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Following their success in numerous imaging and computer vision
applications, deep learning (DL) techniques have emerged as one of
the most prominent strategies for accelerated magnetic resonance
imaging (MRI) reconstruction. These methods have been shown to
outperform conventional regularized methods based on compressed
sensing (CS). However, in most comparisons, CS is implemented
with two or three hand-tuned parameters, while DL methods enjoy
a plethora of advanced data science tools. In this work, we revisit /1 -
wavelet CS reconstruction using these modern tools. Using ideas
such as algorithm unrolling and advanced optimization methods
over large databases that DL algorithms utilize, along with conven-
tional insights from wavelet representations and CS theory, we show
that ¢;-wavelet CS can be fine-tuned to a level close to DL recon-
struction for accelerated MRI. The optimized ¢;-wavelet CS method
uses only 128 parameters compared to > 500, 000 for DL, employs a
convex reconstruction at inference time, and performs within < 1%
of a DL approach that has been used in multiple studies in terms of
quantitative quality metrics.

deep learning | Al | compressed sensing | MRI reconstruction | inverse problems

L engthy data acquisition remains an impediment for MRI, requir-
ing the use of accelerated imaging techniques. Recently, deep
learning (DL) methods have emerged as a powerful strategy for ac-
celerated MRI (1-3), with many studies showing substantial improve-
ment over conventional methods, such as compressed sensing (CS)
(4). Among DL methods, physics-guided (PG-DL) approaches that in-
corporate the forward MRI encoding operator have received increased
attention (1, 2). These methods use a non-linear representation for
regularization, implicitly learned through neural networks, as opposed
to the linear transform based representations of images in CS. DL
reconstruction methods are trained on large databases, include hun-
dreds of thousands tunable parameters, use advanced optimization
techniques and loss functions (3). When CS methods are implemented
for comparison, they typically use two or three hand-tuned parameters,
and do not leverage the sophisticated tools from the DL era.

In this study, we use these advanced data science tools to revisit
¢1-wavelet CS for accelerated MRI. To this end, we leverage ideas
that are often used for DL reconstructions, such as algorithm unrolling
and end-to-end training over large databases, as well as conventional
insights from CS methodology, such as wavelet sub-band processing
(5) and reweighted ¢; minimization (6). We show that an optimized
learned ¢ -wavelet CS strategy with a mere 128 tunable parameters
performs close to a PG-DL method with > 500, 000 parameters that
has been used in previous studies (7), quantitatively in terms of peak
signal-to-noise ratio (PSNR), structural similarity index (SSIM) and
blur metric, and qualitatively in terms of expert reader scores.

Approach

Regularized Reconstruction for Accelerated MRI. The inverse
problem for accelerated MRI involves solving the objective function:

www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

1
ﬁ:argminiHy—EXHS—i—R(x), [1]

where E : CV — CM is the forward multi-coil encoding operator
used in parallel imaging that contains coil sensitivity maps and partial
Fourier matrix for under-sampling in k-space (3, 8), y € CM is the
undersampled k-space data from all coils, and x € C" is the image
to be reconstructed. Note the quadratic term in Eq. 1 enforces data
consistency (DC), while R(-) is a regularizer.

In conventional CS MRI reconstruction, the regularizer is typi-
cally a weighted ¢; norm of transform coefficients, i.e. R(x) =
Zle At |[Wix||,, where W is a pre-specified linear transform,
such as a discrete wavelet transform (DWT) (4). This leads to a
convex objective function, which is solved using iterative optimiza-
tion algorithms (8). For instance the alternating direction method
of multipliers (ADMM) algorithm leads to three tunable parameters,
one for DC, one for dual update, and one for transform domain soft-
thresholding, which are often hand-tuned in practice. Such algorithms
are run until a stopping criterion is met, which further makes parame-
ter tuning difficult.

On the other hand, in PG-DL methods, the problem in Eq. 1
is solved using the idea of algorithm unrolling, which unrolls an
iterative algorithm for this problem, such as ADMM, for a fixed
number of iterations (3). In this case, the DC units are implemented
with conventional methods, such as gradient descent or conjugate
gradient (7), while the proximal operation related to the regularizer
unit is solved implicitly using neural networks. This unrolled network
is then trained end-to-end over a large database using a loss function:

N
mein % Z E(y:éﬁ Egjll(f(yn7 E"; 0)))’ [2]

n=1

where y?; denotes the fully-sampled reference k-space of the n"
subject, Ef, is the fully sampled multi-coil encoding operator of
the n'™ subject, N is the number of datasets in the training database,
f(y™,E™; 0) denotes the network output of the unrolled network
with parameters @ of the n™ subject, and £(-, -) is a loss function,
such as the ¢ norm or ¢; norm (3).

Proposed Learning of Optimized ¢,-wavelet CS MRI Recon-
struction. For the optimized ¢;-wavelet CS method, we propose
to use both the aforementioned algorithm unrolling and end-to-end
training strategies. To this end, we unroll the ADMM algorithm for
T = 10 iterations. While a single DWT, with Daubechies4 wavelets
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Fig. 1. A representative slice from coronal PD knee MRI, reconstructed using hand-
tuned ¢;-wavelet CS, optimized ¢, -wavelet CS, and PG-DL. The proposed optimized
£1-wavelet CS outperforms hand-tuned ¢;-wavelet CS, and it has comparable perfor-
mance to PG-DL.

being popular, is commonly used in conventional CS MRI reconstruc-
tion (4), a level of redundancy will further benefit the reconstruction.
In order to show the versatility of the original CS formulation, we use
L = 4 DWTs, Daubechies1-4 wavelets, to form a simple overcom-
plete representation (9). Noting that for a given DWT, ADMM has
three tunable parameters, for data consistency, dual update and trans-
form domain soft-thresholding (8), this leads to a total of 3 - L = 12
= 12 learnable parameters, all of which can be learned using the
end-to-end training formulation described in Eq. 2.

Building on this basic model, we augment the ¢;-wavelet CS
method with two strategies derived using the characteristics of DWTs
and /1 minimization. First, due to the substantial signal scaling
changes between different sub-bands of a DWT, we propose to use a
different soft-thresholding parameter for each wavelet sub-band. For
S sub-bands, this leads to L-(S+2) = 4(S+2) learnable parameters.
In our experiments, S = 14 leads to 64 learnable parameters. Finally,
especially in lower signal-to-noise ratio regimes, it has been shown
that reweighted ¢; minimization (6) may help enhance the recovery
of small coefficients, which in turn may approve blurring artifacts
associated with CS reconstruction. In our setup, the output of the
sub-band processed optimized ¢;-wavelet CS reconstruction is used
to define the new weights for reweighted ¢; regularizer. Once these
signal-dependent weights are incorporated into the objective function,
the sub-band thresholding weights are relearned. Note there are still
L - (S +2) learnable parameters for this stage, and the total number of
learnable parameters across the two stages are 2 - L - (S + 2) = 128.
This proposed approach is also trained using the formulation of Eq. 2,
and will be referred to as the optimized ¢1-wavelet CS reconstruction.

Results

Experiments were carried out using fully-sampled coronal proton
density (PD) and PD with fat-suppression (PD-FS) knee data obtained
from the NYU-fastMRI database (10). The datasets were retrospec-
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Fig. 2. A representative coronal PD-FS knee slice, reconstructed using hand-tuned
¢;-wavelet CS, optimized ¢; -wavelet CS, and PG-DL. The proposed optimized ¢; -
wavelet CS performs closely to PG-DL, and has better reconstruction quality than
hand-tuned £, -wavelet CS method.

tively undersampled with a random mask (R = 4 with 24 central
k-space autocalibration signal lines). Training and testing were per-
formed on PD and PD-FS data separately. For comparison, a PG-DL
approach was implemented using the same ADMM unrolling except
the use of a ResNet-based regularizer unit, with a total of 592,130
learnable parameters. This ResNet was originally adapted from the
winner of a super-resolution challenge, and has been used in recent
MRI studies successfully (7). Note the only difference between this
PG-DL and the proposed ¢;-wavelet CS methods is the R(-) term,
where the former employs a neural network for implicit regularization,
while the latter uses weighted /1 norm of wavelets for solving a convex
problem. Finally, for baseline comparison, a conventional implemen-
tation of ¢;-wavelet CS reconstruction was implemented using D4
wavelets for regularization (4), which was solved using ADMM (8).
Here, the parameters of ADMM were hand-tuned empirically, and this
method is referred to as the hand-tuned ¢; -wavelet CS reconstruction.

Figures 1 and 2 show representative slices from coronal PD and
PD-FS knee MRI, respectively. In both cases, the proposed optimized
£1-wavelet CS has visibly comparable image quality to PG-DL, while
both methods yield sharper images compared to the conventional
hand-tuned ¢1-wavelet CS.

Table 1 summarizes the assessments over all test datasets, includ-
ing quantitative measures of SSIM and PSNR with respect to the
reference image, and a referenceless blur metric (11), as well as quali-
tative image reading scores for SNR and aliasing artifacts, which were
evaluated on a 4-point ordinal scale (1: excellent, 2: good, 3: fair, 4:
poor) (2). Both SSIM and PSNR show that the proposed optimized ¢;-
wavelet CS outperforms the conventional hand-tuned ¢;-wavelet CS
method, with a performance close to PG-DL. The referenceless quanti-
tative blur metrics show the same trend, with the optimized ¢;-wavelet
CS comfortably outperforming hand-tuned ¢;-wavelet CS, while hav-
ing close metrics to PG-DL. These results suggest that the difference
in performance on individual patient/scan reconstructions between

Table 1. Summary of results over coronal PD and PD-FS test datasets. We used a total of 786 slices of coronal PD and PD-FS from 10 subjects
for testing. SSIM, NMSE and blur metrics were calculated individually for each of these slices. The first and second row show the median
and the interquartile range [25%", 75" percentile] of the PSNR and SSIM metrics for all methods. The third row shows the median and the
interquartile range [25t", 75t percentile] of the blur metric of the reference and all methods. Qualitative image readings were also performed
by an expert radiologist, where one score was given for each of the PD and PD-FS datasets per subject. The fourth and the fifth row show
the mean and the +/- standard deviation of image readings for SNR and Aliasing Artifacts respectively, for the reference and all methods.

Reference Hand-Tuned ¢, -wavelet CS Optimized ¢, -wavelet CS PG-DL
PSNR - 36.5230 [34.0447, 38.7672] | 37.9107 [35.1328, 40.2464] | 38.7396 [35.5185, 41.2859]
SSIM - 0.9190 [0.8510, 0.9499] 0.9317[0.8618, 0.9619] 0.9423 [0.8737, 0.9683]
Blur Metric 0.2777 [0.2183, 0.3207] 0.3329 [0.2683, 0.3876] 0.3278 [0.2804, 0.3742] 0.3202 [0.2652, 0.3664]

Perceived SNR Reading

2.50 +/- 0.5130

2.50 +/- 0.5130

2.25 +/- 0.4435

2.20 +/- 0.7194

Aliasing Artifact Reading

1.75 +/- 0.7018

2.80 +/- 0.5187

2.60 +/- 0.4756

2.25 +/- 0.4051

2 |
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PG-DL and optimized ¢;-wavelet CS approaches is typically smaller
than the inter-patient/scan variability of either approach. In terms of
qualitative image readings, all methods performed similarly in terms
of perceived SNR. Interestingly, the reference had the worst score
due to the higher level of noise from the acquisitions. For aliasing
artifacts readings, the trend was the same with PG-DL outperforming
both ¢;-wavelet CS methods, though the difference to the proposed
optimized ¢;-wavelet CS method was not statistically significant.

Discussion

In this study, we revisited ¢;-wavelet CS for accelerated MRI using
powerful data science tools that have been developed in the DL era
for fine tuning. While the highly tunable PG-DL outperformed our
optimized ¢;-wavelet CS approach as expected, the performance gap
was smaller than previously reported in the literature. This is inter-
esting for a number of reasons. First, during regularization, PG-DL
implicitly uses a sophisticated non-linear representation for the un-
derlying images with a large number of learnable parameters. On
the other hand, our ¢;-wavelet approach uses linear representations,
involve only a small number of parameters, and enable an explainable
convex optimization procedure at inference time. Interestingly, there
is <0.01 difference in SSIM between our proposed learned ¢ -wavelet
method that uses 128 parameters and the PG-DL approach that uses
>500,000 parameters. Second, while PG-DL may potentially be fur-
ther improved using more sophisticated neural networks and training
strategies (12), it is worth noting that our ¢;-wavelet CS approach
used a very simple linear model described by four fixed orthogonal
DWTs, and did not involve any learning of such linear representations.

Though the difference between optimized ¢;-wavelet CS and PG-
DL was smaller than previously reported quantitatively and not signif-
icant qualitatively, PG-DL did have the highest metrics and was the
preferred reconstruction method of the expert reader for all subjects,
attesting to its ability to retain subtle details beyond the 4-point ordinal
scale. Although this is not entirely surprising given the complexity
of the PG-DL model, both the improved quantitative metrics and the
statistically similar image readings are encouraging for traditional CS
methods. Going beyond the simple 128-parameter used here with
pre-defined Daubechies wavelet transforms, use of more advanced
wavelets, such as symmlets, or CS with linear transform/tight frame
learning (13, 14) may further close this gap. Given the promising
results from the current model, such improvements warrant further
investigation, since the #1-norm based CS reconstruction uses convex
sparse image reconstruction with linear representation at inference
time, which may be beneficial for characterizing robustness, general-
izability and stability (15).

Materials and Methods

Training and Testing Details. For all methods, ADMM was unrolled for
T = 10 iterations. In all cases, the input to the network was the zerofilled
image, x(©0 = Efy. The coil sensitivites in E were estimated using
ESPIRIT (16). DC subproblem was solved using conjugate gradient (3, 7)
with 5 iterations and warm-start. All tunable parameters were shared across
iterations, consistent with the ADMM solution for Eq. 1 The parameters
were randomly initialized during training. Adam optimizer with learning
rate 5 - 1073 was used for training over 100 epochs, with a batch size
of 1. Supervised training was performed with a normalized ¢1-¢2 loss
in k-space (3, 7), using TensorFlow in Python. The reference images
for supervised training were generated using optimal coil combination,
where the fully-sampled coil images were elementwise multiplied by the
complex conjugate of the coil sensitivities, and summed across the coil
dimension.Training was performed on 300 slices from 10 subjects for coronal
PD and PD-FS datasets. Testing was performed on all 786 coronal PD and
PD-FS slices from 10 different subjects. For each method, SSIM, NMSE and
blur metrics were calculated individually for each of these slices.

Gu etal

Implementation Details for /1 -wavelet CS Method. For the learning of 1 -
wavelet CS reconstruction, note that the regularizer in Eq. 1 scales with ||x||co,
while the DC term scales with ||x||2,. Thus, the soft-thresholding parameter

for the s sub-band of the {" DWT was represented as ;| \DZSWZX(O) [loos
where D7 is an operator that selects the s sub-band of the I'" DWT W,.

During training, these scaling-invariant parameters {w,s}if’zl were learned.

Similarly, for the reweighted ¢; case, the regularization term is unaf-
fected if x is scaled by a constant «, while the DC term in Eq. 1 scales
with a2, Thus, a scaling-invariant thresholding factor was implemented as
7;S|\Dlswlx(0>||§o. During end-to-end training, {~] ,} were learned for

le{l,...,L}and s € {1,...,S}. Finally while reweighting, a small
constant is used to avoid numerical issues when dividing by zero (6). This was
set to 10~7 in our experiments.

Image Readings and Statistical Analysis. Qualitative assessment of the
image quality from the three different reconstruction methods (PG-DL, hand-
tuned ¢1-wavelet CS and proposed optimized £1-wavelet CS) was performed
by an experienced radiologist. The reader was blinded to the reconstruction
methods, which were shown in a randomized order to avoid bias, except
for the knowledge of the reference image. There were differences between
the sequences used for the fastMRI database and our institutional sequences,
thus this knowledge allowed the radiologist to assess the baseline image
quality. Evaluations were based on a 4-point ordinal scale, adopted from
(2) for perceived SNR (1: excellent, 2: good, 3: fair, 4: poor) and aliasing
artifacts (1: none, 2: mild, 3: moderate, 4: severe), where one score was
used per subject. Wilcoxon signed-rank test was used to evaluate the scores
with a significance level of P < 0.05. Additionally, instead of scoring for
overall image quality as in (2), the radiologist was asked to identify their
preferred reconstruction method for each subject. This was done to capture
subtle differences and preferences that would not be captured as differences in
the 4-point ordinal scale.

Reproducibility and Data Availability. All source codes for training and
testing, and the weights of the pretrained networks are available through
https://imagine.umn.edu/research/software. The raw MRI data used for this
study is available in the fastMRI database, https://fastmri.org/ (10).
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