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Quantification and propagation of aleatoric uncertainties distributed in complex topological structures remain a
challenge. Existing uncertainty quantification and propagation approaches can only handle parametric un-
certainties or high dimensional random quantities distributed in a simply connected spatial domain. There lacks
a systematic method that captures the topological characteristics of the structural domain in uncertainty analysis.
Therefore, this paper presents a new methodology that quantifies and propagates aleatoric uncertainties, such as
the spatially varying local material properties and defects, distributed in a topological spatial domain. We
propose a new random field-based uncertainty representation approach that captures the topological charac-
teristics using the shortest interior path distance. Parameterization methods like PPCA and p-Variational
Autoencoder (SVAE) are employed to convert the random field representation of uncertainty to a small set of
independent random variables. Then non-intrusive uncertainties propagation methods such as polynomial chaos
expansion and univariate dimension reduction are employed to propagate the parametric uncertainties to the
output of the problem. The effectiveness of the proposed methodology is demonstrated by engineering case
studies. The accuracy and computational efficiency of the proposed method is confirmed by comparing with the

reference values of Monte Carlo simulations with a sufficiently large number of samples.

1. Introduction

Engineering structures with complex topological characteristics have
excellent performances that cannot be achieved by traditional simple
structure designs. The reliability and robustness of complex structural
systems are influenced by uncertainties from various sources, such as the
boundary conditions [1-3], assembly tolerance [4], dimensions and
geometries [5,6], time dependencies [7-9], and the distribution of local
material properties [6,10,11]. To represent those aleatoric uncertainties
quantitatively, researchers proposed statistical distribution functions for
parametric uncertainties [12-15] or random field models for high
dimensional uncertainties distributed in a simply connected space [10].
However, quantifying and propagating the uncertainties in topological
structure have remained a challenge. In literature, simplified yet inac-
curate approaches have been proposed to represent aleatoric un-
certainties distributed in a topological spatial domain. For example, one
widely used approach is to first create a random field model of the un-
certain quantity of interest (Qol) without considering the topological
characteristics of the structure and then mask the random field
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realizations with the structure image (“dig holes” in the random re-
alizations) [2,10]. Another approach is to divide the topological spatial
domain into multiple simply connected sub-domains and create an in-
dependent random field model of the uncertain Qol for each sub-domain
[16]. The main issue with this approach is the lack of continuity at the
interface between sub-domains. In our previous work [17], we proposed
a network distance-based method to represent the spatially correlated
uncertainties in the lattice structure. This method captures the topo-
logical characteristics of the lattice structure while neglecting the vari-
ations in QoI along the diameter direction of each lattice bar.

In addition to capturing topological characteristics, another chal-
lenge is to reduce the dimensionality of the input uncertainties in order
to improve the efficiency of uncertainty quantification. Lots of dimen-
sion reduction methods are proposed to parameterize the high-
dimensional variables, like principal component analysis (PCA) and its
variations [18-20], non-negative matrix factorization (NMF) [21],
linear discriminate analysis (LDA) [22], and generalized discriminant
analysis (GDA) [23]. With the advancements in neural networks,
autoencoder (AE) draws increasing attention for its capability of
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Fig. 1. (a) Problem Statement. (b) Overview of the proposed methodology for quantifying and propagating aleatoric uncertainties in a topological structural domain.

compressing data into a low-dimensional latent space [24]. Recently,
various AE-based methods have been successfully implemented to
reduce the dimensionality of high-dimensional data. Yant et al. [25]
proposed a sparse AE-based deep neural network to perform fault
detection in high-dimensionality multi-component systems. Health in-
dicator built in the latent space has been proposed for condition moni-
toring of engineering systems [26]. Liu et al. [27] proposed a variational
Autoencoder (VAE)-based dimensionality reduction method for the
quantification of uncertainties in geophysical inverse problems.
Uncertainty propagation (UP) is a method for quantifying uncer-
tainty in the system output based on random or noisy inputs. UP is of
great importance for the reliability-based design and robust design.
Major efforts have been made to develop UP methods for reliability and
safety applications [28-30], including simulation-based methods
[29-33], function expansion-based methods [29,31,34,35], most prob-
able point-based methods [36,37], and numerical integration-based
methods [38-40]. The simulation-based methods include Monte Carlo
simulation (MCS), importance sampling, and adaptive sampling. MCS
method, which is computationally expensive, is widely used to provide a
reference value to validate other methods. Among function
expansion-based methods, polynomial chaos expansion (PCE) is regar-
ded as one of the most used methods due to its mathematically rigorous
concept, strong theoretical basis, and ability to represent stochastic
quantities [35]. PCE represents a random variable by a series of poly-
nomial chaos basis, which allows the statistical moments of the system
output to be estimated. Proposed by Ghanem and Spanos [35], the
Hermite PCE has been applied to a variety of engineering fields [41-45].
In the most probable point-based method, first-order reliability method
[46] and second-order reliability method [47] are the two most popular
approaches. The drawback of first-order reliability method and
second-order reliability method is that the information regarding vari-
able distribution is completely ignored, so they work well only when the

limit state is linear or quadratic and the variables are normally distrib-
uted. The numerical integration-based methods derive the probability
distribution function (PDF) of performance function, and the probability
is evaluated by a simple one-dimensional integration over PDF. Uni-
variate dimension reduction (UDR) method is a numerical
integration-based UP method, which approximates a multidimensional
moment integral through multiple reduced-dimensional integrals based
on additive decomposition of the performance function [40]. Due to its
high efficiency, UDR has been widely used in reliability-based design
and robust design [48-51]. The aforementioned UP methods propagate
parametric uncertainties to the output.

The goal of this work is to establish a new methodology that quan-
tifies and propagates the uncertainties distributed in a topological
structural domain. We propose a new covariance function of Gaussian
random field, which captures the topological characteristics using the
shortest interior path distance between two sampling points in a struc-
tural domain. Dimension reduction methods, PPCA and SVAE, are
employed to convert the high-dimensional random field uncertainties
into independent, normally distributed random parameters. Then non-
intrusive PCE and UDR are employed to propagate the parameterized
uncertainties to the output. The effectiveness of the proposed method is
validated by two case studies.

The main contributions of this work are summarized as follows:

(1) A new shortest interior path distance-based uncertainty repre-
sentation method is proposed. Compared with the traditional
Euclidean distance-based method, the proposed method can
better represent the spatially correlated uncertainties distributed
in a topological spatial domain.

(2) A comparative study is presented to provide new insights on the
methods that reduce the high-dimensional random field repre-
sentation of uncertainties in a topological spatial domain to a
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Fig. 2. Finding the shortest interior path in a topological feasible region.

low-dimensional representation of a few independent random
variables.

(3) To the authors’ best knowledge, it is the first UP methodology
that propagates aleatoric uncertainties distributed in a topologi-
cal spatial domain to quantify the uncertainties of the system
responses.

The remainder of this paper is organized as follows. In Section 2, an
overview of the proposed uncertainty quantification and propagation
methodology is introduced. Details of each component of the framework
are introduced in Section 3, 4, and 5. Section 3 introduces the statistical
representation of high-dimensional uncertainties in a topological
structural domain. In Section 4, we present two ways for parameterizing
the high-dimensional uncertainties, PPCA and SVAE, and present a
comparative study to understand their relative merits. In Section 5, we
introduce the UP process using non-intrusive PCE and UDR. Section 6
includes two engineering case studies and a comparison of different
methods. The conclusion of this work is provided in Section 7.

2. Overview of the proposed methodology

The overarching goal is to predict the statistical output for an engi-
neering problem based on the statistical distribution of the input alea-
toric uncertainties (Fig. 1(a)). Aleatoric uncertainty, also known as
statistical uncertainty, is representative of unknowns that differ each
time we run the same experiment/simulation. Examples of aleatoric
uncertainties include manufacturing errors, inherent stochasticity in
material microstructure and properties, uncertain working conditions,
etc. Here we present a new methodology (Fig. 1(b)) that (i) provides a
statistical representation of the high-dimensional aleatoric uncertainties
distributed in a topological spatial domain, (ii) reduces the random field
representation to independent random parameters, and (iii) predicts the
statistics of the output. The steps for implementing the proposed
methodology include a:

1 Gaussian random field uncertainty representation with the shortest
interior path distance-based covariance function. When modeling
the covariance between two sampling points, we propose to formu-
late the covariance as a function of the shortest interior path distance
within the topological structural domain. In this way, the topological
characteristics can be embodied in the random field model.

2 Parameterization of the random field uncertainties. Dimension
reduction methods, PPCA and fVAE, are employed to convert the
random field uncertainties to independent random parameters x =
[x1,x2,...,xx], where k is the dimension of the parametric represen-
tation. Each parameter x; is described by its PDF. A sufficiently large
set of realizations (statistically representative) are generated using
the Gaussian random field model established in the previous step and
the parameterization is conducted on the realizations.
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3 UP. Non-intrusive PCE and UDR are conducted to propagate the
input uncertainties, which are in the form of independent random
parameters, to the output of the problem. Compared to the MSC-
based approaches [52,53], the proposed approach has the advan-
tage of efficiency as it requires a smaller set of sample points, which
are generated in the low-dimensional parametric space.

3. Statistical representation of Aleatoric uncertainties

A proper mathematical representation of the input aleatoric uncer-
tainty is a stepping stone for the following uncertainty propagation
studies. In this section, we firstly introduce the Gaussian random field
for representing high-dimensional uncertainties, and then present a new
formulation of the Gaussian random field covariance function for to-
pological structural domains.

3.1. Gaussian random field for uncertainty representation

Gaussian-type random field is one of the most used uncertainty
representation methods due to its simplicity, tractability, and flexibility.
A Gaussian random field Rg(x) can be completely characterized by its
mean E(x) and covariance function C(x), where x is an N-dimensional
field variable:

Rg(x) ~ MVN(E(x), C(x)) @

where “MVN” represents multivariate normal distribution. The covari-
ance function C(x) gives the covariance evaluated at any two observa-
tion locations in the input space. In literature, exponential function-
based kernel functions are widely used as the covariance function [10,
54-56]. Those functions capture the decaying correlation between two
observation locations as the distance increases. In our previous work
[57], oscillating function-based formulations are proposed to capture
the negative correlations and fluctuating correlations along with dis-
tances. Several examples of covariance kernel functions are listed below:
A traditional exponential function-based kernel function:

D(x;, x;
C(x,-7 x,-) = 62~exp< — w) 2)
Oscillating function-based kernel functions:

C(xi, xj) = 62~exp( _ Dl x,-)) -cos (D(xg x,-)) 3

6] 2

1

Clon ) = 02.(1 +M> <o (M) @

0, 0,

where ¢ is a calibration parameter that controls the variance; D(x;, x;)
represents the distance between the two sampling locations; 0, 6;and 6,
are kernel function parameters. Traditionally, the distance is measured
by the Euclidean distance D(x;,x;) = || x;,x; |-

The values of the unknown parameters in the covariance function are
obtained by fitting to the random field realizations (observed data).
First, the distance and covariance between any of the two sampling lo-
cations are evaluated. Then the covariance-distance dataset is sorted
based on the distance value. For each distance value, the average
covariance value is calculated. The distance-average covariance rela-
tionship is then used to fit the kernel function. Different types of kernel
functions need to be compared to obtain the best fitting accuracy. It is
also suggested to set a cutoff distance in order to capture the short-
distance covariance better. The detailed process of fitting the covari-
ance kernel function can be found in our previous work [57].

1.2. Shortest interior path distance between two sampling locations

Instead of constructing the covariance function based on the
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Euclidean distance, we propose to establish the spatial relationship be-
tween two sampling locations based on the shortest interior path dis-
tance within the structural domain. As shown in Fig. 2, the topological
structural domain is represented by the feasible region X in the 2D or 3D
spatial domain. The shortest interior path distance Dsp(x;, x;) between
any two sampling locations x; and x; within the feasible region (within
the structure) is evaluated for constructing the covariance function [58].
Taking the oscillating function-based covariance formulation shown in
Eq. (5) as an example, the covariance between two sampling locations is
calculated as:

Dgp (xi, ;)\~ Dsp (xi, x;
C(xi, x) =™ 1 +7§p(x %) -cos| =2b 2 (x, 3) 5)
0, 0,
A three-step algorithm is employed to solve for the shortest interior
path distance within a topological feasible region.

e First, the travel time matrix H is computed using discretized diffu-
sion analysis [59].

Second, the path is searched along the gradient of travel time matrix
g%. The algorithm rapidly propagates through all possible pathways

to find a representative shortest route, which is recorded as a set of
points in the feasible region.

Third, the path is smoothed by optimization, which perturbs the
locations of the points while satisfying the requirement of feasibility.
A feasible route is one that is fully contained in the feasible region.

4. Parameterization of the high dimensionality input
uncertainty

In this section, we introduce two dimension reduction methods that
are employed to parameterize the high-dimensional random field un-
certainties into low-dimensional parametric uncertainties. In addition to
low dimensionality, orthogonality (statistical independence) is also
desired, as it improves the data compression efficiency and facilitates
identifying the key features from the data. Parameterization of random
field uncertainties brings benefit to UP (Section 5), as the state-of-the-art
methods work best on independent random variables as the input. Two
methods, beta-variational autoencoder and probabilistic principal
component analysis, are introduced and compared in this section.

4.1. Probabilistic principal component analysis (PPCA)

Probabilistic principal components analysis (PPCA) is a dimension
reduction technique derived from principal component analysis (PCA)
[60]. As a probabilistic version of PCA, PPCA is based on a Gaussian
latent variable model that parameterizes the high dimensional input
data to a low dimensional latent space [19]. PPCA overcomes some
disadvantages of PCA, such as difficulty in assessing the fit quality [61],
inability to reveal groups of subjects in the data [62,63], and inability to
deal with noisy data and missing data [64].

Let x be a set of p-dimensional input variables (which is the input
structure in our case) and z be the g-dimensional linear projection in the
latent space that best represents the data in the least-squares sense.
Noted that, each latent dimension of z is fully independent of others. For
the traditional PCA, z; can be seen as the principal score of subject i.
PPCA can be written as:

x=Wz+p+eg (6)

where W is p x q linear transformation matrix; p is the mean vector,
where p = % Egjlx; ¢; is multivariate Gaussian for subject i. The de-
pendency between z and x is linear. It is assumed that p(g;) = MVN,(0,
6%I), where I denotes the identity matrix. The latent variable z is
assumed to be isotropic Gaussian, for example, p(z;) = MVN,(0,I). The
conditional distribution of the input data given the latent variables can
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be written as:

p(x;|z;) = MVN,(Wz; +p,6°1) %)
The distribution of p(x;) is:

p(x;) = MVN, (0, WW" +6°I) ®)

One can obtain the maximume-likelihood estimation of the parame-
ters p, W and o2 based on dataset x. Any observed data point x; can be
represented in the latent space by its g-dimensional latent variable z.
Then the distribution of the latent variable on observed data can be
expressed as:

plafx) = MVN, (MW (x; — ), "M ") ©

where M is defined as M = WWT + 62I. It is to be noted that, the output
of PPCA is similar to that obtained by PCA [19], but PPCA offers an
additional advantage of uncertainty assessment.

4.2. Beta-variational autoencoder (BVAE) and it with Gaussian mixture
prior

4.2.1. Beta-variational autoencoder (fVAE)

A non-linear extension of the PPCA is the variational autoencoder
(VAE) [65]. VAE is a generative machine learning model that aims at
extracting the knowledge from the original space to construct a low
dimensional latent space and also provides the capability of recon-
structing the data in the original space [66].

PVAE, a variant of VAE, disentangles the latent features [67].
Disentanglement means that one latent feature is only sensitive to
changes in one generative factor, while being relatively invariant to
changes in other factors [68]. fVAE learns the mapping relationship
between the input high dimensional data x (e.g. structure image) and the
corresponding latent space z.

BVAE consists of an encoder (recognition model) and a decoder
(generative model). The encoder performs nonlinear dimensionality
reduction and compresses the input data from the original high
dimensional space into a low dimensional latent space. The encoder can
be expressed as Qy(z|x), which is the approximate posterior represented
by a normal distribution. ¢ is the encoder model parameters. The
decoder is used to reconstruct the high dimensional data by mapping the
latent feature vector back to the original space. The generative model is
expressed as:

Py(x,z) = Py(x[z)Po(2) (10)

where 0 is the vector of parameters of the decoder, Py(z) is the prior
distribution of z, and Py(x|z) is the conditional distribution of x on z.
The loss of SVAE is written as:

Lyvar = Eg,m [logPo(x[)] — pDxi(Qy(zlx) || Po(z)) 11

This loss function consists of two parts, the reconstruction loss and
the Kullback-Leibler (KL) divergence loss. The hyperparameter $ in the
KL divergence loss controls the independency of the latent feature var-
iables. When $ = 1, the JVAE is the same as VAE. When > 1, it applies
a larger KL divergence loss, and the model is pushed to a more inde-
pendent latent representation [67]. By tuning the coefficient 8, we could
obtain an approximately orthogonal latent feature representation of the
data. In our engineering case studies (Section 6), the fVAE models
generate latent features that are approximately orthogonal to each
other, i.e. the correlation coefficient between two latent features is in the
range of [—0.1, 0.1] (the angles between two feature axes is in the range
of [85°, 95°]).

4.2.2. Gaussian mixture beta variational autoencoder (GM-VAE)
Different from the typical VAE and SVAE, the prior over each latent
variable of GM-SVAE is modeled as a mixture of Gaussian, which
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captures a complex multimodal statistical distribution. Each mode of the
latent feature corresponds to a specific class of data. Each class obeys a
Gaussian distribution. The distance between two classes of data is
measured by the Mahalanobis distance [69].

GM-pBVAE learns the relationship between the input image x and the
corresponding latent space z. Moreover, a categorical variable y is
introduced to identify which Gaussian distribution in the multimodal
distribution of a latent feature each data point belongs to. The encoder
(recognition model) of the GM-SVAE is expressed as:

04(y,zlx) = Oy (v1x)Qy (2]x,y) 12)

where ¢ is the vector of the recognition model parameters and Q,(y, z|x)
is the approximate posterior that is represented by a mixture of Gaussian
distributions. Each latent feature consists of k distinct Gaussian distri-
butions, i.e., Q¢(z\x,y,-), wherei €0, 1, 2, ...k — 1. Thus, the approxi-
mate posterior becomes a Gaussian mixture. The means and variances of
the Gaussian distributions are learned by the inference model.

The decoder of GM-fVAE is expressed as:

Py(x,y,2) = Po(x[2) Py (y]2) P() 13)

where 0 is the network parameters of the generative model, Py(x|z) is the
approximated distribution of x conditioned on z, Py(y|z) is the approxi-
mated distribution of y conditioned on z, and P(y) is the initial prior on y,
which is selected to be a uniform multinomial distribution.

In the GM-SVAE model, we are pursuing both an orthogonal latent
representation of data and the capability to capture multi-mode char-
acteristics of the original input data. The evidence lower bound can be
expressed as:

Py(zly)

m + long(x|z)

Loy—pvar = Eg, ) | logP(y) — l0gQy(ylx) + plog
a4

where Eq,(yx) )[10gQy (y]x)] is the conditional entropy that reflects how

zly)
Q Z\Xy
logPy(x|z) is the reconstruction loss, respectively.

informative x is on y. log is the KL divergence loss term and

5. Non-Intrusive uncertainty propagation

With the parameterized uncertainties, the last step of the proposed
methodology is to propagate the uncertainty to the output of the prob-
lem and predict the associated statistical moments. Two UP methods,
non-intrusive PCE and UDR, are reviewed and discussed in this section.
A comparative study of these two methods will be presented in Section
6.

5.1. Non-intrusive PCE

PCE, originally proposed by Norbert Wiener [70], is a
well-established functional expansion-based method based on the
spectral representation of randomness (uncertainties). Hermite poly-
nomial, Legendre polynomial, and Laguerre polynomial are optimal
basis functions for Gaussian, uniform and, exponential distribution
functions for the input uncertainties, respectively [70,71]. The details of
polynomial chaos expansions can be found in literature [72-74].

The spectral representation of uncertainty decomposes a random
variable (or function) into deterministic and stochastic components. For
example, a metamodel for the stochastic response of a model a*(x) is
constructed on N independent random variables that construct a random
vector: x =[x, ...... xy]. Then a*(x) is expanded into a basis of orthog-
onal polynomials to give a spectral representation of uncertainty:

@ (x) = a¥x) 15)
i=0
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where ¥;(x) is the random basis function corresponding to the i mode.
We assume a* to be a function of deterministic independent variable
vector ¢ and the N-dimensional random variable vector x that follows a
specific probability distribution. The discrete sum can be expressed as a
function of polynomial chaos order p and the number of random vari-

ables N, with P+ 1 = %T",

the multivariate orthogonal polynomial is expressed as:

There are P linear combination terms and

N
=[Tv'% ), i1, P) (16)
k=1 !

where the rows of the index matrix I contain the multi-index and the y/*
represents the input random variable.

To build a non-intrusive polynomial chaos model, approximations of
the coefficients of polynomial will be obtained without making changes
to the deterministic part [75]. Sampling based, collocation based, and
quadrature methods are commonly used to obtain the polynomial co-
efficients in a non-intrusive polynomial chaos model.

Using the sampling based and the quadrature methods, the equation
is projected on k" basis:

<Za‘{‘ > 17

where the inner product <f(b),g(x)>= [gf(x)g(x)pn(x)dx, here the py(x)
is the probability density function of . We know that the basis functions
are orthogonal, thus we have:

(@ (e,x), ¥a(x)) = (¥ () 18
Then we can estimate the polynomial coefficients as:

((x*(c,x),‘lfk(x))
(¥; (x))

Using point-collocation based method [76], we start by replacing the
uncertain variables with their polynomial expansions given by Eq. (20).
Then P + 1 vectors are chosen for a given PCE with P + 1 modes and the
deterministic solution is evaluated at these points. A system of equations
is solved to obtain the polynomial coefficient (o) of the random variable

*

a:

(@ (c,x),¥

a = (19)

Wo(xo)  ¥i(xo) Pr(xo) ] ( a0 a*(xo)
Wolxr)  ¥ilx) Wpr) | Jar | _ ) a(x1) (20)
Polx) Yolx) ¥ (%) | La a*(x)
The mean and standard deviation of the solution are:
H=a 21

(22)

The high-order moments such as skewness (y) and kurtosis () can be
obtained by computing the expectation products of three or four
multivariate polynomials:

W;(x) Wi (x )} ;00 (23)

T
I
~
i

W (x) ¥ (x )} ;000 24)

¥
s
T
T

The solution of Eq. (20) requires P + 1 function evaluations. If more
than P + 1 deterministic function values are used, the over-determined
system of equations can be solved using the least square error. Hosder
et al. [77] investigated this option by increasing the number of
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collocation points in a systematic way through the introduction of a
parameter np, which is defined as:

_ number of samples

P+1 (25)

np

They show that increasing the number of collocation points to twice
or more of the minimum number required (np >2) gives a better
approximation to statistics at each polynomial order. In this study, we
use np = 2, so the number of sampling points equals 2 x(P+1) for
different polynomial orders.

There are different sampling methods that can be used for the point-
collocation non-intrusive PCE approach. For example, random sam-
pling, Latin hypercube sampling, Hammersley sampling, Halton sam-
pling, Sobol sampling, etc. These methods are also used as design of
experiment (DOE) techniques in design and optimization [78]. Latin
hypercube sampling is used in this work.

5.2. Univariate dimension reduction (UDR)

5.2.1. Evaluation of statistical moments by Gauss quadrature
The k™ order statistical moment of a function of random variable,
g(x), can be evaluated using Gauss quadrature:

El¢] = [ aletl'frtas = 37 olst)) 20)

where fx (x) represents the PDF of random variable X defined on Q. m is
the order of quadrature sum, o; and x; are the i weight and Gauss node.
The quadrature sum can achieve at most 2m — 1 polynomial quadrature
order. In a Gauss-type quadrature formula, the Gauss node Xx; is defined
by the roots of the orthogonal polynomial; the weight w; is calculated by

E[¢"(x)]

1

&y
—
VS

i=1

Lagrange interpolation polynomial [79]. When X follows the normal
distribution, w; and x; can be directly derived from the Gauss-Hermite
quadrature formula [80].

5.2.2. Transformation to the standard normal distribution

A non-normally distributed variable can be transformed to a
Gaussian distributed variable [81] using methods like Rosenblatt
transformation [82] and Nataf transformation [83]. In this way, the
Gauss nodes and weights of the Gauss-Hermite quadrature formula can
be applied to compute the statistical moments if the original input
variables are not normally distributed. The transformation T is
expressed as:

w=T(x)=P ' (F(x)) 27

where w is the transformed variable, P(-) is the cumulative distribution
function (CDF) of a transformed variable, and F(-) is the CDF of the
original arbitrary distributed random variable, respectively.

Then the statistical moments of a function of input variable x can be
written as:

k
D 8 s i Xis iy s piy) — (N = 1g(py, .--,uN)> }
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E[s']

[alswiintwac= [ pu o1 ) aw

©

30 (v

14

5.2.3. Univariate dimension reduction

The UDR method [40,84,85] approximates a multivariate function
by a summation of univariate functions. The statistical moments of each
univariate function can be evaluated using the Gauss quadrature method
introduced in Section 5.2.1.

Consider a mechanical system with the independent random input
variablesx =[xy, ...... , xN]T, where N is the number of random variables.
Let g(x) be the response of the mechanical system, then the k™ order
statistical moment is expressed as:

E[¢ )] = / N[ (x)fr(x)dx 29)

where fx(x) = fx, . xy (X1, ...,Xn) is the joint probability density function
of X and E[-] is the expectation operator. In the univariate approximation
of g(x), each term only depends on one variable and the other variables
are fixed to their mean values:

g(x) g(x1$ "7xN)

= Zg(ﬂh oy Xy fig gy e Hy) — (N = 1)g(pys oo ) (30)

i=1

where N is the total dimension of variables and y; is the mean value of
variable x;.
Then the multi-dimensional integration is simplified as:

(31)

k [k N k
_ z( )-E{(Zm...,u,l,xi,u,+17...,uN)> }[—(N—l)g(ﬂum,m]“

Noted that, the error of this approximation is mainly induced by the
approximation of the interactions among variables [40].

The moments of g; can be obtained using the one-dimensional Gauss
quadrature-based numerical integration (as discussed in Section 5.2.1).
If we use the same number (M) of Gauss nodes and weights for the one-
dimensional integration of all g, the total number of simulations
(evaluations of g(x)) will be at least (M —1)N + 1 and at most MN + 1,
where M represents the number of Gauss nodes and weights, N repre-
sents the number of random variables [86].

Subsequently, the statistical moments are given by:

= E[g(x)] (32)
0= VE[gx)] —p? (33

Elg*(x)] — 3E[g*(x)]u + 2
o3

Y= (34)

_ Elg"(x)] — 4E[¢° (x)lu + 6E[g* (x)|u* — 3u*
K= 7 (35)
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Fig. 3. (a) Pixelated topological structural domain. (b) Samples of the stochastic local material properties (thermal conductivity of each element) distributed in the
topological structure. (c) Heat transfer simulation predicting the heat flux distribution throughout the structure domain.
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Fig. 4. Evaluation of the output’s mean and the standard deviation by MCS.

5.2.4. Estimation of the probability density function

Once the first four order statistical moments are obtained, the
probability density function (PDF) can be evaluated by empirical dis-
tribution systems, such as the Pearson system [87]. The Pearson system
approximates the PDF f(x) as solution of differential equation:

df(x)
dx

a+x
__ 36
co+cx + szzf(x) (36)

The Pearson system includes the normal, Gamma, and Beta distri-

bution among the families, which depend on the Pearson parameters (a,

Co, €1, C2). The Pearson parameters can be expressed in terms of the first
four central moments of the distribution, which expressed as:

Hs (ﬂ4 + 3:“%)

ol =a= 37)
‘ 10p 44, — 1843 — 12413
C ta(pape —343)
O 1O, — 1843 — 1243 ©®
22 63
. (2patty — 343 — 6483) (39)

10p,p, — 183 — 1213

where piq, jiy, jz, 4 correspond to the first four central moments of the
system. Therefore, once we know the first four central moments, we can
construct a PDF that is consistent with these moments.

6. Engineering case studies

In this section, two engineering cases are presented to demonstrate
the effectiveness of the proposed methodology. We also test and
compare the different technical options in Step 2 Parameterization and

Step 3 UP to understand their relative merits. The MCS method is
applied to provide reference solutions for validating the proposed
methodology.

6.1. Engineering case 1: Thermal conductivity analysis considering
stochastic local material properties

For the first case study, the input uncertainties are the spatially
varying local properties generated by the shortest interior path distance-
based Gaussian random field model. The goal is to quantify the uncer-
tainty associated with the output, which is the heat flux through a to-
pological structure. The case study tests two components in the proposed
method: uncertainty parameterization and UP.

6.1.1. Problem description, uncertainty representation, and
parameterization

A finite element simulation model is established to predict the heat
flux (output) with consideration of the stochastic local material prop-
erties (input uncertainty). The topological structural domain is dis-
cretized into pixelated elements. Each pixel in the structure is assumed
to be 1 mm in length, the dimensions of the topological structure are
shown in Fig. 3(a). The shortest interior path distance between any of
the two elements x;, x; in the pixelated feasible region is evaluated for
constructing the covariance matrix. The local material properties
(thermal conductivity) are generated using the shortest interior path
distance-based Gaussian random field model, which is expressed as:

Dy (xi, xf))

30 (40)

C(x,-7 xj) = 802~exp< —

By sampling the Gaussian random field model, we generate random



Z. Wang et al.

Table 1
Number of data points used in non-intrusive PCE and UDR for 8-dimensional
latent space.

PCE Polynomial order 1 2 3 4 5
Number of data points 18 90 330 990 2574

UDR Number of Gaussian nodes 2 4 6 8 10
Number of data points 17 33 49 64 81

realizations of the local material property distribution in the structural
domain. 10,000 realizations are generated (Fig. 3(b)). Each realization is
one sample of the spatial distribution of element-wise local properties. It
is to be noted that sampling the Gaussian random field model is efficient
as no finite element simulation is involved at this stage.

This dataset is compressed by PPCA or SVAE to low-dimensional
normally distributed, independent random variables. A convergence
test is conducted to investigate the number of independent random
variables, as shown in Appendix A.2. To achieve a balance between the
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accuracy and the dimensionality of the latent space, we select the 8-
dimensional latent space for the following UP studies.

6.1.2. Uncertainty propagation: from stochastic local properties to heat flux

The commercial finite element software package, ABAQUS, was used
for all case 1 heat transfer simulations. The 2D geometrical domain and
set up used for the heat transfer simulations is shown in Fig. 3(c). A
thermal flux is generated in the system by assigning two different tem-
perature values (T; & T2) to the upper and lower boundaries of the
domain. All 10,000 samples are simulated to provide a large dataset for
MCS. A convergence test is conducted to find the minimum number of
samples required by the MCS method in order to obtain an accurate
prediction of the mean and variance of the output (Fig. 4 and
Appendix A.3).

Two UP methods, non-intrusive PCE and UDR are compared. Table 1
lists the number of data points (simulations) required by non-intrusive
PCE with different polynomial orders and by UDR with different

Table 2
Results of UP and validation. The results of different combinations of parametrization and UP methods are compared with the reference values obtained by MC
sampling.
Mean (Difference) STD (Difference) Skewness Kurtosis (Difference) # of sampling points
(Difference)
Monte Carlo 815.8638 0.8509 —0.0856 2.9254 6908
PCE PPCA 815.8718 (0.0010%) 0.8312 (2.3152%) —0.0926 3.0128 330
(8.1776%) (2.9876%)
PVAE 815.8726 (0.0011%) 0.8249 (3.0556%) —0.0875 2.8564 330
(2.2196%) (2.3586%)
UDR PPCA 815.8719 (0.0010%) 0.8293 (2.5385%) —0.0848 3.0465 49
(0.9345%) (4.1396%)
PVAE 815.8504 (0.0016%) 0.8465 (0.5171%) —-0.1233 4.2122 49
(44.0420%) (43.9871%)
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Fig. 6. (a) Geometry and dimensions of the topological truss structure. (b) 8 parts are cast per mold; Example shrinkage porosity predictions are shown. (c) Sampling
locations for constructing kernel functions. (d) Examples of the spatially varying local shrinkage properties. (e) Examples of the spatially varying local mechanical
properties (elastic moduli). (f) Simulation of the structure deflection under a point load.

Table 3

Process parameters, interface parameters and material properties used in the
casting solidification simulation. The material properties marked with * is
temperature-dependent, the temperature-property curves are shown in Appen-
dix A.1, Fig. A.1.

Process Parameters Mean Range
Gravity (mg/s?) 9.80 +0.15%
Ambient Temperature ( °C) 20 +0.3%
Air Cooling HTC (W/m?K) 10 +0.15%
Initial Temperature of Casting ( °C) 720 +0.3%
Initial Temperature of Mold ( °C) 100 +0.3%
Interface Parameters Mean Range
HTC while Casting is Liquid (W/m?K) 500 +0.15%
HTC while Casting is Solid (W/m?K) 300 +0.15%
Material Properties Mean Range
Latent Heat of AlSi7Mg03 (kJ/kg) 431 +0.3%
Density of AlSi7Mg03 (kg/m>) * /
Fraction Solid of AlSi7Mg03 * /
Conductivity of AlSi7Mg03 (W/mK) * /
Specific Heat of AlSi7Mg03 (kJ/kgK) * /
Density of Sand (kg/m>) 1520 +0.15%
Specific Heat of Sand (kJ/kgK) * /
Conductivity of Sand (W/mK) * /
Liquidus Temperature of AlSi7Mg03 ( °C) 613 +0.05%
Solidus Temperature of AlSi7Mg03 ( °C) 548 +0.05%

numbers of Gaussian points using 8-dimensional latent space.

The results of non-intrusive PCE and UDR are compared in Table 2
and Fig. 5. For non-intrusive PCE, the polynomial order is set asp = 3;
for UDR method, we use M = 6 Gauss nodes and weights. Increasing the
order or number of quadrature points beyond these chosen numbers
does not noticeably improve the accuracy of predicting the statistical
moments, while the computational cost will be increased significantly
(Appendix A.5, Fig. A.3). Non-intrusive PCE-based UP methods and
UDR-based UP methods both perform well in low-order moments esti-
mations (means and STDs). However, when estimating the high-order
moments, the combination of UDR and pVAE shows a large error

(>40%) in skewness and kurtosis estimation, which is due to the effect of
interactions between variables. Both PPCA and fVAE work well in non-
intrusive PCE, while SVAE will have less error in skewness estimation. It
shows that the non-intrusive PCE approximations are accurate within
3.1% of the MC results when calculating the low-order moments (means
and STDs) with 330 sampling points, UDR approximations are accurate
within 2.6% of the MC results with 49 sampling points when calculating
the low-order moments (means and STDs). It is suggested to use PPCA as
the parameterization method and UDR as the UP method in this study
since it balances the number of sampling points as well as the accuracy
of statistical moments.

6.2. Engineering case study 2: quantification of manufacturing-induced
uncertainties based on a process-property-performance simulation

The second engineering case is a comprehensive study that tests all
aspects of the proposed methodology: uncertainty representation, un-
certainty parameterization, and UP. The goal is to quantify the uncer-
tainty for structural performance based on manufacturing-induced
uncertainties input within a process-property-performance model. This
case study is challenging because the data does not follow the normal
distribution.

6.2.1. Problem description, data collection and uncertainty representation

It is well established in literature that pouring temperatures, pouring
speeds, cooling rates, and thermal gradients will directly influence a
casting structure and its associated mechanical properties during so-
lidification [88]. Casting defects, such as macrosegregation, shrinkage
porosities, and coarse-grained zone, can be predicted through numerical
simulation [89-91]. The stochastic geometry and spatial distribution of
the casting defects are important sources of material uncertainties.
Furthermore, variations in the processing parameters will lead to vari-
ations in thermal energy and deviation of initial parameters, which adds
another source of uncertainty to the problem. Literature has revealed
that the pouring temperature [92], solidification rate [93], thermal
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Fig. 7. Evaluation of the output’s mean and the standard deviation by MCS.

Table 4

Prediction of the mean and standard deviation of the output. Different combinations of parametrization methods and UP methods are compared.

PCE Mean (Difference) STD (Difference) Skewness Kurtosis (Difference) # of sampling points
(Difference)
84.2219 0.0136 1.0218 3.1626 652
PPCA 84.2229 (0.0012%) 0.0115 (15.4412%) 0.4408 1.1204 168
(56.8604%) (64.5734%)
GM-$VAE 84.2222 (0.0004%) 0.0143 (5.1471%) 0.9529 3.4207 168
(6.6451%) (8.1610%)
UDR PPCA 84.2212 (0.0008%) 0.0101 1.0855 5.7453 73
(25.7353%) (6.2341%) (81.6638%)
GM-SVAE 84.2347 (0.0151%) 0.0145 (6.6176%) 0.0660 6.4407 49
(93.5408%) (103.6521%)

gradients [94], and other material properties and processing parameters
will influence the mechanical properties of a cast part.

The geometry of a topological truss structure is created in Solid-
works, and the solidification process is simulated using the commercial
finite element software package, ProCAST. The size of each truss
structure is 300 mm x 200 mm x 10 mm (Fig. 6(a)). A 5 mm tetrahedron
mesh and an adaptive time stepper is used for all case 2 simulations. As
shown in Fig. 6(b), each mold contains 8 truss structure castings of the
same design. Uncertainties for the parameters used in the solidification
simulations (process parameters, interface parameters, and material
properties) are represented by random parameters with uniform distri-
butions (Table 3). AlSi7Mg03 ternary alloy is used as the casting ma-
terial and silica sand is assigned to the mold [95]. The castings are
poured at 720 °C into a preheated mold at 100 °C. The heat transfer
coefficient (HTC) between the casting and the mold was assigned to be
constant at 500 W/m?K while the casting is liquid and constant at 300
W/m?K when the casting is solid. A linear deviation between the solid
and liquid HTC values is used during solidification. Air cooling is
assigned to the exterior surfaces of the mold by using an ambient tem-
perature 20 °C and a HTC value of 10 W/m?K. In total 800 structure
samples (100 molds) were simulated and analyzed. The 800 truss
structure samples follow the same geometrical design, but have varying
performances due to the manufacturing and material uncertainties.

Shrinkage porosity values at each node of the casting are extracted
and exported. The thickness of the structure is 1/20 of the width and 1/
30 of the length of the structure, so variations along the thickness
dimension are neglected. We focus on analyzing the spatially varying
material properties in the 2D topological domain. At each location in the
2D domain, the average porosity value along the thickness direction is
used. The casting is then re-meshed to a pixelated structure and each
element is assigned the corresponding local mechanical properties. The
element size of the pixelated structure is 3 mm. The sampling locations
for observing the spatially varying local porosities are shown in Fig. 6(c).
In order to achieve the best accuracy, we group all structural samples
into four groups based on their location in the mold. The four groups
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correspond to locations (1) and (8), (2) and (7), (3) and (6), and (4) and
(5) in the mold shown in Fig. 6(b). For each group, a Gaussian random
field model with the kernel function of Eq. (4) is fitted to represent the
spatial distribution of porosities. By sampling the Gaussian random field
model, 10,000 random realizations of the local shrinkage porosity dis-
tribution in the topological structural domain are generated (Fig. 6(d)).

6.2.2. Porosity-elasticity relation and parameterization
The elasticity of each element is obtained with the assumption that
the porosity-elasticity relation follows this equation:

E = Ege 5% (41)
where E represents Young’s modulus of the porous pixelated element, Ey
represents Young’s modulus of nonporous AlSi7Mg03, B is an empirical
constant, which is selected to be B = 2 for this example, and @, is the
fractional pore volume of the body predicted by the solidification
simulation. Note, that a real-world casting would not behave the same as
the part defined because of the simplified porosity-elasticity relation-
ship. With Eq. (41), the random field realizations of local porosities are
converted to the spatial distribution of local elastic moduli (Fig. 6(e)). It
is noted that the local elastic modulus inside the topological structural
domain is not normally distributed (Appendix A.4, Fig. A.2).

PPCA and SVAE are used to compress the dataset of 10,000 re-
alizations of the local elastic moduli to a low-dimensional feature space
that is formed by normally distributed, independent random variables.
Because the local elastic modulus is not normally distributed, it’s diffi-
cult for SVAE to obtain an efficient accuracy and get independent latent
variables (Appendix A.2). Therefore, we propose to use the GM-SVAE,
which would capture the complex statistical distribution with a multi-
modal statistical distribution function. To achieve a balance between the
dimensionality of compressed feature space (computational cost) and
the accuracy (Appendix A.2), we use 6 latent variables in PPCA and 6
latent variables in GM-SVAE for PCE, and use 12 latent variables in
PPCA and 8 latent variables in GM-SVAE for UDR. The latent features,
which follow the Gaussian mixture distribution, will be converted to the
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Table 5
Comparison of PPCA, fVAE and GM-SVAE.
PPCA BVAE GM-BVAE
Computational cost ~0.84 min ~541 min ~562 min
Linearity Linear Non-linear Non-linear
Orthogonality Fully orthogonal Approximately orthogonal Approximately orthogonal
Latent distribution Gaussian Gaussian Mixture of Gaussians

Prediction accuracy

Potential issues in
implementation

Satisfactory accuracy when compressing data
with normally distributed marginal distributions;
low accuracy when compressing data with non-
normally distributed marginal distributions

Low reconstruction accuracy if the dataset has
large variations

Satisfactory accuracy when compressing data with
normally distributed marginal distributions; low
accuracy when compressing data with non-
normally distributed marginal distributions

Hard to balance the data reconstruction accuracy
and the orthogonality of latent variables

Highest accuracy when compressing data with
normally distributed marginal distributions;
satisfied accuracy when compressing data with
non-normally distributed marginal distributions
May induce errors when transforming from the
mixture of Gaussians to Gaussian distribution

normal distribution using the transformation method introduced in
Section 5.2.2 when performing UDR.

6.2.3. Uncertainty propagation: from stochastic local elastic moduli to
structure deflection

The structural performance is measured by the deflection under a
point load. The boundary condition of the problem is shown in Fig. 6(f).
The deflection of the structure is obtained in ABAQUS and the
displacement of the marked node is used as the output of the problem.
The uncertainties associated with the local mechanical properties are
propagated to predict the statistical moments of the structure deflection.

The results of the 800 process-property-performance simulations
provide the reference values of the deflection statistical moments. A
convergence test (Fig. 7 and Appendix A.3) is conducted to find the
minimum number of samples required by the MCS method in order to
obtain an accurate prediction of the mean and variance of the output.
We find that a minimum of 652 samples are needed for MCS

convergence.

The results of non-intrusive PCE and UDR are compared in Table 4.
The PDFs estimated by Eq. (36) are shown and compared in Fig. 8. For
the non-intrusive PCE, we set the order of polynomial asp = 3. For UDR,
we use M = 6 Gauss nodes. Further increasing the polynomial order or
the number of Gauss nodes will not improve the prediction accuracy
noticeably, while the computational cost will be increased significantly
(Appendix A.6). We estimate the mean value, standard deviation,
skewness, and kurtosis. The PDFs are estimated using Eq. (36) and
compared with the ground truth PDF, as shown in Fig. 8. The combi-
nation of GM-SVAE and non-intrusive PCE provides the best prediction
accuracy, 0.0004% for mean, 5.1471% for STD, 6.7430% for skewness,
and 8.1610% for kurtosis. This combination requires 168 sampling
points, which are 74% fewer than those required by MCS. The combi-
nation of GM-SVAE and UDR has the lowest prediction accuracies
among all the combinations. The accuracy of estimating the high-order
moments using the combination of GM-SVAE and UDR is impaired by
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the interaction effects among the latent variables. Therefore, the com-
bination of GM-SVAE and UDR is not suitable for estimating the high-
order moments. For the estimation of low-order moments, we recom-
mend the combination of GM-SVAE and UDR, which balance the pre-
diction accuracy and the computational cost, 0.0151% error for mean,
6.6176% error for STD, and 49 sampling points.

Compared with the first case study, we see larger prediction errors in
this case. We identify the following factors that may contribute to the
prediction error:

1 Large variations are observed in the local porosity values. The
extreme values and the associated irregular statistical distribution,
increase the difficulty in parameterization. The variation is further
increased by converting the porosity values to elasticities of each
element in the structure using an exponential function, which is
shown in Eq. (41).

2 Another source of error lies in the process of transforming the
mixture of Gaussian to a normal distribution.

6.3. Comparison of the methods of uncertainty parameterization and
uncertainty propagation

In this section, the uncertainty parameterization methods (PPCA and
VAE-based) and the uncertainty propagation methods (non-intrusive
PCE and UDR) are compared. Suggestions on selecting appropriate
methods are provided.

6.3.1. Comparison of the parameterization methods

PPCA and fVAE-based methods (JVAE or GM- VAE) are compared
in the two engineering case studies presented in Section 6.1 and Section
6.2, as well as an additional engineering case in Appendix A.7. The
comparison is conducted with respect to the computational cost, the
linearity of the compression operation, orthogonality of the obtained
parameters, ability of generating normally-distributed parameters, the
overall prediction accuracies, and some potential issues in imple-
mentation are listed in Table 5.

The guidelines for selecting parameterization methods is summa-
rized as follows:

1 When the marginal distributions of the Qols are normally distrib-
uted, it is suggested to use PPCA since it balances the computational
cost and the accuracy.

2 When the local values of Qols (e.g. local properties in a structure)
have large variations, it is suggested to use GM-SVAE, which can
capture the multi-mode characteristics, in order to achieve a better
reconstruction accuracy.

3 When calculating the high-order moments using UDR-based UP ap-
proaches, it is suggested to use PPCA since it can ensure the inde-
pendency among the parameters.

6.3.2. Comparison of the uncertainty propagation methods

The non-intrusive PCE and UDR are implemented and compared in
the aforementioned case studies. It might not be appropriate or complete
to judge or rank methods with only a few examples. However, some
characteristics, advantages, and disadvantages can be observed from
those case studies:

1 Accuracy. Non-intrusive PCE and UDR show no great difference
regarding the accuracy when calculating the low-order moments
(mean and variance). However, the UDR is more sensitive to the
interaction effect among the input parameters, especially when
calculating the high-order moments (skewness and kurtosis). Using
the UDR method will lead to large errors in calculating high-order
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moments when a relatively strong interactive effect exists among
input parameters.

2 Efficiency. UDR is more efficient compared to non-intrusive PCE. The
computational cost of the quadrature-based non-intrusive PCE de-
pends highly on the order of polynomial expansion (refer to Eq.
(25)), and it increases dramatically with the number of input pa-
rameters. By contrast, the computational cost of UDR increases lin-
early with the number of input parameters.

3 Other observations. UDR has advantages in estimating low-order
moments. When applying UDR to estimate the high-order mo-
ments, it could be problematic as UDR is sensitive to the interactive
effects among random variables. Non-intrusive PCE is more accurate
when used to estimate the high-order moments or to predict the PDF.

Our recommendation of selecting UP methods are summarized as
follows:

1 To estimate the low-order statistical moments, it is suggested to use
UDR-based UP methods for a lower computational cost.

2 To estimate the high-order statistical moments or the complete PDF,
it is suggested to use non-intrusive PCE-based methods for a higher
accuracy.

3 In the proposed framework, the combination of UDR and SVAE (or
GM-SVAE) is not recommended for calculating high-order moments.
The deep learning-based parameterization methods cannot fully
disentangle the interactions among latent variables (though the
correlation values are low), thus it will result in huge errors in high-
order moment estimation.

7. Conclusion

In this paper, a new methodology is presented for quantifying and
propagating aleatoric uncertainties distributed in topology structure
domains. Gaussian random field model based on the shortest interior
path distance is proposed to capture the topological characteristics of
the spatial domain. PPCA and variants of VAE are employed to convert
the high dimensional random field uncertainties to independent, nor-
mally distributed random parameters. Non-intrusive PCE and UDR are
employed to propagate the input uncertainties to obtain the statistical
moments of the output. The proposed method is demonstrated on two
engineering case studies, where the source of uncertainties is the
spatially varying, stochastic local material properties distributed in the
topological structural domain. Our major conclusions are summarized as
follows:

e First, the proposed method is effective in quantifying and propa-
gating the uncertainties distributed in complex topological struc-
tures. Compared with the MCS method, our method achieves a
reasonable level of accuracy while significantly reducing the number
of samples required for evaluating the statistical moments of the
output.

e Second, we suggest using fVAE (GM-$VAE) as the parameterization
method and UDR as the UP method since it balances the number of
sampling points as well as the accuracy of statistical moments.

This work marks our first step toward quantifying uncertainties in
complex mechanical systems. We also identify opportunities to improve
the proposed method:

o First, the uncertainty representation method in our proposed meth-
odology is not powerful enough to capture non-Gaussian data.

e Second, the proposed method only considers the characteristics of
the spatial domain. In future works, we will improve the method in
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order to capture both spatial (e.g. structure design) and temporal (e.
g. toolpath) information of the input aleatoric uncertainties.

e Third, the proposed methodology can be integrated with parametric
or topology structure design frameworks to enable the robustness
and/or reliability-based design of topological structures (e.g. meta-
material unit cell) under manufacturing-induced uncertainties.

APPENDIX

A.1 Material properties used in solidification simulation

A.2 Selection of the dimension of latent variables

PPCA and $VAE are used to compress the random field realizations of
the local material properties to a low-dimensional feature space that is
formed by normally distributed, independent random variables. The
low-dimensional latent variables can be mapped back to the original
high-dimensional structural space to reconstruct the spatial distribution
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variables of 6, 8, 10, and 12, respectively (Table A.1). When the number
of latent variables equals or is larger than 8, the R squared values of both
two methods are larger than 0.9. We select the 8-dimensional latent
space for the following UP studies.

Engineering case 2: The reconstruction accuracies of PPCA, SVAE,
and GM-SVAE are shown in Table A.2. While PPCA performs slightly
better than SVAE, they both have low reconstruction qualities. GM-
PVAE has a satisfactory reconstruction accuracy.

A.3 Criterion of convergence of MCS

The convergence criterion of MCS [96] in our engineering cases is
defined as an approximate 99% probability that the mean value of n
MCS samples pivcsn is within 0.0001 unit value of the true mean 7.

The mean value of n MCS samples is computed by the unbiased
estimator Jiycg:

Pmes=1/n%i = 1 n ppes; (42) and the unbiased estimator of o is
written as:

1 n

of the local material properties. The reconstruction accuracy will affect Su= \/ n—1 Zl(”MCSi ~ Hucs) (43)
. . . -
the accuracy when performing UP. The reconstruction accuracy is
measured by the R squared value of input data and the corresponding The confidence interval (CI) is obtained as:
reconstruction. c
. . N - « 2 44)
Engineering case 1: For both PPCA and pVAE parameterization Cl = Hyes £2 NG (
methods, we test the reconstruction accuracies with the number of latent
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Fig. A.1. Temperature-dependent material properties used for AlSi7Mg03 and silica sand in the solidification simulations.
Table A.1
Reconstruction accuracies measured by the R squared values of PPCA and SVAE with different number of latent variables in engineering case 1.
# of latent variables 6 8 10 12
PPCA 0.8313 0.9252 0.9787 0.9999
PVAE 0.7825 0.9064 0.9212 0.9290
Table A.2
Reconstruction accuracies measured by the R squared values of PPCA, fVAE, and GM-SVAE with different number of latent variables in engineering case 2.
# of latent variables 6 8 10 12
PPCA 0.3677 0.3800 0.3923 0.4039
PVAE —0.0304 0.0217 0.0578 0.1022
GM-fVAE 0.8072 0.8271 0.8755 0.8932
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where a represents the confidence level value, for 99% CI, z* equals
2.576. o represents the standard deviation of the samples. n represents
the number of MCS cases.

Using the central limit theorem, the probability of the sample lies in
the 99% CI is written as:

P M <2576 | =99%
v

(45)

It is to be noted that, Eq. (45) represents that there is a 99% proba-
bility that the sample mean ppcsn is within 2.576 % units of the true
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mean i,
Combining Egs. (44 and 45), we get:

2.576\/Zi1 (Harcsi — Parcs) < 0.0001 (46)

n(n—1)

When the number of MCS samples n satisfies Eq. (46), we recognize
the MCS converges at n samples.

A.4 Marginal distribution of local properties

location 1

location 2

location 4

(a)
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Fig. A.2. (a) Locations for observing the marginal distributions. (b) Marginal distribution at sampling location 1. (¢) Marginal distribution at sampling location 2. (d)
Marginal distribution at sampling location 3. (e) Marginal distribution at sampling location 4.
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A.5 convergence test for selecting the polynomial order and the number of
gauss nodes and weights in engineering case 1

5 +«10° Mean estimation 4 Standard deviation estimation
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Fig. A.3. Case 1: Relative errors of (a) the mean and (b) the standard deviation (c) the skewness (d) the kurtosis estimations using different order of polynomials.
Relative errors of (e) the mean and (f) the standard deviation (g) the skewness (f) the kurtosis estimations using different number of Gauss nodes and weights.

A.6 Convergence test for selecting the polynomial order and the number of
Gauss nodes and weights in engineering case 2
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Fig. A.4. Case 2: Relative errors of (a) the mean and (b) the standard deviation (c) the skewness (d) the kurtosis estimations using different order of polynomials.
Relative errors of (e) the mean and (f) the standard deviation (g) the skewness (f) the kurtosis estimations using different number of Gauss nodes and weights.

A.7 Engineering case study for selecting dimension reduction methods

The purpose of this supplementary case study is to compare the
dimension reduction methods for parameterizing the random field un-
certainties in a topological spatial domain. A simulation model is
established to predict the structural distortions in lattice structures
printed in batch by powder bed fusion (PBF). Multiple structures of the
same design are printed on one building plate. The material is Ti6Al4V.
The simulation model is implemented in software ABAQUS, which
simulates the process of powder fusion and solidification, and result in
the residual stress and distortion in the final printed parts. The un-
certainties of the printing process come from two resources: (1) the
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uncertainties in material properties and process parameters; (2) the
uncertainties in local thermal conditions. Detailed information of the
simulation parameters can be found in our previous work [17].

As shown in Fig. A.5(a), six lattice structures are printed together on
one building plate, therefore, one simulation yields six samples. In total,
we generate 54 samples for training the uncertainty representation
models. We group all structural samples into three groups based on their
location on the building plate: the outer layers, the intermediate layers,
and the inner layers (Fig. A.5(a)). The Y-distortions of the structure are
selected as the quantity of interest. The dimensions of the lattice struc-
tures are 102 mm x 51 mm x 2 mm (Fig. A.5(b)). The Y-distortion
values at each element of the cellular structure are extracted from the
simulation results. At each element location in the 2D topological
domain, the average Y-distortion value along the thickness direction is
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(a)

outer layers
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inner layers

intermediate layers

51 mm

102 mm

Fig. A.5. (a) Arrangement of six cellular structures on the building plate. (b) Dimensions of the 2D topological structural domain. (c) Y-axis distortions in the

lattice structure.

Table A.3
Reconstruction accuracies measured by the R squared values. PPCA, SVAE, and GM-SVAE with different number of latent variables are compared in this table.
# of latent variables 2 3 4 5
PPCA 0.9669 0.9835 0.9901 0.9941
PVAE 0.0032 0.0822 0.1244 0.1596
GM-SVAE 0.9440 0.9526 0.9621 0.9684
0.0020 6
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Fig. A.6. Latent variable distributions along latent axis #1 and #2 using (a) PPCA, (b) SVAE, (c) GM-SVAE.

Table A.4
Reconstruction accuracies measured by the R squared values of PPCA, fVAE, and GM-SVAE with different number of latent variables.
# of latent variables 2 4 6 8
PPCA 0.5837 0.7906 0.8918 0.9407
PVAE 0.5379 0.7424 0.8612 0.9079
GM-fVAE 0.9852 0.9911 0.9951 0.9987
used. to describe the spatial distribution of Y-distortions within the 2D lattice

Two comparative studies are conducted using different subsets of the
data. In the first case, we use the Y-distortion data for all the samples
(multimodal distribution) to test the parameterization methods. In the
second case, we only take the samples in the outer layers (unimodal
distribution).

Parameterization based on multimodal data (all samples)

For each group (outer layers, intermediate layers, and inner layers), a
Gaussian random field model with the kernel function of Eq. (3) is fitted
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domain. By sampling the three Gaussian random fields each with 4000
random realizations, a data set of 12,000 random realizations, which is
sufficiently large to be statistically invariant, are obtained for the
following step of parameterization.

Three parameterization methods, PPCA, VAE, and GM-SVAE, are
implemented and compared. PPCA and fVAE compress the random field
data to a low-dimensional feature space formed by normally distributed,
independent random variables. GM-SVAE compresses the random field
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data to a low-dimensional feature space formed by variables of the
multi-variate Gaussian distribution. The performances of the three
parameterization methods are evaluated based on the information loss,
which can be quantified by the reconstruction accuracies, as shown in
Table A.3. The PPCA has the highest reconstruction accuracy. However,
the distribution of the latent vectors compressed by PPCA is not nor-
mally distributed, which indicate the failure in PPCA training (Fig. A.6).
Therefore, PPCA is not suitable for this case study. fVAE has normally
distributed latent variables, while the reconstruction accuracy is not
acceptable. GM-SVAE has a satisfied reconstruction accuracy.

Parameterization based on unimodal data (outer layer samples
only)

In total, we have 18 outer layer samples. A Gaussian random field
model with the kernel function of Eq. (3) is fitted on the 18 samples to
represent the spatial distribution of Y-distortion values in the outer layer
lattice samples. By sampling the Gaussian random field model, we
obtain a sample set with 12,000 random realizations, which is suffi-
ciently large to be statistically invariant.

The random field realization data are compressed to the low
dimensional feature space using PPCA, SVAE, and GM-SVAE, respec-
tively. The reconstruction accuracies are shown in Table A.4. PPCA has
relatively better accuracy compared with SVAE. Among all three
methods, GM-SVAE works the best.

CRediT authorship contribution statement

Zihan Wang: Methodology, Software, Validation, Formal analysis,
Investigation, Writing — original draft, Writing — review & editing.
Mohamad Daeipour: Resources, Software, Writing — review & editing.
Hongyi Xu: Conceptualization, Methodology, Resources, Writing —
original draft, Writing — review & editing, Supervision, Project admin-
istration, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

We gratefully acknowledge the financial support from the National
Science Foundation (CAREER Award CMMI-2142290). We are grateful
to ESI-Group for making an academic license for ProCast available to the
UConn Casting and Solidification Research Group. We also sincerely
thank Dr. Harold D. Brody for his insights and advices on this work.

References

[1

—

Luo Y, et al. Non-probabilistic uncertainty quantification and response analysis of
structures with a bounded field model. Comput Methods Appl Mech Eng 2019;347:
663-78.

Chen S, Chen W, Lee S. Level set based robust shape and topology optimization
under random field uncertainties. Struct Multidiscip Optim 2010;41(4):507-24.
Schueller G. On the treatment of uncertainties in structural mechanics and analysis.
Comput Struct 2007;85(5-6):235-43.

Xi Z, et al. Random field modeling with insufficient field data for probability
analysis and design. Struct Multidiscip Optim 2015;51(3):599-611.

Hess PE, et al. Uncertainties in material and geometric strength and load variables.
Nav Eng J 2002;114(2):139-66.

Holicky M, Retief JV, Sykora M. Assessment of model uncertainties for structural
resistance. Probab Eng Mech 2016;45:188-97.

[2

—

[3

=

[4]
[5]

[6

s}

17

[71

[8]

[91

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]
[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]
[32]
[33]

[34]
[35]

[36]
[37]
[38]
[39]
[40]

[41]

[42]

[43]

Reliability Engineering and System Safety 233 (2023) 109122

Nguyen KT, Medjaher K, Gogu C. Probabilistic deep learning methodology for
uncertainty quantification of remaining useful lifetime of multi-component
systems. Reliab Eng Syst Saf 2022;222:108383.

Lin M, et al. Battery health prognosis with gated recurrent unit neural networks
and hidden Markov model considering uncertainty quantification. Reliab Eng Syst
Saf 2023;230:108978.

Zhang K, et al. An efficient reliability analysis method for structures with hybrid
time-dependent uncertainty. Reliab Eng Syst Saf 2022;228:108794.

Greene MS, et al. A generalized uncertainty propagation criterion from benchmark
studies of microstructured material systems. Comput Methods Appl Mech Eng
2013;254:271-91.

Bostanabad R, et al. Computational microstructure characterization and
reconstruction: review of the state-of-the-art techniques. Prog Mater Sci 2018;95:
1-41.

Wei X, Du X. Uncertainty analysis for time-and space-dependent responses with
random variables. J Mech Des 2019;141(2).

Xi Z. Model-based reliability analysis with both model uncertainty and parameter
uncertainty. J Mech Des 2019;141(5):051404.

Asadpoure A, Tootkaboni M, Guest JK. Robust topology optimization of structures
with uncertainties in stiffness-Application to truss structures. Comput Struct 2011;
89(11-12):1131-41.

Yuan X, et al. Efficient imprecise reliability analysis using the Augmented Space
Integral. Reliab Eng Syst Saf 2021;210:107477.

Richardson J, Coelho RF, Adriaenssens S. A unified stochastic framework for robust
topology optimization of continuum and truss-like structures. Eng Optim 2016;48
(2):334-50.

Wang Z, Xu H. Quantitative Representation of Aleatoric Uncertainties in Network-
Like Topological Structural Systems. J Mech Des 2021;143(3).

Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev Comput
Stat 2010;2(4):433-59.

Tipping ME, Bishop CM. Probabilistic principal component analysis. J R Stat Soc
Series B Stat Methodol 1999;61(3):611-22.

Liu Y, et al. Uncertainty quantification for Multiphase-CFD simulations of bubbly
flows: a machine learning-based Bayesian approach supported by high-resolution
experiments. Reliab Eng Syst Saf 2021;212:107636.

Lee D, Seung HS. Algorithms for non-negative matrix factorization. Adv Neural Inf
Process Syst 2000:13.

Izenman, A.J., Linear discriminant analysis, in Modern multivariate statistical
techniques. 2013, Springer. p. 237-80.

Baudat G, Anouar F. Generalized discriminant analysis using a kernel approach.
Neural Comput 2000;12(10):2385-404.

Zhai, J., et al. Autoencoder and its various variants. in 2018 IEEE international
conference on systems, man, and cybernetics (SMC). 2018. IEEE.

Yang Z, Baraldi P, Zio E. A method for fault detection in multi-component systems
based on sparse autoencoder-based deep neural networks. Reliab Eng Syst Saf
2022;220:108278.

Gonzélez-Muniz A, et al. Health indicator for machine condition monitoring built
in the latent space of a deep autoencoder. Reliab Eng Syst Saf 2022;224:108482.
Liu M, Grana D, de Figueiredo LP. Uncertainty quantification in stochastic
inversion with dimensionality reduction using variational autoencoder. Geophysics
2022;87(2):M43-58.

Kokkolaras, M., Z.P. Mourelatos, and P.Y. Papalambros. Design optimization of
hierarchically decomposed multilevel systems under uncertainty. in International design
engineering technical conferences and computers and information in engineering
conference. 2004.

Thoft-Cristensen, P. and M.J. Baker, Structural reliability theory and its applications.
2012: Springer Science & Business Media.

Der Kiureghian A. Structural reliability methods for seismic safety assessment: a
review. Eng Struct 1996;18(6):412-24.

Madsen, H.O., S. Krenk, and N.C. Lind, Methods of structural safety. 2006: Courier
Corporation.

Bucher CG. Adaptive sampling—An iterative fast Monte Carlo procedure. Struct Saf
1988;5(2):119-26.

Engelund S, Rackwitz R. A benchmark study on importance sampling techniques in
structural reliability. Struct Saf 1993;12(4):255-76.

Melchers R. Importance sampling in structural systems. Struct Saf 1989;6(1):3-10.
Ghanem, R.G. and P.D. Spanos, Stochastic finite elements: a spectral approach. 2003:
Courier Corporation.

Hasofer AM, Lind NC. Exact and invariant second-moment code format. J Eng
Mech Div, Am Soc Civ Eng 1974;100(1):111-21.

Fiessler B, Neumann H-J, Rackwitz R. Quadratic limit states in structural
reliability. J Eng Mech Div, Am Soc Civ Eng 1979;105(4):661-76.

Evans DH. An application of numerical integration techniques to statistical
tolerancing, IIl—General distributions. Technometrics 1972;14(1):23-35.

Seo HS, Kwak BM. Efficient statistical tolerance analysis for general distributions
using three-point information. Int J Prod Res 2002;40(4):931-44.

Rahman S, Xu H. A univariate dimension-reduction method for multi-dimensional
integration in stochastic mechanics. Probab Eng Mech 2004;19(4):393-408.
Delgado J, et al. Hill chart modelling using the Hermite polynomial chaos
expansion for the performance prediction of pumps running as turbines. Energy
Convers Manage 2019;187:578-92.

Su Q, Strunz K. Stochastic circuit modelling with Hermite polynomial chaos.
Electron Lett 2005;41(21):1163-5.

Xiu D, Karniadakis GE. Modeling uncertainty in flow simulations via generalized
polynomial chaos. J Comput Phys 2003;187(1):137-67.


http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0001
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0001
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0001
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0002
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0002
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0003
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0003
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0004
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0004
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0005
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0005
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0006
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0006
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0007
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0007
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0007
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0008
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0008
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0008
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0009
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0009
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0010
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0010
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0010
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0011
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0011
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0011
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0012
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0012
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0013
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0013
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0014
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0014
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0014
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0015
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0015
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0016
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0016
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0016
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0017
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0017
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0018
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0018
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0019
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0019
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0020
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0020
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0020
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0021
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0021
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0023
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0023
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0025
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0025
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0025
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0026
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0026
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0027
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0027
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0027
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0030
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0030
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0032
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0032
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0033
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0033
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0034
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0036
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0036
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0037
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0037
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0038
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0038
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0039
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0039
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0040
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0040
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0041
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0041
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0041
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0042
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0042
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0043
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0043

Z. Wang et al.

[44]
[45]
[46]
[47]
[48]

[49]

[50]
[51]
[52]
[53]
[54]
[55]
[56]

[57]

[58]
[591
[60]
[61]
[62]
[63]

[64]
[65]

[66]
[67]

[68]
[69]
[70]

[71]
[72]

Mara TA, Becker WE. Polynomial chaos expansion for sensitivity analysis of model
output with dependent inputs. Reliab Eng Syst Saf 2021;214:107795.

Zhang J, et al. Efficient reliability analysis using prediction-oriented active sparse
polynomial chaos expansion. Reliab Eng Syst Saf 2022;228:108749.

Maier HR, et al. First-order reliability method for estimating reliability,
vulnerability, and resilience. Water Resour Res 2001;37(3):779-90.

Der Kiureghian A, Lin H-Z, Hwang S-J. Second-order reliability approximations.
J Eng Mech 1987;113(8):1208-25.

Lee I, et al. Dimension reduction method for reliability-based robust design
optimization. Comput Struct 2008;86(13-14):1550-62.

Acar E, Rais-Rohani M, Eamon CD. Reliability estimation using univariate
dimension reduction and extended generalised lambda distribution. Int J Reliab Saf
2010;4(2-3):166-87.

Zou B, Xiao Q. Probabilistic load flow computation using univariate dimension
reduction method. Int Trans Electric Energy Syst 2014;24(12):1700-14.

Xiao Q, et al. Point estimate method based on univariate dimension reduction
model for probabilistic power flow computation. IET Generat Transm Distribut
2017;11(14):3522-31.

Kalos, M.H. and P.A. Whitlock, Monte carlo methods. 2009: John Wiley & Sons.
Zhang J. Modern Monte Carlo methods for efficient uncertainty quantification and
propagation: a survey. Wiley Interdiscip Rev Comput Stat 2021;13(5):e1539.

Lu J, et al. Uncertainty propagation of frequency response functions using a multi-
output Gaussian Process model. Comput Struct 2019;217:1-17.

Oliver, T.A. and R.D. Moser. Bayesian uncertainty quantification applied to RANS
turbulence models. in Journal of physics: conference series. 2011. IOP Publishing.
Azzimonti D, et al. Quantifying uncertainties on excursion sets under a Gaussian
random field prior. SIAM/ASA J Uncertain Quantificat 2016;4(1):850-74.

Xu H. Constructing Oscillating Function-Based Covariance Matrix to Allow
Negative Correlations in Gaussian Random Field Models for Uncertainty
Quantification. J Mech Des 2020;142(7):074501.

Kleder, M. Shortest Path with Obstacle Avoidance (ver 1.3) 2022 [cited 2022
February 15].

Morton K, Sobey I. Discretization of a convection-diffusion equation. IMA J Numer
Anal 1993;13(1):141-60.

Wold S, Esbensen K, Geladi P. Principal component analysis. Chemom Intell Lab
Syst 1987;2(1-3):37-52.

Nyamundanda G, Brennan L, Gormley IC. Probabilistic principal component
analysis for metabolomic data. BMC Bioinf 2010;11(1):1-11.

Chang WC. On using principal components before separating a mixture of two
multivariate normal distributions. J R Stat Soc Ser C Appl Stat 1983;32(3):267-75.
McLachlan GJ, Lee SX, Rathnayake SI. Finite mixture models. Annu Rev Stat Appl
2019;6:355-78.

Roweis S. EM algorithms for PCA and SPCA. Adv Neural Inf Process Syst 1997:10.
Dai B, et al. Connections with robust PCA and the role of emergent sparsity in
variational autoencoder models. J Mach Learn Res 2018;19(1):1573-614.
Kingma, D.P. and M.J.a.p.a. Welling, Auto-encoding variational bayes. 2013.
Higgins, ., et al., beta-vae: learning basic visual concepts with a constrained variational
framework. 2016.

Bengio Y, Courville A, Vincent P. Representation learning: a review and new
perspectives. IEEE Trans Pattern Anal Mach Intell 2013;35(8):1798-828.

De Maesschalck R, Jouan-Rimbaud D, Massart DL. The mahalanobis distance.
Chemom. Intell Lab Syst 2000;50(1):1-18.

Wiener N. The homogeneous chaos. Am J Math 1938;60(4):897-936.

Wiener N, Wintner A. The discrete chaos. Am J Math 1943;65(2):279-98.
Walters, R.W. and L. Huyse, Uncertainty analysis for fluid mechanics with
applications. 2002.

18

[73]

[74]
[75]

[76]

[771

[78]

[79]

[80]

[81]
[82]
[83]
[84]

[85]

[86]
[87]
[88]
[89]

[90]

[91]

[92]

[93]

[94]
[95]

[96]

Reliability Engineering and System Safety 233 (2023) 109122

Hosder S, Walters R, Perez R. A non-intrusive polynomial chaos method for
uncertainty propagation in CFD simulations. In: 44th AIAA aerospace sciences
meeting and exhibit; 2006.

Crestaux T, Maitre OLe, Martinez J-M. Polynomial chaos expansion for sensitivity
analysis. Reliab Eng Syst Saf 2009;94(7):1161-72.

Feinberg J, Langtangen HP. Chaospy: an open source tool for designing methods of
uncertainty quantification. J Comput Sci 2015;11:46-57.

Lacor, C. and E. Savin, General introduction to polynomial chaos and collocation
methods, in uncertainty management for robust industrial design in aeronautics. 2019,
Springer. p. 109-22.

Hosder S, Walters R, Balch M. Efficient sampling for non-intrusive polynomial
chaos applications with multiple uncertain input variables. In: 48th AIAA/ASME/
ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; 2007.
Giunta A, Wojtkiewicz S, Eldred M. Overview of modern design of experiments
methods for computational simulations. In: 41st Aerospace Sciences Meeting and
Exhibit; 2003.

Krylov, V.I. and A.H. Stroud, Approximate calculation of integrals. 2006: Courier
Corporation.

Li G, Zhang K. A combined reliability analysis approach with dimension reduction
method and maximum entropy method. Struct Multidiscip Optim 2011;43(1):
121-34.

Ditlevsen O, Madsen HO. Structural reliability methods, 178. New York: Wiley;
1996.

Rosenblatt M. Remarks on a multivariate transformation. Annal Math Stat 1952;23
(3):470-2.

Der Kiureghian A, Liu P-L. Structural reliability under incomplete probability
information. J Eng Mech 1986;112(1):85-104.

Youn BD, Choi KK, Park YH. Hybrid analysis method for reliability-based design
optimization. Int J Mech Mater Des 2003;125(2):221-32.

Xu H, Rahman S. A generalized dimension-reduction method for multidimensional
integration in stochastic mechanics. Int J Numer Methods Eng 2004;61(12):
1992-2019.

Lee SH, Chen W. A comparative study of uncertainty propagation methods for
black-box-type problems. Struct Multidiscip Optim 2009;37(3):239.

Pearson K. VII. Note on regression and inheritance in the case of two parents. Proc
R Soc Lond 1895;58(347-352):240-2.

Flemings MC. Solidification processing. Metallurgic Mater Trans B 1974;5(10):
2121-34.

Wang J, et al. Shrinkage porosity criteria and optimized design of a 100-ton
30Cr2Ni4MoV forging ingot. Mater Des 2012;35:446-56.

Dabade UA, Bhedasgaonkar RC. Casting defect analysis using design of
experiments (DoE) and computer aided casting simulation technique. Procedia
CIRP 2013;7:616-21.

Jafari H, et al. In situ melting and solidification assessment of AZ91D granules by
computer-aided thermal analysis during investment casting process. Mater Des
2013;50:181-90.

Malhotra V, Kumar Y. Casting defects: an literature. Technology (Singap World Sci)
2016;7(1):60-2.

Luan Y, et al. Effect of solidification rate on the morphology and distribution of
eutectic carbides in centrifugal casting high-speed steel rolls. J Mater Process
Technol 2010;210(3):536-41.

Kosec B, Kosec G, Sokovic M. Temperature field and failure analysis of die-casting
die. Arch Comput Mater Sci Surf Eng 2007;28(3):182-7.

Pehlke RD, Jeyarajan A, Wada H. Summary of thermal properties for casting alloys
and mold materials. NASA STI/Recon Technical Report N 1982;83:36293.
Gilman MJ. A brief survey of stopping rules in Monte Carlo simulations. Inst
Electric Electron Eng (IEEE) 1968.


http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0044
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0044
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0045
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0045
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0046
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0046
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0047
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0047
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0048
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0048
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0049
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0049
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0049
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0050
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0050
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0051
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0051
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0051
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0053
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0053
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0054
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0054
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0056
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0056
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0057
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0057
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0057
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0059
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0059
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0060
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0060
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0061
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0061
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0062
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0062
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0063
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0063
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0064
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0065
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0065
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0068
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0068
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0069
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0069
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0070
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0071
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0073
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0073
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0073
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0074
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0074
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0075
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0075
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0077
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0077
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0077
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0078
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0078
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0078
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0080
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0080
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0080
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0081
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0081
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0082
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0082
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0083
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0083
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0084
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0084
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0085
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0085
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0085
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0086
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0086
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0087
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0087
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0088
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0088
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0089
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0089
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0090
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0090
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0090
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0091
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0091
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0091
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0092
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0092
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0093
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0093
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0093
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0094
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0094
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0095
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0095
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0096
http://refhub.elsevier.com/S0951-8320(23)00037-6/sbref0096

	Quantification and propagation of Aleatoric uncertainties in topological structures
	1 Introduction
	2 Overview of the proposed methodology
	3 Statistical representation of Aleatoric uncertainties
	3.1 Gaussian random field for uncertainty representation
	1.2 Shortest interior path distance between two sampling locations

	4 Parameterization of the high dimensionality input uncertainty
	4.1 Probabilistic principal component analysis (PPCA)
	4.2 Beta-variational autoencoder (βVAE) and it with Gaussian mixture prior
	4.2.1 Beta-variational autoencoder (βVAE)
	4.2.2 Gaussian mixture beta variational autoencoder (GM-βVAE)


	5 Non-Intrusive uncertainty propagation
	5.1 Non-intrusive PCE
	5.2 Univariate dimension reduction (UDR)
	5.2.1 Evaluation of statistical moments by Gauss quadrature
	5.2.2 Transformation to the standard normal distribution
	5.2.3 Univariate dimension reduction
	5.2.4 Estimation of the probability density function


	6 Engineering case studies
	6.1 Engineering case 1: Thermal conductivity analysis considering stochastic local material properties
	6.1.1 Problem description, uncertainty representation, and parameterization
	6.1.2 Uncertainty propagation: from stochastic local properties to heat flux

	6.2 Engineering case study 2: quantification of manufacturing-induced uncertainties based on a process-property-performance ...
	6.2.1 Problem description, data collection and uncertainty representation
	6.2.2 Porosity-elasticity relation and parameterization
	6.2.3 Uncertainty propagation: from stochastic local elastic moduli to structure deflection

	6.3 Comparison of the methods of uncertainty parameterization and uncertainty propagation
	6.3.1 Comparison of the parameterization methods
	6.3.2 Comparison of the uncertainty propagation methods


	7 Conclusion
	APPENDIX
	A.1 Material properties used in solidification simulation
	A.2 Selection of the dimension of latent variables
	A.3 Criterion of convergence of MCS
	A.4 Marginal distribution of local properties
	A.5 convergence test for selecting the polynomial order and the number of gauss nodes and weights in engineering case 1
	A.6 Convergence test for selecting the polynomial order and the number of Gauss nodes and weights in engineering case 2
	A.7 Engineering case study for selecting dimension reduction methods

	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


