
Panakos: Chasing the Tails for Multidimensional Data Streams

Fuheng Zhao
UC Santa Barbara

fuheng_zhao@ucsb.edu

Punnal Ismail Khan
UC Santa Barbara

punnalismail@ucsb.edu

Divyakant Agrawal
UC Santa Barbara

agrawal@cs.ucsb.edu

Amr El Abbadi
UC Santa Barbara

elabbadi@cs.ucsb.edu

Arpit Gupta
UC Santa Barbara

arpitgupta@ucsb.edu

Zaoxing Liu
Boston University

zaoxing@bu.edu

ABSTRACT

System operators are often interested in extracting different feature

streams from multi-dimensional data streams; and reporting their

distributions at regular intervals, including the heavy hitters that

contribute to the tail portion of the feature distribution. Satisfying

these requirements to increase data rates with limited resources is

challenging. This paper presents the design and implementation

of Panakos that makes the best use of available resources to report

a given feature’s distribution accurately, its tail contributors, and

other stream statistics (e.g., cardinality, entropy, etc.). Our key idea

is to leverage the skewness inherent to most feature streams in

the real world. We leverage this skewness by disentangling the

feature stream into hot, warm, and cold items based on their feature

values. We then use different data structures for tracking objects in

each category. Panakos provides solid theoretical guarantees and

achieves high performance for various tasks. We have implemented

Panakos on both software and hardware and compared Panakos

to other state-of-the-art sketches using synthetic and real-world

datasets. The experimental results demonstrate that Panakos often

achieves one order of magnitude better accuracy than the state-of-

the-art solutions for a given memory budget.

PVLDB Reference Format:

Fuheng Zhao, Punnal Ismail Khan, Divyakant Agrawal, Amr El Abbadi,

Arpit Gupta, and Zaoxing Liu. Panakos: Chasing the Tails for

Multidimensional Data Streams. PVLDB, 16(6): 1291 - 1304, 2023.

doi:10.14778/3583140.3583147

1 INTRODUCTION

Recent years have witnessed massive growth in Internet-connected

applications (e.g., YouTube and Spotify) and devices (e.g., smart-

watch, temperature sensors, programmable network switches). The

ubiquity of these applications and devices has lowered the threshold

for generating data. More concretely, updating an application to log

an additional event (e.g., click, skip, etc.) is straightforward. Simi-

larly, updating the packet-processing pipeline for programmable

network switches, such as Intel Tofino-based switches [31], to log

ingress (or egress) time for each network packet is trivial. The

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 6 ISSN 2150-8097.
doi:10.14778/3583140.3583147

consumers of these streaming data, such as application develop-

ers, network operators, and others, are interested in characterizing

various interesting events in (near) real-time from these multi-

dimensional data streams to drive future decisions. For example,

application developers are interested in understanding how the

average temperature (aggregated every one minute) is distributed

across different agricultural sensors based on various dimensions

such as location, device type, etc. Similarly, network operators are

interested in the distribution of the number of packets sent (or

received) across different hosts or TCP connections every few sec-

onds. In essence, they are interested in understanding how various

key statistics, aggregated at regular intervals, are distributed in the

multidimensional space.

These tasks often entail moving the data from a source (e.g., a

browser, a sensor network switch) to a centralized collector and

then using one-pass streaming algorithms to compute the aggre-

gate statistics and then reporting the distribution of these statistics

for different windows. Ideally, these tasks should be performed

closer to the source in bandwidth-constrained operational settings

to avoid the unnecessary movement of data, which can be pro-

hibitively expensive. For example, moving packets to a remote

collector is prohibitively costly even for high-speed networks, han-

dling hundreds of Gbps data rates [29, 47]. Similar trends are also

observed in sensor networks (e.g., Joltik [61]), where data transmis-

sion is power-hungry, and the frequent replacement of batteries is

costly. However, compared to well-provisioned centralized collec-

tors, data sources (e.g., switches, sensors) have limited computation

and memory resources. Most existing streaming algorithms can

either accurately calculate these aggregate statistics or report their

distributions while making the best use of limited resources. How-

ever, we are not aware of any existing work that do both.

This paper explores the design of a cost-effective data-processing

pipeline that processes the multidimensional data stream, and ac-

curately reports the feature distribution based on the metric values

and focuses on cumulative aggregation such as the count or fre-

quency associated with each feature. We aim to not only accurately

report the quantile summary of the distribution but also report the

contributors to the distribution’s tail such as items with frequencies

in the higher quantiles (e.g., 99𝑡ℎ percentile). Two observations

inspire our focus on the tail: (1) real-world data are intrinsically

heavy-tailed, and (2) identifying tail contributors is critical for many

data consumers. For example, network operators must identify vic-

tims of DDoS attacks to decide on mitigating actions [2].

Addressing these challenges and designing such a data-

processing pipeline is challenging. None of the existing solutions

are suited to the problem at hand. However, given that different

existing works are good at satisfying some of the requirements,

system operators end up using different algorithms/pipelines for

different tasks. For example, one to accurately capture the distribu-

tion, and another to accurately report the frequent items. However,

fine-tuning unrelated data sketches that share the same pool of

constrained resources is non-trivial [40, 62]. Moreover, given the

inherent challenges in identifying tails using relative quantiles, sys-

tem operators end up using a static threshold to identify heavy

hitters. However, as previous work [3] has shown, static thresholds

are unresponsive to distribution shifts, and their usage affects the

ability to report tail contributors accurately.

In this paper, we present the design and implementation of

Panakos that makes the best use of limited available resources

to summarize the feature distribution and identify tail contributors.

Panakos leverages the skewness inherent to most high-dimensional

feature streams in the real world to disentangle the feature stream

into cold, warm, and hot features based on their metric values and

uses a combination of data structures to track them. To the best of

our knowledge, Panakos is the first data sketch to accurately report

both the quantile approximation of a feature distribution and the

identity tail contributors, i.e., contributors to the tail portions of

the feature distribution in resource constrained-environments. Prior

approaches either address one of the problems or are inefficient

since cold and hot features are mixed. Our main contributions can

be summarized as follows:

• Design of a data-processing sketch, Panakos, that accurately

captures the frequency distribution of a data stream and reports

contributors to its tail in resource-constrained settings.

• Provide mathematical analysis of Panakos and discuss the trade-

offs between resources and accuracy.

• Implementation of Panakos for both general-purpose CPUs and

programmable switches/NICs.

• Comparison of the proposed systemwith existing solutions using

both synthetic and production datasets.

The paper is organized as follows. Section 2 provides the back-

ground and motivation. Section 3 introduces our proposed solution,

Panakos, discusses the rationale behind each component, and gives

intuitions on the improved performance by integrating these com-

ponents. Section 4 presents the mathematical analysis of Panakos.

Section 5 discusses the implementations of Panakos on different

platforms. Section 6 reports the experimental evaluations conducted

using synthetic and real-world datasets and compares Panakos to

state-of-the-art sketches. Finally, Section 7 summarizes our contri-

butions and concludes this work.

2 BACKGROUND AND MOTIVATION

2.1 Target Applications

Panakos provides application developers, system analysts, and net-

work operators with an end-to-end analytic engine capable of un-

derstanding different features over time. As examples of the types

of workloads and compute environments we seek to support, we

draw on two motivating use cases.

Sensor data analytics. Wireless sensors are increasingly de-

ployed across cities or rural areas to collect various metrics of inter-

est [39, 61]. Due to energy, storage, and communication constraints,

(a) Packet stream

(b) Feature stream

(c) Feature distribution

Figure 1: (a) Raw packet stream; (b) Extract Feature stream

using the counts of source IP; (c) Feature distributions. Red

cross(es) correspond to packets with source IP 92.160.2.154.

wireless sensor devices can only occasionally transfer small-sized

summaries to end hosts over some period of time. Panakos can

be used in such an environment to collect various statistics for

analysis and satisfy the constraints in the low-power environment.

In Section 6, we demonstrate Panakos’s high performance over

real-world sensor datasets.

Network monitoring. Network operators are interested in de-

fending their networks against a wide range of cyberattacks [22, 41]

while also optimizing the quality of service. They rely on streaming

analytic systems to monitor the network’s state [17, 69]. However,

developing systems that can support network analytic queries at

high data rates (e.g., 100 Gbps) is challenging. The rise of pro-

grammable switches [31] offers new opportunities to scale net-

work streaming analytics. Modern network streaming analytic sys-

tems [29, 40, 54, 63] use network hardware to scale query execution.

We consider deploying Panakos in such an environment. We aim

to make the best use of available data-plane resources to offload

most processing tasks to the programmable switch.

2.2 Problem Description

High-dimensional data streams. We consider multi-dimensional

data streams for analysis from diverse resource-constrained sources.

For the network streaming analytics [29, 40, 47], the data stream

is the raw packets in the network’s data plane, equipped with

limited memory and compute resources [31]. For a data stream

(𝜎), each data point contains a set of attributes (𝐴) and metrics (𝑀).

Here, the set of attributes corresponds to associated identifiers and

metadata, and metrics corresponds to key measurements. For the

network packet stream, the set of attributes typically includes the

Table 1: Panakos v.s. other solutions.

Solutions Feature Feature Tail Hardware Remark

Extraction Distribution Contributors Friendly

(1) KLL [32, 34, 66], DCS [48, 57, 67] ❍ ● ◗ ❍ Quantile Sketches require statistics

not exist in the raw stream.

(2) SpaceSaving [45, 56, 65], ASketch [52],

CocoSketch [64], Count-Min [14]

● ❍ ◗ ● Frequency Sketches only extract

feature and metrics from raw

stream

(3) MRAC [37], Elastic [62], FCM [55] ◗ ◗ ❍ ● Synthesis focus on the general pat-

tern and overlook the tail

(4) Panakos (ours) ● ● ● ● Navigate through the design space

to satisfy all requirements

packet’s header fields (e.g., sIP, dIP, etc.) and any additional meta-

information associated with the packet such as next-hop, virtual

LAN (VLAN) identifier, application identifier, etc. The set of metrics

includes various measurements associated with each packet, such

as the number of appearances, sojourn time, etc.

Feature streams. Typically, a given application is interested in

analyzing the characteristic of a subset of attributes of the data

stream. We refer to this subset as features. Next, we consider the

transformation of the raw (attribute, metric) data stream, i.e., 𝜎 :

(𝐴, 𝑀), into a feature stream, i.e., 𝜎𝜋 : (𝐴
′, 𝜋 (𝑀), 𝑤). We derive

this feature stream by applying function 𝜋 over metrics (𝑀) for

all elements with the same set of attributes, 𝐴′, where 𝐴′ ⊂ 𝐴,

within a window𝑤 . For the network streaming analytics case, the

feature stream can be the total number of bytes associated with

each source IP address (sIP) in a one-millisecond window. The

feature extraction function 𝜋 is sum, and the set of features (𝐴′) is

sIP, which is a subset of attributes (𝐴) in the raw packet stream.

Given the complexity of executing an arbitrary feature extraction

function (𝜋) on resource-constrained data sources, we focus on

the Count operator and then discuss Panakos’ generalization to

Sum and Average operators. We leave the extension of Panakos to

support more complex operators such as Median for future work.

Goal. Given this setup, our goal is to characterize the distribution

of some subset of attributes in each window. More specifically,

for each window, we aim to accurately report the feature quantile

distribution where the features are a set of attributes (e.g., sIP). We

also aim to report the anomalous data points for each window, i.e.,

ones that contribute to the tail portion of the feature distribution.

We specify these anomalous data points as ones that exceed a pre-

specified threshold,𝜓 . Note that the feature distribution changes

over time; thus, we specify tail features using eachwindow’s relative

threshold𝜓 . For instance, if𝜓 = .99, we report the features whose

metric value is greater than the 99𝑡ℎ percentile value. Figure 1a

illustrates an example of a high dimensional data stream from wide-

area network raw packets over three milliseconds. This stream has

a source IP address (92.160.2.154) with anomalously high packets

in the first two milliseconds. The x-axis is time, and the y-axis is the

hash values of the high dimensional attributes values. In Figure 1b,

the raw stream is transformed into a source IP feature stream by

applying the Count operator. The x-axis becomes the metric values,

and the y-axis becomes the source IP feature. Figure 1c depicts

the feature distribution in which the x-axis is the metric value and

the y-axis is the quantile value. The dot and dash lines show the

difference between using a static threshold and identifying the tail

contributors based on 𝜓 = .99, in which the static threshold can

not adapt to the change in distribution.

2.3 Limitations of Existing Solutions

The goal of our data processing pipeline is to (1) extract desired

features from the raw data stream and then, for each window,

(2) accurately report the quantile approximation of the feature

distribution and (3) identify anomalous data points, i.e., contribu-

tors to the tail portions of the feature distribution in (4) resource

constrained-environments. We are not aware of any existing so-

lution that satisfies all these four requirements to the best of our

knowledge. Table 1 divides existing work into three categories and

illustrates how they do not satisfy one of the four requirements.

Quantile sketches (#1). Quantile sketches [24, 27, 34, 43, 53, 57,

66] focus on making the best use of available (limited) memory to

report quantile summaries of a data stream. At first glance, one

may think quantile sketches would be strong candidates to address

these challenges. Since features are drawn from a high-dimensional

universe, the ordering among these features is not well defined.

In addition, quantile sketches cannot be used to extract features

(like aggregates based on counts). A naive solution would be to

store and compute the true statistics, e.g., storing all items and their

frequencies in a large hash table and then feeding this information

into quantile sketches to obtain the feature distribution. Storing and

computing the true statistics, e.g., finding the exact frequency of

each item, would require significant memory space. Moreover, the

efficient implementation of quantile sketches in resource-limited

hardware remains an open problem [33].

Frequency estimation sketches (#2). Frequency estimation and

frequent items sketches, including counter-based summaries [19,

35, 45, 46, 52, 65] and linear sketches [10, 14] extract important

features by accurately estimating each feature’s frequency and

identifying heavy hitters. However, frequency estimation sketches

alone cannot accurately approximate the entire feature distribution.

The main reason is that these sketches ignore or underestimate the

frequency of infrequent items, and infrequent items are necessary

for understanding the entire feature distribution. Frequency estima-

tion sketches can be implemented efficiently on resource-constraint

hardware [54, 64] after solving many challenges.

Synthesis (#3). The stream synthesis approach attempts to un-

derstand feature distributions using statistical tools. On the one

hand, previous work [42] has shown that by sampling features

from a stream and using the maximum likelihood estimation al-

gorithm to analyze the samples, the tail behavior can be directly

understood. However, these approaches overlook the overall fea-

ture distribution and are not data-driven since they require a priori

knowledge of that data packet distribution (e.g., Zipfian Distribu-

tion). Alternatively, [37, 62] have shown that by creating a small

sketch of the stream and then using the expected maximization

algorithm to parse the sketch, it is possible to capture the entire

feature distribution accurately. However, these approaches are in-

efficient for identifying the tail contributors, as the hot features

are mixed with the cold features. While the expected maximization

algorithm does not satisfy all our requirements, it helps synthesize

the general trend of the feature distribution. Later, we will show

how we leverage this algorithm to design Panakos.

2.4 Observations and Opportunities.

Feature streams are heavy-tailed. We now explore the proper-

ties of feature streams we aim to characterize with Panakos. Fig-

ure 1 (c) shows the heavy-tailed behavior exhibited by a feature

stream in each one-millisecond window. Specifically, we observe

that the metric, i.e., the number of packets for each source IP ad-

dress, is small for most IPs. However, a few features exchange a

very high number of packets. We also observe similar trends in sen-

sor analytics, and previous works have reported the heavy-tailed

behavior for a wide range of real-world applications [15].

Disentangle cold and hot items. Given the challenges associated

with the accurate estimation of heavy-tailed streams, separating

cold and hot items in the skewed distribution is desirable to esti-

mate infrequent and frequent features accurately. Previous work

proposed disentangling cold and hot items to better assess the size

of an equi-join [25]. Given the skewness in many real-world dis-

tributions, we have recently witnessed the development of several

algorithms/systems that leverage the same intuition to strike a

better balance among accuracy, update latency, and resource us-

age [52, 62, 68].

We observe that it is possible to leverage existing frequency

sketches to summarize cold and hot features separately. In particu-

lar, we can use linear sketches, such as Count-Min [14], on cold and

warm features, and use counter-based summaries, such as Space-

Saving [45], on hot features. While counter-based summaries use

optimal space to store information about the hot features, they do

not provide any insights into the cold features, as they always evict

the feature withminimum frequency tomake room for new arriving

data. On the other hand, while linear sketches provide insights into

all items in the universe using 𝑑 hash functions to map features into

𝑑 counters, they need more space to deliver similar performance

compared to the counter-based algorithms. Also, linear sketches

may fail with small probability, and cannot accurately identify the

hot features due to hash collisions between cold and warm features

with hot features. Thus, we conclude that linear sketches are more

suitable for tracking the numerous cold and warm features with the

additional advantage of using minimal memory accesses and requir-

ing no comparisons (comparisons are often expensive in hardware).

After filtering out the many cold and warm features using linear

sketches, counter-based approaches can directly identify the tail

contributors with a few number of comparisons (since cold items

are filtered out) while using optimal space.

3 PANAKOS

(a)

Figure 2: Panakos Architecture

3.1 Rationale

There are two main goals that Panakos aims to deliver: 1) summa-

rize the feature distribution, and 2) identify tail contributors based

on quantile threshold𝜓 . We start by observing the connection be-

tween Top-K and the tail contributors. Initially, if the cardinality,

which is the number of unique features in the windowed stream,

𝑐𝑎𝑟𝑑 , is known, then, the Top-K items are the tail contributors above

the relative threshold of 𝜓 = 1 − 𝐾
𝑐𝑎𝑟𝑑

. In Section 2.3, we identi-

fied that SpaceSaving [45] is ideal for identifying the heavy tail

contributors. However, the information missing from SpaceSaving

are, namely, the data stream cardinality, 𝑐𝑎𝑟𝑑 , and the cold and

warm features, which are needed to construct the entire feature

distribution. Therefore, additional data structures and algorithms

are needed to extract this information. The Linear Counting al-

gorithm [59] is commonly used to estimate the cardinality of a

windowed stream, as it uses small space and allows fast process-

ing. In Section 3.4.2, we show how Linear Counting can estimate

singleton (features that only appear once) features by using 2 bits

per counter. In addition, real-world data streams are often skewed

where singletons and doubletons are a large fraction of all features.

While singletons and doubletons can be identified using just 2 bits,

warm features require more bits per counter to store their metric

value. For a fixed memory budget, increasing the number of bits per

counter will decrease the number of vector entries. Thus, we de-

cided to use the Count-Min sketch, which consists of fewer entries

but more bits per counter compared to a single array. Count-Min

can also 1) obtain information on warm features, and 2) filter out

cold and warm features. Although Count-Min has fewer entries in

each counter vector, it uses multiple independent hash functions

and counter vectors to reduce the probability of hash collisions and

hence deliver satisfying results.

3.2 Basic Panakos Data Structures

As shown in Figure 2, Panakos consists of three components to dis-

entangle cold, warm and hot features and to provide more accurate

Algorithm 1: Panakos Stream Processing Algorithm

1 for 𝑖𝑡𝑒𝑚 from stream do

2 𝑒 = extract(𝑖𝑡𝑒𝑚);

3 V = bitsVector[hash(𝑒)];

4 if V < 2 then

5 bitsVector[hash(𝑒)] += 1;

6 return ;

7 else if V == 2 then

8 bitsVector[hash(𝑒)] += 1;

9 V = 2 + CM.query(𝑒) ;

10 if V < 1 + 2𝑇 then

11 CM.insert(𝑒) ;

12 return ;

13 SpaceSaving.insert(𝑒);

14 return ;

15 end

estimates of the feature distribution, tail contributors, and other

statistics. While each component is used for different purposes, the

components are integrated coherently. The bitmap stage is a vector

of 2-bit counters, followed by the Count-Min stage, and finally the

SpaceSaving stage.

Bitmap Stage. The first bitmap stage is responsible for tracking

the number of singletons (𝑛1), doubletons (𝑛2), and the cardinality

of the current window stream. The bitmap uses 2 bits per counter

entry for the following reasons: (1) We first note that one bit is

not enough to differentiate a singleton feature from features with

more than one occurrence. Using 1 bit, if a counter is flipped to

1, it is not clear if the counter is flipped because it encountered

a singleton or otherwise. We need at least 2 bits, to be certain if

a counter has value 1 then it must be a singleton which caused

the counter to increment from 0 to 1. (2) Since 2-bit counters are

allocated, we can use the available bits to maintain information

not only on the number of singletons, 𝑛1, but also the number of

doubletons, 𝑛2. (3) When a counter in the bitmap entry is 3, this

indicates that the counter is overflowed. The reason that we need

this overflow state is to avoid overestimating an item’s frequency

by too much, as without an overflow state, one can not be certain

if the item proceeded to the next stage (i.e, a Count-Min Sketch) or

not. Even if a feature is never inserted into Count-Min, Count-Min

may largely overestimate the count due to hash collisions.

Count-Min Stage. Warm features are stored in the Count-Min

with 𝑇 bits counters and the maximum counter value is 2𝑇 − 1.

Count-Min is an ideal candidate to track warm features from 𝑛3 to

𝑛2+2𝑇 , as Count-Min projects the features into small counter vectors,

and by using multiple vectors, it obtains more accurate estimates

of the metric values. In addition to small space, Count-Min has two

important properties, namely supporting high update throughput

and causing no underestimation, which helps with processing fast

streams and understanding tail behaviors [13]. Furthermore, Count-

Min does not need to keep an overflow state as the next stage,

SpaceSaving, stores each feature’s identity and guarantees that if a

feature is never inserted, its count would be zero.

SpaceSaving Stage. The final stage is a SpaceSaving summary

to track all the heavy features that pass through the previous two

stages. SpaceSaving stores both the feature’s identity and estimated

frequency while using optimal minimal space. Since each feature’s

identity is directly known, we can then be certain that these fea-

tures lie in the heavy tail. To target specific hardware such as

programmable switches, we use CocoSketch [64], an extension of

SpaceSaving optimized for computation and memory accesses on

special hardware.

3.3 Panakos Update Workflow

Initially, Panakos initializes all counter values to zero and the de-

sired feature dimensions are defined by the user. For instance, in

network monitoring applications, a representative feature can be

defined as a 5-tuple, i.e, source IP address/port number, destination

IP address/port number, and the protocol. Panakos digests arriving

data packets in three logical steps, as shown in Algorithm 1:

Step 1: Extract the feature of interest, 𝑒 , from each arriving data

item, and use a uniform hash function ℎ to map 𝑒 to ℎ(𝑒), an index

in the 2-bit bitmap. If the counter value stored at index ℎ(𝑒) equals

3, which is already in an overflow state, then forward 𝑒 to the next

step. If the counter value stored at index ℎ(𝑒) equals 2, then the

counter is incremented to 3 and 𝑒 is forwarded to the next step.

Otherwise, increment and return.

Step 2: Update Count-Min with the forwarded feature 𝑒 . Count-

Min maps feature 𝑒 using 𝑑 hash functions and increment the cor-

responding 𝑑 counters. If a counter value is 2𝑇 − 1, which is the

maximum possible value, then the increment is ignored. If all 𝑑

counters are 2𝑇 − 1, then propagate the update to the next step.

Step 3: Update SpaceSaving using feature 𝑒 . If 𝑒 is monitored

in the SpaceSaving structure, then increment the counter associ-

ated with the monitored key 𝑒 . However, if 𝑒 is not monitored,

SpaceSaving replaces the item with the minimum count by 𝑒 . This

replacement operation uses 𝑂 (log𝑘) number of comparisons in a

standard min-heap implementation of SpaceSaving where 𝑘 is the

size of SpaceSaving. In addition, SpaceSaving incurs large estima-

tion errors when hot items are replaced by cold items. Panakos

improves SpaceSaving’s estimates because, with the filtering stages

in Steps 1 and 2, cold items rarely reach SpaceSaving, hence reduc-

ing the update latency and enhancing estimation accuracy.

3.4 Feature Distribution

In this section we discuss how Panakos derives the feature distri-

bution of a data stream. In particular, how Panakos provides an

approximate quantile approximation on the distribution of feature

metric values. We start by estimating the overall cardinality and the

number of singletons and then develop the necessary machinery

to estimate the cumulative quantile value of larger metric values.

3.4.1 Cardinality Calculation. Panakos’ 2-bit bitmap vectors can

provide accurate estimates of singletons and approximate the car-

dinality of the feature stream. To approximate the cardinality of

the feature stream, 𝑐𝑎𝑟𝑑 , we use the popular Linear Counting al-

gorithm [59]. It has been shown in previous studies that Linear

Counting can provide accurate estimates with around 1% standard

error using less than 12 · 𝑐𝑎𝑟𝑑 bits while achieving fast processing

time [30, 44, 63]. The linear counting algorithm maintains a vector

of length𝑚 and uses a uniformly random hash function to map a

feature into an index in the vector. After processing the data stream,

the probability that an entry in the vector equals 0 is (1− 1/𝑚)𝑐𝑎𝑟𝑑 .

Hence, the estimator for 𝑐𝑎𝑟𝑑 is 𝑐𝑎𝑟𝑑 =𝑚 · 𝑙𝑛(𝑚𝑚0
) where𝑚0 is the

number of zero entries in the vector.

Panakos Optimizations. 𝑐𝑎𝑟𝑑 is an estimate of 𝑐𝑎𝑟𝑑 . Since high-

frequency features are directly stored in Panakos, to improve the

cardinality estimation, we calculate the cardinality for cold fea-

tures (𝑐𝑎𝑟𝑑𝑐𝑜𝑙𝑑) and hot features (𝑐𝑎𝑟𝑑ℎ𝑜𝑡) separately. 𝑐𝑎𝑟𝑑ℎ𝑜𝑡 is

heuristically estimated as the number of frequent features in the

SpaceSaving data structure. 𝑐𝑎𝑟𝑑𝑐𝑜𝑙𝑑 is estimated by resetting all

vector entries associated with these large features to zero and us-

ing the linear counting algorithm to estimate the number of cold

features in both the 2-bit bitmap vector and the count-min data

structures. Hence, the final cardinality is obtained by summing

𝑐𝑎𝑟𝑑𝑐𝑜𝑙𝑑 and 𝑐𝑎𝑟𝑑ℎ𝑜𝑡 .

3.4.2 Singletons Estimation. Estimating the number of singletons is

an interesting statistic for cold features. In real-world data streams,

a large fraction of the features only appear once [23] and estimating

the number of singletons is challenging. In previous work [9], the

number of singletons is approximated by sampling. However, this

approach requires the sampling rate to be around 1% to provide an

accurate approximation, which can cause significant overheads as

features often need several bits to represent. We adopt Kumar et

al. [37] approach, which was inspired by Linear Count, and provides

an accurate estimator for 𝑛1 using a vector of constant length𝑚 and

a uniformly random hash function. After incrementing all vector

entries based on the input stream, the number of singletons can

be estimated directly based on the estimated cardinality, 𝑐𝑎𝑟𝑑 , and

the number of entries with value one, denoted as 𝑚1, in which

𝑛1 =𝑚1𝑒
�𝑐𝑎𝑟𝑑/𝑚 .

3.4.3 Challenges with 𝑛𝑖≥2. While singletons can be directly esti-

mated, doubletons and beyond are harder to estimate. If a vector

entry has a value of 1, then it must be a singleton feature mapped

into this entry. However, if a vector entry has a value of two, then

there are two cases: 1) it is a result of a doubleton, or 2) two single-

tons hashed into the same location by chance. Moreover, for warm

features, the counter values can span a wide range, and with larger

values, there can be more erroneous instances due to hash colli-

sions. Quantiles of feature distribution are cumulative, and hence

errors are accumulated resulting in the potential for large estima-

tion errors. To tackle this challenge, we use the maximum likelihood

estimation described in Section 3.4.4 to derive information about

𝑛2 and beyond.

3.4.4 Expectation Maximization. While Section 3.4.2 shows 𝑛1 can

be directly approximated, this method can not be generalized to

estimate 𝑛𝑖 for 𝑖 > 1. The expectation maximization (EM) algo-

rithm [20] is an iterative algorithm that derives the maximum like-

lihood estimation of the feature distribution. EM has been widely

applied in many areas [18, 21, 37], and is known for its convergence

to an empirically good estimator [60]. We use the EM algorithm to

estimate the distribution of cold features stored in the 2-bit bitmap

and the Count-Min sketch of 𝑇 bits. The 2-bit bitmap provides

information on 𝑛1 and 𝑛2, and the Count-Min sketch provides infor-

mation on 𝑛3 to 𝑛1+2𝑇 . Notice, with a limited space budget, different

features may hash to the same entry in the bit vector and Count-

Min, and they only provide a partial view of the feature distribution.

EM can then maximize the likelihood of the feature distribution

with respect to the unobserved hash collisions. For hot features

with large frequencies above or equal to 𝑛1+2𝑇 , this information is

contained in SpaceSaving.

The EM algorithm is executed in iterations of expectation and

maximization steps. The expectation step of a given iteration uses

the feature distribution from the previous iteration to guess the

expectation of the log-likelihood of hash collisions. Note since

hashing is uniform, the collision pattern can be approximated using

Poisson distributions [7]. The maximization step computes the most

likely new feature distribution to maximize the expectation of the

log-likelihood of hash collisions. The output of the maximization

step also serves as an input to the expectation step in the next

iteration. EM repeats over a fixed number of iterations such as 10

iterations to derive an accurate approximation. In each iteration 𝑖 ,

the EM algorithm takes in a pair of 𝑛𝑖−1, 𝜙𝑖−1 and outputs a new

pair of 𝑛𝑖 , 𝜙𝑖 . The approximate feature distribution outputted by

iteration 𝑖 consists of 𝑛𝑖 = {𝑛𝑖1, 𝑛
𝑖
2, . . .} and 𝜙

𝑖 which is the feature

distribution. The initial 𝑛0 and 𝜙0 can be derived directly assuming

there are no hash collisions in the observed counter values.

More details of the correctness of the EM algorithm are shown

in [37] 1. In addition, the computational complexity of running the

EM algorithm is high. For an observation with a counter value of 𝑗 ,

the time complexity of EM is 𝑂 (𝑗3). In practice, researchers heuris-

tically reduce the complexity by limiting the number of different

features hashing into the same entry to 7. Hence, EM often ignores

hash collisions for large counter values. In Panakos, by disentan-

gling cold and hot items, the computation complexity is reduced as

the tail contributors are tracked solely based on SpaceSaving.

3.4.5 Panakos Optimizations for Feature Distribution. In Panakos,

we first derive the accurate cardinality of cold features, 𝑐𝑎𝑟𝑑𝑐𝑜𝑙𝑑 ,

which reflects the cardinality of features stored in the 2-bit bitmap

and Count-Min, as described in 3.4.2. Since the 2-bits vector is a

single array, the 2-bits vector can be directly used as an input to the

EM algorithm to obtain the number of doubletons (𝑛2). We can then

subtract 𝑛1 and 𝑛2 to obtain the number of unique features captured

by Count-Min. In addition, since Count-Min usually contains mul-

tiple rows, we need to transform Count-Min into a single vector as

the input to the EM algorithm which requires a single vector. The

transformation takes the average of the number of observations for

each counter value except for the minimum and maximum counter

values. The average of all the counter-value observations is taken to

minimize the variance in the hash function randomness and obtain

the most likely initial guess for the feature distribution. However,

for the minimum and maximum counter values, an alternative ap-

proach is taken based on the following observation: Consider a

Count-Min with two counter vectors that use two hash functions

to map each feature into the corresponding vector, for example, the

two counter vectors are [1, 1, 3, 2] and [1, 2, 2, 2]. Let’s first consider

the minimum metric value. From the first counter vector, we can

infer that there are at least two distinct features with a metric value

of one, whereas the second vector implies at least one feature with

a metric value of one. Hence for the minimum metric value, we

1The EM algorithm is described in Section 4.2 in [37].

should rely on the maximum number of appearances. Next, let’s

consider the maximum metric value. While the first vector tells us

that there is a feature that might have appeared 3 times, based on

the second vector we know that cannot be the case. If there exists

a feature that appeared 3 times, then the second vector must have

an entry with a counter value larger than or equal to three. Hence

for the maximum metric values, we should rely on the minimum of

the maximum metric values in all vectors.

3.5 Frequency Estimation

Algorithm 2: Panakos Frequency Estimation for 𝑒

1 V = bitsVector[hash(𝑒)];

2 if V < 3 then

3 return V ;

4 V = 2 + CM.query(𝑒) ;

5 if V < 1 + 2𝑇 then

6 return V;

7 return 1 + 2𝑇 + SpaceSaving.query(𝑒);

Unlike the cumulative feature distribution, frequency estimation

is point-wise and aims to estimate the frequency of a feature 𝑒 .

Hence, errors in frequency estimation are not cumulative and the

point-wise error is often small. Panakos leverages the separation of

cold items and hot items to deliver better estimation, in which the

frequency of the cold items is captured by the bit vector and Count-

Min, and the frequency of hot items is captured by SpaceSaving. The

query operation on 𝑒 involves three steps, as shown in Algorithm 2:

Step 1: Use a uniform hash function ℎ to map 𝑒 to ℎ(𝑒), an index

in the bit vector. If the counter value stored at indexℎ(𝑒) is less than

3 (3 indicates the counter is overflowed), then report the counter

value as the estimated frequency. Otherwise, forward the query to

the next step.

Step 2: Query the Count-Min sketch with 𝑒 . If the sum of 2 (due

to the two initial hashes to the bit map) and the query result is less

than 1 + 2𝑇 , report the sum as the estimated frequency.

Step 3: Query the SpaceSaving with 𝑒 , and report the sum of

1+2𝑇 (due to prior hashes to the bitmap and the Count-Min sketch)

and the query result as the estimated frequency.

3.6 Identifying Tail Contributors

Instead of relying on a static threshold, such as in the Top-K prob-

lem, the𝜓 heavy tail report important features based on a relative

quantile threshold 𝜓 , in which setting 𝜓 = .99 means to find the

top 1%. Tail contributors can be efficiently identified by consolidat-

ing feature distribution and frequency approximations. First, the

given quantile threshold𝜓 is mapped into a frequency threshold,

ℱ, based on the approximated feature distribution. If the frequency

threshold, ℱ, is larger than 1 + 2𝑇 , then all heavy tail features are

stored in SpaceSaving. Features stored in SpaceSaving with an esti-

mated frequency larger than ℱ are the heavy tail features. On the

other hand, if the frequency threshold,ℱ, is less than 1 + 2𝑇 , the

heavy tail features consist of all features stored in the SpaceSaving

and some additional features from the Count-Min Sketch.

3.7 From Count to Sum and Average

In this subsection, we discuss how Panakos can be further general-

ized to support Sum and Average operators. Streams may contain

weighted metrics such as purchase quantity or importance [11].

To handle a feature with weight𝑤 , we can treat the weighted in-

sertions as 𝑤 inserts of a single feature. Although this approach

is correct, it would undesirably increase the update times. A more

efficient approach is to process the weights in a single pass. For-

tunately, the data structures used in Panakos are already known

to support the Sum of weighted inserts [14, 45, 56, 64]. As a result,

for weight metrics, Panakos maintains the original logic, and if

the weights exceed the counter capacity in the current stage, then

the remaining weights can be incrementally applied to subsequent

stages.

Supporting the Average statistic is challenging. Although the

sum and count metrics have tight additive-error guarantees, their

division can still incur large errors. To the best of our knowl-

edge, we are unaware of any existing data sketches supporting

the average operator. To support the Average operator, we propose

two heuristic approaches i) data-independent Ratio Distribution,

and ii) data-dependent Panakos with Alignment. First, we intro-

duce the data-independent Ratio Distribution approach. In essence,

the average of an item is its sum divided by its count. Assume

the count and sum of any item are two random variables drawn

from two independent distributions, i.e, 𝜙𝑐𝑜𝑢𝑛𝑡 and 𝜙𝑠𝑢𝑚 , then we

can compute the density distribution of the average metric, 𝑎, as

𝜙𝑎𝑣𝑔 (𝑎) =
∑∞
𝑐=1 𝑐𝜙𝑐𝑜𝑢𝑛𝑡 (𝑐)𝜙𝑠𝑢𝑚 (𝑐 · 𝑎), where 𝑎 is the average met-

ric, 𝑐 is the count metric, and 𝑐 ·𝑎 is the summetric. Now, we can use

two independent Panakos sketches to approximate both 𝜙𝑐𝑜𝑢𝑛𝑡 and

𝜙𝑠𝑢𝑚 . By approximating the distributions and assuming these two

metrics are independent, we obtain the approximated distribution

for the average.

Our second data-dependent method, Panakos with Alignment,

uses the sum metric to guide the placement of the count metric. On

one hand, Panakos with Alignment includes two bitmap and Count-

Min stages corresponding to the sum and count operators, and these

data structures share the same set of hash functions (to ensure a

feature’s count and weights share the same counter index). On the

other hand, Panakos with Alignment uses one single SpaceSaving

stage with one extra field that maintains (feature, weight, count)

tuples. In addition, the SpaceSaving update algorithm takes (feature,

weight, 𝑐 = 1) as parameters. Note the count of a new insertion

is always one, whereas the weight may vary. The update logic for

SpaceSaving follows the same procedure as described in Section 3.3

Step 3, and the only additional step is, depending on which tuple is

modified due to the inserted weight, its count field which is also

increased by one. From the weights of the insertions, we can classify

this insertion as cold, warm, or hot. Based on the cold, warm, or hot

classification, we aim to place the count in the bitmap, Count-Min,

or SpaceSaving stage, and, in case the counter reaches its capacity,

the count will be stored in the next stage. The intuition is that

to compute accurate average information, we need to place the

count of the feature corresponding to its weights such that each

feature’s weight and count are near each other. Empirically, we find

the alignment strategy produces accurate approximations.

4 PANAKOS ANALYSIS

In this section, we analyze Panakos’s theoretical guarantees for

understanding the general feature distribution of a data stream and

identifying the tail contributors.

4.1 Panakos Feature Distribution Properties

We argue that Panakos provides more accurate feature distributions

when using larger space. Panakos relies on the EM algorithm to

derive the feature distribution of a data stream. The EM algorithm

is well-studied as a maximum likelihood estimator. Asymptotically,

the EM algorithm provides an unbiased estimation of the feature

distribution [4]. Since the derived feature distribution from the EM

algorithm is unbiased, we can analyze Panakos based on the esti-

mation variance. For a fixed number of observations, the minimum

variance of a maximum likelihood estimator is bounded by the well-

knownCramer-Rao bound [16, 49], which states that the variance of

any maximum likelihood estimator is lower bounded by the inverse

of the Fisher information. The Fisher information [51] can be seen

as the amount of information that a set of observable data points

(the counter values) stores about the unknown distribution (feature

distribution). By increasing Panakos’ space budget, Panakos can

thus store more observations. As a result, the Fisher information

will increase, which is then translated into a finer lower bound

for the variance. Hence increasing the space budget for Panakos

improves the estimated feature distribution that Panakos provides.

Moreover, the feature distribution satisfies two constraints,

namely
∑
𝑖≥1 𝜙𝑖 = 1 and ∀𝑖, 0 < 𝜙𝑖 < 1. It has been shown in [26]

that constraints on the estimated distribution increase the Fisher

information. The Fisher information can be calculated from the ob-

servations seen in the sketch and hence with a larger sketch size and

more observations, the Fisher information will increase [42, 50, 58].

Hence, the additional constraints on the feature distribution in-

crease the available information, thus reducing the lower bound on

the variance, and ensuring more accurate estimates of the feature

distribution given the same amount of space.

4.2 Analysis of Tail Contributors

To identify the tail contributors given the relative threshold𝜓 , the

procedure discussed in Section 3.6 consists of two steps: 1) use the

feature distribution to map a quantile threshold,𝜓 , into a frequency

thresholdℱ, and 2) report all features with frequencies larger than

or equal to ℱ. In Section 4.1, we argued that Panakos’s feature

distribution is unbiased and minimizes the variance when using

more space. In this section, we focus on the second step and provide

an analysis of Panakos’ estimate of a feature’s frequency.

Estimating the Number of False Positives. We observe that

filtering out small and warm features can improve the performance

of Count-Min and SpaceSaving as their estimation error depends

on the number of features they digest. The bitmap of 2-bit counters

and Count-Min of 𝑇 -bit sketch can be seen as a counting Bloom

filter [12] whose function is to filter out the small and warm fea-

tures. The bitmap component is a Bloom filter that uses one hash

function and the Count-Min component is equivalent to a Bloom

filter using 𝑂 (𝑙𝑜𝑔 1
𝛿
) hash functions where 𝛿 is the probability of

Count-Min having a high estimation error. To analyze the false

positive rate of reporting cold features as hot features, we assume

the features in the stream are ordered randomly [28]. Under the

random order assumption, a counting Bloom filter with𝑚 entries,

𝐻 hash functions, and after digesting a windowed stream with 𝑁

features, the false positive rate of classifying features with metric

values less than 1 + 2𝑇 as hot features is approximate:

𝐹𝑃𝑅(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝐻, 𝑁 ,𝑚) = (1 −
∑︁

𝑙≤𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑏 (𝑙, 𝐻𝑁, 1/𝑚))𝐻 (1)

where 𝑏 (𝑙, 𝐻𝑁, 1/𝑚) =
(𝐻𝑁
𝑙

) 1
𝑚
𝑙
(1 − 1

𝑚)𝐻𝑁−𝑙 is the binomial dis-

tribution [12, 36].

Based on Equation 1, the 2-bit bitmap with one hash function and

𝑚𝑏𝑚 counter entries has a false positive rate (denoted as 𝐵𝑀𝑓 𝑝𝑟)

of not classifying features with a metric value less or equal to two

as small features is:

𝐵𝑀𝑓 𝑝𝑟 = 1 −

2∑︁

𝑖=1

𝑏 (𝑖, 𝑁 , 1/𝑚𝑏𝑚) (2)

Hence, the approximate number of features that proceed from the

first stage to the second stage can be approximated as:

𝑁𝑀𝑒𝑑𝐻𝑣𝑦 = 𝐵𝑀𝑓 𝑝𝑟 · (𝑛1 + 2𝑛2) +
∑︁

𝑖≥3

𝑖 · 𝑛𝑖 − 𝑠𝑢𝑚(𝐵𝑀) (3)

where some singletons and doubletons may encounter false positive

cases and 𝑠𝑢𝑚(𝐵𝑀) is the number of features remaining in the 2-bit

bitmap.

Similarly, we can calculate the false positive rate of Count-Min,

with 𝐻 hash functions,𝑚𝑐𝑚 counters, and a metric threshold of

2𝑇 − 1 using T bits per counter, as

𝐶𝑀𝑓 𝑝𝑟 = (1 −

2𝑇 −1∑︁

𝑖=1

𝑏 (𝑖, 𝐻𝑁𝑀𝑒𝑑𝐻𝑣𝑦, 1/𝑚𝑐𝑚)𝐻 . (4)

Let 𝑠𝑢𝑚(𝐶𝑀𝑟𝑜𝑤) be the sum of counter values in one of the

Count-Min vectors (all vectors in Count-Min have the same sum),

and then let 𝑁𝑟𝑒𝑚𝑎𝑖𝑛 = 𝑠𝑢𝑚(𝐵𝑀) + 𝑠𝑢𝑚(𝐶𝑀𝑟𝑜𝑤) where 𝑁𝑟𝑒𝑚𝑎𝑖𝑛
represents the number of features remaining in both the 2-bit

bitmap and Count-Min. Hence, we can calculate the number of

features inserted into SpaceSaving as:

𝑁𝐻𝑣𝑦 = 𝐶𝑀𝑓 𝑝𝑟 (𝐵𝑀𝑓 𝑝𝑟 (𝑛1+2𝑛2)+

1+2𝑇∑︁

𝑖=3

𝑖 ·𝑛𝑖))+
∑︁

𝑖≥1+2𝑇

𝑖 ·𝑛𝑖−𝑁𝑟𝑒𝑚𝑎𝑖𝑛

(5)

Tail Contributors Accuracy. Overestimating a feature’s fre-

quency has been shown to be a positive property in identifying

interesting features based on frequency thresholds [13]. We ob-

serve that Panakos never underestimates a cold feature’s frequency

due to the hash collisions of different features in the 2-bit bitmap

and Count-Min sketch. In addition, Panakos also provides similar

properties for the hot features.

Lemma 1. Panakos never underestimates the frequency of a moni-

tored tail feature.

Proof. Panakos’ frequency estimation algorithm has three

stages, i.e., bitmap, Count-Min, and SpaceSaving. The bitmap can

only overestimate an item’s count due to hash collisions. In addi-

tion, Count-Min and SpaceSaving are known to have the property

of overestimation [13]. Since all stages never underestimate a mon-

itored tail item’s frequency, it is clear that Panakos inherits the

property of one-sided error. □

Frequency Estimation Guarantees. We assume the features in

a data stream are randomly ordered and further utilize the analysis

shown in Section 4.2 to provide different error guarantees for the

frequency estimation of the cold, warm, and hot features stored in

different stages. As shown in Algorithm 2, the estimated frequency

is reported from one of three stages. Depending on the stage, the

frequency error guarantees are slightly different:

Bitmap Stage: The feature’s frequency is reported based solely

on a 2-bit bitmap. This frequency is at most off by 2.

Count-Min Stage: The feature’s frequency is reported based on

Count-Min. This frequency is off by 2 + 𝜖𝑁1 with high probability

1 − 𝛿 , and is at most off by 2𝑇 .

SpaceSaving Stage: The feature’s frequency is reported based

on SpaceSaving with 𝐾 counters. The frequency is at most off by

2𝑇 +
𝑁2
𝐾 .

5 HARDWARE IMPLEMENTATION

In this section, we describe the hardware implementation of

Panakos on Intel Tofino switch [31].

PISA programming model. In contrast to conventional switches,

protocol-independent switch architecture (PISA) switches offer pro-

grammable parsing and customizable packet-processing pipelines,

as well as general-purpose registers for stateful operations [6].

These features provide opportunities to realize flexible data (packet)

processing at line rate (i.e., order of nanoseconds). Developers use

the P4 language [5] to support user-defined packet headers, specify

the matching fields and types (e.g., exact, range, and ternary match-

ing), and configure supported actions (e.g., CRC32 hash, header field

modification, register read/write via arithmetic logic unit (ALU),

arithmetic operations, and metering).

P4 Implementation. We use the Tofino switch’s stateful regis-

ters to implement Panakos’s three critical data structures. More

concretely, we implement the bitmap and Count-Min using mul-

tiple register arrays with different CRC hash functions. When a

packet arrives at the switch, it will update the corresponding hash-

indexed counters stored in the registers using ALUs. We adopt the

hardware-friendly CocoSketch [64], an extension of SpaceSaving.

It reduces the number of memory accesses for resource-constraint

hardware. Lastly, we add a cloning stage to clone a packet using

Tofino’s mirror function and send the cloned packet to the control

plane for offline analysis. The cloned packet contains information

about counter values from Bitmap, Count-Min, and CocoSketch.

With the cloning functionality, hardware-friendly Panakos ensures

that the original packet remains unaffected.

Latency Improvement. The hardware implementation is a P4

program running on a Tofino switch while the software implemen-

tation is a python program running on a server with 2 Intel Xeon

Silver 4214R Processor 12-Core 2.4GHz CPU and 192 GB memory.

Panakos’ hardware implementation is much (15x) faster than the

software one. More concretely, an insert operation takes around 5-6

microseconds in software implementation and around 400 nanosec-

onds in hardware. This result demonstrates Panakos’ suitability for

network monitoring applications.

6 EVALUATION

This section demonstrates that Panakos outperforms existing state-

of-the-art solutions. More concretely, for given memory resources,

it offers better accuracy in (i) reporting the feature distribution;

(ii) identifying the tail contributors; and (iii) extracting essential

statistics, such as frequency, cardinality, and entropy, from the raw

data stream. we demonstrate the generalizability of observed gains

across different datasets and configurations. While we focus on the

Count operator, we also provide experimental results for the Sum

and Average operators for approximating feature distribution and

identifying tail contributors.

6.1 Experimental Setup

For accuracy-related evaluation, we implement all sketches using

Python as it enables faster prototyping and offers good readability.

For Panakos, we use the standard priority queue data structure to

implement the SpaceSaving stage instead of the linked-list data

structure proposed in the original paper. Using a priority queue

to implement SpaceSaving saves pointer space and avoids random

memory accesses. The experiments compare the software imple-

mentation of Panakos to other state-of-the-art sketches:

• MRAC [37]: MRAC is the seminal statistical summary technique

that uses the EM algorithm to approximate the entire feature

distribution.

• CocoSketch [64]: CocoSketch is an extension of SpaceSav-

ing [45, 56, 65] with implementations on software and hardware

platforms. CocoSketch achieves state-of-the-art performance in

estimating a feature’s frequency and identifying heavy features.

• ElasticSketch [62]: ElasticSketch can answer many statistical

questions such as feature distribution. It tracks the heavy features

first and then uses Count-Min to summarize the cold features.

• FCMSketch [55]: FCMSketch is an extension of Count-Min.

It imposes a perfect tree hierarchical structure over multiple

Count-Min sketches to extract feature distributions and other

statistics.

Evaluation Metrics. We use the following three metrics to quan-

tify accuracy.

• MaximumQuantile Error (MQE)measures the accuracy of the

feature distribution in the quantile domain. MQE is themaximum

deviation among all quantiles, also known as the Kolmogorov-

Smirnov divergence [8], in which MQE is𝑚𝑎𝑥
|𝐹 |∞
𝑖=1 (𝑎𝑏𝑠 (𝜙𝑖 −𝜙𝑖)).

• Average Relative Error (ARE) evaluates a sketch’s perfor-

mance in the frequency domain. ARE is 1
|Υ |

∑
𝑥 ∈Υ

|𝑓 (𝑥)−𝑓 (𝑥) |
𝑓 (𝑥)

,

where Υ is the set of all quantiles in a feature distribution or the

set of all unique features when estimating frequencies.

• F1 score is the harmonic mean of the precision and recall

(2 ·
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙

). We use the F1 score to evaluate the per-

formance of each sketch in identifying the tail contributors.

Datasets We use one synthetic and two real-world datasets for

evaluation.

• Zipf Distribution: We use this synthetic dataset to demon-

strate how well Panakos performs for distributions with varying

(a) CAIDA Quantile Error (b) Sensor Quantile Error (c) CAIDA Metric Error (d) Sensor Metric Error

Figure 3: Accuracy of feature distribution approximation on real-world datasets with varying space budgets

skewness. Specifically, we curate multiple datasets with vary-

ing skewness. For each dataset, we draw the elements from a

bounded universe such that their frequencies follow the Zipf

Law [70], in which the frequency of an element with rank 𝑅:

𝑓 (𝑅, 𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝑅𝑠 . Here, 𝑠 indicates skewness, which is different

for different datasets. Unless specified otherwise, we use 𝑠 = 1.0

for our experiments. Typically, real-world data tend to have skew-

ness varying from 0.7 to 1.2, such as IP addresses in network

traces, file transmission times, and webpage accesses [15].

• CAIDA Dataset: The CAIDA dataset contains anonymized and

unsampled packet traces [1], which were captured from a large

ISP’s backbone link between Seattle and Chicago. We use this

dataset to demonstrate howwell Panakos performs in count, sum,

and average operators for network monitoring use cases. We

consider the most common feature, one that reports the metric

values for each connection2, for evaluation.

• SensorScope: The Sensorscope dataset contains environmental

data from past SensorScope deployments. We use this dataset

to demonstrate how well Panakos performs for environmental

monitoring use cases. We consider the feature that reports the

number of status packets for a group of sensors that share a

set of transmission power, primary voltage, global current, and

energy source attributes.

To ensure that we can compare results across different datasets, we

consistently use one million distinct items from each datasets.

Parameter Settings. For a fair comparison, we must decide on

appropriate resource allocation policies for different solutions.

ElasticSketch. ElasticSketch uses a hash table and a Count-Min

sketch to track heavy and cold items. We use the heuristics de-

scribed in [62] to decide how much memory to allocate to each data

structure. Specifically, we assign 25% of the available memory (𝐵)

to the hash table and the rest to the Count-Min sketch.

FCMSketch. FCMSketch imposes a perfect tree structure over mul-

tiple Count-Mins. We use the heuristics described in [55] to set

the parameters. Specifically, each Count-Min uses two rows and

there are three Count-Mins, in total, using 8, 16, and 32 bits per

counter and the tree has a branching factor of 8 which means the

first Count-Min has 8 times more counters than the second Count-

Min and 64 times more counter than the third Count-Min.

Panakos. Panakos uses bitmap, Count-Min, and SpaceSaving data

structures to track cold, warm, and hot items. Let {𝑏𝑚, 𝑐𝑚, 𝑠𝑠} de-

note the percentage of the memory allocated to the 2-bit bitmap,

2Network operators use five header fields, i.e., sIP, dIP, sPort, dPort, and proto, to
group packets associated with a network connection.

Count-Min with 4 bits per counter, and SpaceSaving stages. Unless

specified otherwise, we use the configuration {35%, 15%, 50%} for

evaluation. Section 6.4 shows how changing this resource allocation

policy affects Panakos’ performance.

6.2 Accuracy of Feature Distributions

Space Budget vs. Error. Figure 3(a)-(d) provide a comparison of

the accuracy of different sketches in both the quantile and frequency

domains on the CIADA and Sensor real datasets using space budgets

from 8KB to 128 KB. Since hardware often has constraints imposed

on the memory (e.g., NUCLEO-L476RG LoRaWAN board has 128KB

SRAM [61]), we believe that 8KB to 128KB reflects state-of-the-

art memory constraints on deploying sketches in the real world.

Assuming the metric value 𝑣 has quantile value 𝜙𝑣 , the quantile

domain uses MQE to characterize the maximum error between the

estimated and true quantile values of all 𝜙𝑣 . Similarly, the frequency

domain uses ARE to characterize the error between the estimated

and true frequencies based on 𝜙𝑣 . In Figure 3, the y-axis is either

MQE or AREwhich are used to measure the accuracy in the quantile

or frequency domains respectively, and the x-axis is the total space

budget used by each sketch. Lower MQE or ARE indicate a more

accurate approximation.

As expected, CocoSketch (belongs to the family of counter-based

summaries) is not designed to approximate feature distributions

as it loses information on cold features and overestimates the fre-

quencies of hot features. We also find that ElasticSketch does not

performwell for feature distribution on the quantile domain. Unlike

Panakos, ElasticSketch mixes the singletons and doubletons with

other medium features. With limited resources, ElasticSketch can

not calculate small features accurately and incurs large quantile

estimation errors. Hence, ElasticSketch’s performance is less ro-

bust compared to Panakos and MRAC. MRAC and FCMSketch are

strong competitors to Panakos. As pointed out in FCMSketch [55],

FCMSketch in general has better performance than MRAC by using

layers of Count-Mins instead of storing all features in a single array.

However, FCMSketch can not fully utilize the benefit of multiple

Count-Mins as it requires all Count-Min sketches to share the same

set of hash functions. Using the same set of hash functions and

imposing the tree structure implies hot features are exponentially

more likely to collide when the tree depth increase. By leveraging

linear sketches to store cold and medium features and then using a

counter-based summary to explicitly store hot features, Panakos

has more accurate approximations than MRAC and FCMSketch in

all experiments. Panakos outperforms all the other state-of-the-art

(a) Quantile Error (b) Metric Error

Figure 4: Accuracy of feature distribution approximation

using 16KB on Zipf dataset with varying skewness.

sketches in the frequency domain. In the quantile domain, when

using more than 32 KB of space, Panakos always provide the best

accuracy. In addition, when Panakos uses larger space budgets, it

provides a more accurate feature distribution approximation which

is also shown in the theoretical expectation, as explained in Sec-

tion 4.1. Therefore, we believe that Panakos offers better memory

vs accuracy trade-off than existing solutions.

Skewness vs. Error. In Figure 4(a)-(b), we compare the accuracy of

different sketches using 16KB space with Zipf datasets. The y-axis

is either MQE or ARE to measure the accuracy in the quantile or

frequency domains, respectively, and the x-axis is the skewness of

the Zipf dataset from 0.5 (low skew) to 2.0 (high skew). Lower MQE

or ARE indicate a more accurate approximation.

(a) CAIDA,𝜓 = .99 (b) Sensor,𝜓 = .99

Figure 5: F1 scores for identifying the 1% tail contributors on

real world datasets with varying space budgets.

For the quantile domain, in general, MQE decreases as skewness

increases. Since a higher skewness indicates more hot features, the

sketches will have fewer collisions between cold and hot features.

Moderate skew (1.0 - 1.5) may not help ElasticSketch as it often

mixes small features withmedium ones. On the other hand, Panakos

can leverage the skewness increase to disentangle cold, warm, and

hot features. For the frequency domain, moderate skew also may

not help ElasticSketch and CocoSketch. Increasing skewness not

only indicates more hot features but also means a lower cardinality.

Recall that ARE computes the average distance in the metric error

for all unique quantiles. In addition to ElasticSketch mixing small

and medium features and CocoSketch only capturing the heavy

features, the denominator for the ARE metric also decreases as

skewness increases. When the data distribution is relatively uni-

form, we find that MRAC and FCMSketch have better performance.

Small skew implies no hot features and, with a good hash function,

all features can be mapped to counters evenly. In this particular

(a) Quantile. (b) Metric. (c)𝜓 = .99.

Figure 6: Panakos sensitivity analysis with different memory

allocations using 105 items fromZipf Dataset of 1.5 skewness.

case, the SpaceSaving stage in Panakos becomes less beneficial and

incurs higher overheads. When the skew is moderate or high, which

is the more common case in real workloads, Panakos provides the

best performance among existing solutions.

6.3 Tail Contributors

One of the main goals for Panakos is to use the relative threshold,

𝜓 , in identifying the tail contributors. Figure 5(a) and (b) provide a

comparison among sketches in identifying heavy tail contributors

with𝜓 set to 0.99 over real-world CAIDA and SensorScope datasets,

in which the experiments aim to identify all the top 1% features.

The y-axis is the F1 score, and the x-axis is the space budget for each

sketch. F1 is the harmonic mean of the precision and recall, and

the closer an F1 score is to 1.0 indicates better accuracy. Moreover,

since MRAC cannot identify feature identities, we exclude MRAC

from the experiments in this task. Panakos acheives high F1 score in

finding the tail contributors. Among all other sketches, FCMSketch

is a strong competitor to Panakos. When using 128KB on CAIDA,

Panakos achieves a 0.98 F1 score, while FCMSketch achieves a

0.69 F1 score. The drawback of FCMSketch in identifying the tail

contributors is that the heavy features are exponentially more likely

to collide when the tree depth increases. Panakos, on the other hand,

can track hot features explicitly.

6.4 Sensitivity to Memory Allocation Policies

We now evaluate Panakos’ sensitivity to memory allocation policies.

We consider three different policies. Let an {𝑏𝑚, 𝑐𝑚, 𝑠𝑠} denote the

percentage of the total memory allocated to the bitmap, Count-

Min, and SpaceSaving stages. We explore three different set of

parameters, i.e., {.15, .15, .7}, {.35, .15, .5}, and {.4, .3, .3}. Figure 6(a)-

(b) shows that allocating more memory percentage to bitmap and

Count-Min stages enables summarizing cold and warm features

efficiently, contributing to better MQE and ARE. Figure 6(c) shows

that allocating more memory percentage (70%) for SpaceSaving

at the cost of bitmap and Count-Min leads to a better F1 score in

general. Interestingly, when the space budget is minimal, spending

most of the memory on the SpaceSaving stage may not be very

helpful, as the mapping between a given quantile threshold and

metric threshold still requires some understanding of the entire

feature distribution. As a result, we believe that parameter settings

are subject to both system operator interest and data distribution. At

one extreme of the spectrum, if the operator only cares about heavy

hitters, allocating all memory to SpaceSaving would be optimal. At

the other extreme of the spectrum, if the operator only cares about

learning the number of singletons, then allocating all memory to the

(a) Frequent Items (b) Frequency Estimation (c) Cardinality Estimation (d) Entropy Estimation

Figure 7: The performance comparisons of sketches on statistical queries over the Zipf 1.5 dataset with varying space budgets.

bitmap stage would be optimal. Our choice of allocating 15%, 35%,

and 50% to bitmap, Count-Min, and SpaceSaving data structures

attempt to strike a balance among all three metrics of interest. We

leave the design of an algorithm that synthesizes optimal memory

allocation policy for a given distribution as future work.

6.5 Additional Stream Statistics and Operators

Panakos also accurately estimates other stream statistics for a given

memory budget. Figure 7 shows how well Panakos reports frequent

items, frequency, cardinality, and entropy estimations for a given

Zipf 1.5 stream. Note the entropy of the data stream is estimated

from the feature distribution [38], as −
∑∞
𝑖=1 𝑖 ·

𝑛𝑖
𝑐𝑎𝑟𝑑

𝑙𝑜𝑔 𝑛𝑖
𝑐𝑎𝑟𝑑

where

𝑛𝑖 is the number of features appeared 𝑖 times, and 𝑐𝑎𝑟𝑑 is the cardi-

nality. We report the F1 score for frequent items, average relative

error (ARE) for frequency estimation, and relative error for cardi-

nality and entropy estimations. For frequent items, we aim to report

all hot features with a frequency above 𝜖𝑁 where 𝜖 = 10−3 and 𝑁

are a million data items. Panakos performs better than or at par

with existing solutions for frequent items, cardinality, and entropy

estimations across different memory budgets. The only exception is

a higher ARE in frequency estimation for Panakos. The observation

is that the heavy features are the main contributors to errors in

ARE. To provide better approximation across the entire feature

spectrum, Panakos only allocates a fraction of memory to track

heavy features, whereas CocoSketch uses all available memory

to track heavy features. As memory increase, Panakos’ frequency

estimation error drastically diminish.

While we focused on the Count operator, we also conducted ex-

periments to understand the performance of Panakos with Sum and

Average operators. Note we assume the metric values are integers.

The count metric is the occurrence of a 5-tuple in each packet. For

the sum metric, we find that the minimum byte chunks in a packet

stream are about 64 octets, and the sum metric is measured in units

of 64 octets. The average metric is the sum metric divided by the

count metric for each 5-tuple. Figure 8 (a)-(c) demonstrate that by

using different data structures to track cold, warm, and hot features

independently, Panakos offers better accuracy vs. memory usage

trade-off than other sketches for the Sum operator. Figure 8 (d)-(e)

compares the two possible approaches discussed in Section 3.7 to

realize the Average operator. The result demonstrates the value

of Panakos’ "alignment-based" approach, which places an item’s

count near the item’s sum, unlike the "ratio distribution" approach,

in striking a better accuracy vs. memory usage trade-off.

(a) Sum Quantile. (b) Sum Metric. (c) Sum𝜓 = .99.

(d) Avg Quantile. (e) Avg Metric. (f) Avg 𝜓 = .99.

Figure 8: Approximate feature distribution and identify tail

contributors with Sum and Average.

7 CONCLUSION

This paper presents the design and implementation of Panakos.

Our key idea is to leverage the skewness inherent to most feature

streams in the real world. Specifically, we disentangle a feature

stream into cold, warm, and hot items based on their feature values

and use a combination of the bitmap, Count-Min, and SpaceSaving

data structures to track them. Our design is generalizable to count,

sum, and average operators, and strikes a good balance between

accuracy and memory overhead. It is also amenable to modern

programmable hardware targets. Our experiments showcase that

Panakos is aligned with theoretical expectations, achieves state-

of-the-art performance in approximating the feature distribution

and identifying the tail contributors, and can provide very accurate

estimations for a wide range of statistics. Panakos is applicable to

many real-world systems, enabling them to utilize their resources

effectively and report interesting statistics for analysis.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback.

This work is funded in part by NSF grants CNS-1703560 and CNS-

1815733. Punnal and Arpit were supported by NSF awards OAC-

2126327, OAC-2126281, and CNS-2003257 (co-sponsored by In-

tel). Liu was supported in part by NSF grants CNS-2107086, CNS-

2106946, SaTC-2132643, and Red Hat Collaboratory.

REFERENCES
[1] [n.d.]. Anonymized Internet Traces 2015. https://catalog.caida.org/details/

dataset/passive_2015_pcap. Accessed: 2022-10-5.
[2] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,

Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. 2017. Understanding the mirai botnet. In 26th USENIX security
symposium (USENIX Security 17). 1093ś1110.

[3] Peter Bailis, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin Rong, and
Sahaana Suri. 2017. Macrobase: Prioritizing attention in fast data. In Proceedings
of the 2017 ACM International Conference on Management of Data. 541ś556.

[4] Peter J Bickel and Kjell A Doksum. 2015. Mathematical statistics: basic ideas and
selected topics, volumes I-II package. Chapman and Hall/CRC.

[5] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 87ś95.

[6] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown,
Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding meta-
morphosis: Fast programmable match-action processing in hardware for SDN.
ACM SIGCOMM Computer Communication Review 43, 4 (2013), 99ś110.

[7] Tian Bu, Jin Cao, Aiyou Chen, and Patrick PC Lee. 2010. Sequential hashing:
A flexible approach for unveiling significant patterns in high speed networks.
Computer Networks 54, 18 (2010), 3309ś3326.

[8] Francesco Paolo Cantelli. 1933. Sulla determinazione empirica delle leggi di
probabilita. Giorn. Ist. Ital. Attuari 4, 421-424 (1933).

[9] Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. 2000.
Towards estimation error guarantees for distinct values. In Proceedings of the
nineteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. 268ś279.

[10] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding frequent
items in data streams. In International Colloquium on Automata, Languages, and
Programming. Springer, 693ś703.

[11] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785ś794.

[12] Saar Cohen and Yossi Matias. 2003. Spectral bloom filters. In Proceedings of the
2003 ACM SIGMOD international conference on Management of data. 241ś252.

[13] Graham Cormode and Marios Hadjieleftheriou. 2008. Finding frequent items in
data streams. Proceedings of the VLDB Endowment 1, 2 (2008), 1530ś1541.

[14] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream
summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58ś75.

[15] Graham Cormode and Shan Muthukrishnan. 2005. Summarizing and mining
skewed data streams. In Proceedings of the 2005 SIAM International Conference on
Data Mining. SIAM, 44ś55.

[16] Harald Cramér. 1999. Mathematical methods of statistics. Vol. 43. Princeton
university press.

[17] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav Shkapenyuk.
2003. Gigascope: A stream database for network applications. In Proceedings of
the 2003 ACM SIGMOD international conference on Management of data. 647ś651.

[18] Alexander Philip Dawid and Allan M Skene. 1979. Maximum likelihood esti-
mation of observer error-rates using the EM algorithm. Journal of the Royal
Statistical Society: Series C (Applied Statistics) 28, 1 (1979), 20ś28.

[19] Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro. 2002. Frequency
estimation of internet packet streams with limited space. In European Symposium
on Algorithms. Springer, 348ś360.

[20] Arthur P Dempster, NanM Laird, and Donald B Rubin. 1977. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical Society:
Series B (Methodological) 39, 1 (1977), 1ś22.

[21] Garry A Einicke, Gianluca Falco, and John T Malos. 2010. EM algorithm state
matrix estimation for navigation. IEEE Signal Processing Letters 17, 5 (2010),
437ś440.

[22] Seyed K Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael Bailey. 2015. Bo-
hatei: Flexible and Elastic {DDoS} Defense. In 24th USENIX security symposium
(USENIX Security 15). 817ś832.

[23] Michael Freitag and Thomas Neumann. 2019. Every row counts: Combining
sketches and sampling for accurate group-by result estimates. ratio 1 (2019),
1ś39.

[24] Edward Gan, Jialin Ding, Kai Sheng Tai, Vatsal Sharan, and Peter Bailis. 2018.
Moment-based quantile sketches for efficient high cardinality aggregation
queries. arXiv preprint arXiv:1803.01969 (2018).

[25] Sumit Ganguly, Phillip B Gibbons, Yossi Matias, and Avi Silberschatz. 1996.
Bifocal sampling for skew-resistant join size estimation. In Proceedings of the
1996 ACM SIGMOD international conference on management of data. 271ś281.

[26] JohnDGorman andAlfred OHero. 1990. Lower bounds for parametric estimation
with constraints. IEEE Transactions on Information Theory 36, 6 (1990), 1285ś
1301.

[27] Michael Greenwald and Sanjeev Khanna. 2001. Space-efficient online computa-
tion of quantile summaries. ACM SIGMOD Record 30, 2 (2001), 58ś66.

[28] Sudipto Guha and Andrew McGregor. 2009. Stream order and order statistics:
Quantile estimation in random-order streams. SIAM J. Comput. 38, 5 (2009),
2044ś2059.

[29] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and
Walter Willinger. 2018. Sonata: Query-driven streaming network telemetry.
In Proceedings of the 2018 conference of the ACM special interest group on data
communication. 357ś371.

[30] Hazar Harmouch and Felix Naumann. 2017. Cardinality estimation: An experi-
mental survey. Proceedings of the VLDB Endowment 11, 4 (2017), 499ś512.

[31] Intel. 2022. Barefoot Tofino. https://barefootnetworks.com/products/brief-tofino/.
[Online; accessed 19-July-2022].

[32] Nikita Ivkin, Edo Liberty, Kevin Lang, Zohar Karnin, and Vladimir Braverman.
2022. Streaming quantiles algorithms with small space and update time. Sensors
22, 24 (2022), 9612.

[33] Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, and Xin Jin. 2019. Qpipe:
Quantiles sketch fully in the data plane. In Proceedings of the 15th International
Conference on Emerging Networking Experiments And Technologies. 285ś291.

[34] Zohar Karnin, Kevin Lang, and Edo Liberty. 2016. Optimal quantile approxima-
tion in streams. In 2016 ieee 57th annual symposium on foundations of computer
science (focs). IEEE, 71ś78.

[35] Richard M Karp, Scott Shenker, and Christos H Papadimitriou. 2003. A simple
algorithm for finding frequent elements in streams and bags. ACM Transactions
on Database Systems (TODS) 28, 1 (2003), 51ś55.

[36] Kibeom Kim, Yongjo Jeong, Youngjoo Lee, and Sunggu Lee. 2019. Analysis of
counting bloom filters used for count thresholding. Electronics 8, 7 (2019), 779.

[37] Abhishek Kumar, Minho Sung, Jun Xu, and Jia Wang. 2004. Data streaming
algorithms for efficient and accurate estimation of flow size distribution. ACM
SIGMETRICS Performance Evaluation Review 32, 1 (2004), 177ś188.

[38] Ashwin Lall, Vyas Sekar, Mitsunori Ogihara, Jun Xu, and Hui Zhang. 2006.
Data streaming algorithms for estimating entropy of network traffic. ACM
SIGMETRICS Performance Evaluation Review 34, 1 (2006), 145ś156.

[39] Alexandru Lavric and Valentin Popa. 2017. Internet of things and LoRa™ low-
power wide-area networks: a survey. In 2017 International Symposium on Signals,
Circuits and Systems (ISSCS). IEEE, 1ś5.

[40] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. 2016. One sketch to rule them all: Rethinking network flow mon-
itoring with univmon. In Proceedings of the 2016 ACM SIGCOMM Conference.
101ś114.

[41] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee, Changhoon
Kim, Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas Sekar. 2021. Jaqen:
A {High-Performance}{Switch-Native} Approach for Detecting and Mitigat-
ing Volumetric {DDoS} Attacks with Programmable Switches. In 30th USENIX
Security Symposium (USENIX Security 21). 3829ś3846.

[42] Patrick Loiseau, Paulo Gonçalves, Stéphane Girard, Florence Forbes, and Pascale
Vicat-Blanc Primet. 2009. Maximum likelihood estimation of the flow size
distribution tail index from sampled packet data. In Proceedings of the eleventh
international joint conference on Measurement and modeling of computer systems.
263ś274.

[43] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. 1998. Ap-
proximate medians and other quantiles in one pass and with limited memory.
ACM SIGMOD Record 27, 2 (1998), 426ś435.

[44] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2008. Why go
logarithmic if we can go linear? Towards effective distinct counting of search
traffic. In Proceedings of the 11th international conference on Extending database
technology: Advances in database technology. 618ś629.

[45] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient
computation of frequent and top-k elements in data streams. In International
conference on database theory. Springer, 398ś412.

[46] Jayadev Misra and David Gries. 1982. Finding repeated elements. Science of
computer programming 2, 2 (1982), 143ś152.

[47] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.
Language-directed hardware design for network performance monitoring. In
Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication. 85ś98.

[48] Rasmus Pagh and Mikkel Thorup. 2022. Improved Utility Analysis of Private
CountSketch. arXiv preprint arXiv:2205.08397 (2022).

[49] C Radhakrishna Rao. 1945. Information and the accuracy attainable in the
estimation of statistical parameters. Reson. J. Sci. Educ 20 (1945), 78ś90.

[50] Bruno Ribeiro, Don Towsley, Tao Ye, and Jean C Bolot. 2006. Fisher information
of sampled packets: an application to flow size estimation. In Proceedings of the
6th ACM SIGCOMM conference on Internet measurement. 15ś26.

[51] Jorma J Rissanen. 1996. Fisher information and stochastic complexity. IEEE
transactions on information theory 42, 1 (1996), 40ś47.

[52] Pratanu Roy, Arijit Khan, and Gustavo Alonso. 2016. Augmented sketch: Faster
and more accurate stream processing. In Proceedings of the 2016 International

Conference on Management of Data. 1449ś1463.
[53] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash

Suri. 2004. Medians and beyond: new aggregation techniques for sensor networks.
In Proceedings of the 2nd international conference on Embedded networked sensor
systems. 239ś249.

[54] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, Shan Muthukr-
ishnan, and Jennifer Rexford. 2017. Heavy-hitter detection entirely in the data
plane. In Proceedings of the Symposium on SDN Research. 164ś176.

[55] Cha Hwan Song, Pravein Govindan Kannan, Bryan Kian Hsiang Low, and
Mun Choon Chan. 2020. FCM-sketch: generic network measurements with
data plane support. In Proceedings of the 16th International Conference on emerg-
ing Networking EXperiments and Technologies. 78ś92.

[56] Daniel Ting. 2018. Data sketches for disaggregated subset sum and frequent item
estimation. In Proceedings of the 2018 International Conference on Management of
Data. 1129ś1140.

[57] LuWang, Ge Luo, Ke Yi, and GrahamCormode. 2013. Quantiles over data streams:
an experimental study. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data. 737ś748.

[58] Pinghui Wang, Xiaohong Guan, Junzhou Zhao, Jing Tao, and Tao Qin. 2014. A
new sketch method for measuring host connection degree distribution. IEEE
transactions on information forensics and security 9, 6 (2014), 948ś960.

[59] Kyu-Young Whang, Brad T Vander-Zanden, and Howard M Taylor. 1990. A
linear-time probabilistic counting algorithm for database applications. ACM
Transactions on Database Systems (TODS) 15, 2 (1990), 208ś229.

[60] CF Jeff Wu. 1983. On the convergence properties of the EM algorithm. The
Annals of statistics (1983), 95ś103.

[61] Mingran Yang. 2020. Joltik: enabling energy-efficient" future-proof" analytics on
low-power wide-area networks. Ph.D. Dissertation. Carnegie Mellon University.

[62] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. 2018. Elastic sketch: Adaptive and fast network-
wide measurements. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication. 561ś575.

[63] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software {Defined}{Traffic}
Measurement with {OpenSketch}. In 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13). 29ś42.

[64] Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie Miao, Peng
Liu, Ruwen Zhang, and Junchen Jiang. 2021. CocoSketch: high-performance
sketch-based measurement over arbitrary partial key query. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference. 207ś222.

[65] Fuheng Zhao, Divyakant Agrawal, Amr El Abbadi, and Ahmed Metwally. 2021.
SpaceSaving±: An Optimal Algorithm for Frequency Estimation and Frequent
Items in the Bounded Deletion Model. arXiv preprint arXiv:2112.03462 (2021).

[66] Fuheng Zhao, Sujaya Maiyya, Ryan Wiener, Divyakant Agrawal, and Amr El
Abbadi. 2021. KLL±: Approximate quantile sketches over dynamic datasets.
Proceedings of the VLDB Endowment 14, 7 (2021), 1215ś1227.

[67] Fuheng Zhao, Dan Qiao, Rachel Redberg, Divyakant Agrawal, Amr El Abbadi,
and Yu-Xiang Wang. 2022. Differentially private linear sketches: Efficient imple-
mentations and applications. arXiv preprint arXiv:2205.09873 (2022).

[68] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve
Uhlig. 2018. Cold filter: A meta-framework for faster and more accurate stream
processing. In Proceedings of the 2018 International Conference on Management of
Data. 741ś756.

[69] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan,
Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao, et al. 2015. Packet-level
telemetry in large datacenter networks. In Proceedings of the 2015 ACMConference
on Special Interest Group on Data Communication. 479ś491.

[70] George Kingsley Zipf. 2016. Human behavior and the principle of least effort: An
introduction to human ecology. Ravenio Books.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Target Applications
	2.2 Problem Description
	2.3 Limitations of Existing Solutions
	2.4 Observations and Opportunities.

	3 Panakos
	3.1 Rationale
	3.2 Basic Panakos Data Structures
	3.3 Panakos Update Workflow
	3.4 Feature Distribution
	3.5 Frequency Estimation
	3.6 Identifying Tail Contributors
	3.7 From Count to Sum and Average

	4 Panakos Analysis
	4.1 Panakos Feature Distribution Properties
	4.2 Analysis of Tail Contributors

	5 Hardware Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Accuracy of Feature Distributions
	6.3 Tail Contributors
	6.4 Sensitivity to Memory Allocation Policies
	6.5 Additional Stream Statistics and Operators

	7 Conclusion
	Acknowledgments
	References

