O 0 9 N U B~ W N~

W W W W W W W N NN NN DN DN DN DN DN — /= /= = = e = e
AN L A WD = O 0 0NN DR WD RO O 0NN R WD~ O

W) Check for updates

Designing Mixed-Category Stochastic Microstructures by Deep Generative Model-based
and Curvature Functional-based Methods
Leidong Xu, Kiarash Naghavi Khanghah, Hongyi Xu*
Mechanical Engineering, University of Connecticut, Storrs, CT, USA 06269

* Email: hongvi.3.xu@uconn.edu

ABSTRACT

Bridging the gaps among various categories of stochastic microstructures remains a challenge in the
design representation of microstructural materials. Each microstructure category requires certain unique
mathematical and statistical methods to define the design space (design representation). The design
representation methods are usually incompatible between two different categories of stochastic
microstructures. The common practice of pre-selecting the microstructure category and the associated
design representation method before conducting rigorous computational design restricts the design freedom
and hinders the discovery of innovative microstructure designs. To overcome this issue, this paper proposes
and compares two novel methods, the deep generative modeling-based method and the curvature
functional-based method, to understand their pros and cons in designing mixed-category stochastic
microstructures for desired properties. For the deep generative modeling-based method, the Variational
Autoencoder is employed to generate an unstructured latent space as the design space. For the curvature
functional-based method, the microstructure geometry is represented by curvature functionals, of which the
functional parameters are employed as the microstructure design variables. Regressors of the microstructure
design variables-property relationship are trained for microstructure design optimization. A comparative
study is conducted to understand the relative merits of these two methods in terms of computational cost,
continuous transition, design scalability, design diversity, dimensionality of the design space,
interpretability of the statistical equivalency, and design performance.

Keywords: Stochastic microstructures; Metamaterials; Deep generative model; Curvature functional;
Design representation.

1. INTRODUCTION

By designing the microstructures of architected materials, a wide spectrum of properties, such as
strength [1-3], ductility [4], energy density [5, 6], and thermal conductivity [1, 7, 8], can be achieved to
meet engineering requirements. Here we focus on stochastic microstructures, of which the statistical
variations in structural characteristics are induced by uncertainties in the manufacturing processes [9-11],
defects or porosities [12], or the inherent randomness at the micro- or nano-scale [13, 14]. In the field of
engineered architected metamaterials, designers have looked into stochastic structure designs to achieve
higher energy absorption [6, 15, 16], compatibility with traditional manufacturing techniques [17, 18], and
robustness against defects [19].

In the literature, a variety of statistical characterization and stochastic reconstruction-based approaches
have been proposed for designing stochastic microstructures. Statistical characterization is a process that
generates statistical descriptors and functions of the stochastic microstructure features observed from digital
images (e.g., microscopic images). Stochastic reconstruction is a process that re-generates statistically
equivalent microstructures based on the input statistical descriptors and functions. One simple and
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straightforward way is to characterize microstructures with physically meaningful parametric descriptors
such as volume fraction, particle/pore size, fiber length, fiber orientation, etc. In addition, high dimensional
statistical functions including N-point correlation functions [20-23], spectrum density function [24, 25], and
random fields [26, 27] have also been applied to describe the complex stochastic microstructure
morphologies. One major limitation of these methods is that each stochastic microstructure category
requires some unique mathematical and statistical representations that are incompatible with other
categories. For example, random fiber composites require fiber orientation tensor [10, 28], random particle
composites require the statistical distribution of particle diameters [29, 30], granular alloy microstructures
require both grain orientation and crystal orientation [31], and spinodal-like structures can be described
with spectrum density function [25]. Therefore, a designer needs to decide the microstructure category
before defining the design space and conducting computational design. The step of pre-selecting the
microstructure category limits the design freedom and reduces the possibility of obtaining innovative
microstructure designs.

In recent years, deep generative models, such as Variational Autoencoders (VAEs), generative
adversarial networks (GANs), diffusion model, and their variations, have been employed in stochastic
microstructure reconstruction and design [16, 32-39]. However, the aforementioned works only consider a
limited number of microstructure categories [40] and do not focus on bridging the gaps among various
categories. In our previous work [41], we established a deep generative modeling framework that learns a
unified microstructure design space based on multiple categories of stochastic microstructures (random
fibers, random particles, random ellipses, random node-edge networks, and random amorphous
microstructures) and deterministic, periodic microstructures (e.g., cellular metamaterials). This framework
enables a smooth transition between stochastic and deterministic structural patterns in the property-driven
microstructure design. However, this framework only handles 2D microstructure images and is demanding
on training data and computational resources, so its application to 3D microstructure design is limited by
the curse of dimensionality.

To address the aforementioned challenges, here we establish two approaches that have the capability of
generating a unified design space that embodies various categories of stochastic microstructures:

(i) A data-driven approach based on the deep generative model;
(i1) A mathematics-based approach that is established upon the curvature functionals.

As shown in Figure 1, these two methods are employed in design representation to create a parametric
design space for stochastic microstructure design. With the obtained design space, Design of Experiments
(DOE), supervised learning of the microstructure-property relationship, and property-driven design will be
conducted to generate new microstructure designs. A comparative study will be presented to discuss the
pros and cons of the two methods.

The remainder of the paper is organized as follows. Section 2 introduces the deep generative model-
based design methodology. Section 3 introduces the curvature functional-based design methods. In section
4, a microstructure design case is presented to compare the two methods. Section 5 presents a
comprehensive discussion of the comparison of the two methods. Section 6 concludes this paper.
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Figure 1: Design of mixed-category stochastic microstructures. A curvature functional-based method and
a deep generative model-based method are proposed and compared. Both methods are employed to create
aunified design space that embodies various categories of stochastic microstructures for the property-driven
microstructure design.

2. DEEP GENERATIVE MODEL-BASED METHOD
One way to bridge the gap among different microstructure categories is to leverage the data-driven

approach, e.g., deep feature learning, to learn a unified design space based on a large and diverse
microstructure database that embodies various categories of microstructures. We first established a 3D
stochastic microstructure database by leveraging the stochastic reconstruction methods proposed in our
previous works, including the statistical descriptor-based method [10, 30, 42, 43], the space tessellation-
based method [9], the spectrum density function (SDF)-based random field method [14], etc. This database
consists of 40,000 microstructural images with a resolution of 64x64x64, and the microstructure samples
can be classified into five categories: random particles, random fibers, random ellipsoids, random node-
edge networks, and amorphous microstructures. Each category includes 8,000 microstructural images with
varying statistical descriptor values, such as fiber lengths and diameters for the random fiber samples and
spectrum density functions for the random amorphous microstructures. Samples from each category are
shown in Figure 2. The dataset is divided into a training set and a test set in a ratio of 9:1.
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Figure 2: Examples of microstructure samples in the database for deep generative modeling. From left to
right: random particles, random fibers, random ellipsoids, random node-edge networks, and amorphous
microstructures.

2.1. Microstructure representation by VAE

VAE is a deep generative model that consists of two major components: an encoder network and a
decoder network. The encoder network maps the input data to a Gaussian distribution in the latent space,
which allows for the generation of novel data samples through sampling from the learned distribution. The
decoder network takes the latent representation as the input and reconstructs the original data. The key
feature of VAE is the introduction of a probabilistic approach to encode the input data into the latent space.
Rather than mapping the input data to a single point in the latent space, the VAE maps the input data to a
probability distribution over the latent space. Compared to other generative models, e.g., GAN and diffusion
model, VAE provides an interpretable latent space, which can be used as a low-dimensional design space.
The similarity of structural features can be measured by the distance in the latent space of VAE. Moreover,
GAN models encounter several training instability issues, including diminished gradient and model
collapse, which limit their application to complex datasets. In order to tackle those challenges, we employed
a WGAN [44] model to enhance training stability and encourage model convergence. However, it is
observed that the synthetic images generated by WGAN displayed reduced diversity compared to those
generated by the VAE model. The generator of WGAN tends to generate microstructure images by blending
patterns and styles from the provided microstructure dataset. A comparison of synthetic images generated
by GAN and VAE can be found in the Appendix. Al. It is worth noting that despite the improved stability
and convergence achieved by the WGAN model, it requires a greater number of epochs and more time to
reach convergence compared to the VAE model. As a result, the VAE model was chosen for this study.

A general loss function of a vanilla VAE is expressed as:

Li(8,9) = ~E,_q,(zix)[109 Py (xi | 2)] + Dir(qo(2z | x)|p(2)) (1)
where 0 and ¢ are the parameters of the decoder and encoder, respectively, and x; is input microstructure
image data for our case, and z denotes the latent vectors. The first term, —E 2~qe( Z|xi)[l0g Py (x; | z)],
is the reconstruction loss that measures the pixel-level error between the input and reconstruction. The
second term, DKL(qg(z | xi)|p(z)), denotes the KL loss and ensures that the learned distribution g

follows the true prior distribution p. Practically, including the KL term in the loss function can avoid
overfitting and also regularize the latent space to reduce discontinuities in the latent space.
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Figure 3: Architecture of the Variational Autoencoder. The reduced dimensional latent space is employed
as the design space.

Figure 3 shows our implementation of the VAE to generate a parametric latent space representation of
the stochastic microstructures as the design space. The encoder follows a VGG-style architecture, in which
the convolution layer blocks are followed by the fully connected layers. The dimension of latent vectors is
set at 256 based on the results of trials, in order to balance the reconstruction quality and the time efficiency
of conducting optimal microstructure search in the latent space. The VAE model was trained by 150 epochs,
and the training history is shown in Figure A2 at Appendix. To improve the reconstruction quality and
address the KL vanishing problem, we implemented the monotonic annealing schedule for KL loss [45].
The reconstruction error for each category of microstructure is shown in Table A.2 in appendix.

We also explored other variants of VAE in this work. Literature and our previous work suggest that
including a style loss term in the loss function typically enhances reconstruction quality significantly [41,
46]. However, the small improvement in quality comes at the cost of a substantial increase in computational
complexity due to the tensor permutation process on each image in all three directions. We also tested an
architecture that incorporates the style loss [46], but did not observe an improvement in the reconstruction
quality. Furthermore, we experimented with a Gaussian-mixture VAE [47], but did not observe any
significant benefits either. After a thorough exploration of these options, we decided to employ a vanilla
VAE for its computational efficiency.

2.2 Property-driven microstructure design and generation of functionally graded structure designs
by VAE

As discussed in Section 1, we adopt the surrogate model-based optimization approach to design
microstructures for desired properties. The latent variables are considered as microstructure design
variables. DOE is conducted in latent space to generate a dataset for training the microstructure-property
surrogate models. Multi-response Gaussian Process (GP) regression models are employed to establish the
relationship between the latent variables and the mechanical properties.

As the computational cost of design evaluation (by surrogate model) during the optimization process is
not a concern here, we select the Genetic Algorithm (GA) to solve the design problem. GA, and other
evolutionary algorithms, have the advantage of avoiding local minima. For multi-objective optimization
problems, Non-dominated Sorting Genetic Algorithm II (NSGA-II) [48] is employed as the optimizer.

The optimal designs are first obtained in the format of latent vector, and the corresponding
microstructure images are reconstructed by the decoder. The properties of the optimal microstructure
designs are verified by simulations, as there always exist discrepancies between the surrogate model-
predicted properties and the true values.

In addition to designing microstructure units, we also investigate the VAE model’s capability of
generating functionally graded structure designs. A functionally graded structure is characterized by the
variation in structure gradually over volume, resulting in corresponding continuous changes in the
properties. A series of microstructure units are generated by conducting spherical linear interpolation [49]
between two microstructure unit samples in the latent space. A gradual change in the microstructure features
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can be observed in this series of designs. A functionally graded structure can be generated by assembling
those microstructure units sequentially (Figure 4). Due to the discrete nature of the microstructure
interpolation, one outstanding shortcoming is the lack of continuity at the interface between two adjacent
microstructure units. The presence of discontinuities at the interface can lead to local stress concentrations
that may weaken the overall strength of the structure and even cause it to failure. Non-smooth transitions
in the interfaces can be observed, as shown in the side views in Figure 4 (d). It is to be noted that the purpose
of creating this series of cells is solely to illustrate the discontinuity issue at the interface between two
adjacent cells, rather than being a process driven by the generation of properties.
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Figure 4: A functionally graded structure design by the deep generative modeling-based method. (a) A
series of designs are generated along a certain path in two selected dimensions of the 256-dimensional latent
space. Each star in the path is decoded into a microstructure unit. (b) A functionally graded structure design
is created by assembling the microstructure units. Due to the discrete nature of the sampling process, non-
smooth transitions can be observed at the interfaces among microstructure units. Two zoom-in views are
shown to the non-smooth transitions. (c) Side view of the 3D functionally graded structure. The interfaces
among adjacent units are marked by triangles.

3. CURVATUAL FUNCTIONAL-BASED METHOD

3.1 Microstructure representation by curvature functionals
Curvature functionals are capable of generating a variety of complex shapes and have been
demonstrated as a powerful tool for designing bio-mimetic scaffold [50]. Curvature functionals employ a
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phase-field formulation to diffuse an approximation of a vast range of shape textures. The resulting
approximation is used as a loss function, in conjunction with modern automatic differentiation optimizers,
to generate geometries from a random field initialization. When compared to the phase-field [51, 52] and
statistical functional approaches [25], such as spinodal microstructures generated by Gaussian random
field (GRF) [2, 53], curvature functionals have the ability to generate a broader range of topologies. These
include laminar, spherical, pearly thin wall, and tube shapes, and are governed by seven generation
parameters @ = [a, g, g2, 011,410, A9 1,0,0] and my . However, the mathematical meaning of the
generation parameters is yet fully explored which limits the capability in directly using this method for
inverse design. To address this limitation, we utilize the supervised learning method to establish the relation
between generation parameters and properties to enable the property-driven microstructure design.

Gaussian curvature is a differential geometry measure of the curvature of a surface at a given point,
which is defined as the production of the principal curvatures k4, k5 by

K = Kl Kz. (2)
The complex microstructure surface under constant volume is modelled as a curvature functional
F(S) = [,p(iy, 12)dA. 3)

where p is the second order polynomial of the principal curvatures of the entire surface S. p is restricted
to the degree of 2, as it is efficient to generate topological features. The curvature functionals can be
expanded as
F(S) = fs(a2,0K12 + ay 1K1K + Ao 2K2% 4 aq 0Ky + Ag 1Ko + ao,o)dA = fs(zlodsz Qg (K1K2)a)dA-
“
Generally, it is convenient to refine this kind of 2D surface functionals to scalar fields v in 3D volume

by diffusion approximation. And the matrix field M{ is introduced as:
w' (u)

ME = —eHessu + n, ®n,, (5
where Hess is the Hessian operator. And its trace is equal to
TrME = —ehu + L (“) (6)

Applied phase-field approximation and further 51mp11ﬁcat10n, the final representation of the phase-field
F.(u) can be written as

Folu) = f, [0 g |2 + 22 (Tr)? + 2202 T RIS — (Trd)?) +
L1020 |9y | Trv + 220 a“quI\/(ZIIJV[EIIZ — (TrM€)2)+ + ag o€l Vu|?| dx. (7)

To implement the phase-field F.(u) to generate microstructure geometries given a random
initialization, a mass-preserving flow can be defined as

1= AP
u=A P ®)
This form can also be repressed as
u=V-4A+m, )]

where A: Q — R3is a periodic vector field, and m, € R is the desired value of the average % which also
approximates the volume fraction by mOTH Finally, an energy function is defined as:
G(A)=F.(V-A+my), (10)
with a gradient of
3G _ g 0Fe
Le(a) = -vZe ). (11)
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This energy function is used as the loss function with an auto-differentiation tool that iteratively
optimizes u to evolve a random vector field 4, until the energy function meets the convergence criterion,
and this algorithm was implemented in a GPU implementation, curvatubes [50]. This iterative algorithm is
shown in Figure 5(a). Empirically, A, can be drawn from a uniform distribution. Random initialization of
the structure image in the curvature functional method results in diverse yet statistically equivalent
stochastic reconstructions of microstructures that share the same input generation parameters a and m,.
Therefore, the generation variables can be considered as a statistical representation of an infinite set of
random but statistically equivalent microstructures, which makes this method suitable for generating
stochastic microstructure designs. Several examples of statistically equivalent microstructure samples
generated from the same a vector is shown in Figure 5 (b~e). The final phase field, u, falls within a range
of (-1, 1). It can also be binarized to represent various volume fraction levels or utilized to extract the zero-
level set. Figure 5 (f) illustrates an example showcasing the geometric changes induced by volume fraction
variations originating from the same phase field.

L B .
l

a=(1,1.2,
12.9,
1177,
104.9,

48.8)
m=4 (P)

a=(1, 3.0,
11.8,
-142.8,
127.2,
-1438.2) (d)
m= -0.49

Figure 5: (a) The iterative generation process of curvature function method. The first block represents
initial random vector field A, and corresponding phase field u computed by Equation 9. The binarized
microstructures generated at iterations 1, 10, 100, and 4000 is represented in the first row, and the
corresponding curvature diagrams at the second row shows distribution of the curvatures (kq,k;) on
surface. (b)~(e) Design variable vectors and the corresponding statistically equivalent microstructure
samples. Each row shows three stochastic samples of the same microstructure design and the corresponding
generation parameters. (f) A phase-field u is binarized in a volume fraction of 0.3, 0.6, and 0.9. (g) A
functionally graded structure obtained by the curvature functional-based method. It is created from
continuous functions of the generation parameters a.
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3.2 Property-driven microstructure design and generation of graded functional structure
designs by curvature functionals

Following the flowchart in Figure 1, we propose a surrogate model-based optimization approach for
microstructure design. The surrogate model of the relationship between the generation parameters a and
material property is established using GP regression. It is to be noted that random but statistically equivalent
microstructures will be generated for a given set of design variables. Therefore, we generated ten samples
from ten fixed random initializations (A) for the same design variable vector, and then simulated the
mechanical properties of all ten samples. We generated a total of 20,000 samples using 2,000 sets of
generation parameters. Numerous synthetic examples are presented in Figure A.l(c), located in the
appendix. Similar to the method presented in Section 2, we adopt GA and NSGA-II as the optimizers to
solve the property-driven design problem. In the last step, the digital images of the microstructure designs
are reconstructed based on the design variable vector a.

Here we also investigated the curvature functional-based method’s capability of generating functional
graded structure designs. One advantage of the curvature functional method is that a smooth transition
between different categories of microstructures can be easily obtained by varying the values of the
generation parameters continuously. Figure 5(g) shows a functional graded design generated based on
continuous functions of the generation parameters a along the longitudinal direction. Moreover, the
curvature functional-based method offers the advantage of scalability, allowing it to reconstruct
microstructure images with varying domain sizes and resolutions. Figure 6(a~c) visually illustrates this
advantage by presenting three samples generated using identical design variable values but varying levels
of resolution. Furthermore, the high-resolution reconstructions of microstructures with arbitrary sizes offer
the convenience of seamless integration into macro-scale component geometries. This capability is
exemplified in Figure 6(d~e), where the microstructure is infused into two macro-scale geometries
resembling a human femur and a suspension arm, showcasing the ability to precisely fit the microstructure
into complex shapes.

Manufacturing complex multiscale microstructures in a precise and economic method is still a
challenge. Factors impacting manufacturing robustness, such as local defects and surface roughness, are
vital considerations when evaluating manufacturability. In recent years, there have been significant
improvements in additive manufacturing (AM) techniques. Techniques such as Stereolithography (SLA)
[53] and extrusion additive manufacturing [54] have approved a great robustness in printing similar
geometries shown in figure 6. If additive manufacturing is employed, it effectively eliminates
manufacturing uncertainty and enables transition between different types of microstructures, though it
comes with a higher cost. Conversely, alternative methods like the self-assembly of polymeric emulsions
[17] are more cost-effective and high throughput volumes cross multiple scales, but are limited to producing
specific types of microstructures.
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Figure 6: Scalability of the curvature functional-based method: microstructure designs generated from the
same design variable vector a = [1, 2.8, 2, -10, -10, 25] and m = -0.25 with sizes of (a) 64° (b) 128° (¢)
256° voxels by the curvature functional-based method. Two macro-scale geometries in the shapes of (d) a
human femur and (e) a suspension arm infused with microstructures generated with a =[1, 2.8, 2, -10, -10,
25] and my =-0.25.

4. A COMPARATIVE STUDY WITH A DESIGN FOR STIFFNESS PROBLEM

In this section, we present a design case to compare the deep generative model-based and the curvature
functional-based design representation methods in two aspects: the accuracy of the microstructure-property
regressor and the performance of the optimal designs obtained with each method.

Here we define a multi-objective microstructure design problem that maximizes the Young’s moduli
along X-, Y-, and Z- directions. Design constraints are defined to guarantee close-to-isotropic designs, i.e.,
the differences between the maximum/minimum modulus and the median modulus of the three directions
are within 3%. Therefore, the optimization problem can be formulated as

max E;(z) ormax E;(a,my),i =X Y,Z (12)
subject to:
|Ehighest —Emediuml < 3% (13)
Emedium
|Elowest—Emedium| < 3% (14)
Emedium

10
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When utilizing the VAE-based approach, the Euclidean distance of the solution latent vector z is
employed to prevent the optimizer from searching in regions that cannot be decoded into meaningful
images.

|max||z¢rainll—lzll |

< 3% (15)

max||z¢rqinl
where the max||z;4;, || is the largest latent vector encoded from training data.
If using the curvature functional-based method, additional constraints are needed to guarantee the
convergence of microstructure image reconstruction:

max(u) > 0.1 (16)
min(u) < —0.1 17
discrepancy(u) < 0.75 (18)

where the discrepancy is a measurement of how much the scalar fields u deviate from a tanh profile phase
field function [50]. As this research focuses on investigating the influence of microstructure morphology
on the properties, the volume fraction is set as a constant (0.4).

As preparation for exploring the relationship between microstructure and the property of interest, in
this case, elasticity, we performed finite element simulations on all microstructure samples by ABAQUS.
The 0-1 matrices that represent the binary microstructure images are transformed into hexahedral meshes.
The elastic modulus and Poisson’s ratio of the 1 phase in the microstructure are Egy-o, = 379300 MPa
and Ygoron = 0.1, whereas Eajyminum = 68300 Mpa, ¥ ajuminum = 0.3 for the 0 phase, where we consider
only linear elasticity. Infinitesimal displacements are applied to the two surfaces along the axis of interest
to stretch the microstructure, while the remaining four surfaces experience free traction. Young’s moduli
(Ex, Ey, E,) in the X-, Y-, and Z-direction are calculated by dividing the average stress by the strain. The

stress map and strain map with displacement boundary conditions are shown in Figure 7.
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Figure 7: Elasticity property analysis on a microstructure for the maximum in-plane strain and the
maximum von Mises stress in (a) X-direction, (b) Y-direction, and (c) Z-direction. The arrows indicate the
direction of infinitesimal displacements.

The dimensionality of the design space has a strong impact on the predictability of the GP regressors.
The design space generated by VAE has a dimensionality of 256. By contrast, the design space of the
curvature functional-based method is only 7. More input variables indicate a potentially better capability to
capture complex microstructure features, but practically, a high dimensional input space poses a significant
challenge to establishing the design variable-property relationship by surrogate modeling because a lot more
training data points are required to fully cover the input space. In Table 1, we present a comparison of three
GP models: VAE latent space-based GP model with a dataset of 40000 samples, VAE latent space-based
GP model with a dataset of 20000 samples, and curvature functional-based GP model with a dataset of
20000 samples. In each training, the dataset is split into a training set (90%) and a test set (10%). The model
accuracy, R?, is evaluated based on the test set. The curvature functional-based GP model has a higher
accuracy, even when comparing with the VAE-based GP model that uses twice as many training data points.
We also tested the neuron network (NN) regressor for both VAE and curvature functional method, the
prediction accuracy and optimal design are very similar to the GP model, therefore, we keep GP in the rest
of this manuscript. A table summarizing the accuracy of neuron network regressor can be found in Table
A.1 in appendix.

Table 1: Prediction accuracies of the GP regression models with the design spaces generated by the VAE-
based method and the curvature functional-based method.
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Model (size of the R? score
dataset) 15 E, E;
GP w/VAE (40000) 0.743 | 0.681 | 0.746
GP w/VAE (20000) 0.686 | 0.620 | 0.688

GP w/ curvature
functional (20000) 0.811 | 0.803 | 0.775

Another point worth noting is that some combination of generation parameters in the curvature
functional method may generate ill-posed geometric which may have zero level set and floating fragments,
where such fragments can lead to unrealistic microstructures in composite material and porous material
from both design and manufacturing perspectives. Therefore, three criteria, max (), min (u), and
discrepancy ratio, are required to identify ill-posed phase-field u during the optimization process. These
three criteria must be included as inequality constraints in optimization to ensure successful reconstructions
of the final microstructure designs. Experimentally, we observe that these three constraint functions limit
the number of feasible designs significantly.

The Pareto frontiers obtained with the two methods are compared in Figure 8. The Pareto frontier is
generated based on the virtual performances predicted using the trained machine learning model.
Subsequently, verification simulations are performed to obtain the true performances of these designs.
Figure 8 is created based on the true performances of the obtained designs. Due to the predicted errors of
the microstructure-property model, some of the obtained designs violate the design constraints of equivalent
Young’s moduli along three directions. For the VAE-based method, only 10% of the obtained designs in
the Pareto frontier satisfy the design constraints. Among the feasible designs, we can hardly find designs
that rank in the top 10% compared to the samples in the microstructure database, with respect to the
properties of interest.

On the other hand, more than 70% percent of optimal designs found by the curvature functional
approach meet the constraint of equivalent Young’s moduli along three directions, according to the results
of verification simulations. Furthermore, almost all of the feasible solution rank in the 10% compared to
the samples in the microstructure database. Figure 9 (a)~(d) show several examples of the optimal designs
obtained by the curvature functional-based method, and Figure 9 (e) and (f) show the optimal designs
obtained by the VAE-based method.
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Figure 8: Pareto frontiers obtained by both design approaches. As there are three design objectives, one
3D view and two 2D views of the performance space are provided. The design objective is to maximize E,.,
E,, and E,. The feasible design points are in dark colors and the infeasible design points are in light colors.
The green dot indicates the location of the Utopia point.
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Figure 9: (a)~(d) Optimal designs from the curvature functional-based optimization approach. (a) a = [1,
3.987,0.2194, 39.95, 198.4, 1431] and m, =-0.30. (b) a = [1, 3.990, 0.2933, 75.17, 199.3, -2060] and m,
=-0.26. (c) a=[1, 3.990, 0.3354, 45.24, 197.4, 1422] and my = -0.19. (d) a = [1, 3.925, 3.791, 36.08,
194.1, 2998] and m, = -0.43. (e) and (f) Two optimal designs from the VAE-based design approach.

5. UNDERSTANDING THE PROS AND CONS OF THE TWO DESIGN REPRESENTATION
METHODS

As summarized in Table 2, the pros and cons of the deep generative modeling-based method and the
curvature functional-based method are discussed in terms of seven criteria: computational cost, continuous
transition in functionally graded structure design, scalability of the microstructure design, design diversity,
dimensionality of the design space, and design performance.

Computational cost: To obtain a design space that embodies various categories of microstructures, the

deep generative modeling-based approach requires significant computing resources for data generating and
model training. On the other hand, the curvature functional-based method incurs minimal costs in defining
the design space, while computing the viability constraints (Equation 16~18) during the optimization
process is relatively computationally expensive.

Continuous transition in functionally graded structure design: When creating functionally graded
structure designs, the curvature functional-based method can guarantee a smooth transition among various

microstructure patterns. With the deep generative model-based method, the functionally graded structure
design is created by assembling a series of microstructure units, which correspond to discrete points in the
latent space. Therefore, a smooth transition between microstructure units cannot be guaranteed. This issue
could potentially be mitigated (but not resolved) by applying circular spatial padding to the transposed
convolutional layer in the deep generative model [55], but the impacts on reconstruction quality and
computational complexity need further investigation.
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Scalability of the microstructure design: The deep generative models, which are trained on the images
directly, cannot generate images with a wide range of sizes and resolutions. By contrast, the curvature
functional-based method can easily map the design variables to an arbitrary domain size. In our

experiments, the existing implementation of the curvature functional method can generate images with a
maximum size of 5123 using a single GPU with 48§GB RAM.

Design diversity: The deep generative models have the advantage over the curvature functionals.
Theoretically, the deep generative models can be extended to embody any type of microstructure (e.g.,
microstructures with triangular inclusions) as long as the training data are available. The curvature
functionals can only generate microstructures with curved surfaces.

Dimensionality of the design space: The curvature functional-based method has the advantage in
generating a low dimensional design space. Although we can also set the dimensionality of the VAE latent
space to a very low value (e.g. 8, the same as the design space of the curvature functional method) by
modifying the fully connected layers in encoder, in practice, it will lead to a much poorer reconstruction
accuracy. The high dimensionality of the VAE latent space poses a significant challenge to establishing the
microstructure-property relationship, as well as searching for the optimal microstructure designs in the
design space.

Interpretability of statistical equivalency among stochastic microstructure designs: It is a unique
requirement for stochastic microstructure design. From the perspective of statistical characterization and
stochastic reconstruction, one “design” actually represents an infinite number of microstructure samples
that are random but statistically equivalent. The design representation by curvature functional parameters
can provide this capability. By contrast, in the latent space learned by the deep generative model, each point

corresponds to one specific, unique microstructure image. The distance between the points is a measurement
of the pixel-to-pixel similarity of the two images, instead of the similarity in the statistical sense. As shown
in Figure 10, two statistically equivalent random particle microstructure samples are far apart in terms of
the Euclidean distance in latent space, while the random particle microstructure #1 is closer to the quasi-
random microstructure. Therefore, it is not possible to define statistical equivalency purely based on the
distance in the latent space. We acknowledge the possibility of generating random but statistically
equivalent microstructures by introducing empirical statistical descriptors into the loss function of deep
generative models (e.g., GAN) [56], but then again, it loops back to our original research question: how to
select proper descriptors for describing stochastic microstructures without compromising the design
freedom.

Design performance: The performance of the optimal designs are influenced by two factors: the

accuracy of the microstructure-property surrogate model, and the effectiveness of design
exploration/searching in the design spaces generated by each method. Although the curvature functional-
based method demonstrates better performances in the presented case study, we should be cautious to make
a conclusion. In our previous work [41] and literature [57], it has been demonstrated that training the VAE
and the latent variable-property regressor simultaneously can improve the property prediction accuracy.
This paper focuses on the capability of learning a unified design space, so the simultaneously training of
the latent space and the property repressor is out of scope and not included.
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Figure 10: 2D ¢-SNE representations of VAE latent space. It is observed that the distance between two
statistically equivalent random particle microstructures is larger than that between a random particle
microstructure and an amorphous microstructure. Therefore, the Euclidean distance in the latent space
cannot be used to identify statistically equivalent microstructures.

Table 2: Summary of the comparative study between the deep generative model-based and curvature
functional-based methods. The criteria with * is only valid for the methods and case study presented in this

paper.

Criteria

Deep generative model-based
method

Curvature Functional-based method

Computational Cost

Significant computational resources
for data generation and model
training

S

Minimal cost in generating the design
pace, while computational expenses are
incurred by computing the viability
constraints during optimization

Cannot guarantee smooth transitions

Continuous . o Smooth microstructure transition in
o between microstructure units in .
transition . functionally graded structures
functionally graded structures
Design scalability Limited to specific sizes/resolutions Arbitrary resolutions and domain sizes

Design diversity

Embodying any type of
microstructure if the training data is
available

Microstructures with curved surfaces
only

* Dimensionality of
the design space

High dimensionality poses
challenges in establishing
microstructure-property relationship
and searching for optimal designs

Low-dimensional design space,
compromising reconstruction accuracy
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Interpretability of Each design variable yector Each design variable vector represents

statistical .corresponds to a unique random but statistical equivalent

equivalency mic rpstructu.re, not allowmg stochastic microstructures
statistical equivalence analysis
Limited accuracy of the

* Design microstructure-prqpeﬂy surrogate Lower dimensionality of the design

performance models and .1OW 4651gn.perf(.)rmances space leads to better perfomance in
due to the high dimensionality of the presented case studies
design space

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed and compared two methods for generating a unified design space that
embodies various categories of stochastic microstructures: the deep generative model-based method and
the curvature functional-based method. For the deep generative model-based method, the latent space
learned from a highly diversified microstructure database is employed as the microstructure design space.
For the curvature functional-based method, the generation parameters in the functionals are used as
microstructure design variables. We established surrogate models to predict the relationship between
microstructure design variables and the properties of interest and conducted surrogate model-based
optimization to design microstructures for desired properties. Furthermore, we applied the two methods to
generate functionally graded structure designs. We present a comprehensive discussion and comparison of
each method, outlining their respective advantages and drawbacks. This discussion serves to inform the
design process for architecture and composite materials, aiding in the selection of an appropriate method
based on the desired outcomes.

In our future work, we plan to test both methods on more engineering case studies to deepen our
understanding of the strengths of each method. We are also aiming to further develop the current curvature
functional method to generate multiscale microstructure fitting in an arbitrary domain. Another major
limitation of this work is that the manufacturability analysis is not included. The purpose of this work is to
establish a theoretical foundation for creating diverse geometries. While not currently integrated with the
manufacturability analysis, the proposed methodology is an enabler for generating novel microstructure
preliminary concepts, such as tailoring structural stochasticity for crashworthiness performances [41]. The
development of a manufacturability-conscious design framework will be a focus of future efforts.

APPENDIX
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474  standard Normal distribution. (c) Synthetic microstructures in the curvature-functional method dataset.
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Figure A.2: Training history of VAE model using monotonic annealing schedule for KL loss.

Table A.1: Prediction accuracies of the neuron network regression models with the design spaces generated
by the VAE-based method and the curvature functional-based method.

Model (size of the R? score
dataset) 5 E, f
NN w/VAE (40000) 0.782 | 0.733 | 0.760
NN w/ Curvature (20000) | 0.781 | 0.795 | 0.755

Table A.2: Reconstruction accuracies for each catalog of microstructure in the test set for the posted VAE
model.

Model MSE loss |
Overall | Fibers | Particles | Ellipsoids | node- | amorphous
edge
network
VAE 0.1167 | 0.0954 | 0.1044 0.0778 0.1261 0.1793
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