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Abstract 

Self-supervised learning has shown great promise due to its capability to train deep learning MRI 

reconstruction methods without fully-sampled data. Current self-supervised learning methods for 

physics-guided reconstruction networks split acquired undersampled data into two disjoint sets, 

where one is used for data consistency (DC) in the unrolled network and the other to define the 

training loss. In this study, we propose an improved self-supervised learning strategy that more 

efficiently uses the acquired data to train a physics-guided reconstruction network without a 

database of fully-sampled data. The proposed multi-mask self-supervised learning via data 

undersampling (SSDU) applies a hold-out masking operation on acquired measurements to split it 

into multiple pairs of disjoint sets for each training sample, while using one of these pairs for DC 

units and the other for defining loss, thereby more efficiently using the undersampled data. Multi-

mask SSDU is applied on fully-sampled 3D knee and prospectively undersampled 3D brain MRI 

datasets, for various acceleration rates and patterns, and compared to CG-SENSE and single-mask 

SSDU DL-MRI, as well as supervised DL-MRI when fully-sampled data is available. Results on 

knee MRI show that the proposed multi-mask SSDU outperforms SSDU and performs closely 

with supervised DL-MRI. A clinical reader study further ranks the multi-mask SSDU higher than 

supervised DL-MRI in terms of SNR and aliasing artifacts. Results on brain MRI show that multi-

mask SSDU achieves better reconstruction quality compared to SSDU. Reader study demonstrates 

that multi-mask SSDU at R=8 significantly improves reconstruction compared to single-mask 

SSDU at R=8, as well as CG-SENSE at R=2. 
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Introduction 

Data acquisition is lengthy in many MRI exams, creating challenges for improving resolution and 

coverage, hence making accelerated MRI reconstruction an ongoing research topic. Parallel 

imaging (1-3) and compressed sensing (4-9) are two commonly used acceleration methods, with 

the former being the clinical gold standard for fast MRI, and the latter providing additional 

acceleration in a number of scenarios. However, acceleration rates remain limited as reconstructed 

images may suffer from noise amplification (10) or residual artifacts (11,12) in parallel imaging 

and compressed sensing, respectively. Recently, deep learning (DL) has emerged as an alternative 

for accelerated MRI due to its improved reconstruction quality compared to conventional 

approaches, especially at higher acceleration rates (13-18).  

 

Among DL methods, physics-guided DL approaches, which incorporate the MRI encoding 

operator to solve a regularized inverse problem, have gained interest due to its robustness (18,19). 

Physics-guided DL approaches unroll an iterative process that alternates between data consistency 

(DC) and regularization for certain number of iterations. They are trained end-to-end, typically in 

a supervised manner by minimizing the difference between network output and a ground-truth 

reference obtained from fully-sampled data (14,20-22) . However, acquisition of fully-sampled 

data, especially on large patient populations, is either challenging or impossible in many practical 

scenarios (23-27).    

 

As supervised training becomes inoperative in the absence of fully-sampled data, several methods 

have been proposed to train networks without fully-sampled data (28-33). Among these 

approaches, Self-supervision via Data Undersampling (SSDU) trains physics-guided neural 



networks by utilizing only the acquired sub-sampled measurements (31). In SSDU, the available 

measurements are split into two disjoint sets by a masking operation, which reduces the sensitivity 

to overfitting and is central for reliable performance. One of these sets is used in the DC units of 

the network, and the other is used to define the loss function in k-space. For moderately high 

acceleration rates, the networks trained using SSDU match the performance of those from 

supervised learning. While SSDU demonstrated that the splitting of acquired points into two sets 

was sufficient for training a neural network for reconstruction from undersampled data, a strategy 

that augments the use of the subsampled data to improve the performance is essential for higher 

acceleration rates. 

 

In this study, we sought to improve the performance of SSDU with multiple masks. The proposed 

multi-mask SSDU splits acquired measurements into multiple pairs of disjoint sets for each 

training slice, while using one of these sets in a pair for DC units and the other for defining loss, 

similar to the original SSDU. The proposed multi-mask SSDU approach is applied on fully-

sampled 3D knee MRI datasets from mridata.org (34), as well as a prospectively undersampled 

high-resolution 3D brain MRI dataset, and compared to parallel imaging, SSDU with a single mask 

(31), and supervised DL-MRI when fully-sampled data is available. Results show that the proposed 

multi-mask SSDU approach at high acceleration rates significantly improves upon SSDU and 

closely performs with supervised DL-MRI, while the reader studies indicate that the proposed 

multi-mask approach also outperforms supervised DL-MRI approach in terms of SNR 

improvement and aliasing artifact reduction.  

 

 



Methods 

Supervised Training of Physics-Guided DL-MRI Reconstruction 

Let 𝐲𝐲𝛀𝛀 be the acquired subsampled measurements with Ω denoting the subsampling pattern and x 

the image to be recovered. The forward model for encoding is  

𝐲𝐲𝛀𝛀 = 𝐄𝐄𝛀𝛀𝐱𝐱 + 𝐧𝐧,                                                                     [1] 

where  𝐄𝐄𝛀𝛀: ℂ𝑀𝑀  → ℂ𝑃𝑃 is the encoding operator including the coil sensitivities and a partial Fourier 

matrix sampling the locations specified by Ω , and 𝐧𝐧 ∈  ℂ𝑃𝑃 is measurement noise. For sub-Nyquist 

sampling at high rates, the forward model may be ill-conditioned, necessitating the use of 

regularization, leading to an inverse problem for image reconstruction: 

arg min
𝑥𝑥

‖𝐲𝐲𝛀𝛀 − 𝐄𝐄𝛀𝛀𝐱𝐱‖2
2 +  ℛ(𝒙𝒙),                                                      [2] 

where the first term represents DC and second term, ℛ(∙) is the regularizer.  Several approaches 

may be used to iteratively solve the above optimization problem (35). In this work, we use variable 

splitting via quadratic penalty method (21,31,35), which decouples DC and regularizer operations: 

𝐳𝐳(𝑖𝑖−1) =  arg min
 𝐳𝐳

µ�𝐱𝐱(𝑖𝑖−1) − 𝐳𝐳�
2
2

+  ℛ(𝒛𝒛),                                           [3] 

𝐱𝐱(𝑖𝑖) =  arg min
𝐱𝐱

‖𝐲𝐲𝛀𝛀 − 𝐄𝐄𝛀𝛀𝐱𝐱‖2
2 + µ�𝐱𝐱 − 𝐳𝐳(𝑖𝑖−1)�

2
2

,                                  [4] 

where μ is the quadratic penalty parameter, x(i) is the network output at iteration i and z(i) is an 

intermediate variable, and x(0) is the initial image obtained from zero-filled under-sampled k-space 

data. In physics-guided DL, this iterative optimization is unrolled for a fixed number of iterations. 

Eq. [3] corresponds to a regularizer, which is implicitly solved by a neural network, whereas Eq. 

[4] has a closed form solution (31) that can be solved by gradient descent methods such as 

conjugate gradient (20). 

 



In traditional DL-MRI approaches, training datasets contain pairs of undersampled k-space/ image 

and fully-sampled k-space/ground-truth image (14,20,21,36). Let 𝐲𝐲𝑟𝑟𝑟𝑟𝑟𝑟
𝑖𝑖  be the fully-sampled 

reference k-space data for subject i, and 𝑓𝑓(yΩ
𝑖𝑖 , 𝐄𝐄Ω

𝑖𝑖 ; 𝜽𝜽) denote the output of the unrolled network 

that is parametrized by 𝛉𝛉 for subsampled k-space data 𝐲𝐲𝛀𝛀
𝒊𝒊  and corresponding encoding matrix 𝐄𝐄Ω

𝑖𝑖  

of the same subject i.  The supervised PG-DL training is performed by defining the loss function 

in image domain or k-space (31). Training can be performed by minimizing a k-space loss function 

as  

 min
 𝜽𝜽

1
𝑁𝑁

� ℒ �𝐲𝐲𝑟𝑟𝑟𝑟𝑟𝑟
𝑖𝑖 , 𝐄𝐄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑖𝑖  �𝑓𝑓�yΩ
𝑖𝑖 , 𝐄𝐄Ω

𝑖𝑖 ; 𝜽𝜽���
𝑁𝑁

𝑖𝑖=1

,                                                   [5] 

where N is the number of fully-sampled training data in the database, 𝐄𝐄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑖𝑖  is the fully-sampled 

encoding operator that transforms network output to k-space, and ℒ(. , . ) is the loss between the 

fully-sampled and reconstructed k-spaces. The sampling locations, Ω may vary per subject in a 

more general setup, i.e. indexed by i. However, this was not included for simplicity of notation.  

 

Self-Supervision via Data Undersampling (SSDU) 

In order to enable training without fully-sampled datasets, SSDU has been proposed (31), where 

the acquired sub-sampled data indices, Ω, from each scan are divided into two disjoint sets Θ and 

Λ. Θ is used in DC units in the unrolled network and Λ is used to define the loss function, and the 

following self-supervised loss function is minimized   

 min
 𝜽𝜽

1
𝑁𝑁

� ℒ �𝐲𝐲Λ
𝑖𝑖 , 𝐄𝐄Λ

𝑖𝑖 �𝑓𝑓�yΘ
𝑖𝑖 , 𝐄𝐄Θ

𝑖𝑖 ; 𝜽𝜽���
𝑁𝑁

𝑖𝑖=1

.                                                [6] 

Unlike the supervised approach, only a subset of measurements, Θ are used as the input to the 

unrolled network. The network output is transformed to k-space, where the loss is calculated only 



at unseen k-space indices, Λ. After training is completed, testing is performed on unseen data using 

all available measurements Ω.  

 

Proposed Multi-mask SSDU  

SSDU reconstruction quality degrades at very high acceleration rates due to higher data scarcity, 

arising from the splitting into Θ and Λ. In order to tackle this issue, we propose a multi-mask SSDU 

approach, which retrospectively splits acquired indices Ω into disjoint sets Θ and Λ multiple times 

as shown in Figure 1. Formally, we split available measurements multiple times for each subject 

i such that for each partition Ω = Θ𝑗𝑗  ∪ Λ𝑗𝑗, for j = 1,…, K denoting the number of partitions for 

each scan. Similar to SSDU, each pair of sets in each scan were disjoint, i.e.  Λ𝑗𝑗 = Ω\Θ𝑗𝑗 for j ∈ 1, 

…, K. In other words, Ω is retrieved by the union of each pair of  Λ𝑗𝑗 and Θ𝑗𝑗 for any j ∈ 1, …, K. 

Hence, the loss function to minimize during training becomes 

 min
 𝜽𝜽

1
𝑁𝑁 ∙ 𝐾𝐾

� � ℒ �𝐲𝐲Λ𝑗𝑗
𝑖𝑖 , 𝐄𝐄Λ𝑗𝑗

𝑖𝑖 �𝑓𝑓 �yΘ𝑗𝑗
𝑖𝑖 , 𝐄𝐄Θ𝑗𝑗

𝑖𝑖 ; 𝜽𝜽���
𝐾𝐾

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

.                                                [7] 

The proposed multi-mask approach enables efficient use of available data by ensuring a higher 

fraction of low and high frequency components are utilized in the training and loss masks. Such 

utilization was inherently limited in the original SSDU approach, since each acquired k-space point 

was either used in training or loss masks only once.  

 

3D Imaging Datasets 

Fully-sampled 3D knee dataset were obtained from mridata.org (34), which were acquired with 

approval from the local institutional review board on a 3T GE Discovery MR 750 system with an 



8-channel knee coil array using a fast spin-echo (FSE) sequence. Relevant imaging parameters 

were: FOV = 160×160×154 mm3, resolution = 0.5×0.5×0.6 mm3, matrix size = 320×320×256. 

 

Brain imaging was performed on healthy subjects using a standard Siemens 3D‐MPRAGE 

sequence at a 3T Siemens Magnetom Prisma (Siemens Healthcare, Erlangen, Germany) system 

using a 32‐channel receiver head coil‐array (31). The imaging protocols were approved by the 

local institutional review board, and written informed consent was obtained from all participants 

before each examination for this HIPAA-compliant study. Relevant imaging parameters were: 

FOV = 224×224×157 mm3, resolution = 0.7×0.7×0.7 mm3, matrix size = 320×320×224, 

prospective acceleration R = 2 (uniform in ky) and ACS lines = 32 (31). 

 

The 3D k-space datasets were inverse Fourier transformed along the read-out direction, and these 

slices were processed individually. The knee and brain datasets were retrospectively undersampled 

to R = 8 using a uniform sheared 2D undersampling pattern (37). Additionally, for the knee 

datasets, where a fully-sampled reference is available, further undersampling was performed at R 

= 8 using uniform 1D and 2D (ky-kz) random, and 1D and 2D and Poisson undersampling masks. 

The undersampling masks are provided in Supporting Information Figure S1. Finally, knee 

datasets were also undersampled to R = 12 using 2D random and Poisson undersampling masks. 

A 24×24 and 32×32 ACS region in the ky-kz plane were kept fully-sampled for knee and brain 

datasets, respectively (31). The training sets for both knee and brain datasets consisted of 300 slices 

from 10 subjects, formed by taking 30 slices from each subject. For knee MRI, 2 different subjects 

with 200 slices were used for validation in multi-mask hyperparameter tuning, and 8 other different 

subjects were used for testing of the final method. For brain dataset, the testing was performed on 



9 different subjects. The proposed multi-mask SSDU approach was compared with parallel 

imaging method, CG-SENSE; blind compressed sensing method (Blind-CS) (38); zero-shot 

learning approach deep image prior (DIP) (39,40); state-of-the-art self-supervised learning 

approach (SSDU) (31) and state-of-the art supervised deep learning method when applicable (20). 

For Blind-CS and DIP, we used publicly available implementations from 

github.com/wenbihan/FRIST_ivp2017 and github.com/MLI-lab/ConvDecoder, respectively. We 

tuned the number of epochs for DIP for maximal performance. 

 

Choice of Multi-Mask Hyperparameters 

There are several tunable hyperparameters in multi-mask SSDU, including the number of 

partitions, K in Eq. [7], as well as the distribution and size of Λ as in SSDU. A variable-density 

Gaussian distribution was used for Λ in (31) for a single mask. In this study, we used a uniformly 

random distribution for the proposed approach, as the benefits of a variable density distribution 

diminish with multiple masks (Supporting Information Figure S2). In (31), the size of Λ was 

optimized to ρ = |Λ|/|Ω| = 0.4, which is also the optimal choice for the distribution considered 

here (Supporting Information Figure S3). After these two hyperparameters were set, the number 

of partitions of each scan, K was varied among 3, 5, 6, 7, 8 and 10 to optimize the remaining 

distinct hyperparameter of the multi-mask SSDU. 

 

Network and Training Details 

The iterative optimization problem in Eq. [3] and [4] was unrolled for T=10 iterations. Conjugate 

gradient descent was used in DC units of the unrolled network  (20,31). The proximal operator 

corresponding to the solution of Eq. [3] employs the ResNet structure used in SSDU (31). It 



comprises input and output convolution layers and 15 residual blocks (RB) each containing two 

convolutional layers, where the first layer is followed by a rectified linear unit (ReLU) and the 

second layer is followed by a constant multiplication layer. All layers had a kernel size of 3×3, 64 

channels. The unrolled network which shares parameters across the unrolled iterations had a total 

of 592,129 trainable parameters. As in SSDU, a ResNet structure as used for the regularizer in Eq. 

[3], where the network parameters were shared across the unrolled network (31). Coil sensitivity 

maps were generated from 24×24 center of k-space using ESPIRiT (41).  

 

As a pre-processing step, maximum absolute value of the k-space for each slice in the datasets was 

normalized to 1 in all cases. The real and imaginary parts of the complex MRI dataset were 

concatenated as two channels prior to inputting into the network. Separate networks for knee and 

brain datasets were trained using the Adam optimizer with a learning rate of 5∙10-4, by minimizing 

a normalized ℓ1-ℓ2 loss function defined as ℒ(𝒖𝒖, 𝒗𝒗) =  ‖𝒖𝒖−𝒗𝒗‖2
‖𝒖𝒖‖2

 +  ‖𝒖𝒖−𝒗𝒗‖1
‖𝒖𝒖‖1

  (31) with a batch size of 

1 over 100 epochs. All training was performed using Tensorflow in Python, and processed on a 

workstation with an NVIDIA Tesla V100 GPU with 32 GB memory. Implementation of this 

method will be provided online https://github.com/byaman14/SSDU. 

 

Image Evaluation 

Quantitative assessment of experimental results was performed using normalized mean square 

error (NMSE) and structural similarity index (SSIM) when fully-sampled data was available as 

reference. Moreover, qualitative assessment of the image quality from different reconstruction 

methods was performed by an experienced radiologist. For knee MRI, proposed multi-mask SSDU 

was compared with ground-truth obtained from fully-sampled data, SSDU and parallel imaging 

https://github.com/byaman14/SSDU


method CG-SENSE, all at R = 8 with 2D uniform undersampling.  For brain MRI, the proposed 

multi-mask SSDU was compared with SSDU at R = 8. Additionally, CG-SENSE approach at the 

acquisition acceleration R = 2 was evaluated to serve as the clinical baseline. The reader, with 15 

years of experience for musculoskeletal and neuro imaging, was blinded to the reconstruction 

method, which were shown in a randomized order to avoid bias except for the knowledge of the 

reference image in knee MRI dataset. Evaluations were based on a 4-point ordinal scale, adopted 

from (14) for blurring (1: no blurring, 2: mild blurring, 3: moderate blurring, 4: severe blurring), 

SNR (1: excellent, 2: good, 3: fair, 4: poor), aliasing artifacts(1: none, 2:mild, 3: moderate, 4: 

severe) and overall image quality (1: excellent, 2: good, 3: fair, 4: poor). Wilcoxon signed-rank 

test was used to evaluate the scores with a significance level of P < 0.05. 

 

Results 

Number of Partitions for Multi-Mask SSDU 

Figure 2 shows the effect of the proposed multi-mask self-supervised network training at R=8 

using 2D uniform sheared undersampling with varying number of masks, K= 3, 5, 6, 7, 8, 10, as 

well as the ground-truth reference and the zerofilled undersampled data. Multi-mask SSDU 

approach suppresses residual artifacts as K increases from 3 to 6. At K = 7, the visible residual 

artifacts are removed completely. When K is further increased to 8 and 10, residual artifacts 

reappear. The quantitative assessment on validation dataset further confirms this qualitative 

assessment. The median and interquartile range of SSIM values on validation set were 0.8256 

[0.7980, 0.8507], 0.8260 [0.8002, 0.8516], 0.8264 [0.8016, 0.8527], 0.8267 [0.8027, 0.8537], 

0.8263 [0.8007, 0.8519], 0.8257 [0.7989, 0.8511], and NMSE values were 0.0138 [0.0121, 

0.0158], 0.0135 [0.0119, 0.0158], 0.0135 [0.0119, 0.0157], 0.0134 [0.0118, 0.0156], 0.0135 



[0.0119, 0.0158], 0.0137 [0.0121, 0.0159] using Gaussian selection for K ∈ 3, 5, 6, 7, 8, 10, 

respectively. Hence, K = 7 used for the remainder of the study. 

 

3D Imaging Datasets 

Figure 3 depicts representative reference and reconstruction results of the 3D knee dataset using 

CG-SENSE, Blind-CS, DIP, supervised DL-MRI, SSDU and proposed multi-mask SSDU, as well 

as the difference images of these methods with respect to the reference for 2D uniform sheared R 

= 8 undersampling mask. Red arrows indicate that CG-SENSE suffers from highly-visible residual 

artifacts and noise amplification. Blind-CS and DIP severely suffers from the blurring artifacts. 

SSDU alleviates these artifacts substantially, though residual artifacts remain. The proposed multi-

mask SSDU further removes these artifacts for both slices shown, while achieving similar 

reconstruction quality to supervised DL-MRI for the first slice, and further reducing the residual 

aliasing artifacts visible in the supervised DL-MRI approach for the second slice. Quantitative 

metrics and difference images in the figure further confirm that multi-mask SSDU outperforms 

SSDU, while performing similarly to supervised DL-MRI. Additional experimental results on 3D 

knee dataset using different undersampling patterns at R=8 and R=12 are provided in Supporting 

Information Figures S4, S5 and S6. In all these experiments, multi-mask SSDU visibly and 

quantitatively outperforms SSDU, further reducing the gap between self-supervised learning and 

supervised DL-MRI.  

 

Table 1 summarizes the median and interquartile ranges for NMSE and SSIM values metrics for 

different undersampling masks and acceleration rates across the whole knee MRI test datasets. In 

all cases, CG-SENSE reconstruction is significantly outperformed by all the DL approaches. 



Among DL approaches, supervised DL-MRI outperforms self-supervised learning methods, while 

multi-mask SSDU quantitatively improves upon SSDU. 

 

Figure 4 demonstrates CG-SENSE reconstruction of a slice of the 3D-MPRAGE dataset at 

prospective acceleration R = 2, as well as CG-SENSE, Blind-CS, DIP, SSDU and the proposed 

multi-mask SSDU approach at retrospective acceleration R = 8 using 2D uniform sheared 

undersampling mask. Blind-CS and DIP reconstructions significantly suffer from blurring 

artifacts. SSDU at high acceleration R = 8 achieves similar reconstruction quality as CG-SENSE 

at acquisition acceleration R=2. Multi-mask SSDU further improves reconstruction quality by 

suppressing the noise evident in SSDU and CG-SENSE. 

 

Image evaluation scores 

Figure 5a and b summarize the reader study results for knee and brain datasets using 2D uniform 

sheared R = 8 undersampling mask, respectively. For knee MRI, proposed multi-mask SSDU was 

rated highest in terms of SNR, with a statistically significant improvement over all methods except 

supervised DL-MRI. For blurring, ground truth data was rated better than all methods. In terms of 

aliasing artifacts and overall image quality, the proposed multi-mask SSDU approach was rated 

best compared to other methods and the ground truth. In terms of these two evaluation criteria, all 

DL-MRI approaches and the reference showed similar statistical behavior, except SSDU was 

statistically worse than proposed multi-mask SSDU and supervised approach in terms of aliasing 

artifacts. A more comprehensive comparison also containing reader scores for CG-SENSE is 

presented in Supporting Information Figure S7. 

 



For brain MRI, DL-MRI reconstructions trained using the proposed multi-mask SSDU and SSDU 

approach at acceleration rate of 8 performed similar with CG-SENSE at acquisition R = 2 in terms 

of SNR and blurring. However, in terms of aliasing artifacts, the proposed multi-mask SSDU 

significantly outperformed its counterparts. In terms of overall image quality, both SSDU methods 

at R = 8 showed statistically significant improvement over CG-SENSE at R = 2, while the proposed 

multi-mask SSDU achieved the best performance.  

Discussion 

In this work, we extended our earlier work on self-supervision via data undersampling, which 

trains physics-guided neural network without fully-sampled data, to a multi-mask setting where 

multiple pairs of disjoint sets were used for each training slice in the dataset. Training of physics-

guided DL-MRI reconstruction without ground-truth data remains an important topic, since 

acquisition of fully-sampled data is either impossible or challenging in a number of scenarios (23-

27).  Among multiple methods proposed for this goal (28-30,42,43), self-supervision directly uses 

the acquired data without relying on generative models or intermediate estimates. Our work makes 

several contributions to these approaches. The main contribution of the proposed multi-mask self-

supervised learning approach is to use the available undersampled data more efficiently to enable 

physics-guided DL training, by retrospectively splitting these data into multiple 2-tuple of sets for 

the DC units during training and for defining loss. Another resulting contribution of the proposed 

multi-mask SSDU is an alternative data augmentation strategy for DL-MRI reconstruction, via the 

retrospective hold-out masking of the acquired measurements multiple times, with potential 

applications even beyond self-supervised learning (44). Finally, we applied the proposed multi-

mask approach on knee and brain MRI datasets using different undersampling and acceleration 

rates, showing its improved reconstruction performance compared to single mask SSDU approach. 



Specifically, the extensive experimental results using different subsampling patterns on 

retrospectively subsampled 3D knee dataset at R = 8 and R = 12 show that the proposed multi-

mask SSDU consistently outperforms SSDU, while performing similarly with the supervised DL-

MRI approach. Similarly, on prospectively subsampled brain MRI, multi-mask SSDU at R = 8 

enhances the reconstruction quality of SSDU, while achieving lower noise level compared to 

SSDU at R = 8 and CG-SENSE at the acquisition R = 2. 

 

As mentioned earlier, the proposed multi-mask SSDU approach can be interpreted as an alternative 

technique for data augmentation in DL-MRI reconstruction. With the proposed multi-mask data 

augmentation, self-supervised training was rated higher than supervised training in the reader study 

for knee imaging by a musculoskeletal expert reader in terms of noise and aliasing artifacts. 

Furthermore, Figure 3 showed example slices, where multi-mask self-supervised learning showed 

better performance in handling artifacts compared to supervised DL-MRI despite having lower 

SSIM and NMSE values. While these observations may seem surprising at first, it is consistent 

with recent studies that  show quantitative metrics may not always align with the reconstruction 

performance (45). Additionally, there are recent studies that show self-supervised deep learning 

approaches outperforming its supervised counterparts in various applications (46,47). These and 

other studies suggest that supervised learning may preclude discovery, hence it may not generalize 

well on unseen data or may not be as robust as self-supervised learning techniques (48). Another 

interesting finding from the reader study on knee data was the worse scores given to the fully-

sampled ground truth compared to DL-MRI methods. The expert reader noted the low SNR of the 

fully-sampled acquisition, due to the high acquisition resolution compared to conventional clinical 

scans, which was substantially improved visually using the inherent noise reduction of DL-MRI 



reconstruction. 

 

While the proposed multi-mask SSDU approach enhances the SSDU performance, it also has a 

longer training time by a factor of K compared to SSDU due to the increased size of the training 

dataset. Due to these lengthy training times, holdout cross-validation was used for the 

hyperparameter selection sub-study for optimizing K instead of n-fold cross-validation.  

Furthermore, while the proposed multi-mask approach enables data augmentation, helping 

overcome data scarcity and enhance reconstruction quality, it also bears the risk of overfitting. In 

a broader context, it is understood that data augmentation can lead to massive datasets, but when 

this idea is applied to augment initially limited datasets, it may result in overfitting (49). This 

phenomenon was also observed in our study as the reconstruction quality does not monotonically 

improve with increasing K, and residual artifacts reappear for K≥8. The problem of choosing the 

optimal size of the post-augmented dataset, which corresponds to K in our setup, remains an open 

problem in the broader machine learning community and this challenge has been highlighted in a 

recent survey on data augmentation as “There is no consensus as to which ratio of original to final 

dataset size will result in the best performing model” (49). Hence, while we have optimized K, this 

was done using the same experimental settings of (31). We note that the optimal value for K may 

differ based on the selection of hyperparameters, such as the number of epochs or the learning rate. 

Nonetheless, our results readily show that multi-mask SSDU improves upon the single-mask 

SSDU in terms of quantitative metrics for any choice of K>1, while also suggesting that it is not 

advantageous to choose a very high value of K, both from a performance perspective, and from a 

practical viewpoint due to the increased training time. 

 



In this study, we have split measurements into training and loss sets in a disjoint manner as SSDU 

has shown that overlaps between these sets lead to degraded reconstruction performance (31). A 

uniformly random selection of masks was used in the multi-mask SSDU. This was motivated by 

the issue that splitting Ω based on a Gaussian random selection leads to selecting mostly low-

frequency components from scarce data, especially at high acceleration rates. With a Gaussian 

selection of Λ, a multi-mask approach still tends to select low-frequency components for each 

mask. Supporting Information Figure S2 showed that using uniformly random selection in 

combination with multi-mask selection may circumvent this issue, since this will ensure both low 

and high frequency are contained in the loss masks of each scan.  

 

Although we concentrated on random selection of masks, another special type of multi-mask 

SSDU may be based on using a cyclic selection that ensures all acquired measurements are used 

for both training and loss. Supporting Information Figure S8 shows comparison between cyclic 

multi-mask and multi-mask SSDU approach, with multi-mask SSDU showing better 

reconstruction quality. Multi-mask SSDU does not impose any bounds on K, allowing K × |Λ| ≥ 

|Ω|, while cyclic multi-mask SSDU strictly imposes K × |Λ| = |Ω|. Hence, although cyclic multi-

mask SSDU ensures every point in Ω is eventually used in both DC units and for defining the k-

space loss, it inherently limits the number of masks for training, which in turn hinders the amount 

of improvement in reconstruction quality.   

 

 

The multi-masking approach proposed in this work may also be adapted to the supervised learning 

setting by using multiple random Θj in the DC units of the unrolled network, while calculating the 



loss on the fully-sampled k-space. This extension to supervised training, which introduces an 

additional degree of randomness to the training process, was recently shown to improve 

performance over conventional supervised DL-MRI approach (50). However, we note that since 

this is a new extension arising from this work, comparisons in this study were made to the 

conventional DL-MRI approach that is used in the literature (20). 

 

The proposed multi-mask SSDU approach also shares similarities with bootstrap aggregation 

mechanisms. In bootstrap approaches, multiple sub-datasets are generated by randomly sampling 

from a main dataset. The final prediction is performed by averaging outputs from each of these 

sub-dataset to reduce the variance among trained models. However, in multi-mask SSDU, each 

sample in the main dataset is sub-sampled multiple times by retrospectively splitting its 

measurements into disjoint sets. As a result, an aggregated large dataset which contains the 

measurements of each sample in the main dataset multiple times is obtained and used for training. 

Unlike bootstrapping approaches, the proposed approach performs final prediction by directly 

using the model trained on the aggregated large dataset. 

 

The study has limitations. In the proposed multi-mask SSDU, we optimized the hyperparameters 

ρ and K independently for two main reasons: 1) If the joint optimization led to a different ρ value, 

then this would create a confounding variable for the direct comparison to the single-mask 

scenario, 2) Optimizing over the two hyperparameters jointly leads to a large number of trainings 

for marginal gain. Such large number of trainings, which does not show a substantial implication 

in terms of the perspective of the study may also come at an environmental cost, as training of DL 

models have been shown to lead to considerable amount of carbon emissions (51). Thus, in the 



study, we concentrated on the individual optimization of the K parameter for the fixed ρ value that 

works best for single-mask SSDU (31), as this provides a more fair comparison. Additionally, this 

study focused on methodological development to improve the performance on single-mask SSDU 

without a specific application that may leverage large stores of existing undersampled data. With 

the methodology in place, such applications are being pursued in subsequent studies, both in LGE 

cardiac and brain MRI applications (52-55). Moreover, the proposed multi-mask SSDU may also 

be synergistically combined with dynamic cardiac MRI applications, in which spatio-temporal 

information can be leveraged to boost the performance at high acceleration rates (56-58).  

 

More recently, zero-shot learning approaches have gained interest as they enable training using 

only a single slice (59-61). Thus, zero-shot learning approaches do not require any external dataset 

for training unlike database deep learning approaches, such as SSDU and proposed multi-mask 

SSDU.  We note that Blind-CS methods (9,38,62) which predate deep learning methods, are also 

learning-based techniques trained on a single-slice, requiring no external database. Furthermore, 

recent Blind-CS methods, which simultaneously combine the sparsity with low-rankness have 

shown great promise for solving inverse problems (62) , which may further improve upon the 

performance of FRIST reported in this manuscript. Blind-CS methods typically include hand-

tuned parameters for weighing data consistency and regularization terms in their objective 

functions (38,62), which are also learnable in some of the more contemporary zero-shot deep 

learning approaches (60).  Deep image prior is the pioneering zero-shot deep learning approach, 

but it requires a heuristic early stopping criterion. Recent works on zero-shot learning have built 

on the multi-mask concept of the proposed approach to develop a rigorous stopping criterion (60). 

While zero-shot learning enables training from a single slice, the reconstruction times are much 



longer compared to database learning approaches. 

 

Conclusion 

The proposed multi-mask SSDU approach enables training of physics-guided neural networks 

without fully-sampled data, while significantly outperforming single-mask SSDU at high 

acceleration rates through the efficient use of the acquired undersampled data with multiple masks. 
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Figure 1. The multi-mask self-supervised learning scheme to train physics-guided deep learning 

without fully-sampled data. The acquired sub-sampled k-space measurements for each scan, Ω, 

are split into multiple disjoint sets, Θ𝑗𝑗 and Λ𝑗𝑗 in which Ω = Θ𝑗𝑗  ∪ Λ𝑗𝑗 , for j ∈ 1, …, K.  The first set 

of indices, Θ𝑗𝑗, is used in the data consistency unit of the unrolled network, while the latter set, Λ𝑗𝑗 

is used to define the loss function for training. During training, the output of the network is 

transformed to k-space, and the available subset of measurements at Λ𝑗𝑗 are compared with the 

corresponding reconstructed k-space values. Based on this training loss, the network parameters 

are subsequently updated. 

 



 

Figure 2. A representative test slice showing the reconstruction results for different number of 

partitions K using 2D uniform sheared R = 8 undersampling mask. Red arrows mark residual 

artifacts for K≤6 and K≥8. These artifacts are suppressed at K=7, which is used for the remainder 

of the study. 

 



 

Figure 3. a) and b) Representative test slices from 3D FSE knee MRI dataset showing the 

reconstruction results for proposed multi-mask self-supervised DL-MRI (multi-mask SSDU), self-

supervised DL-MRI (SSDU), supervised DL-MRI, DIP, Blind-CS, and CG-SENSE approaches 

for retrospective 2D uniform undersampling R = 8, as well as the error images with respect to the 

fully-sampled reference. CG-SENSE suffers from substantial residual artifacts that are shown with 

red arrows for both slices. Blind-CS and DIP severely suffers from the blurring artifacts. DL-MRI 

with SSDU learning suppresses a large portion of these artifacts, but still exhibits visible residual 

artifacts in both scenarios. Proposed multi-mask SSDU successfully suppresses these artifacts 

further for both slices, in a) closely matches the performance of supervised DL-MRI and in b) 

reduces residual aliasing further compared to supervised DL-MRI.  

 



 

Figure 4. Reconstruction results from prospectively 2-fold equispaced undersampled brain MRI. 

SSDU, multi-mask SSDU, DIP,  Blind-CS and CG-SENSE are applied at further retrospective 

acceleration rates of 8 with equispaced sheared ky-kz undersampling patterns, while CG-SENSE is 

also used at the acquisition rate of 2, which serves as the clinical baseline. CG-SENSE suffers 

from visibly higher noise amplification at R = 8. Blind-CS and DIP reconstructions significantly 

suffer from blurring artifacts. SSDU DL-MRI performs successful reconstruction at R = 8, while 

achieving similar image quality to CG-SENSE at R = 2. The proposed multi-mask SSDU DL-MRI 

further enhances the SSDU DL-MRI performance by achieving lower noise level in reconstruction 

results. 

 

 

 



 

Figure 5. a) Reader study for knee MRI for reconstructions using uniform 2D undersampling 

masks at R=8. Bar-plots show average reader scores and their standard deviation across the test 

subjects. Statistical testing was performed by one-sided Wilcoxon single-rank test, with * showing 

significant statistical difference with P <0.05. In terms of SNR, the proposed multi-mask SSDU 

was rated highest, and statistically better than all approaches except supervised DL-MRI. For 

blurring, ground truth data was rated statistically better than all methods except the proposed multi-

mask SSDU. In terms of aliasing artifacts and overall image quality, the proposed multi-mask 

SSDU approach was rated best compared to other methods and ground truth. In terms of these two 

evaluation criteria, all DL-MRI approaches and the reference showed similar statistical behavior, 

except SSDU was statistically worse than proposed multi-mask SSDU and supervised approach in 

terms of aliasing artifacts. b) Reader study for brain MRI. CG-SENSE at R = 2, and proposed 

multi-mask SSDU and SSDU at R = 8 using uniform 2D undersampling mask were in good 

agreement in terms of SNR and blurring. In terms of aliasing artifacts and overall image quality, 

the proposed multi-mask SSDU approach received the best scores, while CG-SENSE at R = 2 was 

rated lowest and showed significant statistical difference with proposed multi-mask SSDU in terms 

of both evaluation criteria and SSDU in terms of overall image quality. The proposed multi-mask 

SSDU was also rated statistically better than SSDU in terms of aliasing artifacts. 

 



 
Table 1. The median and interquartile ranges for NMSE and SSIM metrics for different 

undersampling masks and acceleration rates. Note that due to the different size of the ACS data, 

1D masks correspond to an effective acceleration rate of 5.2, while the 2D masks yield an effective 

acceleration rate of 7.7. 

 

 

 

 

 

 

 

 

 

 



 
Supporting Information Figure S1. Undersampling masks used in the study. Note that due to the different 

size of the ACS data, 1D masks correspond to an effective acceleration rate of 5.2, while the 2D masks 

yield an effective acceleration rate of 7.7. 

 

  



 
Supporting Information Figure S2. Reconstruction results from SSDU, and multi-mask SSDU at R=8 

using 2D uniform undersampling mask with uniform random selection and variable-density Gaussian 

selection for K = 5 and ρ = 0.4.  Multi-mask SSDU with Gaussian random selection fails to remove the 

artifacts apparent in SSDU, whereas multi-mask SSDU with uniformly random selection significantly 

suppresses these artifacts. Difference images show that multi-mask SSDU with uniformly random selection 

shows fewer residual artifacts compared to its multi-mask Gaussian counterpart. The median and 

interquartile range of SSIM values across the validation dataset were 0.7974 [0.7723, 0.8293], 0.8009 

[0.7789, 0.8313], 0.8260 [0.8002, 0.8516], and NMSE values were 0.0166 [0.0142, 0.0202], 0.0159 [0.0139, 

0.0191], 0.0135 [0.0119, 0.0157] for SSDU, multi-mask SSDU with Gaussian selection and uniformly 

random selection, respectively. 

 

  



 
Supporting Information Figure S3. Reconstruction results from SSDU with uniform random 

selection of Λ for ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} using 2D uniform undersampling mask at R=8. 

SSDU reconstructions suffers from residual artifacts for low ρ values of 0.1, 0.2 and 0.3. The best 

reconstruction quality is achieved at ρ = 0.4. Residual artifacts start to reappear after ρ = 0.5, 

becoming more pronounced as ρ increases. The quantitative assessment from hold-out validation 

set align with these qualitative assessments. The median and interquartile range of SSIM values 

were 0.8166 [0.7875, 0.8408], 0.8208 [0.7928, 0.8451], 0.8230 [0.7967, 0.8486], 0.8236 [0.7964, 

0.8494], 0.8229 [0.7960, 0.8499], 0.8192 [0.7937, 0.8473], and NMSE values were 0.0149 

[0.0136, 0.0175], 0.0143 [0.0128, 0.0167], 0.0141 [0.0123, 0.0163], 0.0140 [0.0122, 0.0161], 

0.0145 [ 0.0125, 0.0168], 0.0145 [0.0127, 0.0169] using uniformly random selection for ρ ∈ {0.1, 

0.2, 0.3, 0.4, 0.5, 0.6}, respectively. 
  



Supporting Information Figure S4. Reconstruction results using 2D a) random and b) Poisson 

undersampling masks at R = 8. CG-SENSE suffers from noise and incoherent residual artifacts. Blind-CS 

and DIP suffers from blurring artifacts. All other DL approaches achieve artifact-free and improved 

reconstruction quality. 

 

 



 

Supporting Information Figure S5. Reconstruction results at R = 8 using 1D a) random and b) uniform 

undersampling masks. CG-SENSE suffers from noise and residual artifacts for both of these undersampling 

masks. Blind-CS and DIP severely suffers from blurring artifacts. All other DL reconstructions achieve 

artifact-free reconstruction with random undersampling.  In uniform undersampling, SSDU suffers from 

residual artifacts shown with red arrows, whereas multi-mask SSDU improves upon SSDU and achieve 

similar reconstruction quality with supervised DL-MRI. 

 
  



 
Supporting Information Figure S6.  Reconstruction results at R = 12 using 2D a) random and b) Poisson 

undersampling masks. CG-SENSE suffers from noise and incoherent residual artifacts. Blind-CS and DIP 

suffers from visible blurring artifacts. All other DL approaches achieve artifact-free and improved 

reconstruction quality.  

 

 

 

 

 

  



 
Supporting Information Figure S7. The image reading results from the clinical reader study for the 3D 

FSE knee dataset using 2D uniform sheared R = 8 undersampling mask. CG-SENSE was consistently rated 

lowest in terms of all evaluation criteria. CG-SENSE was significantly worse than all other methods and 

ground truth in terms of SNR, aliasing artifacts and overall image quality. For blurring, it was only 

statistically different than the ground truth. 

 



 
Supporting Information Figure S8. Reconstruction results from SSDU, multi-mask SSDU and multi-

mask cyclic SSDU for K = 5 using 2D uniform undersampling masks at R=8.  In multi-mask SSDU ρ 

= 0.4 for K = 5, whereas multi-mask cyclic SSDU approach enforces ρ to be 0.2 for K = 5. Multi-mask 

SSDU successfully removes artifacts in SSDU, whereas multi-mask cyclic SSDU suffers from residual 

artifacts. Difference images further confirm these observations. In this setting, the median and interquartile 

range of SSIM values across the validation dataset were 0.7974 [0.7723, 0.8293], 0.8249[0.7968, 0.8497], 

0.8260 [0.8002, 0.8516], and NMSE values were, 0.0166 [0.0142, 0.0202], 0.0137 [0.0121, 0.0161], 0.0135 

[0.0119, 0.0157] for SSDU, multi-mask cyclic SSDU and multi-mask SSDU, respectively. 

 

 

 

 

 
 

 



 


