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ABSTRACT 1 

Bridging the gaps among various categories of stochastic microstructures remains a challenge in the 2 
design representation of microstructural materials. Each microstructure category requires certain unique 3 
mathematical and statistical methods to define the design space (design representation). The design 4 
representation methods are usually incompatible between two different categories of stochastic 5 
microstructures. The common practice of pre-selecting the microstructure category and the associated 6 
design representation method before conducting rigorous computational design restricts the design freedom 7 
and hinders the discovery of innovative microstructure designs. To overcome this issue, this paper proposes 8 
and compares two novel methods, the deep generative modeling-based method and the curvature 9 
functional-based method, to understand their pros and cons in designing mixed-category stochastic 10 
microstructures for desired properties. For the deep generative modeling-based method, the Variational 11 
Autoencoder is employed to generate an unstructured latent space as the design space. For the curvature 12 
functional-based method, the microstructure geometry is represented by curvature functionals, of which the 13 
functional parameters are employed as the microstructure design variables. Regressors of the microstructure 14 
design variables-property relationship are trained for microstructure design optimization. A comparative 15 
study is conducted to understand the relative merits of these two methods in terms of computational cost, 16 
continuous transition, design scalability, design diversity, dimensionality of the design space, 17 
interpretability of the statistical equivalency, and design performance. 18 

 19 
Keywords: Stochastic microstructures; Metamaterials; Deep generative model; Curvature functional; 20 
Design representation. 21 
 22 
1. INTRODUCTION 23 

By designing the microstructures of architected materials, a wide spectrum of properties, such as 24 
strength [1-3], ductility [4], energy density [5, 6], and thermal conductivity [1, 7, 8], can be achieved to 25 
meet engineering requirements. Here we focus on stochastic microstructures, of which the statistical 26 
variations in structural characteristics are induced by uncertainties in the manufacturing processes [9-11], 27 
defects or porosities [12], or the inherent randomness at the micro- or nano-scale [13, 14]. In the field of 28 
engineered architected metamaterials, designers have looked into stochastic structure designs to achieve 29 
higher energy absorption [6, 15, 16], compatibility with traditional manufacturing techniques [17, 18], and 30 
robustness against defects [19].  31 

In the literature, a variety of statistical characterization and stochastic reconstruction-based approaches 32 
have been proposed for designing stochastic microstructures. Statistical characterization is a process that 33 
generates statistical descriptors and functions of the stochastic microstructure features observed from digital 34 
images (e.g., microscopic images). Stochastic reconstruction is a process that re-generates statistically 35 
equivalent microstructures based on the input statistical descriptors and functions. One simple and 36 
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straightforward way is to characterize microstructures with physically meaningful parametric descriptors 37 
such as volume fraction, particle/pore size, fiber length, fiber orientation, etc. In addition, high dimensional 38 
statistical functions including N-point correlation functions [20-23], spectrum density function [24, 25], and 39 
random fields [26, 27] have also been applied to describe the complex stochastic microstructure 40 
morphologies. One major limitation of these methods is that each stochastic microstructure category 41 
requires some unique mathematical and statistical representations that are incompatible with other 42 
categories. For example, random fiber composites require fiber orientation tensor [10, 28], random particle 43 
composites require the statistical distribution of particle diameters [29, 30], granular alloy microstructures 44 
require both grain orientation and crystal orientation [31], and spinodal-like structures can be described 45 
with spectrum density function [25]. Therefore, a designer needs to decide the microstructure category 46 
before defining the design space and conducting computational design. The step of pre-selecting the 47 
microstructure category limits the design freedom and reduces the possibility of obtaining innovative 48 
microstructure designs.  49 

In recent years, deep generative models, such as Variational Autoencoders (VAEs), generative 50 
adversarial networks (GANs), diffusion model, and their variations, have been employed in stochastic 51 
microstructure reconstruction and design [16, 32-39]. However, the aforementioned works only consider a 52 
limited number of microstructure categories [40] and do not focus on bridging the gaps among various 53 
categories. In our previous work [41], we established a deep generative modeling framework that learns a 54 
unified microstructure design space based on multiple categories of stochastic microstructures (random 55 
fibers, random particles, random ellipses, random node-edge networks, and random amorphous 56 
microstructures) and deterministic, periodic microstructures (e.g., cellular metamaterials). This framework 57 
enables a smooth transition between stochastic and deterministic structural patterns in the property-driven 58 
microstructure design. However, this framework only handles 2D microstructure images and is demanding 59 
on training data and computational resources, so its application to 3D microstructure design is limited by 60 
the curse of dimensionality.  61 

To address the aforementioned challenges, here we establish two approaches that have the capability of 62 
generating a unified design space that embodies various categories of stochastic microstructures:  63 

(i) A data-driven approach based on the deep generative model; 64 
(ii) A mathematics-based approach that is established upon the curvature functionals.  65 

As shown in Figure 1, these two methods are employed in design representation to create a parametric 66 
design space for stochastic microstructure design. With the obtained design space, Design of Experiments 67 
(DOE), supervised learning of the microstructure-property relationship, and property-driven design will be 68 
conducted to generate new microstructure designs. A comparative study will be presented to discuss the 69 
pros and cons of the two methods. 70 

The remainder of the paper is organized as follows. Section 2 introduces the deep generative model-71 
based design methodology. Section 3 introduces the curvature functional-based design methods. In section 72 
4, a microstructure design case is presented to compare the two methods. Section 5 presents a 73 
comprehensive discussion of the comparison of the two methods. Section 6 concludes this paper. 74 
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 75 
Figure 1: Design of mixed-category stochastic microstructures. A curvature functional-based method and 76 
a deep generative model-based method are proposed and compared. Both methods are employed to create 77 
a unified design space that embodies various categories of stochastic microstructures for the property-driven 78 
microstructure design. 79 

 80 
 81 

2. DEEP GENERATIVE MODEL-BASED METHOD 82 
One way to bridge the gap among different microstructure categories is to leverage the data-driven 83 

approach, e.g., deep feature learning, to learn a unified design space based on a large and diverse 84 
microstructure database that embodies various categories of microstructures. We first established a 3D 85 
stochastic microstructure database by leveraging the stochastic reconstruction methods proposed in our 86 
previous works, including the statistical descriptor-based method [10, 30, 42, 43], the space tessellation-87 
based method [9], the spectrum density function (SDF)-based random field method [14], etc. This database 88 
consists of 40,000 microstructural images with a resolution of 64×64×64, and the microstructure samples 89 
can be classified into five categories: random particles, random fibers, random ellipsoids, random node-90 
edge networks, and amorphous microstructures. Each category includes 8,000 microstructural images with 91 
varying statistical descriptor values, such as fiber lengths and diameters for the random fiber samples and 92 
spectrum density functions for the random amorphous microstructures. Samples from each category are 93 
shown in Figure 2. The dataset is divided into a training set and a test set in a ratio of 9:1.  94 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Mechanical Design. Received June 20, 2023;
Accepted manuscript posted October 11, 2023. doi:10.1115/1.4063824
Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/doi/10.1115/1.4063824/7051827/m
d-23-1394.pdf by U

niversity O
f C

onnecticut, H
ongyi Xu on 20 O

ctober 2023



 4  

 95 
Figure 2: Examples of microstructure samples in the database for deep generative modeling. From left to 96 
right: random particles, random fibers, random ellipsoids, random node-edge networks, and amorphous 97 
microstructures. 98 

2.1. Microstructure representation by VAE 99 
VAE is a deep generative model that consists of two major components: an encoder network and a 100 

decoder network. The encoder network maps the input data to a Gaussian distribution in the latent space, 101 
which allows for the generation of novel data samples through sampling from the learned distribution. The 102 
decoder network takes the latent representation as the input and reconstructs the original data. The key 103 
feature of VAE is the introduction of a probabilistic approach to encode the input data into the latent space. 104 
Rather than mapping the input data to a single point in the latent space, the VAE maps the input data to a 105 
probability distribution over the latent space. Compared to other generative models, e.g., GAN and diffusion 106 
model, VAE provides an interpretable latent space, which can be used as a low-dimensional design space. 107 
The similarity of structural features can be measured by the distance in the latent space of VAE. Moreover, 108 
GAN models encounter several training instability issues, including diminished gradient and model 109 
collapse, which limit their application to complex datasets. In order to tackle those challenges, we employed 110 
a WGAN [44] model to enhance training stability and encourage model convergence. However, it is 111 
observed that the synthetic images generated by WGAN displayed reduced diversity compared to those 112 
generated by the VAE model. The generator of WGAN tends to generate microstructure images by blending 113 
patterns and styles from the provided microstructure dataset. A comparison of synthetic images generated 114 
by GAN and VAE can be found in the Appendix. A1. It is worth noting that despite the improved stability 115 
and convergence achieved by the WGAN model, it requires a greater number of epochs and more time to 116 
reach convergence compared to the VAE model. As a result, the VAE model was chosen for this study.  117 

A general loss function of a vanilla VAE is expressed as: 118 

𝐿𝑖(𝜽, 𝝓) = −𝐸𝒛∼𝒒𝜽( 𝒛∣∣𝒙𝑖 )[𝑙𝑜𝑔 𝒑𝝓 ( 𝒙𝑖 ∣∣ 𝒛 )] + 𝐷𝐾𝐿(𝒒𝜽( 𝒛 ∣∣ 𝒙𝑖 )|𝒑(𝒛))     (1)                                               119 

where 𝜽 and 𝝓 are the parameters of the decoder and encoder, respectively, and 𝒙𝑖 is input microstructure 120 
image data for our case, and 𝒛 denotes the latent vectors. The first term, −𝐸𝒛∼𝒒𝜽( 𝒛∣∣𝒙𝑖 )[𝑙𝑜𝑔 𝒑𝝓 ( 𝒙𝑖 ∣∣ 𝒛 )], 121 

is the reconstruction loss that measures the pixel-level error between the input and reconstruction. The 122 
second term, 𝐷𝐾𝐿(𝒒𝜽( 𝒛 ∣∣ 𝒙𝑖 )|𝒑(𝒛)),  denotes the KL loss and ensures that the learned distribution 𝑞 123 
follows the true prior distribution 𝑝. Practically, including the KL term in the loss function can avoid 124 
overfitting and also regularize the latent space to reduce discontinuities in the latent space.  125 Acc
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 126 
Figure 3: Architecture of the Variational Autoencoder. The reduced dimensional latent space is employed 127 
as the design space. 128 
 129 

Figure 3 shows our implementation of the VAE to generate a parametric latent space representation of 130 
the stochastic microstructures as the design space. The encoder follows a VGG-style architecture, in which 131 
the convolution layer blocks are followed by the fully connected layers. The dimension of latent vectors is 132 
set at 256 based on the results of trials, in order to balance the reconstruction quality and the time efficiency 133 
of conducting optimal microstructure search in the latent space. The VAE model was trained by 150 epochs, 134 
and the training history is shown in Figure A2 at Appendix. To improve the reconstruction quality and 135 
address the KL vanishing problem, we implemented the monotonic annealing schedule for KL loss [45]. 136 
The reconstruction error for each category of microstructure is shown in Table A.2 in appendix. 137 

We also explored other variants of VAE in this work. Literature and our previous work suggest that 138 
including a style loss term in the loss function typically enhances reconstruction quality significantly [41, 139 
46]. However, the small improvement in quality comes at the cost of a substantial increase in computational 140 
complexity due to the tensor permutation process on each image in all three directions. We also tested an 141 
architecture that incorporates the style loss [46], but did not observe an improvement in the reconstruction 142 
quality. Furthermore, we experimented with a Gaussian-mixture VAE [47], but did not observe any 143 
significant benefits either. After a thorough exploration of these options, we decided to employ a vanilla 144 
VAE for its computational efficiency.  145 

2.2 Property-driven microstructure design and generation of functionally graded structure designs 146 
by VAE 147 

As discussed in Section 1, we adopt the surrogate model-based optimization approach to design 148 
microstructures for desired properties. The latent variables are considered as microstructure design 149 
variables. DOE is conducted in latent space to generate a dataset for training the microstructure-property 150 
surrogate models. Multi-response Gaussian Process (GP) regression models are employed to establish the 151 
relationship between the latent variables and the mechanical properties.  152 

As the computational cost of design evaluation (by surrogate model) during the optimization process is 153 
not a concern here, we select the Genetic Algorithm (GA) to solve the design problem. GA, and other 154 
evolutionary algorithms, have the advantage of avoiding local minima. For multi-objective optimization 155 
problems, Non-dominated Sorting Genetic Algorithm II (NSGA-II) [48] is employed as the optimizer.  156 

The optimal designs are first obtained in the format of latent vector, and the corresponding 157 
microstructure images are reconstructed by the decoder. The properties of the optimal microstructure 158 
designs are verified by simulations, as there always exist discrepancies between the surrogate model-159 
predicted properties and the true values. 160 

In addition to designing microstructure units, we also investigate the VAE model’s capability of 161 
generating functionally graded structure designs. A functionally graded structure is characterized by the 162 
variation in structure gradually over volume, resulting in corresponding continuous changes in the 163 
properties. A series of  microstructure units are generated by conducting spherical linear interpolation [49] 164 
between two microstructure unit samples in the latent space. A gradual change in the microstructure features 165 
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 6  

can be observed in this series of designs. A functionally graded structure can be generated by assembling 166 
those microstructure units sequentially (Figure 4). Due to the discrete nature of the microstructure 167 
interpolation, one outstanding shortcoming is the lack of continuity at the interface between two adjacent 168 
microstructure units. The presence of discontinuities at the interface can lead to local stress concentrations 169 
that may weaken the overall strength of the structure and even cause it to failure. Non-smooth transitions 170 
in the interfaces can be observed, as shown in the side views in Figure 4 (d). It is to be noted that the purpose 171 
of creating this series of cells is solely to illustrate the discontinuity issue at the interface between two 172 
adjacent cells, rather than being a process driven by the generation of properties. 173 

 174 
Figure 4: A functionally graded structure design by the deep generative modeling-based method. (a) A 175 
series of designs are generated along a certain path in two selected dimensions of the 256-dimensional latent 176 
space. Each star in the path is decoded into a microstructure unit. (b) A functionally graded structure design 177 
is created by assembling the microstructure units. Due to the discrete nature of the sampling process, non-178 
smooth transitions can be observed at the interfaces among microstructure units. Two zoom-in views are 179 
shown to the non-smooth transitions. (c) Side view of the 3D functionally graded structure. The interfaces 180 
among adjacent units are marked by triangles.  181 

 182 
3. CURVATUAL FUNCTIONAL-BASED METHOD 183 

3.1 Microstructure representation by curvature functionals 184 
Curvature functionals are capable of generating a variety of complex shapes and have been 185 

demonstrated as a powerful tool for designing bio-mimetic scaffold [50]. Curvature functionals employ a 186 
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phase-field formulation to diffuse an approximation of a vast range of shape textures. The resulting 187 
approximation is used as a loss function, in conjunction with modern automatic differentiation optimizers, 188 
to generate geometries from a random field initialization. When compared to the phase-field [51, 52] and 189 
statistical functional approaches [25]，such as spinodal microstructures generated by Gaussian random 190 
field (GRF) [2, 53], curvature functionals have the ability to generate a broader range of topologies. These 191 
include laminar, spherical, pearly thin wall, and tube shapes, and are governed by seven generation 192 
parameters 𝒂 = [𝑎2,0, 𝑎0,2, 𝑎1,1, 𝑎1,0, 𝑎0,1, 𝑎0,0]  and 𝑚0 . However, the mathematical meaning of the 193 
generation parameters is yet fully explored which limits the capability in directly using this method for 194 
inverse design. To address this limitation, we utilize the supervised learning method to establish the relation 195 
between generation parameters and properties to enable the property-driven microstructure design. 196 

Gaussian curvature is a differential geometry measure of the curvature of a surface at a given point, 197 
which is defined as the production of the principal curvatures 𝜅1, 𝜅2 by 198 

𝐾 =  𝜅1𝜅2.                                                                       (2) 199 
The complex microstructure surface under constant volume is modelled as a curvature functional 200 

𝑭(𝑆) = ∫ 𝑝(𝜅1, 𝜅2)𝑑𝐴
 

𝑆
.                                                           (3) 201 

where 𝑝 is the second order polynomial of the principal curvatures of the entire surface 𝑆. 𝑝 is restricted 202 
to the degree of 2, as it is efficient to generate topological features. The curvature functionals can be 203 
expanded as  204 

𝑭(𝑆) = ∫ (𝑎2,0𝜅1
2 + 𝑎1,1𝜅1𝜅2 + 𝑎0,2𝜅2

2 + 𝑎1,0𝜅1 + 𝑎0,1𝜅2 + 𝑎0,0)𝑑𝐴 =
 

𝑆 ∫ (∑ 𝑎𝛼|𝛼|≤2 (𝜅1𝜅2)𝛼)𝑑𝐴
 

𝑆
. 205 

                     (4) 206 
Generally, it is convenient to refine this kind of 2D surface functionals to scalar fields 𝑢 in 3D volume 207 

by diffusion approximation. And the matrix field ℳ𝑢
𝜖 is introduced as: 208 

ℳ𝑢
𝜖 = −𝜖 Hess 𝑢 +

𝑊′(𝑢)

𝜖
𝑛𝑢⨂𝑛𝑢 ,                                            (5) 209 

where Hess is the Hessian operator. And its trace is equal to 210 

Trℳ𝑢
𝜖 = −𝜖∆𝑢 +

𝑊′(𝑢)

𝜖
 .                                                       (6) 211 

Applied phase-field approximation and further simplification, the final representation of the phase-field 212 
ℱ𝜖(𝑢) can be written as 213 

ℱ𝜖(𝑢) = ∫ [
𝑎2,0+𝑎0,2−𝑎1,1

2𝜖
‖ℳ𝑢

𝜖‖2 +
𝑎1,1

2𝜖
(Trℳ𝑢

𝜖)2 +
𝑎2,0−𝑎0,2

2𝜖
Trℳ𝑢

𝜖√(2‖ℳ𝑢
𝜖‖2 − (Trℳ𝑢

𝜖)2)+ +
Ω

214 
𝑎1,0+𝑎0,1

2
|∇𝑢|Trℳ𝑢

𝜖 +
𝑎1,0−𝑎0,1

2
|∇𝑢|√(2‖ℳ𝑢

𝜖‖2 − (Trℳ𝑢
𝜖)2)+ + 𝑎0,0𝜖|∇𝑢|2] 𝑑𝑥.             (7) 215 

To implement the phase-field ℱ𝜖(𝑢)  to generate microstructure geometries given a random 216 
initialization, a mass-preserving flow can be defined as  217 

𝑢̇ = ∆
𝜕Ƒ𝜖

𝜕𝑢
 .                                                                  (8) 218 

This form can also be repressed as  219 
𝑢 = ∇ ∙ 𝐴 + 𝑚0                                                              (9) 220 

where 𝐴: Ω → ℝ3is a periodic vector field, and 𝑚0 ∈ ℝ is the desired value of the average 𝑢̅ which also 221 

approximates the volume fraction by 𝑚0+1

2
. Finally, an energy function is defined as: 222 

𝐺𝜖(𝐴) = ℱ𝜖(∇ ∙ 𝐴 + 𝑚0) ,                                                   (10) 223 
with a gradient of  224 

𝜕𝐺𝜖

𝜕𝐴
(𝐴) = −∇

𝜕Ƒ𝜖

𝜕𝑢
(𝑢).                                                      (11) 225 
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This energy function is used as the loss function with an auto-differentiation tool that iteratively 226 
optimizes 𝑢 to evolve a random vector field 𝐴0 until the energy function meets the convergence criterion, 227 
and this algorithm was implemented in a GPU implementation, curvatubes [50]. This iterative algorithm is 228 
shown in Figure 5(a). Empirically, 𝐴0 can be drawn from a uniform distribution. Random initialization of 229 
the structure image in the curvature functional method results in diverse yet statistically equivalent 230 
stochastic reconstructions of microstructures that share the same input generation parameters 𝒂 and 𝑚0. 231 
Therefore, the generation variables can be considered as a statistical representation of an infinite set of 232 
random but statistically equivalent microstructures, which makes this method suitable for generating 233 
stochastic microstructure designs. Several examples of statistically equivalent microstructure samples 234 
generated from the same 𝒂 vector is shown in Figure 5 (b~e). The final phase field, 𝑢, falls within a range 235 
of (-1, 1). It can also be binarized to represent various volume fraction levels or utilized to extract the zero-236 
level set. Figure 5 (f) illustrates an example showcasing the geometric changes induced by volume fraction 237 
variations originating from the same phase field. 238 

 239 
Figure 5: (a) The iterative generation process of curvature function method. The first block represents 240 
initial random vector field 𝐴0 and corresponding phase field 𝑢 computed by Equation 9. The binarized 241 
microstructures generated at iterations 1, 10, 100, and 4000 is represented in the first row, and the 242 
corresponding curvature diagrams at the second row shows distribution of the curvatures (𝜅1, 𝜅2) on 243 
surface. (b)~(e) Design variable vectors and the corresponding statistically equivalent microstructure 244 
samples. Each row shows three stochastic samples of the same microstructure design and the corresponding 245 
generation parameters. (f) A phase-field 𝑢 is binarized in a volume fraction of 0.3, 0.6, and 0.9. (g) A 246 
functionally graded structure obtained by the curvature functional-based method. It is created from 247 
continuous functions of the generation parameters 𝒂.  248 
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 9  

3.2 Property-driven microstructure design and generation of graded functional structure 249 
designs by curvature functionals 250 

Following the flowchart in Figure 1, we propose a surrogate model-based optimization approach for 251 
microstructure design. The surrogate model of the relationship between the generation parameters 𝒂 and 252 
material property is established using GP regression. It is to be noted that random but statistically equivalent 253 
microstructures will be generated for a given set of design variables. Therefore, we generated ten samples 254 
from ten fixed random initializations (𝐴) for the same design variable vector, and then simulated the 255 
mechanical properties of all ten samples. We generated a total of 20,000 samples using 2,000 sets of 256 
generation parameters. Numerous synthetic examples are presented in Figure A.1(c), located in the 257 
appendix. Similar to the method presented in Section 2, we adopt GA and NSGA-II as the optimizers to 258 
solve the property-driven design problem. In the last step, the digital images of the microstructure designs 259 
are reconstructed based on the design variable vector 𝒂.  260 

Here we also investigated the curvature functional-based method’s capability of generating functional 261 
graded structure designs. One advantage of the curvature functional method is that a smooth transition 262 
between different categories of microstructures can be easily obtained by varying the values of the 263 
generation parameters continuously. Figure 5(g) shows a functional graded design generated based on 264 
continuous functions of the generation parameters 𝒂  along the longitudinal direction. Moreover, the 265 
curvature functional-based method offers the advantage of scalability, allowing it to reconstruct 266 
microstructure images with varying domain sizes and resolutions. Figure 6(a~c) visually illustrates this 267 
advantage by presenting three samples generated using identical design variable values but varying levels 268 
of resolution. Furthermore, the high-resolution reconstructions of microstructures with arbitrary sizes offer 269 
the convenience of seamless integration into macro-scale component geometries. This capability is 270 
exemplified in Figure 6(d~e), where the microstructure is infused into two macro-scale geometries 271 
resembling a human femur and a suspension arm, showcasing the ability to precisely fit the microstructure 272 
into complex shapes.  273 

Manufacturing complex multiscale microstructures in a precise and economic method is still a 274 
challenge. Factors impacting manufacturing robustness, such as local defects and surface roughness, are 275 
vital considerations when evaluating manufacturability. In recent years, there have been significant 276 
improvements in additive manufacturing (AM) techniques. Techniques such as Stereolithography (SLA) 277 
[53] and extrusion additive manufacturing [54] have approved a great robustness in printing similar 278 
geometries shown in figure 6. If additive manufacturing is employed, it effectively eliminates 279 
manufacturing uncertainty and enables transition between different types of microstructures, though it 280 
comes with a higher cost. Conversely, alternative methods like the self-assembly of polymeric emulsions 281 
[17] are more cost-effective and high throughput volumes cross multiple scales, but are limited to producing 282 
specific types of microstructures. 283 
 284 
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 285 
Figure 6: Scalability of the curvature functional-based method: microstructure designs generated from the 286 
same design variable vector 𝒂 = [1, 2.8, 2, -10, -10, 25] and 𝑚0 = -0.25 with sizes of (a) 643 (b) 1283 (c) 287 
2563 voxels by the curvature functional-based method. Two macro-scale geometries in the shapes of (d) a 288 
human femur and (e) a suspension arm infused with microstructures generated with 𝒂 = [1, 2.8, 2, -10, -10, 289 
25] and 𝑚0 = -0.25. 290 

4. A COMPARATIVE STUDY WITH A DESIGN FOR STIFFNESS PROBLEM 291 
In this section, we present a design case to compare the deep generative model-based and the curvature 292 

functional-based design representation methods in two aspects: the accuracy of the microstructure-property 293 
regressor and the performance of the optimal designs obtained with each method. 294 

Here we define a multi-objective microstructure design problem that maximizes the Young’s moduli 295 
along X-, Y-, and Z- directions. Design constraints are defined to guarantee close-to-isotropic designs, i.e., 296 
the differences between the maximum/minimum modulus and the median modulus of the three directions 297 
are within 3%. Therefore, the optimization problem can be formulated as 298 

max  𝐸𝑖(𝒛)  or max  𝐸𝑖(𝒂, 𝑚0 ), 𝑖 = X, Y, Z                                             (12) 299 
subject to: 300 

|𝐸highest −𝐸𝑚𝑒𝑑𝑖𝑢𝑚|

𝐸𝑚𝑒𝑑𝑖𝑢𝑚
< 3%                                                           (13) 301 

|𝐸lowest−𝐸𝑚𝑒𝑑𝑖𝑢𝑚|

𝐸𝑚𝑒𝑑𝑖𝑢𝑚
< 3%                                                            (14) 302 
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When utilizing the VAE-based approach, the Euclidean distance of the solution latent vector 𝒛 is 303 
employed to prevent the optimizer from searching in regions that cannot be decoded into meaningful 304 
images. 305 

|max‖𝒛𝑡𝑟𝑎𝑖𝑛‖−‖𝒛‖ |

max‖𝒛𝑡𝑟𝑎𝑖𝑛‖
< 3%                                                             (15) 306 

where the max‖𝒛𝑡𝑟𝑎𝑖𝑛‖  is the largest latent vector encoded from training data.  307 
If using the curvature functional-based method, additional constraints are needed to guarantee the 308 

convergence of microstructure image reconstruction:  309 

max(𝑢) > 0.1                                                                   (16) 310 
min(𝑢) <  −0.1                                                                 (17) 311 

discrepancy(𝑢) < 0.75                                                           (18) 312 

where the discrepancy is a measurement of how much the scalar fields 𝑢 deviate from a tanh profile phase 313 
field function [50]. As this research focuses on investigating the influence of microstructure morphology 314 
on the properties, the volume fraction is set as a constant (0.4).   315 

As preparation for exploring the relationship between microstructure and the property of interest, in 316 
this case, elasticity, we performed finite element simulations on all microstructure samples by ABAQUS. 317 
The 0-1 matrices that represent the binary microstructure images are transformed into hexahedral meshes. 318 
The elastic modulus and Poisson’s ratio of the 1 phase in the microstructure are 𝐸𝐵𝑜𝑟𝑜𝑛 = 379300 MPa 319 
and 𝛾Boron = 0.1, whereas 𝐸Aluminum = 68300 Mpa, 𝛾Aluminum = 0.3 for the 0 phase, where we consider 320 
only linear elasticity. Infinitesimal displacements are applied to the two surfaces along the axis of interest 321 
to stretch the microstructure, while the remaining four surfaces experience free traction. Young’s moduli 322 
(𝐸𝑥 , 𝐸𝑦, 𝐸𝑧) in the X-, Y-, and Z-direction are calculated by dividing the average stress by the strain. The 323 
stress map and strain map with displacement boundary conditions are shown in Figure 7. 324 
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 325 
Figure 7: Elasticity property analysis on a microstructure for the maximum in-plane strain and the 326 
maximum von Mises stress in (a) X-direction, (b) Y-direction, and (c) Z-direction. The arrows indicate the 327 
direction of infinitesimal displacements. 328 

The dimensionality of the design space has a strong impact on the predictability of the GP regressors. 329 
The design space generated by VAE has a dimensionality of 256. By contrast, the design space of the 330 
curvature functional-based method is only 7. More input variables indicate a potentially better capability to 331 
capture complex microstructure features, but practically, a high dimensional input space poses a significant 332 
challenge to establishing the design variable-property relationship by surrogate modeling because a lot more 333 
training data points are required to fully cover the input space. In Table 1, we present a comparison of three 334 
GP models: VAE latent space-based GP model with a dataset of 40000 samples, VAE latent space-based 335 
GP model with a dataset of 20000 samples, and curvature functional-based GP model with a dataset of 336 
20000 samples. In each training, the dataset is split into a training set (90%) and a test set (10%). The model 337 
accuracy, R2, is evaluated based on the test set. The curvature functional-based GP model has a higher 338 
accuracy, even when comparing with the VAE-based GP model that uses twice as many training data points. 339 
We also tested the neuron network (NN) regressor for both VAE and curvature functional method, the 340 
prediction accuracy and optimal design are very similar to the GP model, therefore, we keep GP in the rest 341 
of this manuscript. A table summarizing the accuracy of neuron network regressor can be found in Table 342 
A.1 in appendix.  343 

 344 

Table 1: Prediction accuracies of the GP regression models with the design spaces generated by the VAE-345 
based method and the curvature functional-based method. 346 
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Model (size of the 
dataset) 

R2 score 
𝐸𝑥 𝐸𝑦 𝐸𝑧 

GP w/VAE (40000) 0.743 0.681 0.746 
GP w/VAE (20000) 0.686 0.620 0.688 

GP w/ curvature 
functional (20000) 0.811 0.803 0.775 

 Another point worth noting is that some combination of generation parameters in the curvature 347 
functional method may generate ill-posed geometric which may have zero level set and floating fragments, 348 
where such fragments can lead to unrealistic microstructures in composite material and porous material 349 
from both design and manufacturing perspectives. Therefore, three criteria, max (𝑢) , min (𝑢) , and 350 
discrepancy ratio, are required to identify ill-posed phase-field 𝑢 during the optimization process. These 351 
three criteria must be included as inequality constraints in optimization to ensure successful reconstructions 352 
of the final microstructure designs. Experimentally, we observe that these three constraint functions limit 353 
the number of feasible designs significantly. 354 

The Pareto frontiers obtained with the two methods are compared in Figure 8. The Pareto frontier is 355 
generated based on the virtual performances predicted using the trained machine learning model. 356 
Subsequently, verification simulations are performed to obtain the true performances of these designs. 357 
Figure 8 is created based on the true performances of the obtained designs. Due to the predicted errors of 358 
the microstructure-property model, some of the obtained designs violate the design constraints of equivalent 359 
Young’s moduli along three directions. For the VAE-based method, only 10% of the obtained designs in 360 
the Pareto frontier satisfy the design constraints. Among the feasible designs, we can hardly find designs 361 
that rank in the top 10% compared to the samples in the microstructure database, with respect to the 362 
properties of interest.  363 

On the other hand, more than 70% percent of optimal designs found by the curvature functional 364 
approach meet the constraint of equivalent Young’s moduli along three directions, according to the results 365 
of verification simulations. Furthermore, almost all of the feasible solution rank in the 10% compared to 366 
the samples in the microstructure database. Figure 9 (a)~(d) show several examples of the optimal designs 367 
obtained by the curvature functional-based method, and Figure 9 (e) and (f) show the optimal designs 368 
obtained by the VAE-based method. 369 
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 370 
Figure 8: Pareto frontiers obtained by both design approaches. As there are three design objectives, one 371 
3D view and two 2D views of the performance space are provided. The design objective is to maximize 𝐸𝑥, 372 
𝐸𝑦, and 𝐸𝑧. The feasible design points are in dark colors and the infeasible design points are in light colors. 373 
The green dot indicates the location of the Utopia point. 374 
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 375 
Figure 9: (a)~(d) Optimal designs from the curvature functional-based optimization approach. (a) 𝒂 = [1, 376 
3.987, 0.2194, 39.95, 198.4, 1431] and 𝑚0 = -0.30. (b) 𝒂 = [1, 3.990, 0.2933, 75.17, 199.3, -2060] and 𝑚0 377 
= -0.26. (c) 𝒂 = [1, 3.990, 0.3354, 45.24, 197.4, 1422] and 𝑚0 = -0.19. (d) 𝒂 = [1, 3.925, 3.791, 36.08, 378 
194.1, 2998] and 𝑚0 = -0.43. (e) and (f) Two optimal designs from the VAE-based design approach. 379 

 380 
5. UNDERSTANDING THE PROS AND CONS OF THE TWO DESIGN REPRESENTATION 381 

METHODS 382 

As summarized in Table 2, the pros and cons of the deep generative modeling-based method and the 383 
curvature functional-based method are discussed in terms of seven criteria: computational cost, continuous 384 
transition in functionally graded structure design, scalability of the microstructure design, design diversity, 385 
dimensionality of the design space, and design performance. 386 

Computational cost: To obtain a design space that embodies various categories of microstructures, the 387 
deep generative modeling-based approach requires significant computing resources for data generating and 388 
model training. On the other hand, the curvature functional-based method incurs minimal costs in defining 389 
the design space, while computing the viability constraints (Equation 16~18) during the optimization 390 
process is relatively computationally expensive. 391 

Continuous transition in functionally graded structure design: When creating functionally graded 392 
structure designs, the curvature functional-based method can guarantee a smooth transition among various 393 
microstructure patterns. With the deep generative model-based method, the functionally graded structure 394 
design is created by assembling a series of microstructure units, which correspond to discrete points in the 395 
latent space. Therefore, a smooth transition between microstructure units cannot be guaranteed. This issue 396 
could potentially be mitigated (but not resolved) by applying circular spatial padding to the transposed 397 
convolutional layer in the deep generative model [55], but the impacts on reconstruction quality and 398 
computational complexity need further investigation. 399 
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Scalability of the microstructure design: The deep generative models, which are trained on the images 400 
directly, cannot generate images with a wide range of sizes and resolutions. By contrast, the curvature 401 
functional-based method can easily map the design variables to an arbitrary domain size. In our 402 
experiments, the existing implementation of the curvature functional method can generate images with a 403 
maximum size of 512³ using a single GPU with 48GB RAM. 404 

Design diversity: The deep generative models have the advantage over the curvature functionals. 405 
Theoretically, the deep generative models can be extended to embody any type of microstructure (e.g., 406 
microstructures with triangular inclusions) as long as the training data are available. The curvature 407 
functionals can only generate microstructures with curved surfaces. 408 

Dimensionality of the design space: The curvature functional-based method has the advantage in 409 
generating a low dimensional design space. Although we can also set the dimensionality of the VAE latent 410 
space to a very low value (e.g. 8, the same as the design space of the curvature functional method) by 411 
modifying the fully connected layers in encoder, in practice, it will lead to a much poorer reconstruction 412 
accuracy. The high dimensionality of the VAE latent space poses a significant challenge to establishing the 413 
microstructure-property relationship, as well as searching for the optimal microstructure designs in the 414 
design space.  415 

Interpretability of statistical equivalency among stochastic microstructure designs: It is a unique 416 
requirement for stochastic microstructure design. From the perspective of statistical characterization and 417 
stochastic reconstruction, one “design” actually represents an infinite number of microstructure samples 418 
that are random but statistically equivalent. The design representation by curvature functional parameters 419 
can provide this capability. By contrast, in the latent space learned by the deep generative model, each point 420 
corresponds to one specific, unique microstructure image. The distance between the points is a measurement 421 
of the pixel-to-pixel similarity of the two images, instead of the similarity in the statistical sense. As shown 422 
in Figure 10, two statistically equivalent random particle microstructure samples are far apart in terms of 423 
the Euclidean distance in latent space, while the random particle microstructure #1 is closer to the quasi-424 
random microstructure. Therefore, it is not possible to define statistical equivalency purely based on the 425 
distance in the latent space. We acknowledge the possibility of generating random but statistically 426 
equivalent microstructures by introducing empirical statistical descriptors into the loss function of deep 427 
generative models (e.g., GAN) [56], but then again, it loops back to our original research question: how to 428 
select proper descriptors for describing stochastic microstructures without compromising the design 429 
freedom.   430 

Design performance: The performance of the optimal designs are influenced by two factors: the 431 
accuracy of the microstructure-property surrogate model, and the effectiveness of design 432 
exploration/searching in the design spaces generated by each method. Although the curvature functional-433 
based method demonstrates better performances in the presented case study, we should be cautious to make 434 
a conclusion. In our previous work [41] and literature [57], it has been demonstrated that training the VAE 435 
and the latent variable-property regressor simultaneously can improve the property prediction accuracy. 436 
This paper focuses on the capability of learning a unified design space, so the simultaneously training of 437 
the latent space and the property repressor is out of scope and not included.  438 
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 440 
Figure 10:  2D t-SNE representations of VAE latent space. It is observed that the distance between two 441 
statistically equivalent random particle microstructures is larger than that between a random particle 442 
microstructure and an amorphous microstructure. Therefore, the Euclidean distance in the latent space 443 
cannot be used to identify statistically equivalent microstructures. 444 

Table 2: Summary of the comparative study between the deep generative model-based and curvature 445 
functional-based methods. The criteria with * is only valid for the methods and case study presented in this 446 
paper. 447 

Criteria Deep generative model-based 
method Curvature Functional-based method 

Computational Cost 
Significant computational resources 

for data generation and model 
training 

Minimal cost in generating the design 
space, while computational expenses are 

incurred by computing the viability 
constraints during optimization 

Continuous 
transition 

Cannot guarantee smooth transitions 
between microstructure units in 
functionally graded structures 

Smooth microstructure transition in 
functionally graded structures 

Design scalability Limited to specific sizes/resolutions Arbitrary resolutions and domain sizes 

Design diversity 
Embodying any type of 

microstructure if the training data is 
available 

Microstructures with curved surfaces 
only 

* Dimensionality of 
the design space 

High dimensionality poses 
challenges in establishing 

microstructure-property relationship 
and searching for optimal designs 

Low-dimensional design space, 
compromising reconstruction accuracy 
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Interpretability of 
statistical 

equivalency  

Each design variable vector 
corresponds to a unique 

microstructure, not allowing 
statistical equivalence analysis 

Each design variable vector represents 
random but statistical equivalent 

stochastic microstructures  

* Design 
performance 

Limited accuracy of the 
microstructure-property surrogate 

models and low design performances 
due to the high dimensionality of the 

design space 

Lower dimensionality of the design 
space leads to better performance in 

presented case studies 

 448 
6. CONCLUSION AND FUTURE WORK 449 

In this paper, we proposed and compared two methods for generating a unified design space that 450 
embodies various categories of stochastic microstructures: the deep generative model-based method and 451 
the curvature functional-based method. For the deep generative model-based method, the latent space 452 
learned from a highly diversified microstructure database is employed as the microstructure design space. 453 
For the curvature functional-based method, the generation parameters in the functionals are used as 454 
microstructure design variables. We established surrogate models to predict the relationship between 455 
microstructure design variables and the properties of interest and conducted surrogate model-based 456 
optimization to design microstructures for desired properties. Furthermore, we applied the two methods to 457 
generate functionally graded structure designs. We present a comprehensive discussion and comparison of 458 
each method, outlining their respective advantages and drawbacks. This discussion serves to inform the 459 
design process for architecture and composite materials, aiding in the selection of an appropriate method 460 
based on the desired outcomes. 461 

In our future work, we plan to test both methods on more engineering case studies to deepen our 462 
understanding of the strengths of each method. We are also aiming to further develop the current curvature 463 
functional method to generate multiscale microstructure fitting in an arbitrary domain. Another major 464 
limitation of this work is that the manufacturability analysis is not included. The purpose of this work is to 465 
establish a theoretical foundation for creating diverse geometries. While not currently integrated with the 466 
manufacturability analysis, the proposed methodology is an enabler for generating novel microstructure 467 
preliminary concepts, such as tailoring structural stochasticity for crashworthiness performances [41]. The 468 
development of a manufacturability-conscious design framework will be a focus of future efforts.  469 

 470 
APPENDIX 471 
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 472 
Figure A.1: Synthetic microstructures generated by (a) WGAN and (b) VAE using samples drawn from a 473 
standard Normal distribution. (c) Synthetic microstructures in the curvature-functional method dataset.  474 
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 475 
Figure A.2: Training history of VAE model using monotonic annealing schedule for KL loss.  476 

 477 

Table A.1: Prediction accuracies of the neuron network regression models with the design spaces generated 478 
by the VAE-based method and the curvature functional-based method. 479 

Model (size of the 
dataset) 

R2 score 
𝐸𝑥 𝐸𝑦 𝐸𝑧 

NN w/VAE (40000) 0.782 0.733 0.760 
NN w/ Curvature (20000) 0.781 0.795 0.755 

Table A.2: Reconstruction accuracies for each catalog of microstructure in the test set for the posted VAE 480 
model. 481 

Model MSE loss 
Overall Fibers Particles Ellipsoids node-

edge 
network 

amorphous 

VAE  0.1167 0.0954 0.1044 0.0778 0.1261 0.1793 
 482 
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