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Following their success in numerous imaging and computer vision
applications, deep learning (DL) techniques have emerged as one of
the most prominent strategies for accelerated magnetic resonance
imaging (MRI) reconstruction. These methods have been shown to
outperform conventional regularized methods based on compressed
sensing (CS). However, in most comparisons, CS is implemented
with two or three hand-tuned parameters, while DL methods enjoy
a plethora of advanced data science tools. In this work, we revisit `1-
wavelet CS reconstruction using these modern tools. Using ideas
such as algorithm unrolling and advanced optimization methods
over large databases that DL algorithms utilize, along with conven-
tional insights from wavelet representations and CS theory, we show
that `1-wavelet CS can be fine-tuned to a level close to DL recon-
struction for accelerated MRI. The optimized `1-wavelet CS method
uses only 128 parameters compared to > 500, 000 for DL, employs a
convex reconstruction at inference time, and performs within < 1%
of a DL approach that has been used in multiple studies in terms of
quantitative quality metrics.
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Lengthy data acquisition remains an impediment for MRI, requir-1

ing the use of accelerated imaging techniques. Recently, deep2

learning (DL) methods have emerged as a powerful strategy for ac-3

celerated MRI (1–3), with many studies showing substantial improve-4

ment over conventional methods, such as compressed sensing (CS)5

(4). Among DL methods, physics-guided (PG-DL) approaches that in-6

corporate the forward MRI encoding operator have received increased7

attention (1, 2). These methods use a non-linear representation for8

regularization, implicitly learned through neural networks, as opposed9

to the linear transform based representations of images in CS. DL10

reconstruction methods are trained on large databases, include hun-11

dreds of thousands tunable parameters, use advanced optimization12

techniques and loss functions (3). When CS methods are implemented13

for comparison, they typically use two or three hand-tuned parameters,14

and do not leverage the sophisticated tools from the DL era.15

In this study, we use these advanced data science tools to revisit16

`1-wavelet CS for accelerated MRI. To this end, we leverage ideas17

that are often used for DL reconstructions, such as algorithm unrolling18

and end-to-end training over large databases, as well as conventional19

insights from CS methodology, such as wavelet sub-band processing20

(5) and reweighted `1 minimization (6). We show that an optimized21

learned `1-wavelet CS strategy with a mere 128 tunable parameters22

performs close to a PG-DL method with > 500, 000 parameters that23

has been used in previous studies (7), quantitatively in terms of peak24

signal-to-noise ratio (PSNR), structural similarity index (SSIM) and25

blur metric, and qualitatively in terms of expert reader scores.26

Approach27

Regularized Reconstruction for Accelerated MRI. The inverse28

problem for accelerated MRI involves solving the objective function:29

x̂ = arg min
x

1
2‖y−Ex‖2

2 +R(x), [1] 30

where E : CN → CM is the forward multi-coil encoding operator 31

used in parallel imaging that contains coil sensitivity maps and partial 32

Fourier matrix for under-sampling in k-space (3, 8), y ∈ CM is the 33

undersampled k-space data from all coils, and x ∈ CN is the image 34

to be reconstructed. Note the quadratic term in Eq. 1 enforces data 35

consistency (DC), whileR(·) is a regularizer. 36

In conventional CS MRI reconstruction, the regularizer is typi- 37

cally a weighted `1 norm of transform coefficients, i.e. R(x) = 38∑L

l=1 λl ‖Wlx‖1, where Wl is a pre-specified linear transform, 39

such as a discrete wavelet transform (DWT) (4). This leads to a 40

convex objective function, which is solved using iterative optimiza- 41

tion algorithms (8). For instance the alternating direction method 42

of multipliers (ADMM) algorithm leads to three tunable parameters, 43

one for DC, one for dual update, and one for transform domain soft- 44

thresholding, which are often hand-tuned in practice. Such algorithms 45

are run until a stopping criterion is met, which further makes parame- 46

ter tuning difficult. 47

On the other hand, in PG-DL methods, the problem in Eq. 1 48

is solved using the idea of algorithm unrolling, which unrolls an 49

iterative algorithm for this problem, such as ADMM, for a fixed 50

number of iterations (3). In this case, the DC units are implemented 51

with conventional methods, such as gradient descent or conjugate 52

gradient (7), while the proximal operation related to the regularizer 53

unit is solved implicitly using neural networks. This unrolled network 54

is then trained end-to-end over a large database using a loss function: 55

min
θ

1
N

N∑
n=1

L
(

yn
ref, En

full

(
f(yn,En; θ)

))
, [2] 56

where yn
ref denotes the fully-sampled reference k-space of the nth

57

subject, En
full is the fully sampled multi-coil encoding operator of 58

the nth subject, N is the number of datasets in the training database, 59

f(yn,En; θ) denotes the network output of the unrolled network 60

with parameters θ of the nth subject, and L(·, ·) is a loss function, 61

such as the `2 norm or `1 norm (3). 62

Proposed Learning of Optimized `1-wavelet CS MRI Recon- 63

struction. For the optimized `1-wavelet CS method, we propose 64

to use both the aforementioned algorithm unrolling and end-to-end 65

training strategies. To this end, we unroll the ADMM algorithm for 66

T = 10 iterations. While a single DWT, with Daubechies4 wavelets 67
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Fig. 1. A representative slice from coronal PD knee MRI, reconstructed using hand-
tuned `l-wavelet CS, optimized `1-wavelet CS, and PG-DL. The proposed optimized
`1-wavelet CS outperforms hand-tuned `l-wavelet CS, and it has comparable perfor-
mance to PG-DL.

being popular, is commonly used in conventional CS MRI reconstruc-68

tion (4), a level of redundancy will further benefit the reconstruction.69

In order to show the versatility of the original CS formulation, we use70

L = 4 DWTs, Daubechies1-4 wavelets, to form a simple overcom-71

plete representation (9). Noting that for a given DWT, ADMM has72

three tunable parameters, for data consistency, dual update and trans-73

form domain soft-thresholding (8), this leads to a total of 3 · L = 1274

= 12 learnable parameters, all of which can be learned using the75

end-to-end training formulation described in Eq. 2.76

Building on this basic model, we augment the `1-wavelet CS77

method with two strategies derived using the characteristics of DWTs78

and `1 minimization. First, due to the substantial signal scaling79

changes between different sub-bands of a DWT, we propose to use a80

different soft-thresholding parameter for each wavelet sub-band. For81

S sub-bands, this leads toL·(S+2) = 4(S+2) learnable parameters.82

In our experiments, S = 14 leads to 64 learnable parameters. Finally,83

especially in lower signal-to-noise ratio regimes, it has been shown84

that reweighted `1 minimization (6) may help enhance the recovery85

of small coefficients, which in turn may approve blurring artifacts86

associated with CS reconstruction. In our setup, the output of the87

sub-band processed optimized `1-wavelet CS reconstruction is used88

to define the new weights for reweighted `1 regularizer. Once these89

signal-dependent weights are incorporated into the objective function,90

the sub-band thresholding weights are relearned. Note there are still91

L ·(S+2) learnable parameters for this stage, and the total number of92

learnable parameters across the two stages are 2 · L · (S + 2) = 128.93

This proposed approach is also trained using the formulation of Eq. 2,94

and will be referred to as the optimized `1-wavelet CS reconstruction.95

Results96

Experiments were carried out using fully-sampled coronal proton97

density (PD) and PD with fat-suppression (PD-FS) knee data obtained98

from the NYU-fastMRI database (10). The datasets were retrospec-99

Fig. 2. A representative coronal PD-FS knee slice, reconstructed using hand-tuned
`l-wavelet CS, optimized `1-wavelet CS, and PG-DL. The proposed optimized `1-
wavelet CS performs closely to PG-DL, and has better reconstruction quality than
hand-tuned `1-wavelet CS method.

tively undersampled with a random mask (R = 4 with 24 central 100

k-space autocalibration signal lines). Training and testing were per- 101

formed on PD and PD-FS data separately. For comparison, a PG-DL 102

approach was implemented using the same ADMM unrolling except 103

the use of a ResNet-based regularizer unit, with a total of 592,130 104

learnable parameters. This ResNet was originally adapted from the 105

winner of a super-resolution challenge, and has been used in recent 106

MRI studies successfully (7). Note the only difference between this 107

PG-DL and the proposed `1-wavelet CS methods is the R(·) term, 108

where the former employs a neural network for implicit regularization, 109

while the latter uses weighted `1 norm of wavelets for solving a convex 110

problem. Finally, for baseline comparison, a conventional implemen- 111

tation of `1-wavelet CS reconstruction was implemented using D4 112

wavelets for regularization (4), which was solved using ADMM (8). 113

Here, the parameters of ADMM were hand-tuned empirically, and this 114

method is referred to as the hand-tuned `1-wavelet CS reconstruction. 115

Figures 1 and 2 show representative slices from coronal PD and 116

PD-FS knee MRI, respectively. In both cases, the proposed optimized 117

`1-wavelet CS has visibly comparable image quality to PG-DL, while 118

both methods yield sharper images compared to the conventional 119

hand-tuned `1-wavelet CS. 120

Table 1 summarizes the assessments over all test datasets, includ- 121

ing quantitative measures of SSIM and PSNR with respect to the 122

reference image, and a referenceless blur metric (11), as well as quali- 123

tative image reading scores for SNR and aliasing artifacts, which were 124

evaluated on a 4-point ordinal scale (1: excellent, 2: good, 3: fair, 4: 125

poor) (2). Both SSIM and PSNR show that the proposed optimized `l- 126

wavelet CS outperforms the conventional hand-tuned `l-wavelet CS 127

method, with a performance close to PG-DL. The referenceless quanti- 128

tative blur metrics show the same trend, with the optimized `l-wavelet 129

CS comfortably outperforming hand-tuned `l-wavelet CS, while hav- 130

ing close metrics to PG-DL. These results suggest that the difference 131

in performance on individual patient/scan reconstructions between 132

Table 1. Summary of results over coronal PD and PD-FS test datasets. We used a total of 786 slices of coronal PD and PD-FS from 10 subjects
for testing. SSIM, NMSE and blur metrics were calculated individually for each of these slices. The first and second row show the median
and the interquartile range [25th, 75th percentile] of the PSNR and SSIM metrics for all methods. The third row shows the median and the
interquartile range [25th, 75th percentile] of the blur metric of the reference and all methods. Qualitative image readings were also performed
by an expert radiologist, where one score was given for each of the PD and PD-FS datasets per subject. The fourth and the fifth row show
the mean and the +/- standard deviation of image readings for SNR and Aliasing Artifacts respectively, for the reference and all methods.

Reference Hand-Tuned `1-wavelet CS Optimized `1-wavelet CS PG-DL
PSNR - 36.5230 [34.0447, 38.7672] 37.9107 [35.1328, 40.2464] 38.7396 [35.5185, 41.2859]
SSIM - 0.9190 [0.8510, 0.9499] 0.9317 [0.8618, 0.9619] 0.9423 [0.8737, 0.9683]
Blur Metric 0.2777 [0.2183, 0.3207] 0.3329 [0.2683, 0.3876] 0.3278 [0.2804, 0.3742] 0.3202 [0.2652, 0.3664]
Perceived SNR Reading 2.50 +/- 0.5130 2.50 +/- 0.5130 2.25 +/- 0.4435 2.20 +/- 0.7194
Aliasing Artifact Reading 1.75 +/- 0.7018 2.80 +/- 0.5187 2.60 +/- 0.4756 2.25 +/- 0.4051
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PG-DL and optimized `l-wavelet CS approaches is typically smaller133

than the inter-patient/scan variability of either approach. In terms of134

qualitative image readings, all methods performed similarly in terms135

of perceived SNR. Interestingly, the reference had the worst score136

due to the higher level of noise from the acquisitions. For aliasing137

artifacts readings, the trend was the same with PG-DL outperforming138

both `l-wavelet CS methods, though the difference to the proposed139

optimized `l-wavelet CS method was not statistically significant.140

Discussion141

In this study, we revisited `l-wavelet CS for accelerated MRI using142

powerful data science tools that have been developed in the DL era143

for fine tuning. While the highly tunable PG-DL outperformed our144

optimized `l-wavelet CS approach as expected, the performance gap145

was smaller than previously reported in the literature. This is inter-146

esting for a number of reasons. First, during regularization, PG-DL147

implicitly uses a sophisticated non-linear representation for the un-148

derlying images with a large number of learnable parameters. On149

the other hand, our `1-wavelet approach uses linear representations,150

involve only a small number of parameters, and enable an explainable151

convex optimization procedure at inference time. Interestingly, there152

is<0.01 difference in SSIM between our proposed learned `1-wavelet153

method that uses 128 parameters and the PG-DL approach that uses154

>500,000 parameters. Second, while PG-DL may potentially be fur-155

ther improved using more sophisticated neural networks and training156

strategies (12), it is worth noting that our `1-wavelet CS approach157

used a very simple linear model described by four fixed orthogonal158

DWTs, and did not involve any learning of such linear representations.159

Though the difference between optimized `1-wavelet CS and PG-160

DL was smaller than previously reported quantitatively and not signif-161

icant qualitatively, PG-DL did have the highest metrics and was the162

preferred reconstruction method of the expert reader for all subjects,163

attesting to its ability to retain subtle details beyond the 4-point ordinal164

scale. Although this is not entirely surprising given the complexity165

of the PG-DL model, both the improved quantitative metrics and the166

statistically similar image readings are encouraging for traditional CS167

methods. Going beyond the simple 128-parameter used here with168

pre-defined Daubechies wavelet transforms, use of more advanced169

wavelets, such as symmlets, or CS with linear transform/tight frame170

learning (13, 14) may further close this gap. Given the promising171

results from the current model, such improvements warrant further172

investigation, since the `1-norm based CS reconstruction uses convex173

sparse image reconstruction with linear representation at inference174

time, which may be beneficial for characterizing robustness, general-175

izability and stability (15).176

Materials and Methods177

178 Training and Testing Details. For all methods, ADMM was unrolled for179

T = 10 iterations. In all cases, the input to the network was the zerofilled180

image, x(0) = EHy. The coil sensitivites in E were estimated using181

ESPIRiT (16). DC subproblem was solved using conjugate gradient (3, 7)182

with 5 iterations and warm-start. All tunable parameters were shared across183

iterations, consistent with the ADMM solution for Eq. 1 The parameters184

were randomly initialized during training. Adam optimizer with learning185

rate 5 · 10−3 was used for training over 100 epochs, with a batch size186

of 1. Supervised training was performed with a normalized `1-`2 loss187

in k-space (3, 7), using TensorFlow in Python. The reference images188

for supervised training were generated using optimal coil combination,189

where the fully-sampled coil images were elementwise multiplied by the190

complex conjugate of the coil sensitivities, and summed across the coil191

dimension.Training was performed on 300 slices from 10 subjects for coronal192

PD and PD-FS datasets. Testing was performed on all 786 coronal PD and193

PD-FS slices from 10 different subjects. For each method, SSIM, NMSE and194

blur metrics were calculated individually for each of these slices.195

Implementation Details for `1-wavelet CS Method. For the learning of `1- 196

wavelet CS reconstruction, note that the regularizer in Eq. 1 scales with ||x||∞, 197

while the DC term scales with ||x||2∞. Thus, the soft-thresholding parameter 198

for the sth sub-band of the lth DWT was represented as γl,s||Ds
l Wlx(0)||∞, 199

where Ds
l is an operator that selects the sth sub-band of the lth DWT Wl. 200

During training, these scaling-invariant parameters {γl,s}L,S
l,s=1 were learned. 201

Similarly, for the reweighted `1 case, the regularization term is unaf- 202

fected if x is scaled by a constant α, while the DC term in Eq. 1 scales 203

with α2. Thus, a scaling-invariant thresholding factor was implemented as 204

γr
l,s||D

s
l Wlx(0)||2∞. During end-to-end training, {γr

l,s} were learned for 205

l ∈ {1, . . . , L} and s ∈ {1, . . . , S}. Finally while reweighting, a small 206

constant is used to avoid numerical issues when dividing by zero (6). This was 207

set to 10−9 in our experiments. 208

Image Readings and Statistical Analysis. Qualitative assessment of the 209

image quality from the three different reconstruction methods (PG-DL, hand- 210

tuned `1-wavelet CS and proposed optimized `1-wavelet CS) was performed 211

by an experienced radiologist. The reader was blinded to the reconstruction 212

methods, which were shown in a randomized order to avoid bias, except 213

for the knowledge of the reference image. There were differences between 214

the sequences used for the fastMRI database and our institutional sequences, 215

thus this knowledge allowed the radiologist to assess the baseline image 216

quality. Evaluations were based on a 4-point ordinal scale, adopted from 217

(2) for perceived SNR (1: excellent, 2: good, 3: fair, 4: poor) and aliasing 218

artifacts (1: none, 2: mild, 3: moderate, 4: severe), where one score was 219

used per subject. Wilcoxon signed-rank test was used to evaluate the scores 220

with a significance level of P < 0.05. Additionally, instead of scoring for 221

overall image quality as in (2), the radiologist was asked to identify their 222

preferred reconstruction method for each subject. This was done to capture 223

subtle differences and preferences that would not be captured as differences in 224

the 4-point ordinal scale. 225

Reproducibility and Data Availability. All source codes for training and 226

testing, and the weights of the pretrained networks are available through 227

https://imagine.umn.edu/research/software. The raw MRI data used for this 228

study is available in the fastMRI database, https://fastmri.org/ (10). 229
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