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Abstract Proxy reconstructions and model simulations of precipitation during Earth's glacial periods
suggest that the locations and mechanisms of atmospheric moisture transport have changed considerably
during Earth's past. We investigate the hydroclimate of the Last Glacial Maximum (LGM) using simulations
with the Community Earth System Model, with a focus on the extratropics and the influence of atmospheric
rivers (ARs), a key driver of modern-day moisture transport globally. Mean and extreme precipitation increase
significantly over southwestern Patagonia, Iberia, and southwestern North America—mid-latitude regions
affected by ARs in the modern climate—despite overall decreases elsewhere. In each, the associated moisture
transport changes are different, with increased transport and AR activity mainly occurring in the North Atlantic.
The overall LGM response is dominated by the response to ice sheets, with other forcings causing additional
cooling and drying over the extratropics and a strong decrease of moisture transport over the subpolar North
Atlantic.

Plain Language Summary During the last ice age, when glaciers reached their maximum extent,
atmospheric CO, was lower and Earth's orbit was different. All of these influences caused dramatic changes
in precipitation patterns around the planet. Using climate model simulations, we find that the majority of the
changes to atmospheric moisture transport and precipitation patterns result from the presence of the ice sheets
alone, with lower CO, and insolation differences enhancing the ice sheet-induced patterns. These changes
mainly comprise decreases in moisture transport and lower precipitation, with three notable exceptions in
Patagonia, Iberia, and southwestern North America. Of these, precipitation increases over Iberia result from
increased transport by plumes of moisture, known as atmospheric rivers , across the North Atlantic. Elsewhere
in the world, AR activity decreases.

1. Introduction

The hydrologic cycle of the Last Glacial Maximum (LGM; ~21,000 years ago) has received considerable atten-
tion, particularly regarding changes relative to the modern in net precipitation over land (Amaya et al., 2022;
Boos, 2012; Broecker, 2010; Kutzbach & Wright, 1985; Lora, 2018; Lora et al., 2017; Morrill et al., 2018; Scheff
et al., 2017; Tabor et al., 2021). There is evidence from various regions that, despite a much colder global
climate (i.e., Annan et al., 2022; Paul et al., 2021; Tierney et al., 2020), significant increases in local precipita-
tion occurred at the LGM, contrary to simple thermodynamic expectations (see Boos, 2012), especially along
the western extratropical portions of continents (Beghin et al., 2016; Goldsmith et al., 2017; Kirby et al., 2013;
Oster et al., 2015). Given that changes in the atmospheric circulation have been found to be critical to changes of
the moisture budget (Boos, 2012; Lora, 2018; Morrill et al., 2018), the response of the transport of moisture to
LGM forcings and its connections to these increases (and changes elsewhere) are thus important considerations
for understanding the LGM hydroclimate.

In addition to lower greenhouse gas concentrations and a slightly altered insolation distribution, the LGM featured
large ice sheets whose presence substantially altered the atmospheric circulation and climate system. Stationary
waves excited by the ice sheets' topography and albedo have been variously linked to changes in the locations,
tilts, intensity, and variability of the mid-latitude jets, and associated extratropical precipitation distributions
(Amaya et al., 2022; Cook & Held, 1988; Lee et al., 2023; Lofverstrom, 2020; Lofverstrom et al., 2016; Merz
et al., 2015; Roberts et al., 2019). Similarly, many studies have investigated the dynamics of transient eddies
(extratropical cyclones) and the storm tracks, and their (potentially model-dependent) responses to the ice sheets
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and steepened LGM meridional temperature gradients (Donohoe & Battisti, 2009; Kageyama & Valdes, 2000;
Lainé et al., 2009; Li & Battisti, 2008; Pinto & Ludwig, 2020; Riviere et al., 2010, 2018). Importantly, ice sheet
reconstructions remain uncertain, with impacts on the strength of the response of the circulation (Kageyama
et al., 2021; Merz et al., 2015; Ullman et al., 2014). Yet, aside from a few studies with a regional purview
(Lofverstrom, 2020; Lora et al., 2017; Tabor et al., 2021), most such previous investigations have not provided
much detail about the transport of moisture by the atmosphere.

In this study, we investigate the response of moisture transport (and its convergence), which incorporates both
circulation and humidity changes (e.g., O’Gorman & Schneider, 2008), to LGM conditions, with an emphasis on
the influences exerted by the ice sheets. An important aim is a better understanding not just of the behavior of the
disturbances that lead to precipitation, but also of the provenance of the moisture comprising this precipitation.
We are also motivated to examine the statistical extremes of precipitation and moisture transport events, as these
have previously been implicated as important contributors to the local LGM hydroclimate of western North
America and Europe (Lofverstrom, 2020; Lora et al., 2017). In the present day, these regions are heavily influ-
enced by atmospheric rivers (ARs), synoptic plumes of water vapor that account for the majority of atmospheric
moisture transport and are associated with extreme precipitation (high intensity precipitation events; Dettinger
et al., 2011; Guan et al., 2010; Lamyjiri et al., 2017; Lavers & Villarini, 2013; Ralph et al., 2019; Waliser &
Guan, 2017; Zhu & Newell, 1998). Yet modern-day ARs occur across all of the extratropics in close connection
with the storm tracks (Baek et al., 2023; Lora et al., 2020; Newman et al., 2012; Shaw et al., 2016; Sodemann &
Stohl, 2013; Viale et al., 2018; Zhang et al., 2019; Zhu & Newell, 1998); therefore, whether and to what extent
LGM ice sheet and other forcings alter the behavior of ARs globally is our primary interest. A companion study
(Skinner et al., 2023) investigates the influence of ARs on the LGM ice sheets themselves; our focus here is on
the unglaciated mid-latitudes.

2. Methods

We use three sets of simulations with the Community Earth System Model version 2 (CESM2) (Danabasoglu
et al., 2020), as in Skinner et al. (2023) (Text S1 in Supporting Information S1). Briefly, these comprise a prein-
dustrial control simulation, a full LGM simulation (including lower greenhouse gas concentrations and modified
insolation), and a simulation with LGM ice sheets but otherwise the same as preindustrial. In all cases, the
simulations use a model horizontal resolution of 0.9° X 1.25° for the atmosphere/land and 1° for the ocean/sea
ice. In the two relevant cases, the LGM ice sheet is prescribed using the ICE-6G reconstruction at 21 ka (Peltier
et al., 2015). Our results are based on 100 years of simulation after a period of spin-up (Text S1 in Supporting
Information S1). All differences between simulations shown below display only significant results (p < 0.01)
using a two-sided #-test.

We define extreme precipitation as the value of precipitation at the all-interval 99th percentile locally (Schér
et al., 2016), using 6-hourly precipitation; therefore, comparisons between simulations show the change in that
value (rather than a percentile change for a given value). We identify ARs using the algorithm (“Lora_v2”)
described in Skinner et al. (2020, 2023). ARs are defined from 6-hourly integrated vapor transport (IVT) regions
that exceed a threshold value, which depends on the 30-day running mean of the zonally averaged integrated water
vapor, thus accounting both for latitudinal gradients in moisture and also for the background climate state; this
enables comparisons across different or changing climates (Baek & Lora, 2021; Baek et al., 2023; Menemenlis
et al., 2021; O’Brien et al., 2022; Skinner et al., 2020; Skinner et al., 2023). Within the modern climate, the
algorithm compares favorably with most other detection methods, particularly for moderate (i.e., wherein IVT
roughly exceeds 500 kg m~! s71) and stronger ARs (Lora et al., 2020; Marquardt Collow et al., 2022; Rutz
et al., 2019). Finally, for our purposes, AR IVT and AR precipitation are defined simply as IVT and precipitation
that are concurrent with AR regions.

3. Results
3.1. Precipitation and Moisture Transport

Globally, average precipitation changes at the LGM in our simulations are primarily comprised of tropical and
extratropical drying accompanied by wetting over subtropical oceans, in agreement with the PMIP4 model
ensemble (Kageyama et al., 2021) and as might be expected from a simple thermodynamic scaling (compare
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Figure 1. Average and extreme precipitation. (a) Average precipitation from the preindustrial simulation, and the differences in precipitation between (b) full LGM and
preindustrial simulations, (c) LGM ice sheet and preindustrial simulations, and (d) full LGM and LGM ice sheet simulations. Insets in panel (b) highlight three regions
of interest. (e—h) Extreme precipitation defined as the local values of the 99th percentile precipitation; panels as in (a)—(d).

Figures 1a and 1b; Held & Soden, 2006). Over land, most regions see a decrease in precipitation, with a few
notable exceptions (Figure 1b; see insets): there are large increases (>1 mm d~!) in northwestern Iberia and the
Patagonian Andes, along with smaller but significant increases in southwestern North America, eastern and
western Amazonia, parts of southern and the northwestern coast of Africa, northern Madagascar, and Myanmar.

Many of these increases, particularly in the mid-latitudes, are associated with increases due to the presence
of continental ice sheets (Figures 1c and 1d); the differences in the precipitation responses between LGM and
ice-sheet simulations are concentrated near the tropics, and over the North Atlantic where substantial sea ice
differences (due to the colder LGM climate) modify the atmospheric circulation. Elsewhere, the response can
be interpreted as a modest overall drying on top of the response to the ice sheets (Figure 1d). This is particularly
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Figure 2. Atmospheric moisture transport and its convergence. Average atmospheric integrated vapor transport (IVT; arrows) and IVT convergence (filled contours).
Panels as in Figures la—1d. In the inset (panel b), IVT arrows are enlarged by a factor of four relative to the key.

so in the three western mid-latitude coastal regions experiencing significant precipitation increases, which are
therefore clearly linked to the ice sheet forcing in particular. Importantly, we find no large changes in the season-
ality of precipitation except over the maritime continent and over the northern hemisphere ice sheets and Arctic
Ocean, where in both cases the proportion of summertime precipitation increases (Text S2, Figures S1 and S2 in
Supporting Information S1). This indicates that the provenance and mechanisms of precipitation in the extratrop-
ics are not significantly different between LGM and preindustrial climates.

Changes in extreme precipitation follow similar patterns as average precipitation; notably, large increases in 99th
percentile precipitation (>10 mm d~') occur over southwestern North America, western Iberia, and western Pata-
gonia (Figure 1f), three mid-latitude regions sensitive to AR activity in the modern. All three of these regional
increases are entirely due to the ice sheet forcing; that is, they occur in the ice-sheet simulation and there is little
difference in the response between that and the full LGM simulation (Figures 1g and 1h). We note that, while in
Patagonia increased precipitation occurs over higher ice sheets that enhance topographic and temperature gradi-
ents, explaining the increase in average and extreme precipitation on the western slopes, the enhancements over
the two other regions require other explanations like changes in moisture delivery. Over most other regions of the
globe, extreme precipitation decreases substantially (Figure 1f), and the difference in response between LGM and
ice-sheet simulations resembles that of average precipitation (Figure 1h).

We next examine moisture transport and its extremes. Annual average moisture transport in the preindustrial
largely consists of easterly fluxes in the tropics, anticyclonic patterns over ocean basins between the subtrop-
ics and extratropics, and westerly transport at high mid-latitudes, including onto continents (Figure 2a). These
transport patterns are associated with meridional convergence of moisture in the intertropical convergence zone
(ITCZ), divergence over the subtropical oceans where evaporation outpaces precipitation, and broad but more
modest convergence in the extratropics, which peaks over land along coastlines at these latitudes.

Broadly, the response at the LGM is a weakening of all of these patterns, but with varying magnitudes regionally
(Figure 2b). This is due to a combination of changes to the circulation and column water vapor, which peak in
different regions (Figures S3 and S4 in Supporting Information S1). Notably, many of the precipitation increases
noted above result from increased atmospheric moisture convergence. This is particularly the case for Iberia
and Patagonia, west of which average moisture transport is slightly strengthened and weakened, respectively
(Figure 2b; see inset). On the other hand, over southwestern North America, moisture transport and convergence
changes are small, and the LGM precipitation increases of up to 1 mm d~! along northwestern Mexico are there-
fore accompanied by evaporation increases of similar magnitude (since net precipitation approximately balances
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moisture convergence; e.g., Lora, 2018). Moisture transport into the continent from the western North Pacific
generally decreases, except into Mexico, which sees small increases particularly from the south.

Interestingly, most of the moisture transport changes are associated with the ice sheet forcing (Figure 2c). Over
mid-latitude land regions, this is consistent with previous results with PMIP2 and 3 that indicate the importance
of dynamical relative to thermodynamic changes (e.g., Boos, 2012; Lora, 2018), though here the ice sheet forcing
induces both circulation changes and decreases in column water vapor (Figures S3 and S4 in Supporting Informa-
tion S1). The major exceptions, where other LGM forcings dominate, occur over the northern North Atlantic and
the tropical Pacific and Indian Oceans (Figure 2d). The former is again linked to the presence of sea ice in the colder
LGM simulation, which substantially weakens westerly moisture transport over the region. The tropical responses
consist of a more complicated pattern in the LGM simulation wherein the Pacific ITCZ extends deeper into the north-
ern hemisphere and the southern convergence zone extends farther toward south America, while in the Indian Ocean
the ice sheet forcing induces an enhancement of easterly moisture transport across the basin that is moderated by a
weakened Somali Jet in the full LGM simulation (see DiNezio et al., 2018). The differences in atmospheric moisture
transport and moisture convergence between LGM and ice-sheet simulations are minor over land (Figure 2d).

3.2. Atmospheric Rivers

To better understand climatological changes associated with the synoptic patterns of greatest influence on
mid-latitude moisture transport, and which are often associated with extreme precipitation over extratropical
coastal land areas, we next examine AR activity in our simulations. In the preindustrial case, ARs occur primarily
over the extratropical oceans (Figure 3a), in good agreement with previous results with reanalysis (e.g., Lora
et al., 2020). Over land, AR frequency is highest over the eastern portions of extratropical continents, but westerly
moisture transport by ARs into western North America, Europe, and southern South America is considerable.
Substantial inland penetration of ARs is not obvious in the annual average, which results in part from rapid rainout
of moisture over land that in turn limits their detectability there. The response of AR activity and its associated
precipitation in the LGM simulation is comprised primarily of global weakening (Figure 3b): All of the AR tracks
see mean reductions (on the order of 50 kg m~! s~1) of westerly and poleward moisture transport by ARs, and less
AR precipitation (by upwards of 1 mm d=!), with the notable exception of Iberia and the North Atlantic to its west.

Indeed, the response in the North Atlantic appears as a tripolar structure, with large reductions in the north,
modest reductions around its subtropical latitudes, and a slight increase in AR frequency, moisture transport, and
precipitation in the region in between. This pattern is the consequence of a southward displacement of storms by
cold LGM conditions in the subarctic region, as well as a narrowing and zonalization of the North Atlantic atmos-
pheric circulation (see also Figures S3 and S5 in Supporting Information S1). This is associated with the ice sheet
forcing (Figure 3c), as expected from previous results (Lofverstrom et al., 2016; Lofverstrom & Lora, 2017; Merz
et al., 2015), indicating that the ice sheet reconstruction employed elicits a strong response associated with high
ice sheet topography. Ice sheet forcing alone causes increased AR moisture transport and precipitation between
the east coast of North America and Iberia, due to a zonalization and constriction of the AR track there. The
additional influence of other LGM forcings consists of general weakening (Figure 3d), which again is especially
strong in the North Atlantic due to the enhanced polar cooling there (Figure S6 in Supporting Information S1).
As a result, large LGM reductions (~50%) in AR frequency and accompanying decreases in precipitation occur
over the British Isles and into northwestern Europe, accompanying the more subtle increases over western Iberia
(Figure 3b).

Other mid-latitude land regions also see substantial reductions in AR frequency at the LGM, consistent with their
reduced average and extreme precipitation (Figures 1b, 1f, and 3b). Over coastal east Asia (including all of Japan)
and the Pacific Northwest of North America (wWhere ARs provide 30%—40% of precipitation in the preindustrial;
Figure 3e), AR activity decreases by roughly 50% at the LGM (Figure 3b); similar reductions occur over southern
South Africa, southern Australia, and New Zealand in the southern hemisphere. Over eastern North America and
southeastern South America, the reductions are even larger and extend far into each continent. For example, over
the former, nearly all AR activity disappears; this is largely due to the presence of the ice sheet there (see Skinner
etal., 2023).

In the preindustrial simulation, up to 75% of total precipitation along the centers of the AR tracks is due to ARs,
as are similar percentages of extreme precipitation (Figure 3e). (Note that this far exceeds the frequency of ARs in
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Figure 3. Atmospheric rivers (ARs). (a—d) Average frequency of AR occurrence (open contours; units are percentage of time steps with AR conditions; 10%, 20%, and
30% contours are shown in panel (a), and —10%, —5%, 5%, and 10% contours, from red to blue, in panels (b)—(d)), atmospheric moisture transport due to ARs (arrows),
and precipitation associated with ARs (filled contours). Panels as in Figures 1a—1d. (e-h) Average percentage of total precipitation associated with ARs (filled contours)
and average percentage of 99th percentile precipitation associated with ARs (open contours; 50%, 70%, and 90% contours are shown in panel (e), —15% (yellow) and
+15% (blue) contours shown in panels (f)—(h)). Panels as in (a)—(d).

the same regions, indicating that ARs are important drivers of total and extreme precipitation.) Over land regions
affected by ARs, the percentages of total and extreme precipitation associated with ARs are up to about 45%
and well over 50%, respectively; indeed, over coastal areas of the Pacific Northwest, Patagonia, and northwest-
ern Iberia, ARs account for more than 90% of extreme precipitation. In the LGM simulation, most regions see
substantial decreases in these AR contributions, with, in particular, decreases of >20% (>15%) of total (extreme)
precipitation over western and northeastern North America, the British Isles and Europe, Patagonia, and parts
of New Zealand (Figure 3f). The decreased AR contributions are largest at the peripheries of the preindustrial
AR tracks (compare Figures 3e and 3f), indicating that ARs contribute less to the water cycle of the LGM glob-
ally. The major exception is the region between North America and Iberia, which sees modest but significant
increases in the AR fraction of total precipitation, coincident with the region where LGM AR frequency increases
(Figure 3b).
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Figure 4. Non-AR cold-season moisture transport and precipitation over the North Pacific. Average atmospheric moisture transport (arrows) and precipitation (filled
contours) not associated with ARs during the winter half-year (November—April; see also Figure S2 in Supporting Information S1) over the North Pacific. Also shown
are near-surface average temperatures (unfilled contours, 5°C interval) over the winter half-year; all temperature difference contours shown in panels (b)—(d) are

negative. Panels as in Figures la—1d.

The ice sheet forcing is responsible for large decreases in AR total and extreme precipitation fraction across the
North Pacific, for the tripolar structure over the North Atlantic, and for decreases in the southern hemisphere,
especially close to continents (Figure 3g). The decreases in AR contribution to extreme precipitation are espe-
cially notable around the ice sheets (western and eastern Canada, northwestern Europe, and Iberia), while the
only substantial increase associated with the ice sheet forcing occurs over southern Iberia. However, the ice sheets
do not induce significant changes to the AR contributions to total or extreme precipitation over the subtropical
eastern North Pacific and into southwestern North America. Other LGM forcings lead to decreases in that region,
as well as around the margins of the North Atlantic and in a more distributed fashion in the southern hemisphere
(Figure 3h).

Curiously, the modest increase in LGM precipitation in southwestern North America is difficult to explain with
our IVT and AR results. In particular, AR activity and associated precipitation both decrease over the eastern
North Pacific in the LGM simulation (Figure 3b). This is largely a consequence of forcings other than the ice
sheets (Figure 3d); in the case with only ice sheets, a broad region between Hawaii and California sees no signifi-
cant change in AR activity (Figure 3c) despite lower atmospheric water vapor. Nevertheless, there is little indica-
tion of changes that would enhance precipitation, apart from increased land-sea temperature gradients (Figure 4)
that enhance rainout upon landfall (Boos, 2012; Morrill et al., 2018; Tabor et al., 2021); this is in contrast to
previous findings indicating stronger southwesterly moisture transport into southwestern North America at the
LGM (Lora, 2018; Lora et al., 2017).

We find a significant increase in LGM cold-season precipitation in southwestern North America, particularly in
coastal areas, that is not directly associated with ARs (Figure 4). This change, both in the ice sheet and full LGM
simulations, results from a southward shift of non-AR extratropical precipitation, with decreases at high latitudes
and most of the increases at subtropical latitudes (Figures 4b and 4c); an exception is along the coastlines at
higher latitudes, where changes in temperature gradients, increased elevation, and more exposed land contribute
to an enhanced rainout effect. Most of these changes can be attributed to forcing related to the ice sheet alone
(Figure 4c), with the LGM configuration contributing a relatively minor additional southward shift, particularly
in the western part of the North Pacific associated with lower temperatures from additional sea ice in the Bering
and Okhotsk Seas (Figure 4d). Much of the precipitation increases in southwestern North America seem to be
related to a modest increase in weak wintertime southerly or southwesterly moisture transport, bringing moist
air from lower latitudes (Figures 4b and 4c). These enhancements are not associated with changes in seasonality
(Figure S2 in Supporting Information S1), suggesting instead more frequent but less coherent moisture delivery
taking the place of ARs. It should be noted, however, that non-AR precipitation over the continent need not
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come exclusively from non-AR moisture transport, and can also be delivered in part by ARs that dissipate before
reaching the coastline. Nevertheless, these results overall suggest a decrease in the average intensity of mois-
ture transport events affecting southwestern North America, despite an overall increase in precipitation and its
extremes (Figure 1).

While the North Pacific AR frequency decrease in our simulations agrees with the overall moisture transport and
convergence changes (Figure 2), one can ask whether this AR response is artificially caused or amplified by the
details of our AR detection algorithm; after all, the LGM is a strongly altered climate relative to the preindustrial.
However, our algorithm is designed to account for changes in climate state; in addition, tests changing both the
minimum IVT threshold and minimum length requirement in the algorithm produce the same result (not shown).
Indeed, we conducted an extreme test wherein the algorithm restrictiveness was drastically lowered for the LGM
simulation but not for the preindustrial, resulting in generally higher detections in the former simulation. Glob-
ally, this produced global increases in LGM AR activity (unphysical by design), except in the region in question,
over the western North Pacific, where detected ARs decreased even under these incomparable requirements. We
therefore conclude that it is indeed a feature of our simulations, and not our AR detection algorithm, that LGM
North Pacific ARs consistently decrease. Whether this is a realistic response, or an inaccurate one resulting from
too-high ice sheet topography or too-cold a climate (or some other model bias), remains an open question.

4. Discussion and Conclusions

We have investigated the behavior of precipitation and atmospheric moisture transport, and their extremes includ-
ing ARs, in CESM2 simulations of the LGM climate. The LGM ice sheets elicit a strong response of the circu-
lation in the northern mid-latitudes. This, in combination with atmospheric humidity decreases particularly in
subtropical areas, leads to a southeastward shift of moisture transport and precipitation over both the North Atlan-
tic and Pacific. Other LGM forcings, which further cool the atmosphere and strengthen temperature gradients
over the North Atlantic, enhance these patterns and especially increase moisture convergence over the subpolar
North Atlantic. In the southern hemisphere, the LGM forcings lead to generally weakened moisture transport
resulting from equatorward shifts of winds and eddies, and from decreased humidity (see Figures S3-S5 in
Supporting Information S1).

While we identify the LGM ice sheets as the dominant forcing in our simulations, in agreement with many previ-
ous results, it is worth emphasizing that our results do not imply that the responses to LGM forcings are linearly
additive. In other words, the response of the climate system to lower greenhouse gases or an altered orbit could
be different depending on the presence or absence of the ice sheets, and we have not investigated such sensitivi-
ties explicitly. Furthermore, we also have not specifically diagnosed whether the North American hydroclimate
response to ice sheets, for example, is due to the direct steering of wintertime circulation or is mediated by North
Pacific sea surface temperatures (though sea surface temperatures in our simulations are qualitatively consistent
with those of Amaya et al. (2022)).

Mean and extreme precipitation over land generally decrease under LGM conditions, but robustly increase in
three mid-latitude regions: Patagonia, Iberia, and southwestern North America. In the first of these, increased
moisture convergence occurs due to lifting and enhanced rainout by local ice sheets, despite weakened IVT
throughout the southern hemisphere. In the second, increased moisture convergence is driven by a constricted
and zonalized North Atlantic atmospheric circulation, and associated enhanced AR activity. In the third, small,
mainly southerly moisture transport increases onto the continent, interacting with strengthened temperature
gradients, lead to modest enhancements of convergence and precipitation.

That the higher LGM precipitation over southwestern North America in our simulations is not clearly explained
by increased southwesterly IVT or by enhanced AR activity over the southeastern North Pacific is curious,
as it contradicts previous results from simulations employing PMIP3 LGM boundary conditions, in which
ARs in the North Pacific robustly increased southwesterly moisture transport into southwestern North Amer-
ica (Lora et al., 2017). While some interpretations of proxy records suggest a more northerly LGM moisture
source (Feakins et al., 2019; Oster et al., 2015), it is difficult to reconcile that with southward ice sheet-induced
circulation shifts. Indeed, our simulations perhaps suggest more southerly flow (Figure 2b) than previous mode-
ling results (Lora et al., 2017). Notably, the PMIP3 ice sheet reconstruction was lower than that used here and,
indeed, the PMIP4 model ensemble (which includes simulations with these higher ice sheets) produces lower
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precipitation over southwestern North America than the PMIP3 ensemble (see Fig. 6 of Kageyama et al., 2021).
While the individual models in the two ensembles are quite different (and there are different numbers of models
in each), this generally suggests that North American LGM precipitation, closely associated with circulation
changes (Lora, 2018), depends sensitively on the details of the ice sheet.

Furthermore, while reconstructions generally agree that wetter LGM conditions occurred in western North
America (e.g., Cleator et al., 2020; Kirby et al., 2013; Oster et al., 2015), it is by no means settled whether Iberia
was truly a wetter region at the LGM. Proxy evidence exists suggesting both wetter and drier conditions there,
though in all cases uncertainties are substantial and the proxy records difficult to interpret decisively (Bartlein
et al., 2011; Beghin et al., 2016; Camuera et al., 2019; Cleator et al., 2020; Moreno et al., 2014). Multiple previ-
ous modeling results have suggested increased LGM precipitation in the western Mediterranean (Kageyama
et al., 2021; Lainé et al., 2009; Lofverstrom & Lora, 2017), in agreement with our results. Nevertheless, whether
a climatologically zonalized circulation or more episodic events associated with teleconnections in the LGM
atmosphere (Lofverstrom, 2020) are dominantly responsible remains unresolved. The sensitivity of these changes
to ice sheet topography and the level of model dependence involved are open questions, as is the degree to which
changes in precipitation frequency and intensity translate into mean changes captured by proxies. Our results
could inform regional proxy system models that address this latter issue, and could aid in interpreting the appar-
ent discrepancies between Iberia and southwestern North America. Relatedly, model uncertainty remains high,
yet we are limited in our analysis of other models' available results due to a lack of temporal resolution (daily or
higher) for relevant fields. Attention to this gap is needed in order to expand our understanding of the responses
of moisture transport and hydroclimate extremes to past climate states, and to connect them with the underlying
synoptic processes that produce them, and the proxies that record them.

Data Availability Statement

CESM2 model code is available at https://www.cesm.ucar.edu/models/cesm2/release_download.html. Processed
simulation data needed to reproduce our figures are archived and publicly available on Zenodo at https://doi.
org/10.5281/zenodo.8327272, and additional data from the LGM and PI control simulations are available on
Zenodo at https://doi.org/10.5281/zenodo.7339985.
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