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Abstract

Self-supervised learning has shown great promise due to its capability to train deep learning MRI
reconstruction methods without fully-sampled data. Current self-supervised learning methods for
physics-guided reconstruction networks split acquired undersampled data into two disjoint sets,
where one is used for data consistency (DC) in the unrolled network and the other to define the
training loss. In this study, we propose an improved self-supervised learning strategy that more
efficiently uses the acquired data to train a physics-guided reconstruction network without a
database of fully-sampled data. The proposed multi-mask self-supervised learning via data
undersampling (SSDU) applies a hold-out masking operation on acquired measurements to split it
into multiple pairs of disjoint sets for each training sample, while using one of these pairs for DC
units and the other for defining loss, thereby more efficiently using the undersampled data. Multi-
mask SSDU is applied on fully-sampled 3D knee and prospectively undersampled 3D brain MRI
datasets, for various acceleration rates and patterns, and compared to CG-SENSE and single-mask
SSDU DL-MRI, as well as supervised DL-MRI when fully-sampled data is available. Results on
knee MRI show that the proposed multi-mask SSDU outperforms SSDU and performs closely
with supervised DL-MRI. A clinical reader study further ranks the multi-mask SSDU higher than
supervised DL-MRI in terms of SNR and aliasing artifacts. Results on brain MRI show that multi-
mask SSDU achieves better reconstruction quality compared to SSDU. Reader study demonstrates
that multi-mask SSDU at R=8 significantly improves reconstruction compared to single-mask

SSDU at R=8, as well as CG-SENSE at R=2.
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Introduction

Data acquisition is lengthy in many MRI exams, creating challenges for improving resolution and
coverage, hence making accelerated MRI reconstruction an ongoing research topic. Parallel
imaging (1-3) and compressed sensing (4-9) are two commonly used acceleration methods, with
the former being the clinical gold standard for fast MRI, and the latter providing additional
acceleration in a number of scenarios. However, acceleration rates remain limited as reconstructed
images may suffer from noise amplification (10) or residual artifacts (11,12) in parallel imaging
and compressed sensing, respectively. Recently, deep learning (DL) has emerged as an alternative
for accelerated MRI due to its improved reconstruction quality compared to conventional

approaches, especially at higher acceleration rates (13-18).

Among DL methods, physics-guided DL approaches, which incorporate the MRI encoding
operator to solve a regularized inverse problem, have gained interest due to its robustness (18,19).
Physics-guided DL approaches unroll an iterative process that alternates between data consistency
(DC) and regularization for certain number of iterations. They are trained end-to-end, typically in
a supervised manner by minimizing the difference between network output and a ground-truth
reference obtained from fully-sampled data (14,20-22) . However, acquisition of fully-sampled
data, especially on large patient populations, is either challenging or impossible in many practical

scenarios (23-27).

As supervised training becomes inoperative in the absence of fully-sampled data, several methods
have been proposed to train networks without fully-sampled data (28-33). Among these

approaches, Self-supervision via Data Undersampling (SSDU) trains physics-guided neural



networks by utilizing only the acquired sub-sampled measurements (31). In SSDU, the available
measurements are split into two disjoint sets by a masking operation, which reduces the sensitivity
to overfitting and is central for reliable performance. One of these sets is used in the DC units of
the network, and the other is used to define the loss function in k-space. For moderately high
acceleration rates, the networks trained using SSDU match the performance of those from
supervised learning. While SSDU demonstrated that the splitting of acquired points into two sets
was sufficient for training a neural network for reconstruction from undersampled data, a strategy
that augments the use of the subsampled data to improve the performance is essential for higher

acceleration rates.

In this study, we sought to improve the performance of SSDU with multiple masks. The proposed
multi-mask SSDU splits acquired measurements into multiple pairs of disjoint sets for each
training slice, while using one of these sets in a pair for DC units and the other for defining loss,
similar to the original SSDU. The proposed multi-mask SSDU approach is applied on fully-
sampled 3D knee MRI datasets from mridata.org (34), as well as a prospectively undersampled
high-resolution 3D brain MRI dataset, and compared to parallel imaging, SSDU with a single mask
(31), and supervised DL-MRI when fully-sampled data is available. Results show that the proposed
multi-mask SSDU approach at high acceleration rates significantly improves upon SSDU and
closely performs with supervised DL-MRI, while the reader studies indicate that the proposed
multi-mask approach also outperforms supervised DL-MRI approach in terms of SNR

improvement and aliasing artifact reduction.



Methods

Supervised Training of Physics-Guided DL-MRI Reconstruction

Let yq be the acquired subsampled measurements with Q denoting the subsampling pattern and x
the image to be recovered. The forward model for encoding is

Vo = Egx +n, [1]
where Eq: CM — CP is the encoding operator including the coil sensitivities and a partial Fourier
matrix sampling the locations specified by Q ,and n € CP is measurement noise. For sub-Nyquist
sampling at high rates, the forward model may be ill-conditioned, necessitating the use of
regularization, leading to an inverse problem for image reconstruction:

arg min|lyg — Eox|lz + R(x), 2]

where the first term represents DC and second term, R(*) is the regularizer. Several approaches
may be used to iteratively solve the above optimization problem (35). In this work, we use variable

splitting via quadratic penalty method (21,31,35), which decouples DC and regularizer operations:

20 = arg min pfJx -V — z||z + R(2), [3]

x(® = arg min||lyq — EQX”% + ““X - z(i_l)”; [4]
X

where i is the quadratic penalty parameter, X is the network output at iteration i and z is an
intermediate variable, and x) is the initial image obtained from zero-filled under-sampled k-space
data. In physics-guided DL, this iterative optimization is unrolled for a fixed number of iterations.
Eq. [3] corresponds to a regularizer, which is implicitly solved by a neural network, whereas Eq.
[4] has a closed form solution (31) that can be solved by gradient descent methods such as

conjugate gradient (20).



In traditional DL-MRI approaches, training datasets contain pairs of undersampled k-space/ image

and fully-sampled k-space/ground-truth image (14,20,21,36). Let yﬁef be the fully-sampled

reference k-space data for subject i, and f (v, E5; 8) denote the output of the unrolled network

that is parametrized by @ for subsampled k-space data y§ and corresponding encoding matrix Eb
of the same subject i. The supervised PG-DL training is performed by defining the loss function
in image domain or k-space (31). Training can be performed by minimizing a k-space loss function

as

N
1 . . o
mgnﬁzﬁ(%lﬂef' E]l‘ull (f(va Eg; 9))>' [5]
i=1

where N is the number of fully-sampled training data in the database, E}uu is the fully-sampled
encoding operator that transforms network output to k-space, and L(.,.) is the loss between the
fully-sampled and reconstructed k-spaces. The sampling locations, 2 may vary per subject in a

more general setup, i.e. indexed by i. However, this was not included for simplicity of notation.

Self-Supervision via Data Undersampling (SSDU)

In order to enable training without fully-sampled datasets, SSDU has been proposed (31), where
the acquired sub-sampled data indices, Q, from each scan are divided into two disjoint sets ® and
A. O is used in DC units in the unrolled network and A is used to define the loss function, and the

following self-supervised loss function is minimized

mgn%i £(yh B (£(v6, B 0)) ). [6]
i=1

Unlike the supervised approach, only a subset of measurements, ® are used as the input to the

unrolled network. The network output is transformed to k-space, where the loss is calculated only



at unseen k-space indices, A. After training is completed, testing is performed on unseen data using

all available measurements Q.

Proposed Multi-mask SSDU

SSDU reconstruction quality degrades at very high acceleration rates due to higher data scarcity,
arising from the splitting into ® and A. In order to tackle this issue, we propose a multi-mask SSDU
approach, which retrospectively splits acquired indices € into disjoint sets ® and A multiple times
as shown in Figure 1. Formally, we split available measurements multiple times for each subject
i such that for each partition 0 = ©; U A, for j = 1,..., K denoting the number of partitions for
each scan. Similar to SSDU, each pair of sets in each scan were disjoint, i.e. A; = Q\©; forj € 1,
..., K. In other words, Q is retrieved by the union of each pair of Ajand ©; foranyj €1, ..., K.

Hence, the loss function to minimize during training becomes

mgnN?KiZz:(yx,,Ex,. (7 (5%,85,9))). 7)

i=1 j=1

The proposed multi-mask approach enables efficient use of available data by ensuring a higher
fraction of low and high frequency components are utilized in the training and loss masks. Such
utilization was inherently limited in the original SSDU approach, since each acquired k-space point

was either used in training or loss masks only once.

3D Imaging Datasets

Fully-sampled 3D knee dataset were obtained from mridata.org (34), which were acquired with

approval from the local institutional review board on a 3T GE Discovery MR 750 system with an



8-channel knee coil array using a fast spin-echo (FSE) sequence. Relevant imaging parameters

were: FOV = 160x160x154 mm?, resolution = 0.5x0.5x0.6 mm?, matrix size = 320x320%256.

Brain imaging was performed on healthy subjects using a standard Siemens 3D-MPRAGE
sequence at a 3T Siemens Magnetom Prisma (Siemens Healthcare, Erlangen, Germany) system
using a 32-channel receiver head coil-array (31). The imaging protocols were approved by the
local institutional review board, and written informed consent was obtained from all participants
before each examination for this HIPAA-compliant study. Relevant imaging parameters were:
FOV = 224x224x157 mm?, resolution = 0.7x0.7x0.7 mm?®, matrix size = 320x320x224,

prospective acceleration R = 2 (uniform in ky) and ACS lines = 32 (31).

The 3D k-space datasets were inverse Fourier transformed along the read-out direction, and these
slices were processed individually. The knee and brain datasets were retrospectively undersampled
to R = 8 using a uniform sheared 2D undersampling pattern (37). Additionally, for the knee
datasets, where a fully-sampled reference is available, further undersampling was performed at R
= 8 using uniform 1D and 2D (ky-kz) random, and 1D and 2D and Poisson undersampling masks.
The undersampling masks are provided in Supporting Information Figure S1. Finally, knee
datasets were also undersampled to R = 12 using 2D random and Poisson undersampling masks.
A 24x24 and 32x32 ACS region in the ky-k- plane were kept fully-sampled for knee and brain
datasets, respectively (31). The training sets for both knee and brain datasets consisted of 300 slices
from 10 subjects, formed by taking 30 slices from each subject. For knee MRI, 2 different subjects
with 200 slices were used for validation in multi-mask hyperparameter tuning, and 8§ other different

subjects were used for testing of the final method. For brain dataset, the testing was performed on



9 different subjects. The proposed multi-mask SSDU approach was compared with parallel
imaging method, CG-SENSE; blind compressed sensing method (Blind-CS) (38); zero-shot
learning approach deep image prior (DIP) (39,40); state-of-the-art self-supervised learning
approach (SSDU) (31) and state-of-the art supervised deep learning method when applicable (20).
For Blind-CS and DIP, we wused publicly available implementations from
github.com/wenbihan/FRIST ivp2017 and github.com/MLI-lab/ConvDecoder, respectively. We

tuned the number of epochs for DIP for maximal performance.

Choice of Multi-Mask Hyperparameters

There are several tunable hyperparameters in multi-mask SSDU, including the number of
partitions, K in Eq. [7], as well as the distribution and size of A as in SSDU. A variable-density
Gaussian distribution was used for A in (31) for a single mask. In this study, we used a uniformly
random distribution for the proposed approach, as the benefits of a variable density distribution
diminish with multiple masks (Supporting Information Figure S2). In (31), the size of A was
optimized to p = |A|/|Q| = 0.4, which is also the optimal choice for the distribution considered
here (Supporting Information Figure S3). After these two hyperparameters were set, the number
of partitions of each scan, K was varied among 3, 5, 6, 7, 8 and 10 to optimize the remaining

distinct hyperparameter of the multi-mask SSDU.

Network and Training Details

The iterative optimization problem in Eq. [3] and [4] was unrolled for 7=10 iterations. Conjugate
gradient descent was used in DC units of the unrolled network (20,31). The proximal operator

corresponding to the solution of Eq. [3] employs the ResNet structure used in SSDU (31). It



comprises input and output convolution layers and 15 residual blocks (RB) each containing two
convolutional layers, where the first layer is followed by a rectified linear unit (ReLU) and the
second layer is followed by a constant multiplication layer. All layers had a kernel size of 3%3, 64
channels. The unrolled network which shares parameters across the unrolled iterations had a total
0f 592,129 trainable parameters. As in SSDU, a ResNet structure as used for the regularizer in Eq.
[3], where the network parameters were shared across the unrolled network (31). Coil sensitivity

maps were generated from 24x24 center of k-space using ESPIRIT (41).

As a pre-processing step, maximum absolute value of the k-space for each slice in the datasets was
normalized to 1 in all cases. The real and imaginary parts of the complex MRI dataset were
concatenated as two channels prior to inputting into the network. Separate networks for knee and

brain datasets were trained using the Adam optimizer with a learning rate of 5-10", by minimizing

llu—vll, llu—vll4

+

a normalized ¢1-f2 loss function defined as L(u, v) = il el
2 1

(31) with a batch size of

1 over 100 epochs. All training was performed using Tensorflow in Python, and processed on a
workstation with an NVIDIA Tesla V100 GPU with 32 GB memory. Implementation of this

method will be provided online https://github.com/byaman14/SSDU.

Image Evaluation

Quantitative assessment of experimental results was performed using normalized mean square
error (NMSE) and structural similarity index (SSIM) when fully-sampled data was available as
reference. Moreover, qualitative assessment of the image quality from different reconstruction
methods was performed by an experienced radiologist. For knee MRI, proposed multi-mask SSDU

was compared with ground-truth obtained from fully-sampled data, SSDU and parallel imaging


https://github.com/byaman14/SSDU

method CG-SENSE, all at R = 8 with 2D uniform undersampling. For brain MRI, the proposed
multi-mask SSDU was compared with SSDU at R = 8. Additionally, CG-SENSE approach at the
acquisition acceleration R = 2 was evaluated to serve as the clinical baseline. The reader, with 15
years of experience for musculoskeletal and neuro imaging, was blinded to the reconstruction
method, which were shown in a randomized order to avoid bias except for the knowledge of the
reference image in knee MRI dataset. Evaluations were based on a 4-point ordinal scale, adopted
from (14) for blurring (1: no blurring, 2: mild blurring, 3: moderate blurring, 4: severe blurring),
SNR (1: excellent, 2: good, 3: fair, 4: poor), aliasing artifacts(1: none, 2:mild, 3: moderate, 4:
severe) and overall image quality (1: excellent, 2: good, 3: fair, 4: poor). Wilcoxon signed-rank

test was used to evaluate the scores with a significance level of P < 0.05.

Results

Number of Partitions for Multi-Mask SSDU

Figure 2 shows the effect of the proposed multi-mask self-supervised network training at R=8
using 2D uniform sheared undersampling with varying number of masks, K= 3, 5, 6, 7, 8, 10, as
well as the ground-truth reference and the zerofilled undersampled data. Multi-mask SSDU
approach suppresses residual artifacts as K increases from 3 to 6. At K = 7, the visible residual
artifacts are removed completely. When K is further increased to 8 and 10, residual artifacts
reappear. The quantitative assessment on validation dataset further confirms this qualitative
assessment. The median and interquartile range of SSIM values on validation set were 0.8256
[0.7980, 0.8507], 0.8260 [0.8002, 0.8516], 0.8264 [0.8016, 0.8527], 0.8267 [0.8027, 0.8537],
0.8263 [0.8007, 0.8519], 0.8257 [0.7989, 0.8511], and NMSE values were 0.0138 [0.0121,

0.0158], 0.0135 [0.0119, 0.0158], 0.0135 [0.0119, 0.0157], 0.0134 [0.0118, 0.0156], 0.0135



[0.0119, 0.0158], 0.0137 [0.0121, 0.0159] using Gaussian selection for K € 3, 5, 6, 7, 8, 10,

respectively. Hence, K = 7 used for the remainder of the study.

3D Imaging Datasets

Figure 3 depicts representative reference and reconstruction results of the 3D knee dataset using
CG-SENSE, Blind-CS, DIP, supervised DL-MRI, SSDU and proposed multi-mask SSDU, as well
as the difference images of these methods with respect to the reference for 2D uniform sheared R
= 8 undersampling mask. Red arrows indicate that CG-SENSE suffers from highly-visible residual
artifacts and noise amplification. Blind-CS and DIP severely suffers from the blurring artifacts.
SSDU alleviates these artifacts substantially, though residual artifacts remain. The proposed multi-
mask SSDU further removes these artifacts for both slices shown, while achieving similar
reconstruction quality to supervised DL-MRI for the first slice, and further reducing the residual
aliasing artifacts visible in the supervised DL-MRI approach for the second slice. Quantitative
metrics and difference images in the figure further confirm that multi-mask SSDU outperforms
SSDU, while performing similarly to supervised DL-MRI. Additional experimental results on 3D
knee dataset using different undersampling patterns at R=8 and R=12 are provided in Supporting
Information Figures S4, S5 and S6. In all these experiments, multi-mask SSDU visibly and
quantitatively outperforms SSDU, further reducing the gap between self-supervised learning and

supervised DL-MRI.

Table 1 summarizes the median and interquartile ranges for NMSE and SSIM values metrics for
different undersampling masks and acceleration rates across the whole knee MRI test datasets. In

all cases, CG-SENSE reconstruction is significantly outperformed by all the DL approaches.



Among DL approaches, supervised DL-MRI outperforms self-supervised learning methods, while

multi-mask SSDU quantitatively improves upon SSDU.

Figure 4 demonstrates CG-SENSE reconstruction of a slice of the 3D-MPRAGE dataset at
prospective acceleration R = 2, as well as CG-SENSE, Blind-CS, DIP, SSDU and the proposed
multi-mask SSDU approach at retrospective acceleration R = 8 using 2D uniform sheared
undersampling mask. Blind-CS and DIP reconstructions significantly suffer from blurring
artifacts. SSDU at high acceleration R = 8 achieves similar reconstruction quality as CG-SENSE
at acquisition acceleration R=2. Multi-mask SSDU further improves reconstruction quality by

suppressing the noise evident in SSDU and CG-SENSE.

Image evaluation scores

Figure 5a and b summarize the reader study results for knee and brain datasets using 2D uniform
sheared R = 8 undersampling mask, respectively. For knee MRI, proposed multi-mask SSDU was
rated highest in terms of SNR, with a statistically significant improvement over all methods except
supervised DL-MRI. For blurring, ground truth data was rated better than all methods. In terms of
aliasing artifacts and overall image quality, the proposed multi-mask SSDU approach was rated
best compared to other methods and the ground truth. In terms of these two evaluation criteria, all
DL-MRI approaches and the reference showed similar statistical behavior, except SSDU was
statistically worse than proposed multi-mask SSDU and supervised approach in terms of aliasing
artifacts. A more comprehensive comparison also containing reader scores for CG-SENSE is

presented in Supporting Information Figure S7.



For brain MRI, DL-MRI reconstructions trained using the proposed multi-mask SSDU and SSDU
approach at acceleration rate of 8 performed similar with CG-SENSE at acquisition R = 2 in terms
of SNR and blurring. However, in terms of aliasing artifacts, the proposed multi-mask SSDU
significantly outperformed its counterparts. In terms of overall image quality, both SSDU methods
at R = 8 showed statistically significant improvement over CG-SENSE at R = 2, while the proposed

multi-mask SSDU achieved the best performance.

Discussion

In this work, we extended our earlier work on self-supervision via data undersampling, which
trains physics-guided neural network without fully-sampled data, to a multi-mask setting where
multiple pairs of disjoint sets were used for each training slice in the dataset. Training of physics-
guided DL-MRI reconstruction without ground-truth data remains an important topic, since
acquisition of fully-sampled data is either impossible or challenging in a number of scenarios (23-
27). Among multiple methods proposed for this goal (28-30,42,43), self-supervision directly uses
the acquired data without relying on generative models or intermediate estimates. Our work makes
several contributions to these approaches. The main contribution of the proposed multi-mask self-
supervised learning approach is to use the available undersampled data more efficiently to enable
physics-guided DL training, by retrospectively splitting these data into multiple 2-tuple of sets for
the DC units during training and for defining loss. Another resulting contribution of the proposed
multi-mask SSDU is an alternative data augmentation strategy for DL-MRI reconstruction, via the
retrospective hold-out masking of the acquired measurements multiple times, with potential
applications even beyond self-supervised learning (44). Finally, we applied the proposed multi-
mask approach on knee and brain MRI datasets using different undersampling and acceleration

rates, showing its improved reconstruction performance compared to single mask SSDU approach.



Specifically, the extensive experimental results using different subsampling patterns on
retrospectively subsampled 3D knee dataset at R = 8 and R = 12 show that the proposed multi-
mask SSDU consistently outperforms SSDU, while performing similarly with the supervised DL-
MRI approach. Similarly, on prospectively subsampled brain MRI, multi-mask SSDU at R = 8
enhances the reconstruction quality of SSDU, while achieving lower noise level compared to

SSDU at R = 8 and CG-SENSE at the acquisition R = 2.

As mentioned earlier, the proposed multi-mask SSDU approach can be interpreted as an alternative
technique for data augmentation in DL-MRI reconstruction. With the proposed multi-mask data
augmentation, self-supervised training was rated higher than supervised training in the reader study
for knee imaging by a musculoskeletal expert reader in terms of noise and aliasing artifacts.
Furthermore, Figure 3 showed example slices, where multi-mask self-supervised learning showed
better performance in handling artifacts compared to supervised DL-MRI despite having lower
SSIM and NMSE values. While these observations may seem surprising at first, it is consistent
with recent studies that show quantitative metrics may not always align with the reconstruction
performance (45). Additionally, there are recent studies that show self-supervised deep learning
approaches outperforming its supervised counterparts in various applications (46,47). These and
other studies suggest that supervised learning may preclude discovery, hence it may not generalize
well on unseen data or may not be as robust as self-supervised learning techniques (48). Another
interesting finding from the reader study on knee data was the worse scores given to the fully-
sampled ground truth compared to DL-MRI methods. The expert reader noted the low SNR of the
fully-sampled acquisition, due to the high acquisition resolution compared to conventional clinical

scans, which was substantially improved visually using the inherent noise reduction of DL-MRI



reconstruction.

While the proposed multi-mask SSDU approach enhances the SSDU performance, it also has a
longer training time by a factor of K compared to SSDU due to the increased size of the training
dataset. Due to these lengthy training times, holdout cross-validation was used for the
hyperparameter selection sub-study for optimizing K instead of n-fold cross-validation.
Furthermore, while the proposed multi-mask approach enables data augmentation, helping
overcome data scarcity and enhance reconstruction quality, it also bears the risk of overfitting. In
a broader context, it is understood that data augmentation can lead to massive datasets, but when
this idea is applied to augment initially limited datasets, it may result in overfitting (49). This
phenomenon was also observed in our study as the reconstruction quality does not monotonically
improve with increasing K, and residual artifacts reappear for K>8. The problem of choosing the
optimal size of the post-augmented dataset, which corresponds to K in our setup, remains an open
problem in the broader machine learning community and this challenge has been highlighted in a
recent survey on data augmentation as “There is no consensus as to which ratio of original to final
dataset size will result in the best performing model” (49). Hence, while we have optimized K, this
was done using the same experimental settings of (31). We note that the optimal value for K may
differ based on the selection of hyperparameters, such as the number of epochs or the learning rate.
Nonetheless, our results readily show that multi-mask SSDU improves upon the single-mask
SSDU in terms of quantitative metrics for any choice of K>1, while also suggesting that it is not
advantageous to choose a very high value of K, both from a performance perspective, and from a

practical viewpoint due to the increased training time.



In this study, we have split measurements into training and loss sets in a disjoint manner as SSDU
has shown that overlaps between these sets lead to degraded reconstruction performance (31). A
uniformly random selection of masks was used in the multi-mask SSDU. This was motivated by
the issue that splitting € based on a Gaussian random selection leads to selecting mostly low-
frequency components from scarce data, especially at high acceleration rates. With a Gaussian
selection of A, a multi-mask approach still tends to select low-frequency components for each
mask. Supporting Information Figure S2 showed that using uniformly random selection in
combination with multi-mask selection may circumvent this issue, since this will ensure both low

and high frequency are contained in the loss masks of each scan.

Although we concentrated on random selection of masks, another special type of multi-mask
SSDU may be based on using a cyclic selection that ensures all acquired measurements are used
for both training and loss. Supporting Information Figure S8 shows comparison between cyclic
multi-mask and multi-mask SSDU approach, with multi-mask SSDU showing better
reconstruction quality. Multi-mask SSDU does not impose any bounds on K, allowing K x |A| >
|Q2|, while cyclic multi-mask SSDU strictly imposes K % |A| = |Q|. Hence, although cyclic multi-
mask SSDU ensures every point in Q is eventually used in both DC units and for defining the k-
space loss, it inherently limits the number of masks for training, which in turn hinders the amount

of improvement in reconstruction quality.

The multi-masking approach proposed in this work may also be adapted to the supervised learning

setting by using multiple random ©; in the DC units of the unrolled network, while calculating the



loss on the fully-sampled k-space. This extension to supervised training, which introduces an
additional degree of randomness to the training process, was recently shown to improve
performance over conventional supervised DL-MRI approach (50). However, we note that since
this is a new extension arising from this work, comparisons in this study were made to the

conventional DL-MRI approach that is used in the literature (20).

The proposed multi-mask SSDU approach also shares similarities with bootstrap aggregation
mechanisms. In bootstrap approaches, multiple sub-datasets are generated by randomly sampling
from a main dataset. The final prediction is performed by averaging outputs from each of these
sub-dataset to reduce the variance among trained models. However, in multi-mask SSDU, each
sample in the main dataset is sub-sampled multiple times by retrospectively splitting its
measurements into disjoint sets. As a result, an aggregated large dataset which contains the
measurements of each sample in the main dataset multiple times is obtained and used for training.
Unlike bootstrapping approaches, the proposed approach performs final prediction by directly

using the model trained on the aggregated large dataset.

The study has limitations. In the proposed multi-mask SSDU, we optimized the hyperparameters
p and K independently for two main reasons: 1) If the joint optimization led to a different p value,
then this would create a confounding variable for the direct comparison to the single-mask
scenario, 2) Optimizing over the two hyperparameters jointly leads to a large number of trainings
for marginal gain. Such large number of trainings, which does not show a substantial implication
in terms of the perspective of the study may also come at an environmental cost, as training of DL

models have been shown to lead to considerable amount of carbon emissions (51). Thus, in the



study, we concentrated on the individual optimization of the K parameter for the fixed p value that
works best for single-mask SSDU (31), as this provides a more fair comparison. Additionally, this
study focused on methodological development to improve the performance on single-mask SSDU
without a specific application that may leverage large stores of existing undersampled data. With
the methodology in place, such applications are being pursued in subsequent studies, both in LGE
cardiac and brain MRI applications (52-55). Moreover, the proposed multi-mask SSDU may also
be synergistically combined with dynamic cardiac MRI applications, in which spatio-temporal

information can be leveraged to boost the performance at high acceleration rates (56-58).

More recently, zero-shot learning approaches have gained interest as they enable training using
only a single slice (59-61). Thus, zero-shot learning approaches do not require any external dataset
for training unlike database deep learning approaches, such as SSDU and proposed multi-mask
SSDU. We note that Blind-CS methods (9,38,62) which predate deep learning methods, are also
learning-based techniques trained on a single-slice, requiring no external database. Furthermore,
recent Blind-CS methods, which simultaneously combine the sparsity with low-rankness have
shown great promise for solving inverse problems (62) , which may further improve upon the
performance of FRIST reported in this manuscript. Blind-CS methods typically include hand-
tuned parameters for weighing data consistency and regularization terms in their objective
functions (38,62), which are also learnable in some of the more contemporary zero-shot deep
learning approaches (60). Deep image prior is the pioneering zero-shot deep learning approach,
but it requires a heuristic early stopping criterion. Recent works on zero-shot learning have built
on the multi-mask concept of the proposed approach to develop a rigorous stopping criterion (60).

While zero-shot learning enables training from a single slice, the reconstruction times are much



longer compared to database learning approaches.

Conclusion

The proposed multi-mask SSDU approach enables training of physics-guided neural networks
without fully-sampled data, while significantly outperforming single-mask SSDU at high

acceleration rates through the efficient use of the acquired undersampled data with multiple masks.
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Figure 1. The multi-mask self-supervised learning scheme to train physics-guided deep learning
without fully-sampled data. The acquired sub-sampled k-space measurements for each scan, (1,
are split into multiple disjoint sets, Ch and A in which Q = 0; UA;, forj€ 1, .., K The first set
of indices, 0, is used in the data consistency unit of the unrolled network, while the latter set, A;
is used to define the loss function for training. During training, the output of the network is
transformed to k-space, and the available subset of measurements at A; are compared with the
corresponding reconstructed k-space values. Based on this training loss, the network parameters

are subsequently updated.
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Figure 2. A representative test slice showing the reconstruction results for different number of
partitions K using 2D uniform sheared R = 8 undersampling mask. Red arrows mark residual

artifacts for K<6 and K>8. These artifacts are suppressed at K=7, which is used for the remainder

of the study.
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Figure 3. a) and b) Representative test slices from 3D FSE knee MRI dataset showing the
reconstruction results for proposed multi-mask self-supervised DL-MRI (multi-mask SSDU), self-
supervised DL-MRI (SSDU), supervised DL-MRI, DIP, Blind-CS, and CG-SENSE approaches
for retrospective 2D uniform undersampling R = 8, as well as the error images with respect to the
fully-sampled reference. CG-SENSE suffers from substantial residual artifacts that are shown with
red arrows for both slices. Blind-CS and DIP severely suffers from the blurring artifacts. DL-MRI
with SSDU learning suppresses a large portion of these artifacts, but still exhibits visible residual
artifacts in both scenarios. Proposed multi-mask SSDU successfully suppresses these artifacts
further for both slices, in a) closely matches the performance of supervised DL-MRI and in b)

reduces residual aliasing further compared to supervised DL-MRI.
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Figure 4. Reconstruction results from prospectively 2-fold equispaced undersampled brain MRI.
SSDU, multi-mask SSDU, DIP, Blind-CS and CG-SENSE are applied at further retrospective
acceleration rates of 8 with equispaced sheared ky-k. undersampling patterns, while CG-SENSE is
also used at the acquisition rate of 2, which serves as the clinical baseline. CG-SENSE suffers
from visibly higher noise amplification at R = 8. Blind-CS and DIP reconstructions significantly
suffer from blurring artifacts. SSDU DL-MRI performs successful reconstruction at R = 8, while
achieving similar image quality to CG-SENSE at R = 2. The proposed multi-mask SSDU DL-MRI
further enhances the SSDU DL-MRI performance by achieving lower noise level in reconstruction

results.
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Figure 5. a) Reader study for knee MRI for reconstructions using uniform 2D undersampling
masks at R=8. Bar-plots show average reader scores and their standard deviation across the test
subjects. Statistical testing was performed by one-sided Wilcoxon single-rank test, with * showing
significant statistical difference with P <0.05. In terms of SNR, the proposed multi-mask SSDU
was rated highest, and statistically better than all approaches except supervised DL-MRI. For
blurring, ground truth data was rated statistically better than all methods except the proposed multi-
mask SSDU. In terms of aliasing artifacts and overall image quality, the proposed multi-mask
SSDU approach was rated best compared to other methods and ground truth. In terms of these two
evaluation criteria, all DL-MRI approaches and the reference showed similar statistical behavior,
except SSDU was statistically worse than proposed multi-mask SSDU and supervised approach in
terms of aliasing artifacts. b) Reader study for brain MRI. CG-SENSE at R = 2, and proposed
multi-mask SSDU and SSDU at R = 8 using uniform 2D undersampling mask were in good
agreement in terms of SNR and blurring. In terms of aliasing artifacts and overall image quality,
the proposed multi-mask SSDU approach received the best scores, while CG-SENSE at R = 2 was
rated lowest and showed significant statistical difference with proposed multi-mask SSDU in terms
of both evaluation criteria and SSDU in terms of overall image quality. The proposed multi-mask

SSDU was also rated statistically better than SSDU in terms of aliasing artifacts.



CG-SENSE DIP Blind-CS Supervised DL-MRI SSDU Multi-mask SSDU
Uniform NMSE 0.0994 [0.0949, 0.1419] 0.0457 [0.0316, 0.0627] 0.0192 [0.0172, 0.2274] 0.0122 [0.0108, 0.0139] 0.0166 [0.0147, 0.0191] 0.0140 [0.0124, 0.0161]
1DR=8 SSIM 0.4698 [0.4193, 0.5353] 0.7224 [0.6819, 0.7435] 0.7945 [0.7648, 0.8332] 0.8505 [0.8306, 0.8751] 0.8211 [0.7947, 0.8527] 0.8315 [0.8084, 0.8600]
Uniform NMSE 0.1475 [0.1291, 0.1779] 0.0438 [0.0297, 0.0622] 0.0187 [0.0168, 0.0218] 0.0124 [0.0112, 0.0143] 0.0164 [0.0148, 0.0189] 0.0135 [0.0123, 0.0155]
ZORS SSIM 0.4411 [0.3797, 0.4976] 0.7124 [0.6704, 0.7452] 0.7884 [0.7526, 0.8126] 0.8421[0.8201, 0.8662] 0.8150 [0.7877, 0.8426] 0.8298 [0.8067, 0.8560]
Random NMSE 0.0994 [0.0805, 0.1236] 0.0392 [0.0216, 0.0524] 0.0179 [0.0162, 0.0205] 0.0121 [0.0107, 0.0139] 0.0156 [0.0135, 0.0177] 0.0137 [0.0121, 0.0155]
sl SSIM 0.4886 [0.4305, 0.5571] 0.7326 [0.7005, 0.7715] 0.8032 [0.7789, 0.8407] 0.8524 [0.8314, 0.8756] 0.8328 [0.8089, 0.8615] 0.8367 [0.8144, 0.8633]
Random NMSE 0.1473 [0.1301, 0.1759] 0.0412 [0.0256, 0.0567] 0.0197 [0.0178, 0.0224] 0.0130 [0.0117, 0.0149] 0.0173 [0.0155, 0.0199] 0.0145 [0.0131, 0.0165]
2038 SSIM 0.4239 [0.3631, 0.4766] 0.7286 [0.6957, 0.7592] 0.7914 [0.7648, 0.8229] 0.8379 [0.8164, 0.8637] 0.8123 [0.7853, 0.8417] 0.8224 [0.8002, 0.8509]
Poisson NMSE 0.1035 [0.0937, 0.1206] 0.0358 [0.0182, 0.0497] 0.0158 [0.0134, 0.0178] 0.0101 [0.0091, 0.0112] 0.0131 [0.0118, 0.0149] 0.0108 [0.0098, 0.0121]
R=8 SSIM 0.4885 [0.4394, 0.5397] 0.7325 [0.6914, 0.7629] 0.8075[0.7800, 0.8370] 0.8554 [0.8365, 0.8793] 0.8312 [0.8066, 0.8585] 0.8421[0.8212, 0.8679]
Random NMSE 0.1331 [0.1207, 0.1556] 0.0542 [0.0386, 0.0785] 0.0247 [0.0218, 0.0287] 0.0157 [0.0141, 0.0179] 0.0221 [0.0198, 0.0254] 0.0185 [0.0167, 0.0208]
el SSIM 0.4325 [0.3756, 0.4796] 0.6834 [0.6576, 0.7182] 0.7614 [0.7264, 0.7916] 0.8148 [0.7916, 0.8431] 0.7809 [0.7517, 0.8151] 0.7982 [0.7722, 0.8288]
Poisson NMSE 0.0876 [0.0795, 0.1012] 0.0491 [0.0342, 0.0673] 0.0173 [0.0151, 0.0192] 0.0119 [0.0107, 0.0133] 0.0151 [0.0136, 0.0169] 0.0129 [0.0117, 0.0145]
R31Z2 SSIM 0.5119 [0.4638, 0.5597] 0.7014 [0.6632, 0.7376] 0.7753 [0.7385, 0.8164] 0.8362 [0.8156, 0.8625] 0.8133 [0.7862, 0.8442] 0.8326 [0.8098, 0.8609]

Table 1. The median and interquartile ranges for NMSE and SSIM metrics for different

undersampling masks and acceleration rates. Note that due to the different size of the ACS data,
1D masks correspond to an effective acceleration rate of 5.2, while the 2D masks yield an effective

acceleration rate of 7.7.
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Supporting Information Figure S1. Undersampling masks used in the study. Note that due to the different
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size of the ACS data, 1D masks correspond to an effective acceleration rate of 5.2, while the 2D masks

yield an effective acceleration rate of 7.7.
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Supporting Information Figure S2. Reconstruction results from SSDU, and multi-mask SSDU at R=8
using 2D uniform undersampling mask with uniform random selection and variable-density Gaussian
selection for K = 5 and p = 0.4. Multi-mask SSDU with Gaussian random selection fails to remove the
artifacts apparent in SSDU, whereas multi-mask SSDU with uniformly random selection significantly
suppresses these artifacts. Difference images show that multi-mask SSDU with uniformly random selection
shows fewer residual artifacts compared to its multi-mask Gaussian counterpart. The median and
interquartile range of SSIM values across the validation dataset were 0.7974 [0.7723, 0.8293], 0.8009
[0.7789,0.8313], 0.8260[0.8002, 0.8516], and NMSE values were 0.0166 [0.0142, 0.0202], 0.0159[0.0139,
0.0191], 0.0135 [0.0119, 0.0157] for SSDU, multi-mask SSDU with Gaussian selection and uniformly

random selection, respectively.
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Supporting Information Figure S3. Reconstruction results from SSDU with uniform random
selection of A for p € {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} using 2D uniform undersampling mask at R=8.
SSDU reconstructions suffers from residual artifacts for low p values of 0.1, 0.2 and 0.3. The best
reconstruction quality is achieved at p = 0.4. Residual artifacts start to reappear after p = 0.5,
becoming more pronounced as p increases. The quantitative assessment from hold-out validation
set align with these qualitative assessments. The median and interquartile range of SSIM values
were 0.8166 [0.7875, 0.8408], 0.8208 [0.7928, 0.8451], 0.8230 [0.7967, 0.8486], 0.8236 [0.7964,
0.8494], 0.8229 [0.7960, 0.8499], 0.8192 [0.7937, 0.8473], and NMSE values were 0.0149
[0.0136, 0.0175], 0.0143 [0.0128, 0.0167], 0.0141 [0.0123, 0.0163], 0.0140 [0.0122, 0.0161],
0.0145710.0125, 0.0168], 0.0145 [0.0127, 0.0169] using uniformly random selection for p € {0.1,
0.2,0.3,0.4, 0.5, 0.6}, respectively.
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Supporting Information Figure S4. Reconstruction results using 2D a) random and b) Poisson
undersampling masks at R = 8. CG-SENSE suffers from noise and incoherent residual artifacts. Blind-CS
and DIP suffers from blurring artifacts. All other DL approaches achieve artifact-free and improved

reconstruction quality.
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Supporting Information Figure S5. Reconstruction results at R = 8 using 1D a) random and b) uniform
undersampling masks. CG-SENSE suffers from noise and residual artifacts for both of these undersampling
masks. Blind-CS and DIP severely suffers from blurring artifacts. All other DL reconstructions achieve
artifact-free reconstruction with random undersampling. In uniform undersampling, SSDU suffers from
residual artifacts shown with red arrows, whereas multi-mask SSDU improves upon SSDU and achieve

similar reconstruction quality with supervised DL-MRI.



1
-

Ground Truth CG-SENSE Blind-CS Multi-mask SSDU Supervised DL-MRI

=12

Random 2D, R:

: \ 1\ ! g
NMSE:0.069 NMSE:0.021 1| INMSE:0.020 % :0. A\ [INMSE:0.014
SSIM:0.726 S\ SSIM:0.776 SSIM:0.806 A :0. \|SSIM:0.829

z

Poisson, R=12

NMSE:0.02 NMSE:0.009 \ 3 T :0. NMSE:0.00.8‘
SSIM:0.832 SSIM:0.832 :0. ’ - SSIM:0.854

Supporting Information Figure S6. Reconstruction results at R = 12 using 2D a) random and b) Poisson
undersampling masks. CG-SENSE suffers from noise and incoherent residual artifacts. Blind-CS and DIP
suffers from visible blurring artifacts. All other DL approaches achieve artifact-free and improved

reconstruction quality.
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Supporting Information Figure S7. The image reading results from the clinical reader study for the 3D
FSE knee dataset using 2D uniform sheared R = 8 undersampling mask. CG-SENSE was consistently rated
lowest in terms of all evaluation criteria. CG-SENSE was significantly worse than all other methods and
ground truth in terms of SNR, aliasing artifacts and overall image quality. For blurring, it was only

statistically different than the ground truth.
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Supporting Information Figure S8. Reconstruction results from SSDU, multi-mask SSDU and multi-
mask cyclic SSDU for K = 5 using 2D uniform undersampling masks at R=8. In multi-mask SSDU p
= 0.4 for K = 5, whereas multi-mask cyclic SSDU approach enforces p to be 0.2 for K = 5. Multi-mask
SSDU successfully removes artifacts in SSDU, whereas multi-mask cyclic SSDU suffers from residual
artifacts. Difference images further confirm these observations. In this setting, the median and interquartile
range of SSIM values across the validation dataset were 0.7974 [0.7723, 0.8293], 0.8249[0.7968, 0.8497],
0.8260 [0.8002, 0.8516], and NMSE values were, 0.0166 [0.0142, 0.0202], 0.0137[0.0121, 0.0161], 0.0135
[0.0119, 0.0157] for SSDU, multi-mask cyclic SSDU and multi-mask SSDU, respectively.






