021.emnlp-main.119

[91] Barbara H Partee and Herman LW Hendriks. 1997. Montague gram-
mar. In Handbook of logic and language. Elsevier, 5–91.

[92] Andrei Paskevich. 2007. The syntax and semantics of the ForTheL
language. http://nevidal.org/download/forthel.pdf

[93] Christine Paulin-Mohring. 1993. Inductive definitions in the system
coq rules and properties. In International Conference on Typed Lambda

Calculi and Applications. Springer, 328–345.
[94] Lawrence C Paulson. 1990. Logic and computation: interactive proof

with Cambridge LCF. Vol. 2. Cambridge University Press.
[95] Fernando CN Pereira and Stuart M Shieber. 1987. PROLOG and

Natural Language Analysis.
[96] Fernando CN Pereira and David HD Warren. 1980. Definite clause

grammars for language analysis—a survey of the formalism and a
comparison with augmented transition networks. Artificial intelli-
gence 13, 3 (1980), 231–278.

[97] Amir Pnueli. 1977. The Temporal Logic of Programs. In FOCS. IEEE.
[98] Robert Pollack. 1998. How to believe a machine-checked proof. In

Twenty Five Years of Constructive Type Theory. Oxford University
Press, 205–220.

[99] Carl Pollard and Ivan A Sag. 1987. Information-based syntax and

semantics: Vol. 1: fundamentals. Center for the Study of Language
and Information.

[100] Carl Pollard and Ivan A Sag. 1994. Head-driven phrase structure

grammar. University of Chicago Press.
[101] David Price, Ellen Rilofff, Joseph Zachary, and Brandon Harvey. 2000.

NaturalJava: A Natural Language Interface for Programming in Java.
In Proceedings of the 5th International Conference on Intelligent User

Interfaces (New Orleans, Louisiana, USA) (IUI ’00). Association for

Computing Machinery, New York, NY, USA, 207–211. https://doi.
org/10.1145/325737.325845

[102] Aarne Ranta. 1991. Intuitionistic categorial grammar. Linguistics and
Philosophy 14, 2 (1991), 203–239.

[103] Aarne Ranta. 1994. Type-theoretical Grammar. Oxford University
Press, Inc., New York, NY, USA.

[104] Aarne Ranta. 1995. Context-relative syntactic categories and the
formalization of mathematical text. In International Workshop on

Types for Proofs and Programs. Springer, 231–248.
[105] Aarne Ranta. 2004. Grammatical framework. Journal of Functional

Programming 14, 2 (2004), 145–189.
[106] Aarne Ranta. 2011. Grammatical framework: Programming with mul-

tilingual grammars. Vol. 173. CSLI Publications, Center for the Study
of Language and Information Stanford.

[107] Aarne Ranta. 2011. Translating between language and logic: what
is easy and what is difficult. In Automated Deduction–CADE-23: 23rd

International Conference on Automated Deduction, Wrocław, Poland,

July 31-August 5, 2011. Proceedings 23. Springer, 5–25.
[108] Christian Retoré. 2013. The montagovian generative lexicon: a type

theoretical framework for natural language semantics. In 19th inter-

national conference on types for proofs and programs (TYPES 2013).
[109] Yves Schabes. 1990. Mathematical and computational aspects of lexi-

calized grammars. Ph. D. Dissertation. Copyright - Copyright UMI -
Dissertations Publishing 1990; Last updated - 2015-08-28.

[110] Ben Schneiderman. 1985. The relationship between COBOL and
computer science. Annals of the History of Computing 7, 4 (1985),
348–352.

[111] Rolf Schwitter. 2002. English as a formal specification language.
In Proceedings. 13th International Workshop on Database and Expert

Systems Applications. IEEE, 228–232.
[112] Hiroyuki Seki, Tadao Kasami, Eiji Nabika, and Takashi Matsumura.

1992. A method for translating natural language program specifica-
tions into algebraic specifications. Systems and computers in Japan

23, 11 (1992), 1–16.
[113] Hiroyuki Seki, Eiji Nabika, Takashi Matsumura, Yujii Sugiyama,

Mamoru Fujii, Koji Torii, and Tadao Kasami. 1988. A processing
system for programming specifications in a natural language. In
[1988] Proceedings of the Twenty-First Annual Hawaii International

Conference on System Sciences. Volume II: Software track, Vol. 2. IEEE,
754–763.

[114] Daniel Selsam, Sebastian Ullrich, and Leonardo de Moura. 2020.
Tabled typeclass resolution. arXiv preprint arXiv:2001.04301 (2020).

[115] Anders Søgaard. 2021. Explainable Natural Language Processing.
Synthesis Lectures on Human Language Technologies 14, 3 (2021), 1–
123.

[116] Matthieu Sozeau and Nicolas Oury. 2008. First-class type classes. In
International Conference on Theorem Proving in Higher Order Logics.
Springer, 278–293.

[117] Mark Steedman. 2001. The Syntactic Process. The MIT Press.
[118] Mark Steedman. 2012. Taking scope: The natural semantics of quanti-

fiers. Mit Press.
[119] Göran Sundholm. 1986. Proof theory and meaning. In Handbook of

philosophical logic. Springer, 471–506.
[120] A Szabolcsi. 1997. Ways of Scope Taking. Vol. 65. Springer Science &

Business Media.
[121] Anna Szabolcsi. 2010. Quantification. Cambridge University Press.
[122] Attempto Controlled English Team. [n. d.]. ACE 6.7 Syntax Report.

http://attempto.ifi.uzh.ch/site/docs/syntax_report.html
[123] Aaron Traylor, Roman Feiman, and Ellie Pavlick. 2021. AND does

not mean OR: Using Formal Languages to Study Language Models’
Representations. In Proceedings of the 59th Annual Meeting of the

Association for Computational Linguistics.
[124] Thinh Hung Truong, Timothy Baldwin, Karin Verspoor, and Trevor

Cohn. 2023. Language models are not naysayers: an analysis of

https://doi.org/10.1007/BF00159344
https://doi.org/10.1007/BF00159344
https://doi.org/10.33011/lilt.v4i.1221
https://aclanthology.org/2021.emnlp-main.119
http://nevidal.org/download/forthel.pdf
https://doi.org/10.1145/325737.325845
https://doi.org/10.1145/325737.325845
http://attempto.ifi.uzh.ch/site/docs/syntax_report.html

Trustworthy Formal Natural Language Specifications Onward! ’23, October 25–27, 2023, Cascais, Portugal

language models on negation benchmarks. In Proceedings of the 12th

Joint Conference on Lexical and Computational Semantics (*SEM 2023).
Association for Computational Linguistics, Toronto, Canada, 101–114.
https://doi.org/10.18653/v1/2023.starsem-1.10

[125] Sunil Vadera and Farid Meziane. 1994. From English to formal speci-
fications. Comput. J. 37, 9 (1994), 753–763.

[126] Johan van Benthem. 1990. Categorial Grammar and Type Theory.
Journal of Philosophical Logic 19, 2 (1990), 115–168. http://www.jstor.
org/stable/30226424

[127] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017.
Attention is all you need. Advances in neural information processing

systems 30 (2017).
[128] Dennis M Volpano and Hubert E Dunsmore. 1984. Empirical investi-

gation of COBOL features. Information Processing & Management 20,
1-2 (1984), 277–291.

[129] David H.D. Warren and Fernando C.N. Pereira. 1982. An Efficient
Easily Adaptable System for Interpreting Natural Language Queries.
American Journal of Computational Linguistics 8, 3-4 (1982), 110–122.
https://aclanthology.org/J82-3002

[130] Markus Wenzel. 1999. Isar—a generic interpretative approach to read-
able formal proof documents. In International Conference on Theorem

Proving in Higher Order Logics. Springer, 167–183.
[131] Michael White. 2006. CCG Chart Realization from Disjunctive Inputs.

In Proceedings of the Fourth International Natural Language Genera-

tion Conference. Association for Computational Linguistics, Sydney,

Australia, 12–19. https://aclanthology.org/W06-1403
[132] Michael White and Jason Baldridge. 2003. Adapting Chart Real-

ization to CCG. In Proceedings of the 9th European Workshop on

Natural Language Generation (ENLG-2003) at EACL 2003. Associ-
ation for Computational Linguistics, Budapest, Hungary. https:
//aclanthology.org/W03-2316

[133] Michael White, Rajakrishnan Rajkumar, and Scott Martin. 2007. To-
wards broad coverage surface realization with CCG. In Proceedings of

theWorkshop on Using corpora for natural language generation. Copen-
hagen, Denmark. https://aclanthology.org/2007.mtsummit-ucnlg.4

[134] Jeannette MWing. 1990. A specifier’s introduction to formal methods.
Computer 23, 9 (1990), 8–22.

[135] Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles
Staats, Mateja Jamnik, and Christian Szegedy. 2022. Autoformaliza-
tion with large language models. Advances in Neural Information

Processing Systems 35 (2022), 32353–32368.
[136] Richie Yeung and Dimitri Kartsaklis. 2021. A CCG-Based Version of

the DisCoCat Framework. In Proceedings of the 2021 Workshop on Se-

mantic Spaces at the Intersection of NLP, Physics, and Cognitive Science

(SemSpace). Association for Computational Linguistics, Groningen,
The Netherlands, 20–31. https://aclanthology.org/2021.semspace-1.3

Received 2023-04-28; accepted 2023-08-11

https://doi.org/10.18653/v1/2023.starsem-1.10
http://www.jstor.org/stable/30226424
http://www.jstor.org/stable/30226424
https://aclanthology.org/J82-3002
https://aclanthology.org/W06-1403
https://aclanthology.org/W03-2316
https://aclanthology.org/W03-2316
https://aclanthology.org/2007.mtsummit-ucnlg.4
https://aclanthology.org/2021.semspace-1.3

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Categorial Grammars
	2.2 Formal Grammars for Natural Languages: Why Categorial Grammars?

	3 Categorial Grammars for CIC Specifications
	3.1 Combination Rules
	3.2 Lexicon
	3.3 Using Specifications
	3.4 Performance

	4 Modularity and Extension: Growing a Lexicon, Handling More Logics
	4.1 Managing Words
	4.2 Supporting Additional Grammatical Constructions
	4.3 Beyond CIC

	5 Trust and Auditing
	6 Case Study: Sorting and Multisets in VFA
	7 Related Work
	7.1 Categorial Grammars and Type Theory
	7.2 Natural Language for (Semi)Formal Specifications
	7.3 Controlled Natural Language Beyond Specifications
	7.4 Autoformalization

	8 Looking Forward
	Acknowledgments
	References

