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A B S T R A C T   

Quantification and propagation of aleatoric uncertainties distributed in complex topological structures remain a 
challenge. Existing uncertainty quantification and propagation approaches can only handle parametric un
certainties or high dimensional random quantities distributed in a simply connected spatial domain. There lacks 
a systematic method that captures the topological characteristics of the structural domain in uncertainty analysis. 
Therefore, this paper presents a new methodology that quantifies and propagates aleatoric uncertainties, such as 
the spatially varying local material properties and defects, distributed in a topological spatial domain. We 
propose a new random field-based uncertainty representation approach that captures the topological charac
teristics using the shortest interior path distance. Parameterization methods like PPCA and β-Variational 
Autoencoder (βVAE) are employed to convert the random field representation of uncertainty to a small set of 
independent random variables. Then non-intrusive uncertainties propagation methods such as polynomial chaos 
expansion and univariate dimension reduction are employed to propagate the parametric uncertainties to the 
output of the problem. The effectiveness of the proposed methodology is demonstrated by engineering case 
studies. The accuracy and computational efficiency of the proposed method is confirmed by comparing with the 
reference values of Monte Carlo simulations with a sufficiently large number of samples.   

1. Introduction 

Engineering structures with complex topological characteristics have 
excellent performances that cannot be achieved by traditional simple 
structure designs. The reliability and robustness of complex structural 
systems are influenced by uncertainties from various sources, such as the 
boundary conditions [1–3], assembly tolerance [4], dimensions and 
geometries [5,6], time dependencies [7–9], and the distribution of local 
material properties [6,10,11]. To represent those aleatoric uncertainties 
quantitatively, researchers proposed statistical distribution functions for 
parametric uncertainties [12–15] or random field models for high 
dimensional uncertainties distributed in a simply connected space [10]. 
However, quantifying and propagating the uncertainties in topological 
structure have remained a challenge. In literature, simplified yet inac
curate approaches have been proposed to represent aleatoric un
certainties distributed in a topological spatial domain. For example, one 
widely used approach is to first create a random field model of the un
certain quantity of interest (QoI) without considering the topological 
characteristics of the structure and then mask the random field 

realizations with the structure image (“dig holes” in the random re
alizations) [2,10]. Another approach is to divide the topological spatial 
domain into multiple simply connected sub-domains and create an in
dependent random field model of the uncertain QoI for each sub-domain 
[16]. The main issue with this approach is the lack of continuity at the 
interface between sub-domains. In our previous work [17], we proposed 
a network distance-based method to represent the spatially correlated 
uncertainties in the lattice structure. This method captures the topo
logical characteristics of the lattice structure while neglecting the vari
ations in QoI along the diameter direction of each lattice bar. 

In addition to capturing topological characteristics, another chal
lenge is to reduce the dimensionality of the input uncertainties in order 
to improve the efficiency of uncertainty quantification. Lots of dimen
sion reduction methods are proposed to parameterize the high- 
dimensional variables, like principal component analysis (PCA) and its 
variations [18–20], non-negative matrix factorization (NMF) [21], 
linear discriminate analysis (LDA) [22], and generalized discriminant 
analysis (GDA) [23]. With the advancements in neural networks, 
autoencoder (AE) draws increasing attention for its capability of 
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compressing data into a low-dimensional latent space [24]. Recently, 
various AE-based methods have been successfully implemented to 
reduce the dimensionality of high-dimensional data. Yant et al. [25] 
proposed a sparse AE-based deep neural network to perform fault 
detection in high-dimensionality multi-component systems. Health in
dicator built in the latent space has been proposed for condition moni
toring of engineering systems [26]. Liu et al. [27] proposed a variational 
Autoencoder (VAE)-based dimensionality reduction method for the 
quantification of uncertainties in geophysical inverse problems. 

Uncertainty propagation (UP) is a method for quantifying uncer
tainty in the system output based on random or noisy inputs. UP is of 
great importance for the reliability-based design and robust design. 
Major efforts have been made to develop UP methods for reliability and 
safety applications [28–30], including simulation-based methods 
[29–33], function expansion-based methods [29,31,34,35], most prob
able point-based methods [36,37], and numerical integration-based 
methods [38–40]. The simulation-based methods include Monte Carlo 
simulation (MCS), importance sampling, and adaptive sampling. MCS 
method, which is computationally expensive, is widely used to provide a 
reference value to validate other methods. Among function 
expansion-based methods, polynomial chaos expansion (PCE) is regar
ded as one of the most used methods due to its mathematically rigorous 
concept, strong theoretical basis, and ability to represent stochastic 
quantities [35]. PCE represents a random variable by a series of poly
nomial chaos basis, which allows the statistical moments of the system 
output to be estimated. Proposed by Ghanem and Spanos [35], the 
Hermite PCE has been applied to a variety of engineering fields [41–45]. 
In the most probable point-based method, first-order reliability method 
[46] and second-order reliability method [47] are the two most popular 
approaches. The drawback of first-order reliability method and 
second-order reliability method is that the information regarding vari
able distribution is completely ignored, so they work well only when the 

limit state is linear or quadratic and the variables are normally distrib
uted. The numerical integration-based methods derive the probability 
distribution function (PDF) of performance function, and the probability 
is evaluated by a simple one-dimensional integration over PDF. Uni
variate dimension reduction (UDR) method is a numerical 
integration-based UP method, which approximates a multidimensional 
moment integral through multiple reduced-dimensional integrals based 
on additive decomposition of the performance function [40]. Due to its 
high efficiency, UDR has been widely used in reliability-based design 
and robust design [48–51]. The aforementioned UP methods propagate 
parametric uncertainties to the output. 

The goal of this work is to establish a new methodology that quan
tifies and propagates the uncertainties distributed in a topological 
structural domain. We propose a new covariance function of Gaussian 
random field, which captures the topological characteristics using the 
shortest interior path distance between two sampling points in a struc
tural domain. Dimension reduction methods, PPCA and βVAE, are 
employed to convert the high-dimensional random field uncertainties 
into independent, normally distributed random parameters. Then non- 
intrusive PCE and UDR are employed to propagate the parameterized 
uncertainties to the output. The effectiveness of the proposed method is 
validated by two case studies. 

The main contributions of this work are summarized as follows: 

(1) A new shortest interior path distance-based uncertainty repre
sentation method is proposed. Compared with the traditional 
Euclidean distance-based method, the proposed method can 
better represent the spatially correlated uncertainties distributed 
in a topological spatial domain.  

(2) A comparative study is presented to provide new insights on the 
methods that reduce the high-dimensional random field repre
sentation of uncertainties in a topological spatial domain to a 

Fig. 1. (a) Problem Statement. (b) Overview of the proposed methodology for quantifying and propagating aleatoric uncertainties in a topological structural domain.  
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low-dimensional representation of a few independent random 
variables.  

(3) To the authors’ best knowledge, it is the first UP methodology 
that propagates aleatoric uncertainties distributed in a topologi
cal spatial domain to quantify the uncertainties of the system 
responses. 

The remainder of this paper is organized as follows. In Section 2, an 
overview of the proposed uncertainty quantification and propagation 
methodology is introduced. Details of each component of the framework 
are introduced in Section 3, 4, and 5. Section 3 introduces the statistical 
representation of high-dimensional uncertainties in a topological 
structural domain. In Section 4, we present two ways for parameterizing 
the high-dimensional uncertainties, PPCA and βVAE, and present a 
comparative study to understand their relative merits. In Section 5, we 
introduce the UP process using non-intrusive PCE and UDR. Section 6 
includes two engineering case studies and a comparison of different 
methods. The conclusion of this work is provided in Section 7. 

2. Overview of the proposed methodology 

The overarching goal is to predict the statistical output for an engi
neering problem based on the statistical distribution of the input alea
toric uncertainties (Fig. 1(a)). Aleatoric uncertainty, also known as 
statistical uncertainty, is representative of unknowns that differ each 
time we run the same experiment/simulation. Examples of aleatoric 
uncertainties include manufacturing errors, inherent stochasticity in 
material microstructure and properties, uncertain working conditions, 
etc. Here we present a new methodology (Fig. 1(b)) that (i) provides a 
statistical representation of the high-dimensional aleatoric uncertainties 
distributed in a topological spatial domain, (ii) reduces the random field 
representation to independent random parameters, and (iii) predicts the 
statistics of the output. The steps for implementing the proposed 
methodology include a:  

1 Gaussian random field uncertainty representation with the shortest 
interior path distance-based covariance function. When modeling 
the covariance between two sampling points, we propose to formu
late the covariance as a function of the shortest interior path distance 
within the topological structural domain. In this way, the topological 
characteristics can be embodied in the random field model.  

2 Parameterization of the random field uncertainties. Dimension 
reduction methods, PPCA and βVAE, are employed to convert the 
random field uncertainties to independent random parameters x =

[x1, x2, …, xk], where k is the dimension of the parametric represen
tation. Each parameter xi is described by its PDF. A sufficiently large 
set of realizations (statistically representative) are generated using 
the Gaussian random field model established in the previous step and 
the parameterization is conducted on the realizations.  

3 UP. Non-intrusive PCE and UDR are conducted to propagate the 
input uncertainties, which are in the form of independent random 
parameters, to the output of the problem. Compared to the MSC- 
based approaches [52,53], the proposed approach has the advan
tage of efficiency as it requires a smaller set of sample points, which 
are generated in the low-dimensional parametric space. 

3. Statistical representation of Aleatoric uncertainties 

A proper mathematical representation of the input aleatoric uncer
tainty is a stepping stone for the following uncertainty propagation 
studies. In this section, we firstly introduce the Gaussian random field 
for representing high-dimensional uncertainties, and then present a new 
formulation of the Gaussian random field covariance function for to
pological structural domains. 

3.1. Gaussian random field for uncertainty representation 

Gaussian-type random field is one of the most used uncertainty 
representation methods due to its simplicity, tractability, and flexibility. 
A Gaussian random field RG(x) can be completely characterized by its 
mean E(x) and covariance function C(x), where x is an N-dimensional 
field variable: 

RG(x) ∼ MVN(E(x), C(x)) (1)  

where “MVN” represents multivariate normal distribution. The covari
ance function C(x) gives the covariance evaluated at any two observa
tion locations in the input space. In literature, exponential function- 
based kernel functions are widely used as the covariance function [10, 
54-56]. Those functions capture the decaying correlation between two 
observation locations as the distance increases. In our previous work 
[57], oscillating function-based formulations are proposed to capture 
the negative correlations and fluctuating correlations along with dis
tances. Several examples of covariance kernel functions are listed below: 

A traditional exponential function-based kernel function: 

C
(
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)
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(
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(4)  

where σ is a calibration parameter that controls the variance; D(xi, xj)

represents the distance between the two sampling locations; θ, θ1and θ2 
are kernel function parameters. Traditionally, the distance is measured 
by the Euclidean distance D(xi, xj) = ‖ xi, xj ‖. 

The values of the unknown parameters in the covariance function are 
obtained by fitting to the random field realizations (observed data). 
First, the distance and covariance between any of the two sampling lo
cations are evaluated. Then the covariance-distance dataset is sorted 
based on the distance value. For each distance value, the average 
covariance value is calculated. The distance-average covariance rela
tionship is then used to fit the kernel function. Different types of kernel 
functions need to be compared to obtain the best fitting accuracy. It is 
also suggested to set a cutoff distance in order to capture the short- 
distance covariance better. The detailed process of fitting the covari
ance kernel function can be found in our previous work [57]. 

1.2. Shortest interior path distance between two sampling locations 

Instead of constructing the covariance function based on the 

Fig. 2. Finding the shortest interior path in a topological feasible region.  
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Euclidean distance, we propose to establish the spatial relationship be
tween two sampling locations based on the shortest interior path dis
tance within the structural domain. As shown in Fig. 2, the topological 
structural domain is represented by the feasible region X in the 2D or 3D 
spatial domain. The shortest interior path distance DSP(xi, xj) between 
any two sampling locations xi and xj within the feasible region (within 
the structure) is evaluated for constructing the covariance function [58]. 
Taking the oscillating function-based covariance formulation shown in 
Eq. (5) as an example, the covariance between two sampling locations is 
calculated as: 

C
(
xi, xj

)
= σ2⋅

(

1 +
DSP

(
xi, xj

)

θ1

)−1

⋅cos
(

DSP
(
xi, xj

)

θ2

)

(5) 

A three-step algorithm is employed to solve for the shortest interior 
path distance within a topological feasible region. 

• First, the travel time matrix H is computed using discretized diffu
sion analysis [59].  

• Second, the path is searched along the gradient of travel time matrix 
∂H
∂xi

. The algorithm rapidly propagates through all possible pathways 
to find a representative shortest route, which is recorded as a set of 
points in the feasible region.  

• Third, the path is smoothed by optimization, which perturbs the 
locations of the points while satisfying the requirement of feasibility. 
A feasible route is one that is fully contained in the feasible region. 

4. Parameterization of the high dimensionality input 
uncertainty 

In this section, we introduce two dimension reduction methods that 
are employed to parameterize the high-dimensional random field un
certainties into low-dimensional parametric uncertainties. In addition to 
low dimensionality, orthogonality (statistical independence) is also 
desired, as it improves the data compression efficiency and facilitates 
identifying the key features from the data. Parameterization of random 
field uncertainties brings benefit to UP (Section 5), as the state-of-the-art 
methods work best on independent random variables as the input. Two 
methods, beta-variational autoencoder and probabilistic principal 
component analysis, are introduced and compared in this section. 

4.1. Probabilistic principal component analysis (PPCA) 

Probabilistic principal components analysis (PPCA) is a dimension 
reduction technique derived from principal component analysis (PCA) 
[60]. As a probabilistic version of PCA, PPCA is based on a Gaussian 
latent variable model that parameterizes the high dimensional input 
data to a low dimensional latent space [19]. PPCA overcomes some 
disadvantages of PCA, such as difficulty in assessing the fit quality [61], 
inability to reveal groups of subjects in the data [62,63], and inability to 
deal with noisy data and missing data [64]. 

Let x be a set of p-dimensional input variables (which is the input 
structure in our case) and z be the q-dimensional linear projection in the 
latent space that best represents the data in the least-squares sense. 
Noted that, each latent dimension of z is fully independent of others. For 
the traditional PCA, zi can be seen as the principal score of subject i. 
PPCA can be written as: 

x = Wz + μ + εi (6)  

where W is p × q linear transformation matrix; μ is the mean vector, 
where μ = 1

N
∑N

n=1x; εi is multivariate Gaussian for subject i. The de
pendency between z and x is linear. It is assumed that p(εi) = MVNp(0,

σ2I), where I denotes the identity matrix. The latent variable z is 
assumed to be isotropic Gaussian, for example, p(zi) = MVNq(0, I). The 
conditional distribution of the input data given the latent variables can 

be written as: 

p(xi|zi) = MVNp
(
Wzi + μ, σ2I

)
(7) 

The distribution of p(xi) is: 

p(xi) = MVNp
(
μ, WWT + σ2I

)
(8) 

One can obtain the maximum-likelihood estimation of the parame
ters μ, W and σ2 based on dataset x. Any observed data point xi can be 
represented in the latent space by its q-dimensional latent variable z. 
Then the distribution of the latent variable on observed data can be 
expressed as: 

p(zi|xi) = MVNq
(
M−1WT (xi − μ

)
, σ2M−1) (9)  

where M is defined as M = WWT + σ2I. It is to be noted that, the output 
of PPCA is similar to that obtained by PCA [19], but PPCA offers an 
additional advantage of uncertainty assessment. 

4.2. Beta-variational autoencoder (βVAE) and it with Gaussian mixture 
prior 

4.2.1. Beta-variational autoencoder (βVAE) 
A non-linear extension of the PPCA is the variational autoencoder 

(VAE) [65]. VAE is a generative machine learning model that aims at 
extracting the knowledge from the original space to construct a low 
dimensional latent space and also provides the capability of recon
structing the data in the original space [66]. 

βVAE, a variant of VAE, disentangles the latent features [67]. 
Disentanglement means that one latent feature is only sensitive to 
changes in one generative factor, while being relatively invariant to 
changes in other factors [68]. βVAE learns the mapping relationship 
between the input high dimensional data x (e.g. structure image) and the 
corresponding latent space z. 

βVAE consists of an encoder (recognition model) and a decoder 
(generative model). The encoder performs nonlinear dimensionality 
reduction and compresses the input data from the original high 
dimensional space into a low dimensional latent space. The encoder can 
be expressed as Qϕ(z|x), which is the approximate posterior represented 
by a normal distribution. ϕ is the encoder model parameters. The 
decoder is used to reconstruct the high dimensional data by mapping the 
latent feature vector back to the original space. The generative model is 
expressed as: 

Pθ(x, z) = Pθ(x|z)Pθ(z) (10)  

where θ is the vector of parameters of the decoder, Pθ(z) is the prior 
distribution of z, and Pθ(x|z) is the conditional distribution of x on z. 

The loss of βVAE is written as: 

LβVAE = EQϕ(z|x)[logPθ(x|z)] − βDKL
(
Qϕ(z|x) ‖ Pθ(z)

)
(11) 

This loss function consists of two parts, the reconstruction loss and 
the Kullback-Leibler (KL) divergence loss. The hyperparameter β in the 
KL divergence loss controls the independency of the latent feature var
iables. When β = 1, the βVAE is the same as VAE. When β > 1, it applies 
a larger KL divergence loss, and the model is pushed to a more inde
pendent latent representation [67]. By tuning the coefficient β, we could 
obtain an approximately orthogonal latent feature representation of the 
data. In our engineering case studies (Section 6), the βVAE models 
generate latent features that are approximately orthogonal to each 
other, i.e. the correlation coefficient between two latent features is in the 
range of [−0.1, 0.1] (the angles between two feature axes is in the range 
of [85◦, 95◦]). 

4.2.2. Gaussian mixture beta variational autoencoder (GM-βVAE) 
Different from the typical VAE and βVAE, the prior over each latent 

variable of GM-βVAE is modeled as a mixture of Gaussian, which 
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captures a complex multimodal statistical distribution. Each mode of the 
latent feature corresponds to a specific class of data. Each class obeys a 
Gaussian distribution. The distance between two classes of data is 
measured by the Mahalanobis distance [69]. 

GM-βVAE learns the relationship between the input image x and the 
corresponding latent space z. Moreover, a categorical variable y is 
introduced to identify which Gaussian distribution in the multimodal 
distribution of a latent feature each data point belongs to. The encoder 
(recognition model) of the GM-βVAE is expressed as: 

Qϕ(y, z|x) = Qϕ(y|x)Qϕ(z|x, y) (12)  

where ϕ is the vector of the recognition model parameters and Qϕ(y, z|x)

is the approximate posterior that is represented by a mixture of Gaussian 
distributions. Each latent feature consists of k distinct Gaussian distri
butions, i.e., Qϕ(z

⃒
⃒x, yi), where i ∈ 0, 1, 2, …k − 1. Thus, the approxi

mate posterior becomes a Gaussian mixture. The means and variances of 
the Gaussian distributions are learned by the inference model. 

The decoder of GM-βVAE is expressed as: 

Pθ(x, y, z) = Pθ(x|z)Pθ(y|z)P(y) (13)  

where θ is the network parameters of the generative model, Pθ(x|z) is the 
approximated distribution of x conditioned on z, Pθ(y|z) is the approxi
mated distribution of y conditioned on z, and P(y) is the initial prior on y, 
which is selected to be a uniform multinomial distribution. 

In the GM-βVAE model, we are pursuing both an orthogonal latent 
representation of data and the capability to capture multi-mode char
acteristics of the original input data. The evidence lower bound can be 
expressed as: 

LGM−βVAE = EQϕ(y,z|x)

[

logP(y) − logQϕ(y|x) + βlog
Pθ(z|y)

Qϕ(z|x, y)
+ logPθ(x|z)

]

(14)  

where EQϕ(y,z|x)[logQϕ(y|x)] is the conditional entropy that reflects how 

informative x is on y. log Pθ(z|y)

Qϕ(z|x,y)
is the KL divergence loss term and 

logPθ(x|z) is the reconstruction loss, respectively. 

5. Non-Intrusive uncertainty propagation 

With the parameterized uncertainties, the last step of the proposed 
methodology is to propagate the uncertainty to the output of the prob
lem and predict the associated statistical moments. Two UP methods, 
non-intrusive PCE and UDR, are reviewed and discussed in this section. 
A comparative study of these two methods will be presented in Section 
6. 

5.1. Non-intrusive PCE 

PCE, originally proposed by Norbert Wiener [70], is a 
well-established functional expansion-based method based on the 
spectral representation of randomness (uncertainties). Hermite poly
nomial, Legendre polynomial, and Laguerre polynomial are optimal 
basis functions for Gaussian, uniform and, exponential distribution 
functions for the input uncertainties, respectively [70,71]. The details of 
polynomial chaos expansions can be found in literature [72–74]. 

The spectral representation of uncertainty decomposes a random 
variable (or function) into deterministic and stochastic components. For 
example, a metamodel for the stochastic response of a model α∗(x) is 
constructed on N independent random variables that construct a random 
vector: x = [x1, ……xN]. Then α∗(x) is expanded into a basis of orthog
onal polynomials to give a spectral representation of uncertainty: 

α∗(x) =
∑P

i=0
αiΨi(x) (15)  

where Ψi(x) is the random basis function corresponding to the ith mode. 
We assume α∗ to be a function of deterministic independent variable 
vector c and the N-dimensional random variable vector x that follows a 
specific probability distribution. The discrete sum can be expressed as a 
function of polynomial chaos order p and the number of random vari
ables N, with P + 1 =

(N+p)!

N!p!
. There are P linear combination terms and 

the multivariate orthogonal polynomial is expressed as: 

Ψi(x) =
∏N

k=1
ψ (k)

I(k)

i
(xk), i ∈ [1, P] (16)  

where the rows of the index matrix I contain the multi-index and the ψ (k)

represents the input random variable. 
To build a non-intrusive polynomial chaos model, approximations of 

the coefficients of polynomial will be obtained without making changes 
to the deterministic part [75]. Sampling based, collocation based, and 
quadrature methods are commonly used to obtain the polynomial co
efficients in a non-intrusive polynomial chaos model. 

Using the sampling based and the quadrature methods, the equation 
is projected on kth basis: 

〈α∗(c, x), Ψk(x)〉 =

〈
∑P

i=0
αiΨi(x), Ψk(x)

〉

(17)  

where the inner product <f(b),g(x)>=
∫

Rf(x)g(x)pN(x)dx, here the pN(x)

is the probability density function of b. We know that the basis functions 
are orthogonal, thus we have: 

〈α∗(c, x), Ψk(x)〉 = αk
〈
Ψ2

k(x)
〉

(18) 

Then we can estimate the polynomial coefficients as: 

αk =
〈α∗(c, x), Ψk(x)〉

〈Ψ2
k(x)〉

(19) 

Using point-collocation based method [76], we start by replacing the 
uncertain variables with their polynomial expansions given by Eq. (20). 
Then P + 1 vectors are chosen for a given PCE with P + 1 modes and the 
deterministic solution is evaluated at these points. A system of equations 
is solved to obtain the polynomial coefficient (αk) of the random variable 
α∗: 
⎡

⎢
⎢
⎣

Ψ0(x0) Ψ1(x0) ... ΨP(x0)

Ψ0(x1) Ψ1(x1) ... ΨP(x1)

.... .... .... ....

Ψ0
(
xp

)
Ψ0

(
xp

)
.... Ψp

(
xp

)

⎤

⎥
⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

a0
a1
....

ap

⎫
⎪⎪⎬

⎪⎪⎭

=

⎧
⎪⎪⎨

⎪⎪⎩

a∗(x0)

a∗(x1)

....

a∗
(
xp

)

⎫
⎪⎪⎬

⎪⎪⎭

(20) 

The mean and standard deviation of the solution are: 

μ = α0 (21)  

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑P

i=1
α2

i Ψ2
P(x)

√
√
√
√ (22) 

The high-order moments such as skewness (γ) and kurtosis (κ) can be 
obtained by computing the expectation products of three or four 
multivariate polynomials: 

γ =
1

σ3
α∗

∑P

i=1

∑P

j=1

∑P

k=1
E

[
Ψi(x)Ψj(x)Ψk(x)

]
αiαjαk (23)  

κ =
1

σ4
α∗

∑P

i=1

∑P

j=1

∑P

k=1

∑P

k=1
E

[
Ψi(x)Ψj(x)Ψk(x)Ψl(x)

]
αiαjαkαl (24) 

The solution of Eq. (20) requires P + 1 function evaluations. If more 
than P + 1 deterministic function values are used, the over-determined 
system of equations can be solved using the least square error. Hosder 
et al. [77] investigated this option by increasing the number of 
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collocation points in a systematic way through the introduction of a 
parameter nP, which is defined as: 

nP =
number of samples

P + 1
(25) 

They show that increasing the number of collocation points to twice 
or more of the minimum number required (nP ≥2) gives a better 
approximation to statistics at each polynomial order. In this study, we 
use nP = 2, so the number of sampling points equals 2 ×(P +1) for 
different polynomial orders. 

There are different sampling methods that can be used for the point- 
collocation non-intrusive PCE approach. For example, random sam
pling, Latin hypercube sampling, Hammersley sampling, Halton sam
pling, Sobol sampling, etc. These methods are also used as design of 
experiment (DOE) techniques in design and optimization [78]. Latin 
hypercube sampling is used in this work. 

5.2. Univariate dimension reduction (UDR) 

5.2.1. Evaluation of statistical moments by Gauss quadrature 
The kth order statistical moment of a function of random variable, 

g(x), can be evaluated using Gauss quadrature: 

E
[
gk]

=

∫

Ω[g(x)]
kfx(x)dx ≅

∑m

i=1
ωi[g(xi)]

k
(26)  

where fX(x) represents the PDF of random variable X defined on Ω. m is 
the order of quadrature sum, ωi and xi are the ith weight and Gauss node. 
The quadrature sum can achieve at most 2m − 1 polynomial quadrature 
order. In a Gauss-type quadrature formula, the Gauss node xi is defined 
by the roots of the orthogonal polynomial; the weight ωi is calculated by 

Lagrange interpolation polynomial [79]. When X follows the normal 
distribution, ωi and xi can be directly derived from the Gauss-Hermite 
quadrature formula [80]. 

5.2.2. Transformation to the standard normal distribution 
A non-normally distributed variable can be transformed to a 

Gaussian distributed variable [81] using methods like Rosenblatt 
transformation [82] and Nataf transformation [83]. In this way, the 
Gauss nodes and weights of the Gauss-Hermite quadrature formula can 
be applied to compute the statistical moments if the original input 
variables are not normally distributed. The transformation T is 
expressed as: 

w = T(x) = P−1(F(x)) (27)  

where w is the transformed variable, P(⋅) is the cumulative distribution 
function (CDF) of a transformed variable, and F(⋅) is the CDF of the 
original arbitrary distributed random variable, respectively. 

Then the statistical moments of a function of input variable x can be 
written as: 

E
[
gk]

=

∫

Ω[g(x)]
kfx(x)dx =

∫ +∞

−∞
Pw(w)

[
g
(
T−1(x)

)]kdw

≅
∑m

i=1

ωi
̅̅̅
π

√
[
g
(

T−1
̅̅̅̅̅̅̅̅
2 xi

√ ))]k
(28)  

5.2.3. Univariate dimension reduction 
The UDR method [40,84,85] approximates a multivariate function 

by a summation of univariate functions. The statistical moments of each 
univariate function can be evaluated using the Gauss quadrature method 
introduced in Section 5.2.1. 

Consider a mechanical system with the independent random input 
variables x = [x1, ……, xN]

T, where N is the number of random variables. 
Let g(x) be the response of the mechanical system, then the kth order 
statistical moment is expressed as: 

E
[
gk(x)

]
=

∫

RN[g(x)]
kfx(x)dx (29)  

where fX(x) = fX1…XN (x1, …, xN) is the joint probability density function 
of X and E[⋅] is the expectation operator. In the univariate approximation 
of g(x), each term only depends on one variable and the other variables 
are fixed to their mean values: 

g(x) = g(x1, …, xN)

=
∑N

i=1
g(μ1, …, μi−1, xi, μi+1, …, μN) − (N − 1)g(μ1, …, μN) (30)  

where N is the total dimension of variables and μi is the mean value of 
variable xi. 

Then the multi-dimensional integration is simplified as:   

Noted that, the error of this approximation is mainly induced by the 
approximation of the interactions among variables [40]. 

The moments of gi can be obtained using the one-dimensional Gauss 
quadrature-based numerical integration (as discussed in Section 5.2.1). 
If we use the same number (M) of Gauss nodes and weights for the one- 
dimensional integration of all gi, the total number of simulations 
(evaluations of g(x)) will be at least (M −1)N + 1 and at most MN + 1, 
where M represents the number of Gauss nodes and weights, N repre
sents the number of random variables [86]. 

Subsequently, the statistical moments are given by: 

μ = E[g(x)] (32)  

σ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E[g2(x)] − μ2

√
(33)  

γ =
E[g3(x)] − 3E[g2(x)]μ + 2μ2

σ3 (34)  

κ =
E[g4(x)] − 4E[g3(x)]μ + 6E[g2(x)]μ2 − 3μ4

σ4 (35)  

E
[
gk(x)

]
≅ E

[(
∑N

i=1
g(μ1, …, μi−1, xi, μi+1, …, μN) − (N − 1)g(μ1, …, μN)

)k]

=
∑k

l=1

(
k

l

)

⋅E

[(
∑N

i=1
g(μ1, …, μi−1, xi, μi+1, …, μN)

)k]

⋅[ − (N − 1)g(μ1, …, μN)]
k−l

(31)   
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5.2.4. Estimation of the probability density function 
Once the first four order statistical moments are obtained, the 

probability density function (PDF) can be evaluated by empirical dis
tribution systems, such as the Pearson system [87]. The Pearson system 
approximates the PDF f(x) as solution of differential equation: 

df (x)

dx
= −

a + x
c0 + c1x + c2x2 f (x) (36) 

The Pearson system includes the normal, Gamma, and Beta distri
bution among the families, which depend on the Pearson parameters (a,

c0, c1, c2). The Pearson parameters can be expressed in terms of the first 
four central moments of the distribution, which expressed as: 

c1 = a = −
μ3

(
μ4 + 3μ2

2

)

10μ4μ2 − 18μ3
2 − 12μ2

3
(37)  

c0 = −
μ2

(
μ2μ4 − 3μ2

3

)

10μ4μ2 − 18μ3
2 − 12μ2

3
(38)  

c2 = −

(
2μ2μ4 − 3μ2

3 − 6μ3
2

)

10μ4μ2 − 18μ3
2 − 12μ2

3
(39)  

where μ1, μ2, μ3, μ4 correspond to the first four central moments of the 
system. Therefore, once we know the first four central moments, we can 
construct a PDF that is consistent with these moments. 

6. Engineering case studies 

In this section, two engineering cases are presented to demonstrate 
the effectiveness of the proposed methodology. We also test and 
compare the different technical options in Step 2 Parameterization and 

Step 3 UP to understand their relative merits. The MCS method is 
applied to provide reference solutions for validating the proposed 
methodology. 

6.1. Engineering case 1: Thermal conductivity analysis considering 
stochastic local material properties 

For the first case study, the input uncertainties are the spatially 
varying local properties generated by the shortest interior path distance- 
based Gaussian random field model. The goal is to quantify the uncer
tainty associated with the output, which is the heat flux through a to
pological structure. The case study tests two components in the proposed 
method: uncertainty parameterization and UP. 

6.1.1. Problem description, uncertainty representation, and 
parameterization 

A finite element simulation model is established to predict the heat 
flux (output) with consideration of the stochastic local material prop
erties (input uncertainty). The topological structural domain is dis
cretized into pixelated elements. Each pixel in the structure is assumed 
to be 1 mm in length, the dimensions of the topological structure are 
shown in Fig. 3(a). The shortest interior path distance between any of 
the two elements xi, xj in the pixelated feasible region is evaluated for 
constructing the covariance matrix. The local material properties 
(thermal conductivity) are generated using the shortest interior path 
distance-based Gaussian random field model, which is expressed as: 

C
(
xi, xj

)
= 802⋅exp

(

−
DSP

(
xi, xj

)

30

)

(40) 

By sampling the Gaussian random field model, we generate random 

Fig. 3. (a) Pixelated topological structural domain. (b) Samples of the stochastic local material properties (thermal conductivity of each element) distributed in the 
topological structure. (c) Heat transfer simulation predicting the heat flux distribution throughout the structure domain. 

Fig. 4. Evaluation of the output’s mean and the standard deviation by MCS.  

Z. Wang et al.                                                                                                                                                                                                                                   



Reliability Engineering and System Safety 233 (2023) 109122

8

realizations of the local material property distribution in the structural 
domain. 10,000 realizations are generated (Fig. 3(b)). Each realization is 
one sample of the spatial distribution of element-wise local properties. It 
is to be noted that sampling the Gaussian random field model is efficient 
as no finite element simulation is involved at this stage. 

This dataset is compressed by PPCA or βVAE to low-dimensional 
normally distributed, independent random variables. A convergence 
test is conducted to investigate the number of independent random 
variables, as shown in Appendix A.2. To achieve a balance between the 

accuracy and the dimensionality of the latent space, we select the 8- 
dimensional latent space for the following UP studies. 

6.1.2. Uncertainty propagation: from stochastic local properties to heat flux 
The commercial finite element software package, ABAQUS, was used 

for all case 1 heat transfer simulations. The 2D geometrical domain and 
set up used for the heat transfer simulations is shown in Fig. 3(c). A 
thermal flux is generated in the system by assigning two different tem
perature values (T1 & T2) to the upper and lower boundaries of the 
domain. All 10,000 samples are simulated to provide a large dataset for 
MCS. A convergence test is conducted to find the minimum number of 
samples required by the MCS method in order to obtain an accurate 
prediction of the mean and variance of the output (Fig. 4 and 
Appendix A.3). 

Two UP methods, non-intrusive PCE and UDR are compared. Table 1 
lists the number of data points (simulations) required by non-intrusive 
PCE with different polynomial orders and by UDR with different 

Table 1 
Number of data points used in non-intrusive PCE and UDR for 8-dimensional 
latent space.  

PCE Polynomial order 1 2 3 4 5  

Number of data points 18 90 330 990 2574 
UDR Number of Gaussian nodes 2 4 6 8 10 

Number of data points 17 33 49 64 81  

Table 2 
Results of UP and validation. The results of different combinations of parametrization and UP methods are compared with the reference values obtained by MC 
sampling.   

Mean (Difference) STD (Difference) Skewness 
(Difference) 

Kurtosis (Difference) # of sampling points 

Monte Carlo 815.8638 0.8509 −0.0856 2.9254 6908 
PCE PPCA 815.8718 (0.0010%) 0.8312 (2.3152%) −0.0926 

(8.1776%) 
3.0128 
(2.9876%) 

330 

βVAE 815.8726 (0.0011%) 0.8249 (3.0556%) −0.0875 
(2.2196%) 

2.8564 
(2.3586%) 

330 

UDR PPCA 815.8719 (0.0010%) 0.8293 (2.5385%) −0.0848 
(0.9345%) 

3.0465 
(4.1396%) 

49 

βVAE 815.8504 (0.0016%) 0.8465 (0.5171%) −0.1233 
(44.0420%) 

4.2122 
(43.9871%) 

49  

Fig. 5. PDF generated by different combinations of UP using Pearson system.  
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numbers of Gaussian points using 8-dimensional latent space. 
The results of non-intrusive PCE and UDR are compared in Table 2 

and Fig. 5. For non-intrusive PCE, the polynomial order is set as p = 3; 
for UDR method, we use M = 6 Gauss nodes and weights. Increasing the 
order or number of quadrature points beyond these chosen numbers 
does not noticeably improve the accuracy of predicting the statistical 
moments, while the computational cost will be increased significantly 
(Appendix A.5, Fig. A.3). Non-intrusive PCE-based UP methods and 
UDR-based UP methods both perform well in low-order moments esti
mations (means and STDs). However, when estimating the high-order 
moments, the combination of UDR and βVAE shows a large error 

(>40%) in skewness and kurtosis estimation, which is due to the effect of 
interactions between variables. Both PPCA and βVAE work well in non- 
intrusive PCE, while βVAE will have less error in skewness estimation. It 
shows that the non-intrusive PCE approximations are accurate within 
3.1% of the MC results when calculating the low-order moments (means 
and STDs) with 330 sampling points, UDR approximations are accurate 
within 2.6% of the MC results with 49 sampling points when calculating 
the low-order moments (means and STDs). It is suggested to use PPCA as 
the parameterization method and UDR as the UP method in this study 
since it balances the number of sampling points as well as the accuracy 
of statistical moments. 

6.2. Engineering case study 2: quantification of manufacturing-induced 
uncertainties based on a process-property-performance simulation 

The second engineering case is a comprehensive study that tests all 
aspects of the proposed methodology: uncertainty representation, un
certainty parameterization, and UP. The goal is to quantify the uncer
tainty for structural performance based on manufacturing-induced 
uncertainties input within a process-property-performance model. This 
case study is challenging because the data does not follow the normal 
distribution. 

6.2.1. Problem description, data collection and uncertainty representation 
It is well established in literature that pouring temperatures, pouring 

speeds, cooling rates, and thermal gradients will directly influence a 
casting structure and its associated mechanical properties during so
lidification [88]. Casting defects, such as macrosegregation, shrinkage 
porosities, and coarse-grained zone, can be predicted through numerical 
simulation [89–91]. The stochastic geometry and spatial distribution of 
the casting defects are important sources of material uncertainties. 
Furthermore, variations in the processing parameters will lead to vari
ations in thermal energy and deviation of initial parameters, which adds 
another source of uncertainty to the problem. Literature has revealed 
that the pouring temperature [92], solidification rate [93], thermal 

Fig. 6. (a) Geometry and dimensions of the topological truss structure. (b) 8 parts are cast per mold; Example shrinkage porosity predictions are shown. (c) Sampling 
locations for constructing kernel functions. (d) Examples of the spatially varying local shrinkage properties. (e) Examples of the spatially varying local mechanical 
properties (elastic moduli). (f) Simulation of the structure deflection under a point load. 

Table 3 
Process parameters, interface parameters and material properties used in the 
casting solidification simulation. The material properties marked with * is 
temperature-dependent, the temperature-property curves are shown in Appen
dix A.1, Fig. A.1.  

Process Parameters Mean Range 

Gravity (mg/s2) 9.80 ±0.15% 
Ambient Temperature ( ◦C) 20 ±0.3% 
Air Cooling HTC (W/m2K) 10 ±0.15% 
Initial Temperature of Casting ( ◦C) 720 ±0.3% 
Initial Temperature of Mold ( ◦C) 100 ±0.3% 
Interface Parameters Mean Range 
HTC while Casting is Liquid (W/m2K) 500 ±0.15% 
HTC while Casting is Solid (W/m2K) 300 ±0.15% 
Material Properties Mean Range 
Latent Heat of AlSi7Mg03 (kJ/kg) 431 ±0.3% 
Density of AlSi7Mg03 (kg/m3) * / 
Fraction Solid of AlSi7Mg03 * / 
Conductivity of AlSi7Mg03 (W/mK) * / 
Specific Heat of AlSi7Mg03 (kJ/kgK) * / 
Density of Sand (kg/m3) 1520 ±0.15% 
Specific Heat of Sand (kJ/kgK) * / 
Conductivity of Sand (W/mK) * / 
Liquidus Temperature of AlSi7Mg03 ( ◦C) 613 ±0.05% 
Solidus Temperature of AlSi7Mg03 ( ◦C) 548 ±0.05%  
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gradients [94], and other material properties and processing parameters 
will influence the mechanical properties of a cast part. 

The geometry of a topological truss structure is created in Solid
works, and the solidification process is simulated using the commercial 
finite element software package, ProCAST. The size of each truss 
structure is 300 mm × 200 mm × 10 mm (Fig. 6(a)). A 5 mm tetrahedron 
mesh and an adaptive time stepper is used for all case 2 simulations. As 
shown in Fig. 6(b), each mold contains 8 truss structure castings of the 
same design. Uncertainties for the parameters used in the solidification 
simulations (process parameters, interface parameters, and material 
properties) are represented by random parameters with uniform distri
butions (Table 3). AlSi7Mg03 ternary alloy is used as the casting ma
terial and silica sand is assigned to the mold [95]. The castings are 
poured at 720 ◦C into a preheated mold at 100 ◦C. The heat transfer 
coefficient (HTC) between the casting and the mold was assigned to be 
constant at 500 W/m2K while the casting is liquid and constant at 300 
W/m2K when the casting is solid. A linear deviation between the solid 
and liquid HTC values is used during solidification. Air cooling is 
assigned to the exterior surfaces of the mold by using an ambient tem
perature 20 ◦C and a HTC value of 10 W/m2K. In total 800 structure 
samples (100 molds) were simulated and analyzed. The 800 truss 
structure samples follow the same geometrical design, but have varying 
performances due to the manufacturing and material uncertainties. 

Shrinkage porosity values at each node of the casting are extracted 
and exported. The thickness of the structure is 1/20 of the width and 1/ 
30 of the length of the structure, so variations along the thickness 
dimension are neglected. We focus on analyzing the spatially varying 
material properties in the 2D topological domain. At each location in the 
2D domain, the average porosity value along the thickness direction is 
used. The casting is then re-meshed to a pixelated structure and each 
element is assigned the corresponding local mechanical properties. The 
element size of the pixelated structure is 3 mm. The sampling locations 
for observing the spatially varying local porosities are shown in Fig. 6(c). 
In order to achieve the best accuracy, we group all structural samples 
into four groups based on their location in the mold. The four groups 

correspond to locations (1) and (8), (2) and (7), (3) and (6), and (4) and 
(5) in the mold shown in Fig. 6(b). For each group, a Gaussian random 
field model with the kernel function of Eq. (4) is fitted to represent the 
spatial distribution of porosities. By sampling the Gaussian random field 
model, 10,000 random realizations of the local shrinkage porosity dis
tribution in the topological structural domain are generated (Fig. 6(d)). 

6.2.2. Porosity-elasticity relation and parameterization 
The elasticity of each element is obtained with the assumption that 

the porosity-elasticity relation follows this equation: 

E = E0e−B∅p (41)  

where E represents Young’s modulus of the porous pixelated element, E0 
represents Young’s modulus of nonporous AlSi7Mg03, B is an empirical 
constant, which is selected to be B = 2 for this example, and ∅p is the 
fractional pore volume of the body predicted by the solidification 
simulation. Note, that a real-world casting would not behave the same as 
the part defined because of the simplified porosity-elasticity relation
ship. With Eq. (41), the random field realizations of local porosities are 
converted to the spatial distribution of local elastic moduli (Fig. 6(e)). It 
is noted that the local elastic modulus inside the topological structural 
domain is not normally distributed (Appendix A.4, Fig. A.2). 

PPCA and βVAE are used to compress the dataset of 10,000 re
alizations of the local elastic moduli to a low-dimensional feature space 
that is formed by normally distributed, independent random variables. 
Because the local elastic modulus is not normally distributed, it’s diffi
cult for βVAE to obtain an efficient accuracy and get independent latent 
variables (Appendix A.2). Therefore, we propose to use the GM-βVAE, 
which would capture the complex statistical distribution with a multi
modal statistical distribution function. To achieve a balance between the 
dimensionality of compressed feature space (computational cost) and 
the accuracy (Appendix A.2), we use 6 latent variables in PPCA and 6 
latent variables in GM-βVAE for PCE, and use 12 latent variables in 
PPCA and 8 latent variables in GM-βVAE for UDR. The latent features, 
which follow the Gaussian mixture distribution, will be converted to the 

Fig. 7. Evaluation of the output’s mean and the standard deviation by MCS.  

Table 4 
Prediction of the mean and standard deviation of the output. Different combinations of parametrization methods and UP methods are compared.  

PCE  Mean (Difference) STD (Difference) Skewness 
(Difference) 

Kurtosis (Difference) # of sampling points   

84.2219 0.0136 1.0218 3.1626 652  
PPCA 84.2229 (0.0012%) 0.0115 (15.4412%) 0.4408 

(56.8604%) 
1.1204 
(64.5734%) 

168  

GM-βVAE 84.2222 (0.0004%) 0.0143 (5.1471%) 0.9529 
(6.6451%) 

3.4207 
(8.1610%) 

168 

UDR PPCA 84.2212 (0.0008%) 0.0101 
(25.7353%) 

1.0855 
(6.2341%) 

5.7453 
(81.6638%) 

73 

GM-βVAE 84.2347 (0.0151%) 0.0145 (6.6176%) 0.0660 
(93.5408%) 

6.4407 
(103.6521%) 

49  
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normal distribution using the transformation method introduced in 
Section 5.2.2 when performing UDR. 

6.2.3. Uncertainty propagation: from stochastic local elastic moduli to 
structure deflection 

The structural performance is measured by the deflection under a 
point load. The boundary condition of the problem is shown in Fig. 6(f). 
The deflection of the structure is obtained in ABAQUS and the 
displacement of the marked node is used as the output of the problem. 
The uncertainties associated with the local mechanical properties are 
propagated to predict the statistical moments of the structure deflection. 

The results of the 800 process-property-performance simulations 
provide the reference values of the deflection statistical moments. A 
convergence test (Fig. 7 and Appendix A.3) is conducted to find the 
minimum number of samples required by the MCS method in order to 
obtain an accurate prediction of the mean and variance of the output. 
We find that a minimum of 652 samples are needed for MCS 

convergence. 
The results of non-intrusive PCE and UDR are compared in Table 4. 

The PDFs estimated by Eq. (36) are shown and compared in Fig. 8. For 
the non-intrusive PCE, we set the order of polynomial as p = 3. For UDR, 
we use M = 6 Gauss nodes. Further increasing the polynomial order or 
the number of Gauss nodes will not improve the prediction accuracy 
noticeably, while the computational cost will be increased significantly 
(Appendix A.6). We estimate the mean value, standard deviation, 
skewness, and kurtosis. The PDFs are estimated using Eq. (36) and 
compared with the ground truth PDF, as shown in Fig. 8. The combi
nation of GM-βVAE and non-intrusive PCE provides the best prediction 
accuracy, 0.0004% for mean, 5.1471% for STD, 6.7430% for skewness, 
and 8.1610% for kurtosis. This combination requires 168 sampling 
points, which are 74% fewer than those required by MCS. The combi
nation of GM-βVAE and UDR has the lowest prediction accuracies 
among all the combinations. The accuracy of estimating the high-order 
moments using the combination of GM-βVAE and UDR is impaired by 

Fig. 8. The predicted PDF via the Pearson system by different combinations of the UP strategies.  

Table 5 
Comparison of PPCA, βVAE and GM-βVAE.   

PPCA βVAE GM-βVAE 

Computational cost ~0.84 min ~541 min ~562 min 
Linearity Linear Non-linear Non-linear 
Orthogonality Fully orthogonal Approximately orthogonal Approximately orthogonal 
Latent distribution Gaussian Gaussian Mixture of Gaussians 
Prediction accuracy Satisfactory accuracy when compressing data 

with normally distributed marginal distributions; 
low accuracy when compressing data with non- 
normally distributed marginal distributions 

Satisfactory accuracy when compressing data with 
normally distributed marginal distributions; low 
accuracy when compressing data with non- 
normally distributed marginal distributions 

Highest accuracy when compressing data with 
normally distributed marginal distributions; 
satisfied accuracy when compressing data with 
non-normally distributed marginal distributions 

Potential issues in 
implementation 

Low reconstruction accuracy if the dataset has 
large variations 

Hard to balance the data reconstruction accuracy 
and the orthogonality of latent variables 

May induce errors when transforming from the 
mixture of Gaussians to Gaussian distribution  
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the interaction effects among the latent variables. Therefore, the com
bination of GM-βVAE and UDR is not suitable for estimating the high- 
order moments. For the estimation of low-order moments, we recom
mend the combination of GM-βVAE and UDR, which balance the pre
diction accuracy and the computational cost, 0.0151% error for mean, 
6.6176% error for STD, and 49 sampling points. 

Compared with the first case study, we see larger prediction errors in 
this case. We identify the following factors that may contribute to the 
prediction error:  

1 Large variations are observed in the local porosity values. The 
extreme values and the associated irregular statistical distribution, 
increase the difficulty in parameterization. The variation is further 
increased by converting the porosity values to elasticities of each 
element in the structure using an exponential function, which is 
shown in Eq. (41).  

2 Another source of error lies in the process of transforming the 
mixture of Gaussian to a normal distribution. 

6.3. Comparison of the methods of uncertainty parameterization and 
uncertainty propagation 

In this section, the uncertainty parameterization methods (PPCA and 
VAE-based) and the uncertainty propagation methods (non-intrusive 
PCE and UDR) are compared. Suggestions on selecting appropriate 
methods are provided. 

6.3.1. Comparison of the parameterization methods 
PPCA and βVAE-based methods (βVAE or GM- βVAE) are compared 

in the two engineering case studies presented in Section 6.1 and Section 
6.2, as well as an additional engineering case in Appendix A.7. The 
comparison is conducted with respect to the computational cost, the 
linearity of the compression operation, orthogonality of the obtained 
parameters, ability of generating normally-distributed parameters, the 
overall prediction accuracies, and some potential issues in imple
mentation are listed in Table 5. 

The guidelines for selecting parameterization methods is summa
rized as follows: 

1 When the marginal distributions of the QoIs are normally distrib
uted, it is suggested to use PPCA since it balances the computational 
cost and the accuracy.  

2 When the local values of QoIs (e.g. local properties in a structure) 
have large variations, it is suggested to use GM-βVAE, which can 
capture the multi-mode characteristics, in order to achieve a better 
reconstruction accuracy. 

3 When calculating the high-order moments using UDR-based UP ap
proaches, it is suggested to use PPCA since it can ensure the inde
pendency among the parameters. 

6.3.2. Comparison of the uncertainty propagation methods 
The non-intrusive PCE and UDR are implemented and compared in 

the aforementioned case studies. It might not be appropriate or complete 
to judge or rank methods with only a few examples. However, some 
characteristics, advantages, and disadvantages can be observed from 
those case studies:  

1 Accuracy. Non-intrusive PCE and UDR show no great difference 
regarding the accuracy when calculating the low-order moments 
(mean and variance). However, the UDR is more sensitive to the 
interaction effect among the input parameters, especially when 
calculating the high-order moments (skewness and kurtosis). Using 
the UDR method will lead to large errors in calculating high-order 

moments when a relatively strong interactive effect exists among 
input parameters.  

2 Efficiency. UDR is more efficient compared to non-intrusive PCE. The 
computational cost of the quadrature-based non-intrusive PCE de
pends highly on the order of polynomial expansion (refer to Eq. 
(25)), and it increases dramatically with the number of input pa
rameters. By contrast, the computational cost of UDR increases lin
early with the number of input parameters.  

3 Other observations. UDR has advantages in estimating low-order 
moments. When applying UDR to estimate the high-order mo
ments, it could be problematic as UDR is sensitive to the interactive 
effects among random variables. Non-intrusive PCE is more accurate 
when used to estimate the high-order moments or to predict the PDF. 

Our recommendation of selecting UP methods are summarized as 
follows:  

1 To estimate the low-order statistical moments, it is suggested to use 
UDR-based UP methods for a lower computational cost.  

2 To estimate the high-order statistical moments or the complete PDF, 
it is suggested to use non-intrusive PCE-based methods for a higher 
accuracy.  

3 In the proposed framework, the combination of UDR and βVAE (or 
GM-βVAE) is not recommended for calculating high-order moments. 
The deep learning-based parameterization methods cannot fully 
disentangle the interactions among latent variables (though the 
correlation values are low), thus it will result in huge errors in high- 
order moment estimation. 

7. Conclusion 

In this paper, a new methodology is presented for quantifying and 
propagating aleatoric uncertainties distributed in topology structure 
domains. Gaussian random field model based on the shortest interior 
path distance is proposed to capture the topological characteristics of 
the spatial domain. PPCA and variants of VAE are employed to convert 
the high dimensional random field uncertainties to independent, nor
mally distributed random parameters. Non-intrusive PCE and UDR are 
employed to propagate the input uncertainties to obtain the statistical 
moments of the output. The proposed method is demonstrated on two 
engineering case studies, where the source of uncertainties is the 
spatially varying, stochastic local material properties distributed in the 
topological structural domain. Our major conclusions are summarized as 
follows: 

• First, the proposed method is effective in quantifying and propa
gating the uncertainties distributed in complex topological struc
tures. Compared with the MCS method, our method achieves a 
reasonable level of accuracy while significantly reducing the number 
of samples required for evaluating the statistical moments of the 
output.  

• Second, we suggest using βVAE (GM-βVAE) as the parameterization 
method and UDR as the UP method since it balances the number of 
sampling points as well as the accuracy of statistical moments. 

This work marks our first step toward quantifying uncertainties in 
complex mechanical systems. We also identify opportunities to improve 
the proposed method: 

• First, the uncertainty representation method in our proposed meth
odology is not powerful enough to capture non-Gaussian data.  

• Second, the proposed method only considers the characteristics of 
the spatial domain. In future works, we will improve the method in 
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order to capture both spatial (e.g. structure design) and temporal (e. 
g. toolpath) information of the input aleatoric uncertainties.  

• Third, the proposed methodology can be integrated with parametric 
or topology structure design frameworks to enable the robustness 
and/or reliability-based design of topological structures (e.g. meta
material unit cell) under manufacturing-induced uncertainties. 

APPENDIX 

A.1 Material properties used in solidification simulation  

A.2 Selection of the dimension of latent variables 

PPCA and βVAE are used to compress the random field realizations of 
the local material properties to a low-dimensional feature space that is 
formed by normally distributed, independent random variables. The 
low-dimensional latent variables can be mapped back to the original 
high-dimensional structural space to reconstruct the spatial distribution 
of the local material properties. The reconstruction accuracy will affect 
the accuracy when performing UP. The reconstruction accuracy is 
measured by the R squared value of input data and the corresponding 
reconstruction. 

Engineering case 1: For both PPCA and βVAE parameterization 
methods, we test the reconstruction accuracies with the number of latent 

variables of 6, 8, 10, and 12, respectively (Table A.1). When the number 
of latent variables equals or is larger than 8, the R squared values of both 
two methods are larger than 0.9. We select the 8-dimensional latent 
space for the following UP studies. 

Engineering case 2: The reconstruction accuracies of PPCA, βVAE, 
and GM-βVAE are shown in Table A.2. While PPCA performs slightly 
better than βVAE, they both have low reconstruction qualities. GM- 
βVAE has a satisfactory reconstruction accuracy. 

A.3 Criterion of convergence of MCS 

The convergence criterion of MCS [96] in our engineering cases is 
defined as an approximate 99% probability that the mean value of n 
MCS samples μMCSn is within 0.0001 unit value of the true mean μMCS. 

The mean value of n MCS samples is computed by the unbiased 
estimator μMCS: 

μMCS=1/nΣi = 1 n μMCSi (42) and the unbiased estimator of σ is 
written as: 

Sn =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n − 1
∑n

i=1
(μMCSi − μMCS)

√

(43) 

The confidence interval (CI) is obtained as: 

CI = μMCS ± z∗ σ
̅̅̅
n

√ (44) 

Table A.1 
Reconstruction accuracies measured by the R squared values of PPCA and βVAE with different number of latent variables in engineering case 1.  

# of latent variables 6 8 10 12 

PPCA 0.8313 0.9252 0.9787 0.9999 
βVAE 0.7825 0.9064 0.9212 0.9290  

Table A.2 
Reconstruction accuracies measured by the R squared values of PPCA, βVAE, and GM-βVAE with different number of latent variables in engineering case 2.  

# of latent variables 6 8 10 12 

PPCA 0.3677 0.3800 0.3923 0.4039 
βVAE −0.0304 0.0217 0.0578 0.1022 
GM-βVAE 0.8072 0.8271 0.8755 0.8932  

Fig. A.1. Temperature-dependent material properties used for AlSi7Mg03 and silica sand in the solidification simulations.  
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where a represents the confidence level value, for 99% CI, z∗ equals 
2.576. σ represents the standard deviation of the samples. n represents 
the number of MCS cases. 

Using the central limit theorem, the probability of the sample lies in 
the 99% CI is written as: 

P

⎛

⎜
⎝

⃒
⃒
⃒
⃒
⃒
⃒
⃒

μMCSn − μMCS
σ̅̅
n

√

⃒
⃒
⃒
⃒
⃒
⃒
⃒

≤ 2.576

⎞

⎟
⎠ = 99% (45) 

It is to be noted that, Eq. (45) represents that there is a 99% proba
bility that the sample mean μMCSn is within 2.576 σ̅ ̅

n
√ units of the true 

mean μtrue. 
Combining Eqs. (44 and 45), we get: 

2.576

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1(μMCSi − μMCS)

n(n − 1)
< 0.0001

√

(46) 

When the number of MCS samples n satisfies Eq. (46), we recognize 
the MCS converges at n samples. 

A.4 Marginal distribution of local properties  

Fig. A.2. (a) Locations for observing the marginal distributions. (b) Marginal distribution at sampling location 1. (c) Marginal distribution at sampling location 2. (d) 
Marginal distribution at sampling location 3. (e) Marginal distribution at sampling location 4. 
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A.5 convergence test for selecting the polynomial order and the number of 
gauss nodes and weights in engineering case 1  

A.6 Convergence test for selecting the polynomial order and the number of 
Gauss nodes and weights in engineering case 2  

A.7 Engineering case study for selecting dimension reduction methods 

The purpose of this supplementary case study is to compare the 
dimension reduction methods for parameterizing the random field un
certainties in a topological spatial domain. A simulation model is 
established to predict the structural distortions in lattice structures 
printed in batch by powder bed fusion (PBF). Multiple structures of the 
same design are printed on one building plate. The material is Ti6Al4V. 
The simulation model is implemented in software ABAQUS, which 
simulates the process of powder fusion and solidification, and result in 
the residual stress and distortion in the final printed parts. The un
certainties of the printing process come from two resources: (1) the 

uncertainties in material properties and process parameters; (2) the 
uncertainties in local thermal conditions. Detailed information of the 
simulation parameters can be found in our previous work [17]. 

As shown in Fig. A.5(a), six lattice structures are printed together on 
one building plate, therefore, one simulation yields six samples. In total, 
we generate 54 samples for training the uncertainty representation 
models. We group all structural samples into three groups based on their 
location on the building plate: the outer layers, the intermediate layers, 
and the inner layers (Fig. A.5(a)). The Y-distortions of the structure are 
selected as the quantity of interest. The dimensions of the lattice struc
tures are 102 mm × 51 mm × 2 mm (Fig. A.5(b)). The Y-distortion 
values at each element of the cellular structure are extracted from the 
simulation results. At each element location in the 2D topological 
domain, the average Y-distortion value along the thickness direction is 

Fig. A.3. Case 1: Relative errors of (a) the mean and (b) the standard deviation (c) the skewness (d) the kurtosis estimations using different order of polynomials. 
Relative errors of (e) the mean and (f) the standard deviation (g) the skewness (f) the kurtosis estimations using different number of Gauss nodes and weights. 

Fig. A.4. Case 2: Relative errors of (a) the mean and (b) the standard deviation (c) the skewness (d) the kurtosis estimations using different order of polynomials. 
Relative errors of (e) the mean and (f) the standard deviation (g) the skewness (f) the kurtosis estimations using different number of Gauss nodes and weights. 
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used. 
Two comparative studies are conducted using different subsets of the 

data. In the first case, we use the Y-distortion data for all the samples 
(multimodal distribution) to test the parameterization methods. In the 
second case, we only take the samples in the outer layers (unimodal 
distribution). 

Parameterization based on multimodal data (all samples) 
For each group (outer layers, intermediate layers, and inner layers), a 

Gaussian random field model with the kernel function of Eq. (3) is fitted 

to describe the spatial distribution of Y-distortions within the 2D lattice 
domain. By sampling the three Gaussian random fields each with 4000 
random realizations, a data set of 12,000 random realizations, which is 
sufficiently large to be statistically invariant, are obtained for the 
following step of parameterization. 

Three parameterization methods, PPCA, βVAE, and GM-βVAE, are 
implemented and compared. PPCA and βVAE compress the random field 
data to a low-dimensional feature space formed by normally distributed, 
independent random variables. GM-βVAE compresses the random field 

Fig. A.5. (a) Arrangement of six cellular structures on the building plate. (b) Dimensions of the 2D topological structural domain. (c) Y-axis distortions in the 
lattice structure. 

Table A.3 
Reconstruction accuracies measured by the R squared values. PPCA, βVAE, and GM-βVAE with different number of latent variables are compared in this table.  

# of latent variables 2 3 4 5 

PPCA 0.9669 0.9835 0.9901 0.9941 
βVAE 0.0032 0.0822 0.1244 0.1596 
GM-βVAE 0.9440 0.9526 0.9621 0.9684  

Fig. A.6. Latent variable distributions along latent axis #1 and #2 using (a) PPCA, (b) βVAE, (c) GM-βVAE.  

Table A.4 
Reconstruction accuracies measured by the R squared values of PPCA, βVAE, and GM-βVAE with different number of latent variables.  

# of latent variables 2 4 6 8 

PPCA 0.5837 0.7906 0.8918 0.9407 
βVAE 0.5379 0.7424 0.8612 0.9079 
GM-βVAE 0.9852 0.9911 0.9951 0.9987  
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data to a low-dimensional feature space formed by variables of the 
multi-variate Gaussian distribution. The performances of the three 
parameterization methods are evaluated based on the information loss, 
which can be quantified by the reconstruction accuracies, as shown in 
Table A.3. The PPCA has the highest reconstruction accuracy. However, 
the distribution of the latent vectors compressed by PPCA is not nor
mally distributed, which indicate the failure in PPCA training (Fig. A.6). 
Therefore, PPCA is not suitable for this case study. βVAE has normally 
distributed latent variables, while the reconstruction accuracy is not 
acceptable. GM-βVAE has a satisfied reconstruction accuracy. 

Parameterization based on unimodal data (outer layer samples 
only) 

In total, we have 18 outer layer samples. A Gaussian random field 
model with the kernel function of Eq. (3) is fitted on the 18 samples to 
represent the spatial distribution of Y-distortion values in the outer layer 
lattice samples. By sampling the Gaussian random field model, we 
obtain a sample set with 12,000 random realizations, which is suffi
ciently large to be statistically invariant. 

The random field realization data are compressed to the low 
dimensional feature space using PPCA, βVAE, and GM-βVAE, respec
tively. The reconstruction accuracies are shown in Table A.4. PPCA has 
relatively better accuracy compared with βVAE. Among all three 
methods, GM-βVAE works the best. 
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