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ABSTRACT

Multilayer ceramic capacitors (MLCC) play a vital role in electronic systems, and their reliability is of critical importance. The ongoing
advancement in MLCC manufacturing has improved capacitive volumetric density for both low and high voltage devices; however, concerns
about long-term stability under higher fields and temperatures are always a concern, which impact their reliability and lifespan. Consequently,
predicting the mean time to failure (MTTF) for MLCCs remains a challenge due to the limitations of existing models. In this study, we
develop a physics-based machine learning approach using the eXtreme Gradient Boosting method to predict the MTTF of X7R MLCCs under
various temperature and voltage conditions. We employ a transfer learning framework to improve prediction accuracy for test conditions with
limited data and to provide predictions for test conditions where no experimental data exists. We compare our model with the conventional
Eyring model (EM) and, more recently, the tipping point model (TPM) in terms of accuracy and performance. Our results show that the
machine learning model consistently outperforms both the EM and TPM, demonstrating superior accuracy and stability across different
conditions. Our model also exhibits a reliable performance for untested voltage and temperature conditions, making it a promising approach
for predicting MTTF in MLCCs.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0158360
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INTRODUCTION

Multilayer ceramic capacitors (MLCCs) have become essen-
tial components of modern electronics, powering a range of devices
from consumer electronics to medical devices and automotive tech-
nologies. As part of the miniaturization trend in MLCC manufactur-
ing, capacitive volumetric density of MLCCs has improved signifi-
cantly because of reduced active dielectric layer thickness. However,
the trend toward miniaturization raises concerns about reliability
of MLCCs, particularly in terms of long-term operational stability
at high temperatures and fields."” The majority of high capacitance
MLCCs are based on BaTiOs3, which has superior dielectric proper-
ties, such as high permittivity, low dielectric loss, and the capacity
to tailor properties over a wide temperature range.” °There are two

types of BaTiO3-based MLCCs: those utilizing precious metal elec-
trodes (PME) and those using base metal electrodes (BME). PME
MLCCs employ Ag, Pt, Pd, and/or Ag-Pd alloys, all of which can
be sintered in ambient air atmosphere.”° In contrast, BME MLCCs
employ Ni or Cu and must be sintered under low partial pres-
sures of oxygen to prevent oxidation. These sintering conditions
are typically reduced to BaTiOs, and thus, a re-oxidation anneal
is conducted at lower temperatures and partial pressure to mini-
mize oxygen vacancies without oxidizing the metal electrodes.” '
Nevertheless, the cofiring of BaTiO3-based MLCCs with Ni elec-
trodes under low oxygen partial pressure conditions raises concerns
about oxygen vacancies electromigration, which play a significant
role in the degradation of insulation resistance in MLCCs and their
breakdown eventually.
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Highly Accelerated Lifetime Testing (HALT) is a traditional
method to statistically investigate the reliability and lifetime of
MLCCs."”'" In this method, MLCCs are exposed to much higher
temperatures and voltages than those in normal operating condi-
tions to accelerate the test. The lifetime of MLCCs under normal
operating conditions can be extrapolated from the failure time of
components measured by the HALT. The Eyring empirical model
(EM) is frequently used to extrapolate HALT results to deter-
mine the mean time to failure (MTTF) of MLCCs under operating
conditions, which can be expressed as

h (Va\'  [E(1 1 @
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where t, V, T, n, kg, and E, are the lifetime of MLCCs, applied volt-
age, temperature, the electric-field acceleration factor, Boltzmann’s
constant, and activation energy of mobility governing the degra-
dation process, respectively. The voltage acceleration factor, repre-
sented by n, can be determined in PME MLCCs by conducting a
statistical analysis on a limited number of tests. Typically, n is a
constant and independent of temperature and applied voltage. How-
ever, in modern BME MLCCs, n is not a constant and is influenced
by temperature and applied voltages, which can pose significant
challenges in predicting the lifetime of MLCCs. Extensive testing is
required to determine the non-linearities of n. It is also crucial to
avoid driving accelerated lifetime tests to extremes that could induce
multimode failures, as these do not reflect the normal operating
conditions of the MLCCs." """

To overcome the limitations of the Eyring model, the tipping
point model (TPM) was introduced based on a physical model that
assumes the accumulation of a critical space charge density with oxy-
gen vacancies at the cathode interface and considers local fields.'
Consequently, the lifetime of MLCCs can be predicted as follows:
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where t and pcri; are the predicted lifetime and the critical space
charge density at the cathode interface, respectively. a, 9, N, and ¢
are jump distance, jump frequency, oxygen vacancy concentration,

and oxygen vacancy charge, respectively. Based on the following
equation:

In(t) =C(T) - In (sinh(‘BE;PP)), (3)

by fitting the failure times in the In-In plot with a slope of -1, the
values  and C(T) can be determined, and the MTTF can be pre-
dicted. The f value reflects the local electric field that governs the
rate-controlled process of developing the critical ionic space charge
within a given microstructure as well as component design. The
C(T) value is the fitted data’s intercept and includes terms such as
diffusion activation energy, jump frequency, ionic hop distance, and
mobile oxygen vacancy concentration. Morita et al."> modified the
tipping point model by incorporating a depolarization field for low
electrical field predictions considering the time-dependent develop-
ment of the internal depolarization field. The basic assumptions of
this approach consider that there is a critical accumulation of oxy-
gen vacancy concentration in each BME MLCC that triggers the
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rapid increase in leakage current and ultimate failure of the MLCC
design. The time between obtaining the critical oxygen vacancy con-
centration and breakdown failure is much shorter than the wear-out
time. The Morita et al.'” model considers that the space charge accu-
mulation builds a small depolarization field that, with a low field
application, has an effectively lower field and, thereby, longer life-
time than under higher fields. In previous articles, we demonstrate
that the TPM outperforms the EM in terms of consistency and accu-
racy under different temperatures and electric field conditions.'” We
also demonstrate that relying solely on MTTF can be misleading due
to the considerable variance in MTTF values.'® As a result, rather
than relying solely on MTTF, it is critical to estimate the lifetime
distribution as a function of the testing variables.

Existing lifetime prediction models are heavily reliant on the
availability and large quantity of experimental data. However, these
can serve as an important starting point for developing a data-
driven and physics-based machine learning approach for accu-
rately predicting the lifetime of MLCCs at various temperature
and voltage conditions. Machine learning techniques have been
increasingly employed to predict the lifetime of electronic devices,
providing valuable insights into their reliability and degradation
mechanisms.'”*" Orchard et al.”® propose a particle filter-based
prognostic approach for better uncertainty representation and man-
agement, enhancing accuracy, reducing uncertainty, and decreasing
computational load using a feedback loop. Ng et al.”’ use machine
learning for predicting battery states, address current model limi-
tations, and highlight challenges for real-time battery management
and optimization. Sawant et al’® review machine learning tech-
niques for predicting capacitance and the remaining useful life of
supercapacitors.

Despite the limited number of experimental data in MLCC reli-
ability studies, machine learning techniques may be able to develop
more accurate lifetime prediction models that do not rely solely
on extensive experimental data but also capture the underlying
physics of the failure mechanisms. Therefore, in this paper, we
develop a more accurate physical-based machine learning model
that can be used to expand the dataset in the absence of costly and
time-consuming experimental data and later can be used to pre-
dict the variance of lifetime values, providing a more comprehensive
estimate of the lifetime distribution.

METHODS

We initially utilize HALT to determine the MTTF of X7R
MLCCs (EIA 1206 case size, 1 yF, and voltage rating of 50 V) under
isothermal conditions at 135, 140, and 150 °C with a DC field rang-
ing from 200 to 375 V. We declare each MLCC as failed when the
leakage current exceeded 300 pA. Subsequently, to overcome the
limitations of existing models, we employ the eXtreme Gradient
Boosting (XGBoost)*’ method to develop a physics-based machine
learning model (MLM), capable of accurately predicting the life-
time of MLCCs. We develop our model with two primary objectives:
improving prediction accuracy for test conditions with limited data
and providing predictions for test conditions where no experimental
data exist, as demonstrated in Fig. 1.

To accomplish the first objective of enhancing the accuracy of
predicting MTTF at a specific temperature across various voltages,
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FIG. 1. (a) Enhancing the lifetime prediction of MLCCs based on a XGBoost model pre-trained on data generated by TPM for the consistent Ty. (b) Predicting lifetime of

MLCCs for unseen experimental data for Ty.

we implement XGBoost models within a transfer learning frame-
work. This approach allows us to address the limitation of TPM’s
accuracy caused by the limited availability of data. Initially, we
determine TPM parameters [ and C(T)] by fitting to the MTTF
experimental results obtained from HALT at a target temperature.
Subsequently, we employ TPM to create a dataset at the specified
temperature and varied voltage conditions. Then, we pre-train our
XGBoost model on this dataset, creating a base model for pre-
dicting MTTF. The XGBoost parameters of the base model are
collected for the transfer learning phase, during which we fine-tune
the model using the experimental data employed to fit TPM para-
meters. This transfer learning approach is necessary because, during
the pre-training phase, the base model is fitted to the dataset gen-
erated by TPM, leading to similar prediction errors. The errors
introduced by TPM can be reduced by refining the MLM using the
experimental data, resulting in enhanced model performance. It is
important to note that instead of combining the experimental results
and TPM-generated dataset, the experimental results are only intro-
duced during the transfer learning stage. This process ensures that
the model is exposed to the accurate data in the final step, rather than
merely training on a single dataset containing a mix of TPM-derived
and experimental data.

To achieve our second objective of providing predictions for
untested voltage and temperature conditions, we employ both TPM
and EM to estimate MTTF across various temperatures. The training
phase consists of three steps: First, we pre-train the base model on
a TPM-derived dataset based on temperatures (e.g., T; and T5) for
which experimental data are available, and thus, TPM parameters
are known. Next, we fine-tune the base model on the experimen-
tal data available for T and T, exposing the model to a dataset
of higher accuracy. Finally, we fine-tune the model once more on
the EM-derived dataset created for the target temperature, T3. We
employ EM because the use of TPM is restricted by the availability of
data for the target temperature; C(T) is temperature-dependent and
cannot be predicted from other temperatures. In addition, to ensure
accurate predictions by EM, it is crucial to use identical voltage

values between the initial and target temperatures. This approach
eliminates the impact of parameter # in the EM and prevents addi-
tional errors associated with it, which will be discussed in detail in
the following section. Consequently, we assess the performance of
the MLM on various voltages of the target temperature and compare
it to the EM. In all instances, the XGBoost base model is trained by
running a grid search cross-validation on the hyperparameters space
shown in Table I.

To ensure positive MTTF values from the model, we apply a
logarithmic transformation to the target MTTF. This transforma-
tion is a common technique used to address the issue of negative
predictions or non-normality in the target variable. Specifically,
we apply the natural logarithm transformation using the Python
NumPy library’s log function, which maps the original values of y
to the log scale. After fitting the model using the transformed tar-
get variable, we obtain predictions by exponentiating the output of
the model using the NumPy library’s exp function. This procedure
ensures that the predicted values are positive and can be interpreted
as the exponentiated output of the model.

Finally, we perform feature engineering to extract relevant
information from the raw data and improve the performance of
the predictive model. Specifically, we generate a set of features
based on the two primary variables of interest: V and T. These
include various transformations of V and T, including V2, V*, V.T,
%, LnV, LnT, V.LnT, and T.LnV. These transformations can
help capture any non-linear or complex relationships between V and
T and the response variable.

TABLE 1. Hyperparameter grid space for XGBoost base model.

Hyperparameter Range
learning_rate 0.01, 0.1, 1
max_depth 3, 4, 5

n_estimators 100, 200, 500
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RESULTS AND DISCUSSION

To improve the accuracy of predicting MTTF for X7R MLCCs
at a specific temperature across various voltages, we initially obtain
MTTF data by conducting isothermal HALT under various DC field
conditions. Subsequently, we use the linear least squares regression
method to fit the experimental MTTF data at each temperature with
the EM and TPM. Notably, at each temperature, we exclude the
MTTEF data associated with the target voltage condition and used the
remaining MTTF data to calculate the EM parameter, #n, and TPM
parameters, 5 and C(T). This is carried out to prevent data leakage
while evaluating the MLM for the target voltage. Furthermore, the
activation energy of these MLCC failures was previously calculated
and reported to be 1.70 + 0.30 and 1.66 + 0.09 eV, respectively, using
the EM and TPM."” However, we also prevent information leakage
by only calculating the average activation energy of MTTF data that
is used for training, excluding the target MTTF data. We use these
calculated parameters to create our pre-training dataset, as well as
make predictions using TPM and EM for final comparison.

For each target voltage, we use its corresponding TPM para-
meters to create a dataset for pre-training. Once the base model is
created, we fine-tune the remaining experimental data, excluding
the data point with the target voltage. Then, we evaluate the MLM
against the target voltage and compare its performance to that of
TPM and EM. The results are shown in Fig. 2. We use two evalua-
tion metrics to compare the performance of the models. Specifically,
we obtain the root mean square error (RMSE) and root mean square
percentage error (RMSPE) scores, which are calculated as follows:

RMSE = \ %2 (y,._y~,.)2’ 4)
m A 2
RMSPE = \ %; (y‘y—y) ) (5)

where m represents the number of MTTF data points, and y; and y;
denote the MTTF experimental value and the predicted MTTF of
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MLCC at the ith voltage and temperature condition, respectively.
Both RMSE and RMSPE values are reported to provide a compre-
hensive assessment of the models’ performance. RMSE measures
the average squared difference between the predicted values and the
actual values and provides an idea of how far, on average, the pre-
dictions are from the actual values. It is highly sensitive to large
errors or outliers in the data. Because the differences between the
predicted and actual values are squared, larger errors have a signif-
icant impact on the RMSE value. Consequently, a single large error
can significantly increase the RMSE, even if the model performs well
for the majority of the data points. RMSPE, on the other hand, is
also sensitive to outliers; however, its sensitivity is affected by the
magnitude of the actual values. For data points with large actual
values, the percentage error might be small even if there is a signif-
icant absolute error. On the other hand, for data points with small
actual values, a small absolute error can result in a large percentage
error. Therefore, RMSPE is more sensitive to errors in the predic-
tions for data points with smaller actual values. Moreover, since
the RMSPE is expressed as percentage, it enables model compari-
son across datasets of different scales. This dual evaluation approach
offers a better understanding of the performance of the predic-
tion models in accurately estimating the MTTF of X7R MLCCs
over a comprehensive range of voltages and specific temperature
conditions. Table IT shows the RMSE and RMSPE values for each
predictive model at each temperature, where clearly demonstrates
that MLM consistently outperforms other models.

A deeper look into the error analysis of predicted MTTF val-
ues for all models reveals that the error is more significant for the
largest voltage conditions at each temperature, where the conditions
are more aggressive, and the failure mechanism may have changed.
Consequently, the RMSPE score is specifically decreased for smaller
values of MTTF under such aggressive conditions since a small error
in predicting a small true value can result in a large percentage
error (e.g., see RMSPE for TPM at 140 °C). This suggests that under
extreme conditions, models may struggle to predict failure times
accurately. In such conditions, however, the MLM model outper-
forms the EM and TPM models. The average percentile error and
standard deviation of MTTF predictions for EM, TPM, and MLM
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FIG. 2. A comparison of MTTF predictions from the EM, TPM, and MLM for BME X7R MLCCs at the consistent temperature Ty under different dc bias conditions, with
experimental MTTF data .
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TABLE II. RMSE and RMSPE values for MTTF predictions made by EM, TPM,
and MLM for BME X7R MLCCs at constant temperature T, under different dc bias
conditions with experimental MTTF data.

RMSE RMSPE (%)
Temperature °C) EM TPM MLM EM TPM MLM
135 41.3 347 24 36.6 27.0 234
140 13.7 223 10.6 61.5 167.0 33.0
150 99.6 47.7 41.5 82.8 39.1 34.9

models are 45 + 46, 47 + 91, and 27 + 17, respectively. These find-
ings highlight the superior performance of the MLM in predicting
MTTF values, particularly under extreme voltage conditions, as well
as its stability across different temperature and voltage conditions,
as its accuracy does not change significantly with possible changes
in the failure mechanisms.

The large variation in error when predicting MTTF values
using the EM may be attributed to their sensitivity to the number of
experimental data points used for fitting and failure mechanism. As
previously demonstrated, the values of n (electric-field acceleration
factor) and E, (activation energy) in the EM can vary significantly
depending on the selection of data points. In addition, since the
closest voltage condition to the target condition is used to pre-
dict the MTTF values with the EM model, the reported errors may
represent the minimum possible errors. If the farthest voltage con-
dition is selected, the errors increase significantly by a factor of
n. This implies that the accuracy of the EM model can be influ-
enced by the availability and representativeness of experimental data
used for model fitting, and it is highly dependent on the proxim-
ity of the data used for prediction to the target condition, and the
model’s performance may deteriorate when extrapolating to condi-
tions further away from the fitted data. However, the large variation
in error observed when predicting MTTF values using the TPM can
be primarily attributed to the dominant failure mechanism. This was
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demonstrated by excluding the most aggressive condition (largest
voltage conditions) at all temperatures. In this case, the average per-
centile error and standard deviation of MTTF predictions for EM,
TPM, and MLM models change to 31 + 33, 21 + 15, and 22 + 13,
respectively, which resulted in a significant reduction in the aver-
age percentile error and standard deviation of MTTF predictions
for TPM. Moreover, it is worth noting that despite previous find-
ings, C(T) values in TPM are not merely a function of temperature
but also found to be dependent on the applied voltage and sen-
sitive to the selection of data points, which further contributes to
the variability and potential inaccuracy of TPM predictions. These
outcomes highlight the limitations of TPM and EM and emphasize
the need for a more robust and accurate approach for predict-
ing MTTF values, such as MLM. The MLM demonstrates superior
precision and consistency in a wide range of conditions, and its
strength lies in integrating a physics-based methodology, using TPM
and EM as foundational models, with the incorporation of trans-
fer learning. This innovative coupling of strategies introduces a
data-centric approach, providing the model with a novel resilience
against probable failure mechanisms and variability in testing
conditions.

To investigate the performance of the MLM model in provid-
ing predictions for untested voltage and temperature conditions, we
use a similar approach for training the MLM. First, the base model
is pre-trained on a TPM-generated dataset from available test con-
ditions. Next, the model is fine-tuned on the available experimental
data. Finally, we fine-tune the model once more on an EM-generated
dataset using shared voltage conditions. As mentioned before, the
shared voltage condition constraint is to avoid exponential error
introduced by the factor n. We use the same considerations as we
did for the previous objective, to avoid information leakage. The per-
formance of MLM and EM is evaluated against experimental data,
as shown in Fig. 3. Subsequently, the RMSE and RMSPE values for
each prediction model at each temperature are reported in Table I11.
The results clearly demonstrate that MLM consistently outperforms
EM in terms of accuracy. One of the limitations of EM is its depen-
dence on the existence of data with the same voltage when making
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FIG. 3. A comparison of the MTTF predictions from EM and MLM for BME X7R MLCCs at unseen temperature Ty under different dc bias conditions with experimental MTTF
data . For T = 140 °C, all voltage conditions are already available from previous tests on temperatures other than 140 °C, thereby making the performance of MLM and EM
of equivalent accuracy. For 135 and 150 °C, not all voltage conditions are available from previous experiments, leading to large errors on those points by EM.
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TABLE Ill. RMSE and RMSPE values for MTTF predictions made by EM and MLM
for BME X7R MLCCs at unseen temperature Ty under different dc bias conditions
with experimental MTTF data.

RMSE RMSPE (%)
Temperature (°C) EM MLM EM MLM
135 321.2 32.1 2100 23
140 28.1 28 25.9 25.9
150 55.3 43.6 39.8 34.5

predictions for different temperatures. If the voltages for which the
data points are generated are not shared between the initial and tar-
get temperatures, average values of # should be used. Choosing an
inaccurate value for n leads to poor prediction performance because
of the exponential error introduced by the first term in the EM.
This is evident when comparing EM performance across the three
test conditions. For T = 140 °C, all voltages are shared between the
training and testing data; therefore, the performance of MLM goes
hand in hand with that of EM, with a minor improvement. How-
ever, for the other two temperatures, not all voltages are shared,
and EM shows poor predictive performance on those conditions
(see Fig. 3 for T=135°C at 375 V and for T = 150 °C at 200 V).
Therefore, to ensure accurate predictions with EM, it is crucial to
use shared voltage values between the initial and target tempera-
tures. In contrast, the MLM model, which is not reliant on specific
assumptions about parameter #, consistently demonstrates superior
accuracy compared to the EM model, as clearly demonstrated in the
results.

SUMMARY AND CONCLUSION

In this study, we present a physics-based machine learning
model (MLM) based on the XGBoost method for predicting the
mean time to failure (MTTF) of multilayer ceramic capacitors
(MLCCs) under various temperature and voltage conditions. The
MLM employs a transfer learning framework to overcome data
limitations and provides accurate predictions even for untested
conditions. Unlike the heavy reliance of existing lifetime predic-
tion models, such as the Eyring model (EM) and the tipping point
model (TPM), on the availability and quantity of experimental data,
the MLM uses transfer learning to leverage the underlying physics
from those models and adapt to existing data to make reliable
predictions. The MLM demonstrates greater accuracy and stabil-
ity across varied test conditions, capturing complex patterns with
limited data. This contrasting with the performance of EM and
TPM, which are considerably sensitive to the end points and have
shown to introduce large prediction error at those extreme points.
However, despite the relative abundance of data in our study, the
size of the data is generally small, which hinders a more thor-
ough validation of our model. Further research and validation are
needed to improve the performance of the proposed model and
distinguish possible dominant failure mechanisms based on lim-
ited experimental data in each regime. In addition, our approach
focuses solely on voltage and temperature as main features. Incor-
porating additional stress factors, such as mechanical stress and
humidity, could further improve the model’s predictive capabili-
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ties. Finally, despite data constraints, our physics-based approach
guarantees accuracy at least on par with EM and TPM. We con-
tend that as long as conventional models can be utilized, our MLM
can augment their accuracy, delivering superior performance and
stability. This paper focused merely on predicting the MTTF. We
have argued that one needs to consider the entire distribution for
the lifetime of MLCCs to achieve a valid reliability estimate. The
next phase of our ongoing work would be to predict the variance of
the distribution as a complementary factor for thorough reliability
analysis.
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