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ABSTRACT consumers of these streaming data, such as application develop-

System operators are often interested in extracting different feature
streams from multi-dimensional data streams; and reporting their
distributions at regular intervals, including the heavy hitters that
contribute to the tail portion of the feature distribution. Satisfying
these requirements to increase data rates with limited resources is
challenging. This paper presents the design and implementation
of Panakos that makes the best use of available resources to report
a given feature’s distribution accurately, its tail contributors, and
other stream statistics (e.g., cardinality, entropy, etc.). Our key idea
is to leverage the skewness inherent to most feature streams in
the real world. We leverage this skewness by disentangling the
feature stream into hot, warm, and cold items based on their feature
values. We then use different data structures for tracking objects in
each category. Panakos provides solid theoretical guarantees and
achieves high performance for various tasks. We have implemented
Panakos on both software and hardware and compared Panakos
to other state-of-the-art sketches using synthetic and real-world
datasets. The experimental results demonstrate that Panakos often
achieves one order of magnitude better accuracy than the state-of-
the-art solutions for a given memory budget.
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1 INTRODUCTION

Recent years have witnessed massive growth in Internet-connected
applications (e.g., YouTube and Spotify) and devices (e.g., smart-
watch, temperature sensors, programmable network switches). The
ubiquity of these applications and devices has lowered the threshold
for generating data. More concretely, updating an application to log
an additional event (e.g., click, skip, etc.) is straightforward. Simi-
larly, updating the packet-processing pipeline for programmable
network switches, such as Intel Tofino-based switches [31], to log
ingress (or egress) time for each network packet is trivial. The
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ers, network operators, and others, are interested in characterizing
various interesting events in (near) real-time from these multi-
dimensional data streams to drive future decisions. For example,
application developers are interested in understanding how the
average temperature (aggregated every one minute) is distributed
across different agricultural sensors based on various dimensions
such as location, device type, etc. Similarly, network operators are
interested in the distribution of the number of packets sent (or
received) across different hosts or TCP connections every few sec-
onds. In essence, they are interested in understanding how various
key statistics, aggregated at regular intervals, are distributed in the
multidimensional space.

These tasks often entail moving the data from a source (e.g., a
browser, a sensor network switch) to a centralized collector and
then using one-pass streaming algorithms to compute the aggre-
gate statistics and then reporting the distribution of these statistics
for different windows. Ideally, these tasks should be performed
closer to the source in bandwidth-constrained operational settings
to avoid the unnecessary movement of data, which can be pro-
hibitively expensive. For example, moving packets to a remote
collector is prohibitively costly even for high-speed networks, han-
dling hundreds of Gbps data rates [29, 47]. Similar trends are also
observed in sensor networks (e.g., Joltik [61]), where data transmis-
sion is power-hungry, and the frequent replacement of batteries is
costly. However, compared to well-provisioned centralized collec-
tors, data sources (e.g., switches, sensors) have limited computation
and memory resources. Most existing streaming algorithms can
either accurately calculate these aggregate statistics or report their
distributions while making the best use of limited resources. How-
ever, we are not aware of any existing work that do both.

This paper explores the design of a cost-effective data-processing
pipeline that processes the multidimensional data stream, and ac-
curately reports the feature distribution based on the metric values
and focuses on cumulative aggregation such as the count or fre-
quency associated with each feature. We aim to not only accurately
report the quantile summary of the distribution but also report the
contributors to the distribution’s tail such as items with frequencies
in the higher quantiles (e.g., 99th percentile). Two observations
inspire our focus on the tail: (1) real-world data are intrinsically
heavy-tailed, and (2) identifying tail contributors is critical for many
data consumers. For example, network operators must identify vic-
tims of DDoS attacks to decide on mitigating actions [2].

Addressing these challenges and designing such a data-
processing pipeline is challenging. None of the existing solutions
are suited to the problem at hand. However, given that different



existing works are good at satisfying some of the requirements,
system operators end up using different algorithms/pipelines for
different tasks. For example, one to accurately capture the distribu-
tion, and another to accurately report the frequent items. However,
fine-tuning unrelated data sketches that share the same pool of
constrained resources is non-trivial [40, 62]. Moreover, given the
inherent challenges in identifying tails using relative quantiles, sys-
tem operators end up using a static threshold to identify heavy
hitters. However, as previous work [3] has shown, static thresholds
are unresponsive to distribution shifts, and their usage affects the
ability to report tail contributors accurately.

In this paper, we present the design and implementation of
Panakos that makes the best use of limited available resources
to summarize the feature distribution and identify tail contributors.
Panakos leverages the skewness inherent to most high-dimensional
feature streams in the real world to disentangle the feature stream
into cold, warm, and hot features based on their metric values and
uses a combination of data structures to track them. To the best of
our knowledge, Panakos is the first data sketch to accurately report
both the quantile approximation of a feature distribution and the
identity tail contributors, i.e., contributors to the tail portions of
the feature distribution in resource constrained-environments. Prior
approaches either address one of the problems or are inefficient
since cold and hot features are mixed. Our main contributions can
be summarized as follows:

e Design of a data-processing sketch, Panakos, that accurately
captures the frequency distribution of a data stream and reports
contributors to its tail in resource-constrained settings.

e Provide mathematical analysis of Panakos and discuss the trade-
offs between resources and accuracy.

e Implementation of Panakos for both general-purpose CPUs and
programmable switches/NICs.

o Comparison of the proposed system with existing solutions using
both synthetic and production datasets.

The paper is organized as follows. Section 2 provides the back-
ground and motivation. Section 3 introduces our proposed solution,
Panakos, discusses the rationale behind each component, and gives
intuitions on the improved performance by integrating these com-
ponents. Section 4 presents the mathematical analysis of Panakos.
Section 5 discusses the implementations of Panakos on different
platforms. Section 6 reports the experimental evaluations conducted
using synthetic and real-world datasets and compares Panakos to
state-of-the-art sketches. Finally, Section 7 summarizes our contri-
butions and concludes this work.

2 BACKGROUND AND MOTIVATION
2.1 Target Applications

Panakos provides application developers, system analysts, and net-
work operators with an end-to-end analytic engine capable of un-
derstanding different features over time. As examples of the types
of workloads and compute environments we seek to support, we
draw on two motivating use cases.

Sensor data analytics. Wireless sensors are increasingly de-
ployed across cities or rural areas to collect various metrics of inter-
est [39, 61]. Due to energy, storage, and communication constraints,
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Figure 1: (a) Raw packet stream; (b) Extract Feature stream
using the counts of source IP; (c) Feature distributions. Red
cross(es) correspond to packets with source IP 92.160.2.154.

wireless sensor devices can only occasionally transfer small-sized
summaries to end hosts over some period of time. Panakos can
be used in such an environment to collect various statistics for
analysis and satisfy the constraints in the low-power environment.
In Section 6, we demonstrate Panakos’s high performance over
real-world sensor datasets.

Network monitoring. Network operators are interested in de-
fending their networks against a wide range of cyberattacks [22, 41]
while also optimizing the quality of service. They rely on streaming
analytic systems to monitor the network’s state [17, 69]. However,
developing systems that can support network analytic queries at
high data rates (e.g., 100 Gbps) is challenging. The rise of pro-
grammable switches [31] offers new opportunities to scale net-
work streaming analytics. Modern network streaming analytic sys-
tems [29, 40, 54, 63] use network hardware to scale query execution.
We consider deploying Panakos in such an environment. We aim
to make the best use of available data-plane resources to offload
most processing tasks to the programmable switch.

2.2 Problem Description

High-dimensional data streams. We consider multi-dimensional
data streams for analysis from diverse resource-constrained sources.
For the network streaming analytics [29, 40, 47], the data stream
is the raw packets in the network’s data plane, equipped with
limited memory and compute resources [31]. For a data stream
(o), each data point contains a set of attributes (A) and metrics (M).
Here, the set of attributes corresponds to associated identifiers and
metadata, and metrics corresponds to key measurements. For the
network packet stream, the set of attributes typically includes the



Table 1: Panakos v.s. other solutions.

Solutions Feature Feature Tail Hardware | Remark
Extraction Distribution Contributors  Friendly
(1) KLL [32, 34, 66], DCS [48, 57, 67] ©) ([ ] O Quantile Sketches require statistics
not exist in the raw stream.
(2) SpaceSaving [45, 56, 65], ASketch [52], ([ ©) ] ] Frequency Sketches only extract
CocoSketch [64], Count-Min [14] feature and metrics from raw
stream
(3) MRAC [37], Elastic [62], FCM [55] ] ] O o Synthesis focus on the general pat-
tern and overlook the tail
(4) Panakos (ours) [ [ (] ] Navigate through the design space
to satisfy all requirements

packet’s header fields (e.g., sIP, dIP, etc.) and any additional meta-
information associated with the packet such as next-hop, virtual
LAN (VLAN) identifier, application identifier, etc. The set of metrics
includes various measurements associated with each packet, such
as the number of appearances, sojourn time, etc.

Feature streams. Typically, a given application is interested in
analyzing the characteristic of a subset of attributes of the data
stream. We refer to this subset as features. Next, we consider the
transformation of the raw (attribute, metric) data stream, i.e., o:
(A, M), into a feature stream, i.e., o,: (A", 7(M), w). We derive
this feature stream by applying function 7 over metrics (M) for
all elements with the same set of attributes, A’, where A’ C A,
within a window w. For the network streaming analytics case, the
feature stream can be the total number of bytes associated with
each source IP address (sIP) in a one-millisecond window. The
feature extraction function r is sum, and the set of features (A’) is
sIP, which is a subset of attributes (A) in the raw packet stream.
Given the complexity of executing an arbitrary feature extraction
function (;r) on resource-constrained data sources, we focus on
the Count operator and then discuss Panakos’ generalization to
Sum and Average operators. We leave the extension of Panakos to
support more complex operators such as Median for future work.

Goal. Given this setup, our goal is to characterize the distribution
of some subset of attributes in each window. More specifically,
for each window, we aim to accurately report the feature quantile
distribution where the features are a set of attributes (e.g., SIP). We
also aim to report the anomalous data points for each window, i.e.,
ones that contribute to the tail portion of the feature distribution.
We specify these anomalous data points as ones that exceed a pre-
specified threshold, 1. Note that the feature distribution changes
over time; thus, we specify tail features using each window’s relative
threshold . For instance, if { = .99, we report the features whose
metric value is greater than the 99 h percentile value. Figure 1a
illustrates an example of a high dimensional data stream from wide-
area network raw packets over three milliseconds. This stream has
a source IP address (92.160. 2. 154) with anomalously high packets
in the first two milliseconds. The x-axis is time, and the y-axis is the
hash values of the high dimensional attributes values. In Figure 1b,
the raw stream is transformed into a source IP feature stream by
applying the Count operator. The x-axis becomes the metric values,
and the y-axis becomes the source IP feature. Figure 1c depicts

the feature distribution in which the x-axis is the metric value and
the y-axis is the quantile value. The dot and dash lines show the
difference between using a static threshold and identifying the tail
contributors based on i = .99, in which the static threshold can
not adapt to the change in distribution.

2.3 Limitations of Existing Solutions

The goal of our data processing pipeline is to (1) extract desired
features from the raw data stream and then, for each window,
(2) accurately report the quantile approximation of the feature
distribution and (3) identify anomalous data points, i.e., contribu-
tors to the tail portions of the feature distribution in (4) resource
constrained-environments. We are not aware of any existing so-
lution that satisfies all these four requirements to the best of our
knowledge. Table 1 divides existing work into three categories and
illustrates how they do not satisfy one of the four requirements.
Quantile sketches (#1). Quantile sketches [24, 27, 34, 43, 53, 57,
66] focus on making the best use of available (limited) memory to
report quantile summaries of a data stream. At first glance, one
may think quantile sketches would be strong candidates to address
these challenges. Since features are drawn from a high-dimensional
universe, the ordering among these features is not well defined.
In addition, quantile sketches cannot be used to extract features
(like aggregates based on counts). A naive solution would be to
store and compute the true statistics, e.g., storing all items and their
frequencies in a large hash table and then feeding this information
into quantile sketches to obtain the feature distribution. Storing and
computing the true statistics, e.g., finding the exact frequency of
each item, would require significant memory space. Moreover, the
efficient implementation of quantile sketches in resource-limited
hardware remains an open problem [33].

Frequency estimation sketches (#2). Frequency estimation and
frequent items sketches, including counter-based summaries [19,
35, 45, 46, 52, 65] and linear sketches [10, 14] extract important
features by accurately estimating each feature’s frequency and
identifying heavy hitters. However, frequency estimation sketches
alone cannot accurately approximate the entire feature distribution.
The main reason is that these sketches ignore or underestimate the
frequency of infrequent items, and infrequent items are necessary



for understanding the entire feature distribution. Frequency estima-
tion sketches can be implemented efficiently on resource-constraint
hardware [54, 64] after solving many challenges.

Synthesis (#3). The stream synthesis approach attempts to un-
derstand feature distributions using statistical tools. On the one
hand, previous work [42] has shown that by sampling features
from a stream and using the maximum likelihood estimation al-
gorithm to analyze the samples, the tail behavior can be directly
understood. However, these approaches overlook the overall fea-
ture distribution and are not data-driven since they require a priori
knowledge of that data packet distribution (e.g., Zipfian Distribu-
tion). Alternatively, [37, 62] have shown that by creating a small
sketch of the stream and then using the expected maximization
algorithm to parse the sketch, it is possible to capture the entire
feature distribution accurately. However, these approaches are in-
efficient for identifying the tail contributors, as the hot features
are mixed with the cold features. While the expected maximization
algorithm does not satisfy all our requirements, it helps synthesize
the general trend of the feature distribution. Later, we will show
how we leverage this algorithm to design Panakos.

2.4 Observations and Opportunities.

Feature streams are heavy-tailed. We now explore the proper-
ties of feature streams we aim to characterize with Panakos. Fig-
ure 1 (c) shows the heavy-tailed behavior exhibited by a feature
stream in each one-millisecond window. Specifically, we observe
that the metric, i.e., the number of packets for each source IP ad-
dress, is small for most IPs. However, a few features exchange a
very high number of packets. We also observe similar trends in sen-
sor analytics, and previous works have reported the heavy-tailed
behavior for a wide range of real-world applications [15].
Disentangle cold and hot items. Given the challenges associated
with the accurate estimation of heavy-tailed streams, separating
cold and hot items in the skewed distribution is desirable to esti-
mate infrequent and frequent features accurately. Previous work
proposed disentangling cold and hot items to better assess the size
of an equi-join [25]. Given the skewness in many real-world dis-
tributions, we have recently witnessed the development of several
algorithms/systems that leverage the same intuition to strike a
better balance among accuracy, update latency, and resource us-
age [52, 62, 68].

We observe that it is possible to leverage existing frequency
sketches to summarize cold and hot features separately. In particu-
lar, we can use linear sketches, such as Count-Min [14], on cold and
warm features, and use counter-based summaries, such as Space-
Saving [45], on hot features. While counter-based summaries use
optimal space to store information about the hot features, they do
not provide any insights into the cold features, as they always evict
the feature with minimum frequency to make room for new arriving
data. On the other hand, while linear sketches provide insights into
all items in the universe using d hash functions to map features into
d counters, they need more space to deliver similar performance
compared to the counter-based algorithms. Also, linear sketches
may fail with small probability, and cannot accurately identify the
hot features due to hash collisions between cold and warm features
with hot features. Thus, we conclude that linear sketches are more

suitable for tracking the numerous cold and warm features with the
additional advantage of using minimal memory accesses and requir-
ing no comparisons (comparisons are often expensive in hardware).
After filtering out the many cold and warm features using linear
sketches, counter-based approaches can directly identify the tail
contributors with a few number of comparisons (since cold items
are filtered out) while using optimal space.

3 PANAKOS
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Figure 2: Panakos Architecture

3.1 Rationale

There are two main goals that Panakos aims to deliver: 1) summa-
rize the feature distribution, and 2) identify tail contributors based
on quantile threshold . We start by observing the connection be-
tween Top-K and the tail contributors. Initially, if the cardinality,
which is the number of unique features in the windowed stream,
card, is known, then, the Top-K items are the tail contributors above
the relative threshold of ¥ = 1 — K 1n Section 2.3, we identi-
fied that SpaceSaving [45] is ideal for identifying the heavy tail
contributors. However, the information missing from SpaceSaving
are, namely, the data stream cardinality, card, and the cold and
warm features, which are needed to construct the entire feature
distribution. Therefore, additional data structures and algorithms
are needed to extract this information. The Linear Counting al-
gorithm [59] is commonly used to estimate the cardinality of a
windowed stream, as it uses small space and allows fast process-
ing. In Section 3.4.2, we show how Linear Counting can estimate
singleton (features that only appear once) features by using 2 bits
per counter. In addition, real-world data streams are often skewed
where singletons and doubletons are a large fraction of all features.
While singletons and doubletons can be identified using just 2 bits,
warm features require more bits per counter to store their metric
value. For a fixed memory budget, increasing the number of bits per
counter will decrease the number of vector entries. Thus, we de-
cided to use the Count-Min sketch, which consists of fewer entries
but more bits per counter compared to a single array. Count-Min
can also 1) obtain information on warm features, and 2) filter out
cold and warm features. Although Count-Min has fewer entries in
each counter vector, it uses multiple independent hash functions
and counter vectors to reduce the probability of hash collisions and
hence deliver satisfying results.

3.2 Basic Panakos Data Structures

As shown in Figure 2, Panakos consists of three components to dis-
entangle cold, warm and hot features and to provide more accurate



Algorithm 1: Panakos Stream Processing Algorithm

1 for item from stream do

2 e = extract(item);

3 V = bitsVector[hash(e)];
4 if V<2then

5 bitsVector[hash(e)] += 1;
6 return ;

7 else if V == 2 then

8 ‘ bitsVector[hash(e)] += 1;

9 V =2 + CM.queryf(e) ;
10 if V<1+27T then

11 CM.insert(e) ;

12 return ;

13 SpaceSaving.insert(e);
14 return ;

15 end

estimates of the feature distribution, tail contributors, and other
statistics. While each component is used for different purposes, the
components are integrated coherently. The bitmap stage is a vector
of 2-bit counters, followed by the Count-Min stage, and finally the
SpaceSaving stage.

Bitmap Stage. The first bitmap stage is responsible for tracking
the number of singletons (n1), doubletons (n2), and the cardinality
of the current window stream. The bitmap uses 2 bits per counter
entry for the following reasons: (1) We first note that one bit is
not enough to differentiate a singleton feature from features with
more than one occurrence. Using 1 bit, if a counter is flipped to
1, it is not clear if the counter is flipped because it encountered
a singleton or otherwise. We need at least 2 bits, to be certain if
a counter has value 1 then it must be a singleton which caused
the counter to increment from 0 to 1. (2) Since 2-bit counters are
allocated, we can use the available bits to maintain information
not only on the number of singletons, n1, but also the number of
doubletons, ny. (3) When a counter in the bitmap entry is 3, this
indicates that the counter is overflowed. The reason that we need
this overflow state is to avoid overestimating an item’s frequency
by too much, as without an overflow state, one can not be certain
if the item proceeded to the next stage (i.e, a Count-Min Sketch) or
not. Even if a feature is never inserted into Count-Min, Count-Min
may largely overestimate the count due to hash collisions.
Count-Min Stage. Warm features are stored in the Count-Min
with T bits counters and the maximum counter value is 27 — 1.
Count-Min is an ideal candidate to track warm features from ns to
ny,o7, as Count-Min projects the features into small counter vectors,
and by using multiple vectors, it obtains more accurate estimates
of the metric values. In addition to small space, Count-Min has two
important properties, namely supporting high update throughput
and causing no underestimation, which helps with processing fast
streams and understanding tail behaviors [13]. Furthermore, Count-
Min does not need to keep an overflow state as the next stage,
SpaceSaving, stores each feature’s identity and guarantees that if a
feature is never inserted, its count would be zero.

SpaceSaving Stage. The final stage is a SpaceSaving summary
to track all the heavy features that pass through the previous two
stages. SpaceSaving stores both the feature’s identity and estimated
frequency while using optimal minimal space. Since each feature’s
identity is directly known, we can then be certain that these fea-
tures lie in the heavy tail. To target specific hardware such as
programmable switches, we use CocoSketch [64], an extension of
SpaceSaving optimized for computation and memory accesses on
special hardware.

3.3 Panakos Update Workflow

Initially, Panakos initializes all counter values to zero and the de-
sired feature dimensions are defined by the user. For instance, in
network monitoring applications, a representative feature can be
defined as a 5-tuple, i.e, source IP address/port number, destination
IP address/port number, and the protocol. Panakos digests arriving
data packets in three logical steps, as shown in Algorithm 1:

Step 1: Extract the feature of interest, e, from each arriving data
item, and use a uniform hash function & to map e to h(e), an index
in the 2-bit bitmap. If the counter value stored at index h(e) equals
3, which is already in an overflow state, then forward e to the next
step. If the counter value stored at index h(e) equals 2, then the
counter is incremented to 3 and e is forwarded to the next step.
Otherwise, increment and return.

Step 2: Update Count-Min with the forwarded feature e. Count-
Min maps feature e using d hash functions and increment the cor-
responding d counters. If a counter value is 27 — 1, which is the
maximum possible value, then the increment is ignored. If all d
counters are 27 — 1, then propagate the update to the next step.

Step 3: Update SpaceSaving using feature e. If e is monitored
in the SpaceSaving structure, then increment the counter associ-
ated with the monitored key e. However, if e is not monitored,
SpaceSaving replaces the item with the minimum count by e. This
replacement operation uses O(log k) number of comparisons in a
standard min-heap implementation of SpaceSaving where k is the
size of SpaceSaving. In addition, SpaceSaving incurs large estima-
tion errors when hot items are replaced by cold items. Panakos
improves SpaceSaving’s estimates because, with the filtering stages
in Steps 1 and 2, cold items rarely reach SpaceSaving, hence reduc-
ing the update latency and enhancing estimation accuracy.

3.4 Feature Distribution

In this section we discuss how Panakos derives the feature distri-
bution of a data stream. In particular, how Panakos provides an
approximate quantile approximation on the distribution of feature
metric values. We start by estimating the overall cardinality and the
number of singletons and then develop the necessary machinery
to estimate the cumulative quantile value of larger metric values.

3.4.1 Cardinality Calculation. Panakos’ 2-bit bitmap vectors can
provide accurate estimates of singletons and approximate the car-
dinality of the feature stream. To approximate the cardinality of
the feature stream, card, we use the popular Linear Counting al-
gorithm [59]. It has been shown in previous studies that Linear
Counting can provide accurate estimates with around 1% standard
error using less than 12 - card bits while achieving fast processing
time [30, 44, 63]. The linear counting algorithm maintains a vector



of length m and uses a uniformly random hash function to map a
feature into an index in the vector. After processing the data stream,
the probability that an entry in the vector equals 0 is (1 —1/m)¢%" d,
Hence, the estimator for card is card = m - ln(mﬂo) where my is the
number of zero entries in the vector.

Panakos Optimizations. card is an estimate of card. Since high-
frequency features are directly stored in Panakos, to improve the
cardinality estimation, we calculate the cardinality for cold fea-
tures (card.y1g) and hot features (cardy,;) separately. cardp,; is
heuristically estimated as the number of frequent features in the
SpaceSaving data structure. card,,j4 is estimated by resetting all
vector entries associated with these large features to zero and us-
ing the linear counting algorithm to estimate the number of cold
features in both the 2-bit bitmap vector and the count-min data
structures. Hence, the final cardinality is obtained by summing
card.ojq and cardpy;.

3.4.2  Singletons Estimation. Estimating the number of singletons is
an interesting statistic for cold features. In real-world data streams,
alarge fraction of the features only appear once [23] and estimating
the number of singletons is challenging. In previous work [9], the
number of singletons is approximated by sampling. However, this
approach requires the sampling rate to be around 1% to provide an
accurate approximation, which can cause significant overheads as
features often need several bits to represent. We adopt Kumar et
al. [37] approach, which was inspired by Linear Count, and provides
an accurate estimator for ny using a vector of constant length m and
a uniformly random hash function. After incrementing all vector
entries based on the input stream, the number of singletons can
be estimated directly based on the estimated cardinality, c’a—r\d, and
the numb’e_r\of entries with value one, denoted as my, in which
i = mlecard/m'

3.4.3 Challenges with n;>>. While singletons can be directly esti-
mated, doubletons and beyond are harder to estimate. If a vector
entry has a value of 1, then it must be a singleton feature mapped
into this entry. However, if a vector entry has a value of two, then
there are two cases: 1) it is a result of a doubleton, or 2) two single-
tons hashed into the same location by chance. Moreover, for warm
features, the counter values can span a wide range, and with larger
values, there can be more erroneous instances due to hash colli-
sions. Quantiles of feature distribution are cumulative, and hence
errors are accumulated resulting in the potential for large estima-
tion errors. To tackle this challenge, we use the maximum likelihood
estimation described in Section 3.4.4 to derive information about
ny and beyond.

3.4.4 Expectation Maximization. While Section 3.4.2 shows n; can
be directly approximated, this method can not be generalized to
estimate n; for i > 1. The expectation maximization (EM) algo-
rithm [20] is an iterative algorithm that derives the maximum like-
lihood estimation of the feature distribution. EM has been widely
applied in many areas [18, 21, 37], and is known for its convergence
to an empirically good estimator [60]. We use the EM algorithm to
estimate the distribution of cold features stored in the 2-bit bitmap
and the Count-Min sketch of T bits. The 2-bit bitmap provides
information on n; and ny, and the Count-Min sketch provides infor-
mation on n3 to ny,,r. Notice, with a limited space budget, different

features may hash to the same entry in the bit vector and Count-
Min, and they only provide a partial view of the feature distribution.
EM can then maximize the likelihood of the feature distribution
with respect to the unobserved hash collisions. For hot features
with large frequencies above or equal to n, 7, this information is
contained in SpaceSaving.

The EM algorithm is executed in iterations of expectation and
maximization steps. The expectation step of a given iteration uses
the feature distribution from the previous iteration to guess the
expectation of the log-likelihood of hash collisions. Note since
hashing is uniform, the collision pattern can be approximated using
Poisson distributions [7]. The maximization step computes the most
likely new feature distribution to maximize the expectation of the
log-likelihood of hash collisions. The output of the maximization
step also serves as an input to the expectation step in the next
iteration. EM repeats over a fixed number of iterations such as 10
iterations to derive an accurate approximation. In each iteration i,
the EM algorithm takes in a pair of n'~1, $!~! and outputs a new
pair of n’, $!. The approximate feature distribution outputted by
iteration i consists of n = {ni, né, ...} and ¢’ which is the feature
distribution. The initial n° and ¢° can be derived directly assuming
there are no hash collisions in the observed counter values.

More details of the correctness of the EM algorithm are shown
in [37] 1. In addition, the computational complexity of running the
EM algorithm is high. For an observation with a counter value of j,
the time complexity of EM is O(j*). In practice, researchers heuris-
tically reduce the complexity by limiting the number of different
features hashing into the same entry to 7. Hence, EM often ignores
hash collisions for large counter values. In Panakos, by disentan-
gling cold and hot items, the computation complexity is reduced as
the tail contributors are tracked solely based on SpaceSaving.

3.4.5 Panakos Optimizations for Feature Distribution. In Panakos,
we first derive the accurate cardinality of cold features, card,,;q4,
which reflects the cardinality of features stored in the 2-bit bitmap
and Count-Min, as described in 3.4.2. Since the 2-bits vector is a
single array, the 2-bits vector can be directly used as an input to the
EM algorithm to obtain the number of doubletons (n2). We can then
subtract ny and ny to obtain the number of unique features captured
by Count-Min. In addition, since Count-Min usually contains mul-
tiple rows, we need to transform Count-Min into a single vector as
the input to the EM algorithm which requires a single vector. The
transformation takes the average of the number of observations for
each counter value except for the minimum and maximum counter
values. The average of all the counter-value observations is taken to
minimize the variance in the hash function randomness and obtain
the most likely initial guess for the feature distribution. However,
for the minimum and maximum counter values, an alternative ap-
proach is taken based on the following observation: Consider a
Count-Min with two counter vectors that use two hash functions
to map each feature into the corresponding vector, for example, the
two counter vectors are [1,1,3,2] and [1, 2, 2, 2]. Let’s first consider
the minimum metric value. From the first counter vector, we can
infer that there are at least two distinct features with a metric value
of one, whereas the second vector implies at least one feature with
a metric value of one. Hence for the minimum metric value, we

IThe EM algorithm is described in Section 4.2 in [37].



should rely on the maximum number of appearances. Next, let’s
consider the maximum metric value. While the first vector tells us
that there is a feature that might have appeared 3 times, based on
the second vector we know that cannot be the case. If there exists
a feature that appeared 3 times, then the second vector must have
an entry with a counter value larger than or equal to three. Hence
for the maximum metric values, we should rely on the minimum of
the maximum metric values in all vectors.

3.5 Frequency Estimation

Algorithm 2: Panakos Frequency Estimation for e

1 V = bitsVector[hash(e)];
2 if V<3then

3 ‘ return 'V ;

4 V =2+ CM.query(e) ;

5 if V<1+27 then

6 ‘ return V;

7 return 1 + 27 + SpaceSaving.query(e);

Unlike the cumulative feature distribution, frequency estimation
is point-wise and aims to estimate the frequency of a feature e.
Hence, errors in frequency estimation are not cumulative and the
point-wise error is often small. Panakos leverages the separation of
cold items and hot items to deliver better estimation, in which the
frequency of the cold items is captured by the bit vector and Count-
Min, and the frequency of hot items is captured by SpaceSaving. The
query operation on e involves three steps, as shown in Algorithm 2:

Step 1: Use a uniform hash function & to map e to h(e), an index
in the bit vector. If the counter value stored at index h(e) is less than
3 (3 indicates the counter is overflowed), then report the counter
value as the estimated frequency. Otherwise, forward the query to
the next step.

Step 2: Query the Count-Min sketch with e. If the sum of 2 (due
to the two initial hashes to the bit map) and the query result is less
than 1+ 27, report the sum as the estimated frequency.

Step 3: Query the SpaceSaving with e, and report the sum of
1+27 (due to prior hashes to the bitmap and the Count-Min sketch)
and the query result as the estimated frequency.

3.6 Identifying Tail Contributors

Instead of relying on a static threshold, such as in the Top-K prob-
lem, the ¢ heavy tail report important features based on a relative
quantile threshold ¢, in which setting ¢ = .99 means to find the
top 1%. Tail contributors can be efficiently identified by consolidat-
ing feature distribution and frequency approximations. First, the
given quantile threshold ¢ is mapped into a frequency threshold,
F , based on the approximated feature distribution. If the frequency
threshold, &, is larger than 1 + 2T then all heavy tail features are
stored in SpaceSaving. Features stored in SpaceSaving with an esti-
mated frequency larger than & are the heavy tail features. On the
other hand, if the frequency threshold, %, is less than 1 + 2T the
heavy tail features consist of all features stored in the SpaceSaving
and some additional features from the Count-Min Sketch.

3.7 From Count to Sum and Average

In this subsection, we discuss how Panakos can be further general-
ized to support Sum and Average operators. Streams may contain
weighted metrics such as purchase quantity or importance [11].
To handle a feature with weight w, we can treat the weighted in-
sertions as w inserts of a single feature. Although this approach
is correct, it would undesirably increase the update times. A more
efficient approach is to process the weights in a single pass. For-
tunately, the data structures used in Panakos are already known
to support the Sum of weighted inserts [14, 45, 56, 64]. As a result,
for weight metrics, Panakos maintains the original logic, and if
the weights exceed the counter capacity in the current stage, then
the remaining weights can be incrementally applied to subsequent
stages.

Supporting the Average statistic is challenging. Although the
sum and count metrics have tight additive-error guarantees, their
division can still incur large errors. To the best of our knowl-
edge, we are unaware of any existing data sketches supporting
the average operator. To support the Average operator, we propose
two heuristic approaches i) data-independent Ratio Distribution,
and ii) data-dependent Panakos with Alignment. First, we intro-
duce the data-independent Ratio Distribution approach. In essence,
the average of an item is its sum divided by its count. Assume
the count and sum of any item are two random variables drawn
from two independent distributions, i.e, pcouns and Psym, then we
can compute the density distribution of the average metric, a, as
Pavg(a@) = X221 chcount (¢)Psum(c - @), where a is the average met-
ric, ¢ is the count metric, and c- a is the sum metric. Now, we can use
two independent Panakos sketches to approximate both ¢¢ouns and
¢sum- By approximating the distributions and assuming these two
metrics are independent, we obtain the approximated distribution
for the average.

Our second data-dependent method, Panakos with Alignment,
uses the sum metric to guide the placement of the count metric. On
one hand, Panakos with Alignment includes two bitmap and Count-
Min stages corresponding to the sum and count operators, and these
data structures share the same set of hash functions (to ensure a
feature’s count and weights share the same counter index). On the
other hand, Panakos with Alignment uses one single SpaceSaving
stage with one extra field that maintains (feature, weight, count)
tuples. In addition, the SpaceSaving update algorithm takes (feature,
weight, ¢ = 1) as parameters. Note the count of a new insertion
is always one, whereas the weight may vary. The update logic for
SpaceSaving follows the same procedure as described in Section 3.3
Step 3, and the only additional step is, depending on which tuple is
modified due to the inserted weight, its count field which is also
increased by one. From the weights of the insertions, we can classify
this insertion as cold, warm, or hot. Based on the cold, warm, or hot
classification, we aim to place the count in the bitmap, Count-Min,
or SpaceSaving stage, and, in case the counter reaches its capacity,
the count will be stored in the next stage. The intuition is that
to compute accurate average information, we need to place the
count of the feature corresponding to its weights such that each
feature’s weight and count are near each other. Empirically, we find
the alignment strategy produces accurate approximations.



4 PANAKOS ANALYSIS

In this section, we analyze Panakos’s theoretical guarantees for
understanding the general feature distribution of a data stream and
identifying the tail contributors.

4.1 Panakos Feature Distribution Properties

We argue that Panakos provides more accurate feature distributions
when using larger space. Panakos relies on the EM algorithm to
derive the feature distribution of a data stream. The EM algorithm
is well-studied as a maximum likelihood estimator. Asymptotically,
the EM algorithm provides an unbiased estimation of the feature
distribution [4]. Since the derived feature distribution from the EM
algorithm is unbiased, we can analyze Panakos based on the esti-
mation variance. For a fixed number of observations, the minimum
variance of a maximum likelihood estimator is bounded by the well-
known Cramer-Rao bound [16, 49], which states that the variance of
any maximum likelihood estimator is lower bounded by the inverse
of the Fisher information. The Fisher information [51] can be seen
as the amount of information that a set of observable data points
(the counter values) stores about the unknown distribution (feature
distribution). By increasing Panakos’ space budget, Panakos can
thus store more observations. As a result, the Fisher information
will increase, which is then translated into a finer lower bound
for the variance. Hence increasing the space budget for Panakos
improves the estimated feature distribution that Panakos provides.

Moreover, the feature distribution satisfies two constraints,
namely ., gzgi =1landVi0 < gz§i < 1. It has been shown in [26]
that constraints on the estimated distribution increase the Fisher
information. The Fisher information can be calculated from the ob-
servations seen in the sketch and hence with a larger sketch size and
more observations, the Fisher information will increase [42, 50, 58].
Hence, the additional constraints on the feature distribution in-
crease the available information, thus reducing the lower bound on
the variance, and ensuring more accurate estimates of the feature
distribution given the same amount of space.

4.2 Analysis of Tail Contributors

To identify the tail contributors given the relative threshold i/, the
procedure discussed in Section 3.6 consists of two steps: 1) use the
feature distribution to map a quantile threshold, ¢, into a frequency
threshold &, and 2) report all features with frequencies larger than
or equal to &. In Section 4.1, we argued that Panakos’s feature
distribution is unbiased and minimizes the variance when using
more space. In this section, we focus on the second step and provide
an analysis of Panakos’ estimate of a feature’s frequency.

Estimating the Number of False Positives. We observe that
filtering out small and warm features can improve the performance
of Count-Min and SpaceSaving as their estimation error depends
on the number of features they digest. The bitmap of 2-bit counters
and Count-Min of T-bit sketch can be seen as a counting Bloom
filter [12] whose function is to filter out the small and warm fea-
tures. The bitmap component is a Bloom filter that uses one hash
function and the Count-Min component is equivalent to a Bloom
filter using O(log(—ls) hash functions where § is the probability of
Count-Min having a high estimation error. To analyze the false
positive rate of reporting cold features as hot features, we assume

the features in the stream are ordered randomly [28]. Under the
random order assumption, a counting Bloom filter with m entries,
H hash functions, and after digesting a windowed stream with N
features, the false positive rate of classifying features with metric
values less than 1 + 27 as hot features is approximate:

FPR(threshold, H,N,m) = (1- > b(LHN,1/m) (1)
[<threshold

where b(I, HN,1/m) = (HIN)%I(l - %)HN’I is the binomial dis-
tribution [12, 36].

Based on Equation 1, the 2-bit bitmap with one hash function and
My, counter entries has a false positive rate (denoted as BMg,,)
of not classifying features with a metric value less or equal to two
as small features is:

2
BMjpp, =1 - Z b(i, N, 1/mpp,) )
i=1
Hence, the approximate number of features that proceed from the
first stage to the second stage can be approximated as:

NMedHoy = BMyp, - (n1 +2n2) + Z i-n;j—sum(BM) (3)
i>3
where some singletons and doubletons may encounter false positive
cases and sum(BM) is the number of features remaining in the 2-bit
bitmap.
Similarly, we can calculate the false positive rate of Count-Min,
with H hash functions, m¢y,, counters, and a metric threshold of

2l -1 using T bits per counter, as
271
CMppr = (1= 3" b(i, HNpedrroy 1/mem)™. ()

i=1
Let sum(CMyo+) be the sum of counter values in one of the
Count-Min vectors (all vectors in Count-Min have the same sum),
and then let Nyemain = sum(BM) + sum(CMyo.,) Where Nyemain
represents the number of features remaining in both the 2-bit
bitmap and Count-Min. Hence, we can calculate the number of
features inserted into SpaceSaving as:

1427
NHZJy = Cprr(Bprr(n1+2n2)+ Z i‘n;j))+ Z i-nj—Nremain
=3 i>1+27

()
Tail Contributors Accuracy. Overestimating a feature’s fre-
quency has been shown to be a positive property in identifying
interesting features based on frequency thresholds [13]. We ob-
serve that Panakos never underestimates a cold feature’s frequency
due to the hash collisions of different features in the 2-bit bitmap
and Count-Min sketch. In addition, Panakos also provides similar
properties for the hot features.

LEMMA 1. Panakos never underestimates the frequency of a moni-
tored tail feature.

Proor. Panakos’ frequency estimation algorithm has three
stages, i.e., bitmap, Count-Min, and SpaceSaving. The bitmap can
only overestimate an item’s count due to hash collisions. In addi-
tion, Count-Min and SpaceSaving are known to have the property



of overestimation [13]. Since all stages never underestimate a mon-
itored tail item’s frequency, it is clear that Panakos inherits the
property of one-sided error. O

Frequency Estimation Guarantees. We assume the features in
a data stream are randomly ordered and further utilize the analysis
shown in Section 4.2 to provide different error guarantees for the
frequency estimation of the cold, warm, and hot features stored in
different stages. As shown in Algorithm 2, the estimated frequency
is reported from one of three stages. Depending on the stage, the
frequency error guarantees are slightly different:

Bitmap Stage: The feature’s frequency is reported based solely
on a 2-bit bitmap. This frequency is at most off by 2.

Count-Min Stage: The feature’s frequency is reported based on
Count-Min. This frequency is off by 2 + eN;j with high probability
1 -4, and is at most off by 2T,

SpaceSaving Stage: The feature’s frequency is reported based

on SpaceSaving with K counters. The frequency is at most off by
2T + 22,

5 HARDWARE IMPLEMENTATION

In this section, we describe the hardware implementation of
Panakos on Intel Tofino switch [31].

PISA programming model. In contrast to conventional switches,
protocol-independent switch architecture (PISA) switches offer pro-
grammable parsing and customizable packet-processing pipelines,
as well as general-purpose registers for stateful operations [6].
These features provide opportunities to realize flexible data (packet)
processing at line rate (i.e., order of nanoseconds). Developers use
the P4 language [5] to support user-defined packet headers, specify
the matching fields and types (e.g., exact, range, and ternary match-
ing), and configure supported actions (e.g., CRC32 hash, header field
modification, register read/write via arithmetic logic unit (ALU),
arithmetic operations, and metering).

P4 Implementation. We use the Tofino switch’s stateful regis-
ters to implement Panakos’s three critical data structures. More
concretely, we implement the bitmap and Count-Min using mul-
tiple register arrays with different CRC hash functions. When a
packet arrives at the switch, it will update the corresponding hash-
indexed counters stored in the registers using ALUs. We adopt the
hardware-friendly CocoSketch [64], an extension of SpaceSaving.
It reduces the number of memory accesses for resource-constraint
hardware. Lastly, we add a cloning stage to clone a packet using
Tofino’s mirror function and send the cloned packet to the control
plane for offline analysis. The cloned packet contains information
about counter values from Bitmap, Count-Min, and CocoSketch.
With the cloning functionality, hardware-friendly Panakos ensures
that the original packet remains unaffected.

Latency Improvement. The hardware implementation is a P4
program running on a Tofino switch while the software implemen-
tation is a python program running on a server with 2 Intel Xeon
Silver 4214R Processor 12-Core 2.4GHz CPU and 192 GB memory.
Panakos’ hardware implementation is much (15x) faster than the
software one. More concretely, an insert operation takes around 5-6
microseconds in software implementation and around 400 nanosec-
onds in hardware. This result demonstrates Panakos’ suitability for
network monitoring applications.

6 EVALUATION

This section demonstrates that Panakos outperforms existing state-
of-the-art solutions. More concretely, for given memory resources,
it offers better accuracy in (i) reporting the feature distribution;
(ii) identifying the tail contributors; and (iii) extracting essential
statistics, such as frequency, cardinality, and entropy, from the raw
data stream. we demonstrate the generalizability of observed gains
across different datasets and configurations. While we focus on the
Count operator, we also provide experimental results for the Sum
and Average operators for approximating feature distribution and
identifying tail contributors.

6.1 Experimental Setup

For accuracy-related evaluation, we implement all sketches using
Python as it enables faster prototyping and offers good readability.
For Panakos, we use the standard priority queue data structure to
implement the SpaceSaving stage instead of the linked-list data
structure proposed in the original paper. Using a priority queue
to implement SpaceSaving saves pointer space and avoids random
memory accesses. The experiments compare the software imple-
mentation of Panakos to other state-of-the-art sketches:

e MRAC [37]: MRAC is the seminal statistical summary technique
that uses the EM algorithm to approximate the entire feature
distribution.

e CocoSketch [64]: CocoSketch is an extension of SpaceSav-
ing [45, 56, 65] with implementations on software and hardware
platforms. CocoSketch achieves state-of-the-art performance in
estimating a feature’s frequency and identifying heavy features.

¢ ElasticSketch [62]: ElasticSketch can answer many statistical
questions such as feature distribution. It tracks the heavy features
first and then uses Count-Min to summarize the cold features.

e FCMSketch [55]: FCMSketch is an extension of Count-Min.
It imposes a perfect tree hierarchical structure over multiple
Count-Min sketches to extract feature distributions and other
statistics.

Evaluation Metrics. We use the following three metrics to quan-
tify accuracy.

e Maximum Quantile Error (MQE) measures the accuracy of the
feature distribution in the quantile domain. MQE is the maximum
deviation among all quantiles, also known as the Kolmogorov-

Smirnov divergence [8], in which MQE is maxl!fll"“ (abs(¢i — qgi)).
e Average Relative Error (ARE) evaluates a sketch’s perfor-

mance in the frequency domain. ARE is ﬁ Dixer W

where Y is the set of all quantiles in a feature distribution or the
set of all unique features when estimating frequencies.

e F1 score is the harmonic mean of the precision and recall

- %). We use the F1 score to evaluate the per-

formance of each sketch in identifying the tail contributors.

Datasets We use one synthetic and two real-world datasets for
evaluation.

e Zipf Distribution: We use this synthetic dataset to demon-
strate how well Panakos performs for distributions with varying
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Figure 3: Accuracy of feature distribution approximation on real-world datasets with varying space budgets

skewness. Specifically, we curate multiple datasets with vary-
ing skewness. For each dataset, we draw the elements from a
bounded universe such that their frequencies follow the Zipf
Law [70], in which the frequency of an element with rank R:
f(Rs) = %ﬁ‘mt. Here, s indicates skewness, which is different
for different datasets. Unless specified otherwise, we use s = 1.0
for our experiments. Typically, real-world data tend to have skew-
ness varying from 0.7 to 1.2, such as IP addresses in network
traces, file transmission times, and webpage accesses [15].

CAIDA Dataset: The CAIDA dataset contains anonymized and
unsampled packet traces [1], which were captured from a large
ISP’s backbone link between Seattle and Chicago. We use this
dataset to demonstrate how well Panakos performs in count, sum,
and average operators for network monitoring use cases. We
consider the most common feature, one that reports the metric
values for each connection?, for evaluation.

SensorScope: The Sensorscope dataset contains environmental
data from past SensorScope deployments. We use this dataset
to demonstrate how well Panakos performs for environmental
monitoring use cases. We consider the feature that reports the
number of status packets for a group of sensors that share a
set of transmission power, primary voltage, global current, and
energy source attributes.

To ensure that we can compare results across different datasets, we
consistently use one million distinct items from each datasets.
Parameter Settings. For a fair comparison, we must decide on
appropriate resource allocation policies for different solutions.
ElasticSketch. ElasticSketch uses a hash table and a Count-Min
sketch to track heavy and cold items. We use the heuristics de-
scribed in [62] to decide how much memory to allocate to each data
structure. Specifically, we assign 25% of the available memory (B)
to the hash table and the rest to the Count-Min sketch.
FCMSketch. FCMSketch imposes a perfect tree structure over mul-
tiple Count-Mins. We use the heuristics described in [55] to set
the parameters. Specifically, each Count-Min uses two rows and
there are three Count-Mins, in total, using 8, 16, and 32 bits per
counter and the tree has a branching factor of 8 which means the
first Count-Min has 8 times more counters than the second Count-
Min and 64 times more counter than the third Count-Min.
Panakos. Panakos uses bitmap, Count-Min, and SpaceSaving data
structures to track cold, warm, and hot items. Let {bm, cm, ss} de-
note the percentage of the memory allocated to the 2-bit bitmap,

2Network operators use five header fields, i.e., sIP, dIP, sPort, dPort, and proto, to
group packets associated with a network connection.

Count-Min with 4 bits per counter, and SpaceSaving stages. Unless
specified otherwise, we use the configuration {35%, 15%, 50%} for
evaluation. Section 6.4 shows how changing this resource allocation
policy affects Panakos’ performance.

6.2 Accuracy of Feature Distributions

Space Budget vs. Error. Figure 3(a)-(d) provide a comparison of
the accuracy of different sketches in both the quantile and frequency
domains on the CIADA and Sensor real datasets using space budgets
from 8KB to 128 KB. Since hardware often has constraints imposed
on the memory (e.g., NUCLEO-L476RG LoRaWAN board has 128KB
SRAM [61]), we believe that 8KB to 128KB reflects state-of-the-
art memory constraints on deploying sketches in the real world.
Assuming the metric value v has quantile value ¢, the quantile
domain uses MQE to characterize the maximum error between the
estimated and true quantile values of all ¢,. Similarly, the frequency
domain uses ARE to characterize the error between the estimated
and true frequencies based on ¢,. In Figure 3, the y-axis is either
MQE or ARE which are used to measure the accuracy in the quantile
or frequency domains respectively, and the x-axis is the total space
budget used by each sketch. Lower MQE or ARE indicate a more
accurate approximation.

As expected, CocoSketch (belongs to the family of counter-based
summaries) is not designed to approximate feature distributions
as it loses information on cold features and overestimates the fre-
quencies of hot features. We also find that ElasticSketch does not
perform well for feature distribution on the quantile domain. Unlike
Panakos, ElasticSketch mixes the singletons and doubletons with
other medium features. With limited resources, ElasticSketch can
not calculate small features accurately and incurs large quantile
estimation errors. Hence, ElasticSketch’s performance is less ro-
bust compared to Panakos and MRAC. MRAC and FCMSketch are
strong competitors to Panakos. As pointed out in FCMSketch [55],
FCMSketch in general has better performance than MRAC by using
layers of Count-Mins instead of storing all features in a single array.
However, FCMSketch can not fully utilize the benefit of multiple
Count-Mins as it requires all Count-Min sketches to share the same
set of hash functions. Using the same set of hash functions and
imposing the tree structure implies hot features are exponentially
more likely to collide when the tree depth increase. By leveraging
linear sketches to store cold and medium features and then using a
counter-based summary to explicitly store hot features, Panakos
has more accurate approximations than MRAC and FCMSketch in
all experiments. Panakos outperforms all the other state-of-the-art
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Figure 4: Accuracy of feature distribution approximation
using 16KB on Zipf dataset with varying skewness.

sketches in the frequency domain. In the quantile domain, when
using more than 32 KB of space, Panakos always provide the best
accuracy. In addition, when Panakos uses larger space budgets, it
provides a more accurate feature distribution approximation which
is also shown in the theoretical expectation, as explained in Sec-
tion 4.1. Therefore, we believe that Panakos offers better memory
vs accuracy trade-off than existing solutions.

Skewness vs. Error. In Figure 4(a)-(b), we compare the accuracy of
different sketches using 16KB space with Zipf datasets. The y-axis
is either MQE or ARE to measure the accuracy in the quantile or
frequency domains, respectively, and the x-axis is the skewness of
the Zipf dataset from 0.5 (low skew) to 2.0 (high skew). Lower MQE
or AREF indicate a more accurate approximation.
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Figure 5: F1 scores for identifying the 1% tail contributors on
real world datasets with varying space budgets.

For the quantile domain, in general, MQE decreases as skewness
increases. Since a higher skewness indicates more hot features, the
sketches will have fewer collisions between cold and hot features.
Moderate skew (1.0 - 1.5) may not help ElasticSketch as it often
mixes small features with medium ones. On the other hand, Panakos
can leverage the skewness increase to disentangle cold, warm, and
hot features. For the frequency domain, moderate skew also may
not help ElasticSketch and CocoSketch. Increasing skewness not
only indicates more hot features but also means a lower cardinality.
Recall that ARE computes the average distance in the metric error
for all unique quantiles. In addition to ElasticSketch mixing small
and medium features and CocoSketch only capturing the heavy
features, the denominator for the ARE metric also decreases as
skewness increases. When the data distribution is relatively uni-
form, we find that MRAC and FCMSketch have better performance.
Small skew implies no hot features and, with a good hash function,
all features can be mapped to counters evenly. In this particular
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Figure 6: Panakos sensitivity analysis with different memory

allocations using 10° items from Zipf Dataset of 1.5 skewness.

case, the SpaceSaving stage in Panakos becomes less beneficial and
incurs higher overheads. When the skew is moderate or high, which
is the more common case in real workloads, Panakos provides the
best performance among existing solutions.

6.3 Tail Contributors

One of the main goals for Panakos is to use the relative threshold,
1, in identifying the tail contributors. Figure 5(a) and (b) provide a
comparison among sketches in identifying heavy tail contributors
with i set to 0.99 over real-world CAIDA and SensorScope datasets,
in which the experiments aim to identify all the top 1% features.
The y-axis is the F1 score, and the x-axis is the space budget for each
sketch. F1 is the harmonic mean of the precision and recall, and
the closer an F1 score is to 1.0 indicates better accuracy. Moreover,
since MRAC cannot identify feature identities, we exclude MRAC
from the experiments in this task. Panakos acheives high F1 score in
finding the tail contributors. Among all other sketches, FCMSketch
is a strong competitor to Panakos. When using 128KB on CAIDA,
Panakos achieves a 0.98 F1 score, while FCMSketch achieves a
0.69 F1 score. The drawback of FCMSketch in identifying the tail
contributors is that the heavy features are exponentially more likely
to collide when the tree depth increases. Panakos, on the other hand,
can track hot features explicitly.

6.4 Sensitivity to Memory Allocation Policies

We now evaluate Panakos’ sensitivity to memory allocation policies.
We consider three different policies. Let an {bm, cm, ss} denote the
percentage of the total memory allocated to the bitmap, Count-
Min, and SpaceSaving stages. We explore three different set of
parameters, i.e., {.15,.15,.7}, {.35, .15, .5}, and { .4, .3, .3}. Figure 6(a)-
(b) shows that allocating more memory percentage to bitmap and
Count-Min stages enables summarizing cold and warm features
efficiently, contributing to better MQE and ARE. Figure 6(c) shows
that allocating more memory percentage (70%) for SpaceSaving
at the cost of bitmap and Count-Min leads to a better F1 score in
general. Interestingly, when the space budget is minimal, spending
most of the memory on the SpaceSaving stage may not be very
helpful, as the mapping between a given quantile threshold and
metric threshold still requires some understanding of the entire
feature distribution. As a result, we believe that parameter settings
are subject to both system operator interest and data distribution. At
one extreme of the spectrum, if the operator only cares about heavy
hitters, allocating all memory to SpaceSaving would be optimal. At
the other extreme of the spectrum, if the operator only cares about
learning the number of singletons, then allocating all memory to the
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Figure 7: The performance comparisons of sketches on statistical queries over the Zipf 1.5 dataset with varying space budgets.

bitmap stage would be optimal. Our choice of allocating 15%, 35%,
and 50% to bitmap, Count-Min, and SpaceSaving data structures
attempt to strike a balance among all three metrics of interest. We
leave the design of an algorithm that synthesizes optimal memory
allocation policy for a given distribution as future work.

6.5 Additional Stream Statistics and Operators

Panakos also accurately estimates other stream statistics for a given
memory budget. Figure 7 shows how well Panakos reports frequent
items, frequency, cardinality, and entropy estimations for a given
Zipf 1.5 stream. Note the entropy of the data stream is estimated
from the feature distribution [38], as — .72, i - C:ﬁlog CZ; - Where
n; is the number of features appeared i times, and card is the cardi-
nality. We report the F1 score for frequent items, average relative
error (ARE) for frequency estimation, and relative error for cardi-
nality and entropy estimations. For frequent items, we aim to report
all hot features with a frequency above eN where € = 1073 and N
are a million data items. Panakos performs better than or at par
with existing solutions for frequent items, cardinality, and entropy
estimations across different memory budgets. The only exception is
a higher ARE in frequency estimation for Panakos. The observation
is that the heavy features are the main contributors to errors in
ARE. To provide better approximation across the entire feature
spectrum, Panakos only allocates a fraction of memory to track
heavy features, whereas CocoSketch uses all available memory
to track heavy features. As memory increase, Panakos’ frequency
estimation error drastically diminish.

While we focused on the Count operator, we also conducted ex-
periments to understand the performance of Panakos with Sum and
Average operators. Note we assume the metric values are integers.
The count metric is the occurrence of a 5-tuple in each packet. For
the sum metric, we find that the minimum byte chunks in a packet
stream are about 64 octets, and the sum metric is measured in units
of 64 octets. The average metric is the sum metric divided by the
count metric for each 5-tuple. Figure 8 (a)-(c) demonstrate that by
using different data structures to track cold, warm, and hot features
independently, Panakos offers better accuracy vs. memory usage
trade-off than other sketches for the Sum operator. Figure 8 (d)-(e)
compares the two possible approaches discussed in Section 3.7 to
realize the Average operator. The result demonstrates the value
of Panakos’ "

alignment-based" approach, which places an item’s
count near the item’s sum, unlike the "ratio distribution" approach,
in striking a better accuracy vs. memory usage trade-off.
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Figure 8: Approximate feature distribution and identify tail
contributors with Sum and Average.

7 CONCLUSION

This paper presents the design and implementation of Panakos.
Our key idea is to leverage the skewness inherent to most feature
streams in the real world. Specifically, we disentangle a feature
stream into cold, warm, and hot items based on their feature values
and use a combination of the bitmap, Count-Min, and SpaceSaving
data structures to track them. Our design is generalizable to count,
sum, and average operators, and strikes a good balance between
accuracy and memory overhead. It is also amenable to modern
programmable hardware targets. Our experiments showcase that
Panakos is aligned with theoretical expectations, achieves state-
of-the-art performance in approximating the feature distribution
and identifying the tail contributors, and can provide very accurate
estimations for a wide range of statistics. Panakos is applicable to
many real-world systems, enabling them to utilize their resources
effectively and report interesting statistics for analysis.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback.
This work is funded in part by NSF grants CNS-1703560 and CNS-
1815733. Punnal and Arpit were supported by NSF awards OAC-
2126327, OAC-2126281, and CNS-2003257 (co-sponsored by In-
tel). Liu was supported in part by NSF grants CNS-2107086, CNS-
2106946, SaTC-2132643, and Red Hat Collaboratory.



REFERENCES

(1]
(2]

[11]

[12]
[13]

[14]

[15]

[16

[17]

[18

[19]

[20]

[21

[22]

[23

[24

[25]

[26]

[n.d.]. Anonymized Internet Traces 2015. https://catalog.caida.org/details/
dataset/passive_2015_pcap. Accessed: 2022-10-5.

Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. 2017. Understanding the mirai botnet. In 26th USENIX security
symposium (USENIX Security 17). 1093-1110.

Peter Bailis, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin Rong, and
Sahaana Suri. 2017. Macrobase: Prioritizing attention in fast data. In Proceedings
of the 2017 ACM International Conference on Management of Data. 541-556.
Peter J Bickel and Kjell A Doksum. 2015. Mathematical statistics: basic ideas and
selected topics, volumes I-II package. Chapman and Hall/CRC.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 87-95.

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown,
Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding meta-
morphosis: Fast programmable match-action processing in hardware for SDN.
ACM SIGCOMM Computer Communication Review 43, 4 (2013), 99-110.

Tian Bu, Jin Cao, Aiyou Chen, and Patrick PC Lee. 2010. Sequential hashing:
A flexible approach for unveiling significant patterns in high speed networks.
Computer Networks 54, 18 (2010), 3309-3326.

Francesco Paolo Cantelli. 1933. Sulla determinazione empirica delle leggi di
probabilita. Giorn. Ist. Ital. Attuari 4, 421-424 (1933).

Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. 2000.
Towards estimation error guarantees for distinct values. In Proceedings of the
nineteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. 268-279.

Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding frequent
items in data streams. In International Colloquium on Automata, Languages, and
Programming. Springer, 693-703.

Tiangi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785-794.

Saar Cohen and Yossi Matias. 2003. Spectral bloom filters. In Proceedings of the
2003 ACM SIGMOD international conference on Management of data. 241-252.
Graham Cormode and Marios Hadjieleftheriou. 2008. Finding frequent items in
data streams. Proceedings of the VLDB Endowment 1, 2 (2008), 1530-1541.
Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream
summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58-75.

Graham Cormode and Shan Muthukrishnan. 2005. Summarizing and mining
skewed data streams. In Proceedings of the 2005 SIAM International Conference on
Data Mining. SIAM, 44-55.

Harald Cramér. 1999. Mathematical methods of statistics. Vol. 43. Princeton
university press.

Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav Shkapenyuk.
2003. Gigascope: A stream database for network applications. In Proceedings of
the 2003 ACM SIGMOD international conference on Management of data. 647-651.
Alexander Philip Dawid and Allan M Skene. 1979. Maximum likelihood esti-
mation of observer error-rates using the EM algorithm. Journal of the Royal
Statistical Society: Series C (Applied Statistics) 28, 1 (1979), 20-28.

Erik D Demaine, Alejandro Lopez-Ortiz, and J Ian Munro. 2002. Frequency
estimation of internet packet streams with limited space. In European Symposium
on Algorithms. Springer, 348-360.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. 1977. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical Society:
Series B (Methodological) 39, 1 (1977), 1-22.

Garry A Einicke, Gianluca Falco, and John T Malos. 2010. EM algorithm state
matrix estimation for navigation. IEEE Signal Processing Letters 17, 5 (2010),
437-440.

Seyed K Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael Bailey. 2015. Bo-
hatei: Flexible and Elastic {DDoS} Defense. In 24th USENIX security symposium
(USENIX Security 15). 817-832.

Michael Freitag and Thomas Neumann. 2019. Every row counts: Combining
sketches and sampling for accurate group-by result estimates. ratio 1 (2019),
1-39.

Edward Gan, Jialin Ding, Kai Sheng Tai, Vatsal Sharan, and Peter Bailis. 2018.
Moment-based quantile sketches for efficient high cardinality aggregation
queries. arXiv preprint arXiv:1803.01969 (2018).

Sumit Ganguly, Phillip B Gibbons, Yossi Matias, and Avi Silberschatz. 1996.
Bifocal sampling for skew-resistant join size estimation. In Proceedings of the
1996 ACM SIGMOD international conference on management of data. 271-281.
John D Gorman and Alfred O Hero. 1990. Lower bounds for parametric estimation
with constraints. IEEE Transactions on Information Theory 36, 6 (1990), 1285—
1301.

[27

[28

[29]

(30]

w
—

[32

[33

(34]

[35

[37

[38

(39]

[40

N
furg

[42

[43]

[44]

[45]

[46

[47

Michael Greenwald and Sanjeev Khanna. 2001. Space-efficient online computa-
tion of quantile summaries. ACM SIGMOD Record 30, 2 (2001), 58-66.

Sudipto Guha and Andrew McGregor. 2009. Stream order and order statistics:
Quantile estimation in random-order streams. SIAM J. Comput. 38, 5 (2009),
2044-2059.

Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and
Walter Willinger. 2018. Sonata: Query-driven streaming network telemetry.
In Proceedings of the 2018 conference of the ACM special interest group on data
communication. 357-371.

Hazar Harmouch and Felix Naumann. 2017. Cardinality estimation: An experi-
mental survey. Proceedings of the VLDB Endowment 11, 4 (2017), 499-512.

Intel. 2022. Barefoot Tofino. https://barefootnetworks.com/products/brief-tofino/.
[Online; accessed 19-July-2022].

Nikita Ivkin, Edo Liberty, Kevin Lang, Zohar Karnin, and Vladimir Braverman.
2022. Streaming quantiles algorithms with small space and update time. Sensors
22, 24 (2022), 9612.

Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, and Xin Jin. 2019. Qpipe:
Quantiles sketch fully in the data plane. In Proceedings of the 15th International
Conference on Emerging Networking Experiments And Technologies. 285-291.
Zohar Karnin, Kevin Lang, and Edo Liberty. 2016. Optimal quantile approxima-
tion in streams. In 2016 ieee 57th annual symposium on foundations of computer
science (focs). IEEE, 71-78.

Richard M Karp, Scott Shenker, and Christos H Papadimitriou. 2003. A simple
algorithm for finding frequent elements in streams and bags. ACM Transactions
on Database Systems (TODS) 28, 1 (2003), 51-55.

Kibeom Kim, Yongjo Jeong, Youngjoo Lee, and Sunggu Lee. 2019. Analysis of
counting bloom filters used for count thresholding. Electronics 8, 7 (2019), 779.
Abhishek Kumar, Minho Sung, Jun Xu, and Jia Wang. 2004. Data streaming
algorithms for efficient and accurate estimation of flow size distribution. ACM
SIGMETRICS Performance Evaluation Review 32, 1 (2004), 177-188.

Ashwin Lall, Vyas Sekar, Mitsunori Ogihara, Jun Xu, and Hui Zhang. 2006.
Data streaming algorithms for estimating entropy of network traffic. ACM
SIGMETRICS Performance Evaluation Review 34, 1 (2006), 145-156.

Alexandru Lavric and Valentin Popa. 2017. Internet of things and LoRa™ low-
power wide-area networks: a survey. In 2017 International Symposium on Signals,
Circuits and Systems (ISSCS). IEEE, 1-5.

Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. 2016. One sketch to rule them all: Rethinking network flow mon-
itoring with univmon. In Proceedings of the 2016 ACM SIGCOMM Conference.
101-114.

Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee, Changhoon
Kim, Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas Sekar. 2021. Jaqen:
A {High-Performance } {Switch-Native } Approach for Detecting and Mitigat-
ing Volumetric {DDoS} Attacks with Programmable Switches. In 30th USENIX
Security Symposium (USENIX Security 21). 3829-3846.

Patrick Loiseau, Paulo Gongalves, Stéphane Girard, Florence Forbes, and Pascale
Vicat-Blanc Primet. 2009. Maximum likelihood estimation of the flow size
distribution tail index from sampled packet data. In Proceedings of the eleventh
international joint conference on Measurement and modeling of computer systems.
263-274.

Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. 1998. Ap-
proximate medians and other quantiles in one pass and with limited memory.
ACM SIGMOD Record 27, 2 (1998), 426-435.

Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2008. Why go
logarithmic if we can go linear? Towards effective distinct counting of search
traffic. In Proceedings of the 11th international conference on Extending database
technology: Advances in database technology. 618-629.

Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient
computation of frequent and top-k elements in data streams. In International
conference on database theory. Springer, 398-412.

Jayadev Misra and David Gries. 1982. Finding repeated elements. Science of
computer programming 2, 2 (1982), 143-152.

Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.
Language-directed hardware design for network performance monitoring. In
Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication. 85-98.

Rasmus Pagh and Mikkel Thorup. 2022. Improved Utility Analysis of Private
CountSketch. arXiv preprint arXiv:2205.08397 (2022).

C Radhakrishna Rao. 1945. Information and the accuracy attainable in the
estimation of statistical parameters. Reson. J. Sci. Educ 20 (1945), 78-90.

Bruno Ribeiro, Don Towsley, Tao Ye, and Jean C Bolot. 2006. Fisher information
of sampled packets: an application to flow size estimation. In Proceedings of the
6th ACM SIGCOMM conference on Internet measurement. 15-26.

Jorma J Rissanen. 1996. Fisher information and stochastic complexity. IEEE
transactions on information theory 42, 1 (1996), 40-47.

Pratanu Roy, Arijit Khan, and Gustavo Alonso. 2016. Augmented sketch: Faster
and more accurate stream processing. In Proceedings of the 2016 International



[53]

[54]

[55]

[57]

[58]

[59]

[60]

[61]

Conference on Management of Data. 1449-1463.

Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash
Suri. 2004. Medians and beyond: new aggregation techniques for sensor networks.
In Proceedings of the 2nd international conference on Embedded networked sensor
systems. 239-249.

Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, Shan Muthukr-
ishnan, and Jennifer Rexford. 2017. Heavy-hitter detection entirely in the data
plane. In Proceedings of the Symposium on SDN Research. 164-176.

Cha Hwan Song, Pravein Govindan Kannan, Bryan Kian Hsiang Low, and
Mun Choon Chan. 2020. FCM-sketch: generic network measurements with
data plane support. In Proceedings of the 16th International Conference on emerg-
ing Networking EXperiments and Technologies. 78-92.

Daniel Ting. 2018. Data sketches for disaggregated subset sum and frequent item
estimation. In Proceedings of the 2018 International Conference on Management of
Data. 1129-1140.

Lu Wang, Ge Luo, Ke Yi, and Graham Cormode. 2013. Quantiles over data streams:
an experimental study. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data. 737-748.

Pinghui Wang, Xiaohong Guan, Junzhou Zhao, Jing Tao, and Tao Qin. 2014. A
new sketch method for measuring host connection degree distribution. IEEE
transactions on information forensics and security 9, 6 (2014), 948-960.
Kyu-Young Whang, Brad T Vander-Zanden, and Howard M Taylor. 1990. A
linear-time probabilistic counting algorithm for database applications. ACM
Transactions on Database Systems (TODS) 15, 2 (1990), 208-229.

CF Jeff Wu. 1983. On the convergence properties of the EM algorithm. The
Annals of statistics (1983), 95-103.

Mingran Yang. 2020. Joltik: enabling energy-efficient” future-proof" analytics on
low-power wide-area networks. Ph.D. Dissertation. Carnegie Mellon University.

[62]

[63]

[64]

[66]

[67]

[68]

[70]

Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. 2018. Elastic sketch: Adaptive and fast network-
wide measurements. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication. 561-575.

Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software {Defined}{Traffic}
Measurement with {OpenSketch}. In 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13). 29-42.

Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie Miao, Peng
Liu, Ruwen Zhang, and Junchen Jiang. 2021. CocoSketch: high-performance
sketch-based measurement over arbitrary partial key query. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference. 207-222.

Fuheng Zhao, Divyakant Agrawal, Amr El Abbadi, and Ahmed Metwally. 2021.
SpaceSaving®: An Optimal Algorithm for Frequency Estimation and Frequent
Items in the Bounded Deletion Model. arXiv preprint arXiv:2112.03462 (2021).
Fuheng Zhao, Sujaya Maiyya, Ryan Wiener, Divyakant Agrawal, and Amr El
Abbadi. 2021. KLL+: Approximate quantile sketches over dynamic datasets.
Proceedings of the VLDB Endowment 14, 7 (2021), 1215-1227.

Fuheng Zhao, Dan Qiao, Rachel Redberg, Divyakant Agrawal, Amr El Abbadi,
and Yu-Xiang Wang. 2022. Differentially private linear sketches: Efficient imple-
mentations and applications. arXiv preprint arXiv:2205.09873 (2022).

Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve
Uhlig. 2018. Cold filter: A meta-framework for faster and more accurate stream
processing. In Proceedings of the 2018 International Conference on Management of
Data. 741-756.

Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan,
Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao, et al. 2015. Packet-level
telemetry in large datacenter networks. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication. 479-491.

George Kingsley Zipf. 2016. Human behavior and the principle of least effort: An
introduction to human ecology. Ravenio Books.



	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Target Applications
	2.2 Problem Description
	2.3 Limitations of Existing Solutions
	2.4 Observations and Opportunities.

	3 Panakos
	3.1 Rationale
	3.2 Basic Panakos Data Structures
	3.3 Panakos Update Workflow
	3.4 Feature Distribution
	3.5 Frequency Estimation
	3.6 Identifying Tail Contributors
	3.7 From Count to Sum and Average

	4 Panakos Analysis
	4.1 Panakos Feature Distribution Properties
	4.2 Analysis of Tail Contributors

	5 Hardware Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Accuracy of Feature Distributions
	6.3 Tail Contributors
	6.4 Sensitivity to Memory Allocation Policies
	6.5 Additional Stream Statistics and Operators

	7 Conclusion
	Acknowledgments
	References

