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Abstract—The dielectric characterization of silicate materials
up to 2.5 THz is presented in this paper, to try to fill up
the THz gap between electrical and optical measurements.
Several measurement techniques have been employed to provide
a broadband response. Materials in the silicate family can be
classified as amorphous or crystalline. The internal structure, as
well as the composition of the material, influences the dielectric
properties. The loss of a material depends on its crystallinity,
with higher crystallinity exhibiting lower loss.

I. INTRODUCTION

The 5th generation of mobile communications (5G) has
emerged with a number of new frequency bands comple-
menting the sub-7 GHz former ones. Some of these bands
are placed in the millimeter-wave (mm-wave) spectrum, on
which the wavelengths are around one order of magnitude
lower. This can be translated as more obstruction for the
waves propagation [1], [2]. For the sixth generation (6G) more
spectrum from 100 GHz to several THz is under assessment
[3], [4]. The new frequency bands included in the mm-wave
spectrum have brought a renovated interest in glass substrates,
as they limit outdoor to indoor coverage in the mm-wave
spectrum [5], [6]. Apart from that, the front and back covers
of the phones are made with Gorilla glass, and large intelligent
surfaces on glass (LIS) have been proposed for 6G [7].

However, there is a measurement gap between the electric
and optical frequencies, and the reported data is limited. In
[2], the attenuation of typical building materials is given at
28 GHz, 73 GHz and 91 GHz. The window attenuation at 38
GHz is given in [8]. In [9]–[11], the measurements of some
dielectrics and semiconductors are given until 110 GHz. Paper
[11] compares the loss of three different glasses at 10 GHz,
77 GHz and 110 GHz. In [12], the dielectric properties of
alkali and alkali-free aluminoborosilicate glasses are shown
until around 100 GHz.

In this paper, we aim not only to characterize the materials
in the silicate family up to 2.5 THz, but also to understand
why some of them have higher loss than others.

II. SILICATE MATERIALS

The silicate materials are divided in two groups according
to their internal structure: crystalline and amorphous materials.
The latter group can be divided in fused silicas and glasses,
with a higher and lower level of crystallinity, respectively.

In the amorphous case, the addition of alkali and alkaline-
earth modifiers into silica contributes to the depolymerization
of the SiO2 network. Each molecule of alkaline oxide causes

the breakage of a Si − O − Si bridge, resulting in two non-
bridging atoms. Depending on the amount of modifiers, the
depolymerization can lead to five different silicon microstruc-
tures, also known as Q(n) species, with n the number of
bridging oxygens [13].

III. MEASUREMENT TECHNIQUES

For the measurements in the lower part of the mm-wave
spectrum, the following techniques have been used: split-post,
split-cavity, open resonator and MCK from SWISSto12. The
first two can only measure one frequency point (below 5.17
GHz and below 20 GHz, respectively), while the last ones
provide multiple frequency points. For the open resonator, the
frequency range is 15−67 GHz. For the MCK, the frequency
range is 70− 115 GHz.

This contribution is focused on the measurement above
those frequencies, in the THz spectrum. THz time-domain
spectroscopy (THz-TDS) has been employed and the trans-
mission set-up is plotted in Fig. 1a.

(a)

(b)

Fig. 1: (a) Simplified illustration of the THz time-domain
spectroscopy set-up. (b) Real set-up.
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IV. MEASUREMENT RESULTS

The dielectric constant of the measured materials is plotted
in Fig. 2a. The thickness of the materials vary between 0.3−
1 mm (2.3 mm for window glass). The results from 5 GHz
to 115 GHz have been included to show the tendency. The
glasses have a dielectric constant between 5 and 7, except for
Borofloat 33, which has a permittivity of 4.2 due to the lower
polarizability of the boron ion [14]. The fused silicas have a
typical permittivity below 4.3, while for quartz, the value is
around 4.4. Sapphire is not part of the silicate family and has
been added as a reference, and its permittivity is around 9.2.

The loss tangent results can be found in Fig. 2b. It is clear
in the figure how the samples are separated in three different
regions that depend on their internal structure. Glasses are the
most lossy materials, with a loss tangent reaching 10−1 at the
THz frequencies. Fused silicas are one order of magnitude
below, and the crystalline materials have even lower loss.
However, the values obtained for the crystalline materials
should be just taken as a reference, since they reach the
techniques’ loss floor.
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Fig. 2: Measured results. (a) Dielectric constant. (b) Loss
tangent.

V. CONCLUSION

The internal structure of a silicate material affects the
polarizability of its molecules under an electric field. The
purest sample, i.e. quartz, is only formed by Q4 structures.

However, in highly-modified glasses, the percentage of Q3

and Q2 is large. The lower amount of bridging oxygens gives
the molecules extra mobility, which translates in higher loss.

The measurement results are obtained from 5 GHz until 2.5
THz. The upper limit of the measurement band is limited by
the response of the zinc-telluride crystal.
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