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Understanding photoluminescent mechanisms has become essential for photocatalytic, biological, and electronic ap-
plications. Unfortunately, analyzing excited state potential energy surfaces (PES) in large systems is computationally
expensive, and hence limited with electronic structure methods such as TDDFT. Inspired by the sTDDFT and sTDA
methods, time dependent density functional theory plus tight binding (TDDFT+TB) has been shown to reproduce linear
response TDDFT results much faster than TDDFT, particularly in large nanoparticles. For photochemical processes,
however, methods must go beyond the calculation of excitation energies. Herein, this work outlines an analytical ap-
proach to the derivative of the vertical excitation energy in TDDFT+TB for more efficient excited state PES exploration.
The gradient derivation is based on the Z-vector method, which utilizes an auxiliary Lagrangian to characterize the ex-
citation energy. The gradient is obtained when the derivatives of the Fock matrix, the coupling matrix, and the overlap
matrix are all plugged into the auxiliary Lagrangian, and the Lagrange multipliers are solved. This article outlines the
derivation of the analytical gradient, discusses the implementation in Amsterdam Modelling Suite (AMS), and pro-
vides proof of concept by analyzing the emission energy and optimized excited state geometry calculated by TDDFT
and TDDFT+TB for small organic molecules and nanoclusters.

I. INTRODUCTION

Elucidating photophysical and photochemical processes re-
quires some knowledge of excited state potential energy sur-
faces (PES). PES describe the energy and behavior of a
molecule at a particular geometry, and therefore are useful
for obtaining physical insights such as equilibrium structures
and reaction dynamics.1 In particular, analytical gradients and
Hessians are used to understand the topology and stationary
points of the system. Stationary points, such as minima or
first order saddle points, are critical in obtaining physical in-
sights, and for excited state surfaces, these points lead to ex-
cited state structures, emission and excitation energies, and
more. It can therefore be deduced that understanding station-
ary points in excited state PES leads to a range of applications
in photochemistry, catalysis, biology, and electronics.2–6 Pho-
toluminescent (PL) mechanisms in small atomically precise
nanoclusters, in particular, has gained large scientific interest
as small nanoclusters have discrete energy gaps, promoting
radiative relaxation, opposed to materials in which the lack
of energy gap between bands makes PL improbable.7,8 As
clusters have tunable structure-property relationships with re-
spect to different charge states, ligand structures, heteroatom
dopants, and more,9–11 understanding the stationary points in
the excited state PES of nanoclusters leads to highly lumines-
cent materials, thus advancing fields in bioimaging, electron-
ics and more.

One of the most popular quantum mechanical methods
used to understand optical and PL properties in molecules
and nanoclusters is time-dependent density functional the-
ory (TDDFT).12–18 Unfortunately, the computational cost of
TDDFT increases significantly when properties other than the
energy are required, hindering the calculation of excited states
on the level of theory and the system size. An example of

this is Au14Cd(S-Adm)12, which exhibits a rare dual emis-
sion mechanism.19 TDDFT calculations were used to deci-
pher the two emissive points, but it took longer than 90 days
to find and optimize both minima.14 Targeting the computa-
tional bottleneck of TDDFT, methods such as time-dependent
density functional tight binding (TDDFTB) have been used to
obtain excited state properties.20–22 Unfortunately, TDDFTB
has shown large optical absorption red shifts (0.60 - 1.0 eV)
in noble metal nanoclusters and nanowires as compared to
TDDFT,23,24 which can be traced back to limited parameteri-
zation and the minimal basis set of the method.25 It is there-
fore critical to develop inexpensive methods that maintain the
accuracy of TDDFT for excited state PES exploration.

Inspired by the sTDDFT and sTDA methods by Ste-
fan Grimme, time dependent density functional theory
plus tight binding (TDDFT+TB) was introduced in 2016.25

TDDFT+TB has shown to reproduce linear response TDDFT
results up to 100× faster than TDDFT in large plas-
monic NCs, keeping electronic accuracy within 0.10 eV of
TDDFT.24 This method was created for pure exchange cor-
relation (XC) functionals, whereas sTDDFT and sTDA can
be used with hybrid functionals. This is not an issue, how-
ever, as lower classes of XC functionals are traditionally used
to calculate excited state properties in large chemical sys-
tems due to the computational cost. TDDFT+TB uses a DFT
ground state reference and targets the computationally ex-
pensive coupling matrix in TDDFT by applying a first order
monopole approximation to the transition density in the lin-
ear response formulation.25 Since the two-electron integrals
are the computational bottleneck of classic TDDFT calcula-
tions, this approximation drastically improves the computa-
tional time. While TDDFT+TB has shown incredible accu-
racy with respect to TDDFT by maintaining the accurate DFT
ground state geometry, the method has only been used to cal-
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culate excitation energies. Herein, the purpose of this paper is
three-fold. Initially, using the Z-vector method, the analytical
excited state gradients of TDDFT+TB are derived. Second,
the implementation of the gradients into ADF for excited state
geometry optimizations will be discussed. Finally, the paper
will provide proof of concept by comparing emission energy
and optimized excited state geometries between TDDFT and
TDDFT+TB in small organic molecules and nanoclusters.

II. THEORY

In order to obtain excited state properties other than energy,
such as local minima and first order saddle points on excited
state surfaces, the analytical excited state gradients must be
derived. Following the Lagrangian based approach, intro-
duced by Furche and Ahlrichs,26 the TDDFT+TB analytical
gradients are derived by taking the derivative of excitation en-
ergy with respect to a real perturbation. The full derivation
can be split into four main parts: defining an energy func-
tional that is equivalent to the vertical excitation energy of that
system, setting up an energy functional that is stationary with
respect to the molecular orbital coefficients, solving the La-
grange multipliers after the constraints have been defined, and
taking the full derivative of each term in the energy functional
to obtain the analytical gradient with respect to the position of
the nuclear coordinates.

The notation used in this paper is as follows. A molecular
orbital will be denoted by the indices a, b, c, ... if it is un-
occupied in the ground electronic state, and i, j, k, ... if it is
occupied in the ground electronic state. Further, p, q, r, s, ...
denotes a general molecular orbital; the derivation will later
be separated into cases in which the general MO is occupied
or unoccupied. Atomic basis functions will be denoted by the
indices µ , ν , κ , ... which belong to a specific atom denoted
by the capital letters A, B, C, ...

A. Define an Energy Functional

The first step in calculating the derivative of the exci-
tation energy with respect to the nuclear coordinates is to
obtain an expression for the TDDFT+TB excitation energy.
TDDFT+TB applies a first order monopole approximation
to the transition density in the linear response formulation
of TDDFT.25 With this approximation, the two-electron inte-
grals are no longer calculated, and φi(r)φa(r)≈ ∑A qia,AζA(r)
where ζA(r) is a spherically symmetric function centered on
atom A, and qia,A is defined in equation (1)

qia,A = ∑
µ∈A

C′
µiC

′
µa (1)

where C′ = S1/2C, C is the molecular orbital coefficient ma-
trix, and S is the overlap matrix. Using the variational ap-
proach, the vertical excitation energy of TDDFT+TB is ex-
pressed in equation (2), where the excited state energies (Ω)

are stationary points of the functional

G[X ,Y,Ω] =
1
2

〈

X +Y

X −Y
|Λ|

X +Y

X −Y

〉

−
1
2

Ω

(〈

X +Y

X −Y
|∆|

X +Y

X −Y

〉

−2
) (2)

and

Λ =

(

A+B 0
0 A−B

)

and ∆ =

(

0 1
1 0

)

.

X and Y are the transition density vectors of single par-
ticle transitions defined on the Hilbert space Nvirt×Nocc

⊕

Nocc×Nvirt, where Nocc is the number of occupied molecular
orbitals and Nvirt is the number of virtual molecular orbitals.
A and B are called rotational Hessians; they are positive defi-
nite matricies and the matrix representation is shown in equa-
tions (3) and (4), where εp corresponds to the energy of the
molecular orbital, p.

(A+B)ia jb = (εa − εi)δi jδab +4K
S/T

ia jb (3)

(A−B)ia jb = (εa − εi)δi jδab (4)

The coupling matrix is written in equation (5) and (6) such
that γAB is a function of the internuclear distance and a chem-
ical hardness parameter, which signifies the coulombic inter-
action between two point charges, and WA is the spin coupling
constant, also referred to as magnetic Hubbard parameter.25

KS
ia jb = ∑

AB

qia,AγABq jb,B (5)

KT
ia jb = ∑

A

qia,AWAq jb,A (6)

It is important to deduce that the chemical hardness is not
calculated with DFTB parameterization, but simply a semi-
empirical algorithm relating hardness to atomic number as
described by Ghosh and Islam.27 The analytical gradients
for TDDFT+TB are currently only implemented for systems
with a singlet ground state and therefore all spin indices are
dropped for simplicity.

B. Constrained Optimization Problem

If the derivative of equation (2) is simply taken as is, the
calculation would be quite costly. The reason for this is that
Λ depends on the molecular orbitals (MO) of the method. Re-
call that molecular orbitals are a combination of atomic con-
tributions. This means that the derivation would require an
implicit calculation of the derivative of the molecular orbital
coefficients, which would add a cost increase by the num-
ber of nuclear degrees of freedom in a molecule.26 It is pos-
sible to circumvent this issue by using a Lagrangian based
method, often referred as the ‘Z vector method’ in quantum
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chemistry.28 This method has been used to derive the ana-
lytical gradients for several methods including TDDFT26 and
TDDFTB.29 The Z vector method uses Lagrange multipliers
to solve a constrained optimization problem. In other words,
this method applies an equality constraint to the function of
interest. For TDDFT+TB, the constraint restricts the molec-
ular orbital transformations so that they are invariant with re-
spect to an external perturbation. To do this, a new auxiliary
functional is defined as seen in equation (7).

L[X ,Y,Ω,C,Z,W ] = G[X ,Y,Ω]

+∑
ia

ZiaFia − ∑
pq,p≤q

Wpq(Spq −δpq) (7)

The functional, L, represents a fully variational expression for
the excitation energy under any external perturbation. To re-
move the implicit dependence of the MO coefficients by re-
stricting the transformation of the molecular orbital coeffi-
cients, Lagrange multipliers W and Z are introduced. To be
more explicit, the following restriction criteria is imposed:

∂L

∂Zia

= Fia = 0 (8)

∂L

∂Wpq

= Spq −δpq = 0 (9)

The MOs are constrained to be orthonormal and satisfy the
ground state DFT equations. This leads to equation (10),
which will then be used to determine Z and W .

∂L

∂Cµ p

= 0 (10)

As all physical properties are invariant under unitary transfor-
mations the diagonal elements of the rotational Hessians are
replaced by equations (11) and (12).26

(A+B)ia jb = Fabδi j −Fi jδab +4K
S/T

ia jb (11)

(A−B)ia jb = Fabδi j −Fi jδab (12)

where

Fpq = hpq +∑
i

[(pq|ii)]+V XC
pq

such that hpq and V XC
pq have the usual form, and (pq|ii) can be

seen in equation (13).26,30

∫ ∫

dr3dr′3φp(r)φi(r
′)

1
|r− r′|

φq(r)φi(r
′) (13)

Before the formal derivative of equation (7) is taken, the
Lagrange multipliers must be solved with respect to the con-
straints. To do this, the constraint in equation (10) is ex-
panded, summed over µ and right-multiplied by the coeffi-
cient matrix as seen in the following equation.

Qpq +∑
ia

Zia ∑
µ

∂Fia

∂Cµ p

Cµq

= ∑
rs,r≤s

Wrs ∑
µ

∂Srs

∂Cµ p

Cµq

(14)

The constraint Qpq is defined as the partial derivative of the
initial G functional with respect to the molecular orbital co-
efficients, which has been right-multiplied by the coefficient
matrix. This term can be written in terms of the rotational
Hessians as seen below.

Qpq = ∑
µ

∂G[X ,Y,Z]

∂Cµ p

Cµq =

∑
µ

1
2

〈

X +Y

X −Y

∣

∣

∣

∣

∣

(

∂ (A+B)
∂Cµ p

Cµq

0

0
∂ (A−B)

∂Cµ p
Cµq

)∣

∣

∣

∣

∣

X +Y

X −Y

〉

=
1
2 ∑

ia
∑
jb

(X +Y )ia ∑
µ

∂ (A+B)ia jb

∂Cµ p

Cµq(X +Y ) jb

+
1
2 ∑

ia
∑
jb

(X −Y )ia ∑
µ

∂ (A−B)ia jb

∂Cµ p

Cµq(X −Y ) jb.

(15)

Equations (11) & (12) are then be substituted back into the
expression to obtain the expanded form of equation (15) as
seen in equation S1. The full derivatives of the Fock matrix
(equation S2) and the coupling matrix (equation S3) are then
plugged in to obtain equation S4.

To clarify the constraints, cases are attributed to the four
different MO transitions: occupied to occupied, virtual to vir-
tual, occupied to virtual, and virtual to occupied. The full
derivation can be seen in equations S5 to S11. The definition
of the relaxed difference density matrix T (equations (16) -
(18)) as well as the linear transformation defined from TDDFT
(equation (19)) are then plugged into the equation to simplify
the constraints further and obtain equation S12.26

Tab =
1
2 ∑

i

((X +Y )ia(X +Y )ib +(X −Y )ia(X −Y )ib) (16)

Ti j =−
1
2 ∑

a

((X +Y )ia(X +Y ) ja+(X −Y )ia(X −Y ) ja) (17)

Tia = Tai = 0 (18)

H+
pq[T ] = ∑

rs

[2(pq|rs)+2 f XC
pqrs]Trs (19)

Applying symmetries of the coupling matrix then gives the
simplified constraints for each case as shown by equations
(20)-(23). It is important to note that the expanded versions
of case 3 and case 4 can be seen in equations S13 and S14
respectively.

1) p and q are both occupied

Qi j = Ω∑
a

((X +Y )ia(X −Y ) ja +(X −Y )ia(X +Y ) ja)

−∑
a

εa((X +Y )ia(X +Y ) ja +(X −Y )ia(X −Y ) ja)+H+
i j [T ]

(20)
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2) p and q are both virtual

Qab =Ω∑
i

((X +Y )ia(X −Y )ib +(X −Y )ia(X +Y )ib)

+∑
i

εi ((X +Y )ia(X +Y )ib +(X −Y )ia(X −Y )ib)

(21)
3) p is occupied and q is virtual

Qia = 2∑
b

(X +Y )ib ∑
jc

K
S/T

ab jc(X +Y ) jc +H+
ia [T ] (22)

4) p is virtual and q is occupied

Qai = 2∑
j

(X +Y ) ja ∑
kb

K
S/T

jikb (X +Y )kb (23)

The definition of Q, as well as the expanded derivatives in
equations S15 and S16 are then plugged into the energy func-
tional to give equation (24). This equation solves the con-
strained optimization problem.

Qpq +∑
ia

Zia(δpiδqaεa +δpaδiqεq)+H+
pq[Z]

= ∑
rs,r≤s

Wrs ∑
µ

(δprδqs +δpsδqr)
(24)

C. Solve Lagrange Multipliers

Now that the constraints have been clarified, the next step
is to use equation (24) to find Lagrange multipliers, Z and W .
Analyzing the definition of W from the functional in equation
(7), it is understood that p ≤ q, and therefore the molecular or-
bitals increase monotonically in this method. To keep consis-
tent with the implementation of TDDDFT analytical excited
state gradients and take advantage of symmetric subroutines,
however, a symmetry constraint is enforced such that Wai =
Wia. This leads to equations (25) and (26) for the occupied to
virtual elements in the W matrix.

Qia +Ziaεa +H+
ia [Z] =Wia (25)

Qai +Ziaεi =Wia (26)

Equation (26) is then subtracted from equation (25) to get rid
of W and find an equation for Z.

0 = Qia +Ziaεa +H+
ia [Z]− (Qai +Ziaεi) (27)

−(Qia −Qai) = (εa − εi)Zia +H+
ia [Z] (28)

−Ria = (εa − εi)Zia +∑
jb

H+
jb[Z] (29)

Equation (29) results in a system of linear equations that can
be solved to obtain vector Z as shown in equation (30),

−Ria = ∑
jb

(A+B)T DDFT
ia jb Z jb (30)

such that equations (31) and (32) are defined below.

Ria = Qia −Qai (31)

∑
jb

(A+B)T DDFT
ia jb = (εa − εi)δi jδab +2(ia| jb)+2 f XC

ia jb (32)

With knowledge of Z, cases are applied to equation (24)
to find W . The simplified definition for the four different
cases are shown in equations (33)-(36), and the derivation
can be seen in equations S17 - S20. Note that the unrelaxed
difference density matrix is given by P=T +Z +Z∗.

1) p and q are both occupied

Wi j =

1
1+δi j

(Ω∑
a

((X +Y )ia(X −Y ) ja +(X −Y )ia(X +Y ) ja)

−∑
a

εa((X +Y )ia(X +Y ) ja +(X −Y )ia(X −Y ) ja)+H+
i j [P]))

(33)
2) p and q are both virtual

Wab =

1
1+δab

(Ω∑
i

((X +Y )ia(X −Y )ib +(X −Y )ia(X +Y )ib)

+∑
i

εi ((X +Y )ia(X +Y )ib +(X −Y )ia(X −Y )ib))

(34)
3) p is occupied and q is virtual

Wia = 2∑
j

(X +Y ) ja ∑
kb

K
S/T

jikb (X +Y )kb +∑
i

εiZia (35)

4) p is virtual and q is occupied

Wai =Wia (36)

D. Full Derivative

After calculating the Lagrange multipliers, the derivative of
the auxiliary functional, L, is taken with respect to the position
of the nuclear coordinates.

dLS/T

dRA

=
dGS/T

dRA

+∑
ia

Zia

dFia

dRA

− ∑
pq,p≤q

Wpq

dSpq

dRA

(37)

The functional G is then substituted into equation (37) as
shown in equation S21. Rewriting the rotational Hessians in
terms of the Fock matrix and using the definition of the re-
laxed difference density matrix, T , as well as its connection
to the solution to the Lagrange multiplier, Z, the derivative of
the functional G can be collapsed into derivatives of the Fock
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matrix of particular orbital transitions as seen in equation (38).

dLS/T

dRA

=

∑
ab

dFab

dRA

Tab +∑
i j

dFi j

dRA

Ti j +∑
ia

dFia

dRA

Zia

+2 ∑
ia jb

K
S/T

ia jb

dRA

(X +Y )ia(X +Y ) jb − ∑
pq,p≤q

Wpq

dSpq

dRA

(38)
The relaxed difference density matrix, P, helps simplify the
equation further.

= ∑
pq

dFpq

dRA

Ppq +2 ∑
ia jb

K
S/T

ia jb

dRA

(X +Y )ia(X +Y ) jb

− ∑
pq,p≤q

Wpq

dSpq

dRA

(39)

The first term in equation (39) is the derivative of the Fock ma-
trix without any Hartree-Fock exchange. The next term rep-
resents the derivative of the coupling matrix, and the last term
is based off of the Lagrange multiplier, W , which changes de-
pending on the type of orbital transition as defined in the pre-
vious sections. All terms can be plugged into equation (39) to
obtain equation S22 such that the square root of the overlap
matrix is brought in by the use of Löwdin partial charge anal-
ysis. To simplify the long gradient form in equation S22, the
following definitions are used:31

UA = ∑
ia

(X +Y )iaqia,A

ΞA = ∑
B

γABUB.

This results in the final gradient form shown in equation (40).

2 ∑
µ∈A,ν�∈A

dhµν

dRA

Pµν +2 ∑
µ,λ∈A,ν ,κ�∈A

d(µν |λκ)

dRA

Pµν+

2 ∑
µ∈A,ν�∈A

dV XC
µν

dRA

Pµν+

2 ∑
µ∈A,ν�∈A

S
1/2
µν

dS
1/2
µν

dRA

(ΞA +ΞB)Uµν+

4 ∑
µ∈A,ν�∈A

dγAB

dRA

UAUB − ∑
µ∈A,ν�∈A

dSµν

dRA

Wµν

(40)

III. IMPLEMENTATION

The implementation of the TDDFT+TB analytical gradi-
ents mimics the implementation of the Slater-type atomic
orbital spin-flip TDDFT based analytical gradient code
implemented in the ADF engine of the Amsterdam Modelling

Suite (AMS) and will be available for use in the AMS2023
release.
The overall flow of the code is as follows:
(1) Obtain the excitation energy and eigenvectors from linear
response TDDFT+TB equations
(2) Obtain the R vector from the stationary requirement of
molecular orbital coefficients
(3) Solve the Coupled Perturbed Kohn-Sham equations
(CPKS) to obtain Lagrange multiplier Z
(4) Use R and Z to find Lagrange multiplier W

(5) Calculate gradient terms and evaluate overall gradient

Analyzing the first three terms in equation (40), it can be
seen that these terms are exactly the same as the correspond-
ing terms from TDDFT gradients.32 These terms have al-
ready been implemented into the ADF engine by transforming
the matrices back into density integrals as shown in equation
(41).32 The TDDFT+TB implementation reuses these subrou-
tines for consistency. Note: A full straightforward derivative
is shown by ζ , where a derivative with respect to a fixed sta-
tionary requirement is denoted by (ζ ).26

∑
σ

∫

ρ
P(ζ )
σ

(

T +Vext +VC +V XC
σ

)

+∑
σ

∫

(

V P
C ρ

(ζ )
σ +V

ζ
extρ

P
σ

)

+∑
στ

∫

ρP
σ f

XC,FULL
σ ,τ ρ

(ζ )
τ

(41)

Even though the coupling matrix is the only approximation
to TDDFT, TDDFT+TB introduces complexity in the gradient
implementation. One example of this is through the use of
Löwdin partial charge analysis. As the overlap matrix is a
positive semi-definite matrix, there exists a square root that
is a symmetric matrix by properties of semi-definite matrices.
Hence, to implement the derivative of the square root of the
coupling matrix into the ADF engine, the Sylvester equation
must be used.33 The Sylvester equation is defined by equation
(42).

XC+CX = D (42)

Such that in this case,

C = S
1
2

D = ∇ζ S

X = ∇ζ S
1
2 .

As both C and D are known and calculated for other terms
used in the gradient equation, these variables may be brought
in and used in order to find the nuclear derivative of the square
root of the overlap matrix.

IV. RESULTS

To assess the accuracy of the TDDFT+TB gradients, the an-
alytical results were compared to numerical results using finite
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difference methods. The code was further tested by complet-
ing excited state geometry optimizations to compare the op-
timized geometry and emission energy between TDDFT and
TDDFT+TB. It is important to note that as an approximate
method, it is not expected that TDDFT+TB will be as accu-
rate as the results from TDDFT.

A. Computational Details

All of the test cases were completed in a development
version of the Amsterdam Density Functional Engine in
the Amsterdamn Modelling Suite (AMS).34 Numerical vs.
analytical calculations were completed as described in test set
1, and excited state geometry optimizations for TDDFT and
TDDFT+TB were completed as described in test set 2. As
the TDDFT+TB method was created as an approximation to
TDDFT, the results are focused on the comparison between
the two methods rather than the comparison to experiment.

Test Set 1: The chosen test set for numerical vs. analytical
gradients includes 37 total molecules consisting of 9 diatomic
molecules and 28 small organic molecules from the Thiel test
set.35 The molecules in the Thiel test set include a range of
different organic molecules from aliphatic compounds and
aromatic hydrocarbons to carbonyl compounds and more. A
handful of compounds were tested with different basis sets
and exchange correlation functionals for proof of concept.
The reported results in the manuscript are all completed at the
BP86/DZ level of theory, where BP8636 is a GGA exchange
correlation functional, and DZ refers to a double zeta basis
set. The comparison between TDDFT and TDDFT+TB in ta-
bles S1 and S2 were calculated at the PBE/TZP level of theory
such that PBE is a GGA exchange correlation functional, and
TZP refers to a triple zeta polarized basis set. All calculations
were calculated without symmetry, which is required for the
TDDFT+TB method. Considering that the integrals in ADF
are calculated on a numerical grid,32 the numerical quality
was set to VeryGood for diatomic molecules, and Good for
the Thiel test set. All of the compounds were created in
MacMolPlt37 where diatomic molecules, in particular, were
tested on and off the axis. Numerical gradients were tested by
computing single point total energy calculations where each
atom was displaced by 0.001 Å in the positive and negative
x, y and z directions. Several different displacement and
numerical quality values were additionally tested as seen in
table S1 and S2. Overall, the gradients give a vector of size
3×N, where N is the number of atoms in the system. For
this test set, the mean absolute deviation (MAD) and root
mean squared (RMS) values are reported between the ana-
lytical and numerical gradients for all atoms in all directions
rather than reporting each individual difference. The equa-
tions for MAD and RMS can be seen in equation S23 and S24.

Test Set 2: The chosen test set for excited state optimiza-
tions includes 60 total chemical systems consisting of 9 di-
atomic molecules, 26 small organic molecules from the Thiel
test set,35 1 gold nanocluster core, 10 ligand protected noble

metal nanoclusters and 14 chromophores from Tussupbayev
et al. 2015 paper.38 The formal name of each chromophore
is provided in the supporting information. The noble metal
nanoclusters were chosen from a range of application projects
that are either published or ongoing in the Aikens lab and
optimized with different electronically excited states.14,39–43

Most of the reported results are completed at the BP86/DZ
level of theory, where BP8636 is a GGA exchange correlation
functional, and DZ refers to a double zeta basis set. A few
others are calculated at the PBE/TZP level of theory where
PBE is a GGA exchange correlation functional and TZP refers
to a triple zeta polarized basis set. Further, for comparison
with previous literature, the two emissive points in Au14Cd(S-
Adm)12 were calculated at the Xalpha/DZ level of theory.14

For faster convergence, excited state optimizations for all
nanoclusters and chromophores were performed on 6 cores.
There are no notable differences between the emission energy
calculated in serial vs. parallel as seen in table S3; however, it
is worth noting that the code does not quite scale linearly with
the number of cores, but on average speeds up the calculation
0.80× for each core (i.e. 6 cores would result in a calculation
that finishes 4.8 times faster than the same calculation on one
core). All of the compounds were created in MacMolPlt37

for the initial input geometry and were optimized to obtain
the ground state geometry. All ground state and most excited
state geometry optimizations were performed with an en-
ergy and gradient convergence criteria of 1x10−5 Hartree and
1x10−3 Hartree/Angstrom respectively. Diatomic molecules
were tightened to an energy and gradient convergence crite-
ria of 1x10−5 Hartree and 1x10−4 Hartree/Angstrom respec-
tively. The calculations were calculated without symmetry,
which is required for the TDDFT+TB method. Scalar rela-
tivistic effects were added into the excited state optimizations
with gold and silver using the zeroth-order regular approxima-
tion (ZORA).44,45 As TDDFT+TB was created as an approx-
imation to TDDFT, TDDFT is used to check the accuracy of
the emission energy and geometry from the excited state ge-
ometry optimizations. For this purpose, the same AMS in-
put file was created where the only change between the two
methods was the keyword for TDDFT+TB in the EXCITA-
TIONS block. The mean absolute deviation (MAD) and root
mean squared (RMS) values are reported for the difference
in emission energy between TDDFT and TDDFT+TB at the
optimized excited state geometry.

B. Numerical vs. Analytical Gradients

To check the accuracy of the method, there are several dif-
ferent tests that can be completed. One of these is to check
the numerical gradient value at different geometries and see
if the analytical gradient is similar at that point. For this pro-
cess, finite difference is used with a displacement of 0.001 Å
for the numerical gradients. The results between the numer-
ical and analytical gradients for TDDFT+TB are reported in
table 1 for the S1 states of diatomic molecules, and table 2 for
the for the S1 states of the Thiel test set. Recall that the MAD
and RMS values are recorded for the numerical vs. analytical
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gradient differences in the molecule between all atoms in all
directions. Overall, the numerical vs. analytical gradients

TABLE I. Numerical versus analytical gradient differences for di-
atomic molecules (Hartree/Angstrom)

Molecule MAD RMS
CO 7.12×10−5 7.58×10−5

Cl2 1.95×10−5 3.24×10−5

Li2 8.77×10−5 1.52×10−4

H2 1.82×10−5 3.15×10−5

HCl 1.14×10−5 1.98×10−5

OH− 6.97×10−5 1.21×10−4

LiH 1.53×10−3 2.72×10−3

NO+ 2.98×10−5 3.59×10−5

N2 4.16×10−5 7.21×10−5

TABLE II. Numerical versus analytical gradient differences for or-
ganic molecules from the Thiel test set (Hartree/Angstrom)

Molecule MAD RMS
Acetamide 1.16×10−4 1.62×10−4

Acetone 5.67×10−4 7.87×10−4

Adenine 5.98×10−5 7.17×10−5

Benzene 4.74×10−5 7.91×10−5

Benzoquinone 9.51×10−5 1.85×10−4

Butadiene 3.22×10−4 7.44×10−4

Cyclopentadiene 5.61×10−5 7.98×10−5

Cyclopropene 2.54×10−4 5.09×10−4

Cytosine 9.36×10−5 1.39×10−4

Ethene 4.88×10−5 7.93×10−5

Formaldehyde 9.28×10−5 1.45×10−4

Formamide 9.91×10−5 1.45×10−4

Furan 8.12×10−5 1.05×10−4

Hexatriene 4.79×10−5 7.00×10−5

Imidazole 6.83×10−5 9.05×10−5

Naphthalene 6.76×10−5 8.61×10−5

Norbornadiene 1.50×10−4 1.96×10−4

Octatetraene 1.88×10−4 2.49×10−4

Propanamide 7.34×10−5 1.21×10−4

Pyrazine 3.02×10−5 4.76×10−5

Pyridazine 5.77×10−5 8.15×10−5

Pyridine 4.80×10−5 7.02×10−5

Pyrimidine 3.93×10−5 6.65×10−5

Pyrrole 5.31×10−5 7.77×10−5

Tetrazine 3.24×10−5 4.65×10−5

Thymine 9.89×10−5 1.57×10−4

Triazine 5.44×10−5 7.50×10−5

Uracil 8.77×10−5 1.66×10−4

match very well where most molecules have a MAD value of
less than 5.00×10−4. The one molecule that seems to have the
largest difference is LiH. At the examined geometry, the bond
distance between Li and H is 2.43 Å. This distance is at a point
on the dissociative wall of the potential energy surface for LiH
where the gradient values are fairly large, and hence the nu-
merical vs. analytical gradient difference is actually relatively

low in comparison. It is important to keep in mind that the
numerical gradients are based on finite difference, and there-
fore may change depending on the displacement value. In this
case, since the gradient values are so large, if the displacement
is lowered to 0.0005 Å, then the new MAD value becomes
1.79×10−4, and the RMS value becomes 3.10×10−4. Con-
sidering the numerical noise in the TDDFT and TDDFT+TB
calculations and negligible differences between the different
tested displacements, this is well within the acceptable range.
All in all, the numerical vs. analytical gradients serve as one
test in which the TDDFT+TB analytical gradients provide ac-
curate results.

C. Excited State Geometry Optimizations

Not only is the value of the derivative at a particular set of
coordinates important to check, but the method should be able
to complete a full excited state geometry optimization and
find the minimum points on different excited state potential
energy surfaces. In this section, the optimized excited state
and emission energy difference at the minimum of that state
between TDDFT and TDDFT+TB is reported in table 3 for
diatomic molecules, table 4 for the Thiel test set, table 5 for
chromophores and table 6 for the noble metal nanoclusters. It
is important to note that some states become degenerate with
the state below and therefore have issues fully converging to
the optimization requirements outlined in the computational
details. For this reason, the molecules were not all optimized
at the S1 state. The emission energy difference between

TABLE III. Emission energy differences between TDDFT and
TDDFT+TB for diatomic molecules (eV)

Molecule State Energy Difference (eV)
CO S1 0.89
H2 S2 2.28
Li2 S1 0.33

HeH+ S1 0.05
HCl S1 0.09
OH− S4 0.09
LiH S1 0.07
NO+ S3 -1.80
N2 S1 -0.62

TDDFT and TDDFT+TB has RMS and MAD values of 1.04
eV & 0.681 eV for diatomic molecules, 0.206 eV & 0.113 eV
for the Thiel test set, 0.028 eV & 0.018 eV for noble metal
nanoclusters, and 0.076 eV & 0.040 eV for the chromophore
set respectively. The method does not work as well for di-
atomic molecules, which is likely a result of the approxima-
tion in the coupling matrix. In addition, for cases such as
hydrogen, the optimized S2 energy is so large with TDDFT
(19.80 eV) that the TDDFT+TB equivalent (17.52 eV) has a
relatively small error when the magnitude of the excitation
energy is considered. This issue, however, is inherent to the
method and not the gradients. Further, it can be concluded
that optimizing degenerate states do not work well for this
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TABLE IV. Emission energy differences between TDDFT and
TDDFT+TB for organic molecules from the Thiel test set (eV)

Molecule State Energy Difference (eV)
Acetamide S1 0.00
Acetone S2 0.03
Adenine S1 0.06
Benzene S1 0.04

Benzoquinone S3 0.09
Butadiene S2 0.04

Cyclopentadiene S2 0.04
Cyclopropene S1 0.35

Cytosine S1 0.02
Ethene S4 0.68

Formaldehyde S2 0.12
Furan S2 0.08

Hexatriene S1 0.01
Imidazole S2 -0.11

Naphthalene S1 0.13
Norbornadiene S1 0.13
Octatetraene S1 -0.02
Propanamide S1

a 0.09
Pyrazine S6 0.37

Pyridazine S1 0.09
Pyridine S1 -0.03

Pyrimidine S1 0.02
Tetrazine S1 0.48
Thymine S1 0.14
Triazine S1 0.10
Uracil S1 0.14

a Reoptimized TDDFT from TDDFT+TB S1 minimum

TABLE V. Emission energy differences between TDDFT and
TDDFT+TB for chromophores in reference38 (eV)

Molecule State Energy Difference (eV)
1 S1 0.23
2 S1 0.03
3 S1 0.03
4 S1 0.01
5 S1 0.08
6 S1 0.02
7 S1 0.06
8 S1 0.00
9 S1 0.02

10 S1 0.08
11 S1 0.00
12 S1 -0.01
13 S1 0.00
14 S1 0.00

method. This is a result of numerical inaccuracies in which
the gradient may be using the wrong energy level upon dis-
placing the starting geometry. Optimizing degenerate states is
an issue with TDDFT as well and results in some states not
being able to optimize at all, which is what happens with the
S1 state in pyrrole. In formamide, the S1 state can be opti-
mized with TDDFT but not with TDDFT+TB. This happens
because the TDDFT+TB optimization misses the local min-

TABLE VI. Emission energy differences between TDDFT and
TDDFT+TB for noble metal nanoclusters (eV)

Molecule State Energy Difference (eV)
Au3+

7 S1 0.03
Au22(PA)18 S1 0.02

Au25(SC3H7)18
1− S1

a 0.02
Au14Cd(S-Adm)12 S1 -0.01
Au14Cd(S-Adm)12 S′

1 0.00
Au14Cd(S-Adm)12 S2 -0.01

Ag29(BDT)12 S1 0.00
Au18(S-Adm)8(SbPh3)8Br2 S1 0.02

Au6(PPh3)2+
6 S1 0.07

Au2Ag6(PPh2Py)2(SC10H15)6 S1 0.04

a TDDFT geometry converged to 1.32×10−3 constrained gradient max

imum point and finds a lower energy geometry in which the
molecule errors due to degeneracy with the state below. If
the optimization with TDDFT+TB is started at the S1 state
of TDDFT, the method can obtain the minimum. In addition,
TDDFT has issues optimizing excited states when the emis-
sion energy becomes lower than 0.50 eV. TDDFT+TB will
still optimize these states as shown by the examples in chlo-
rine and propanamide. If the optimization with TDDFT is
started at the S1 state of TDDFT+TB, the method can obtain
the minimum in propanamide, but not chlorine.

Recall that the analytical gradients also work for singlet-
triplet states. The chromophore set38 was therefore tested
to obtain the emission energy from the first triplet state as
seen in table 7. Note that these are not unrestricted calcu-
lations and refer to triplet states calculated using the singlet
orbitals and orbital energies; thus, the state is denoted by ST.
Chromophore 14 was not able to optimize with TDDFT or
TDDFT+TB and therefore was omitted from the set. The
overall RMS and MAD values for this set are 0.092 eV and
0.059 eV respectively.

TABLE VII. Emission energy differences between TDDFT and
TDDFT+TB for the first singlet-triplet state for chromophores in
reference (eV)

Molecule State Energy Difference (eV)
1 ST1 -0.21
2 ST1 -0.06
3 ST1 -0.13
4 ST1 0.01
5 ST1 -0.14
6 ST1 -0.06
7 ST1 -0.09
8 ST1 -0.02
9 ST1 0.10
10 ST1 -0.06
11 ST1 0.00
12 ST1 -0.01
13 ST1 -0.01

Overall, the TDDFT+TB emission energy obtained through
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the analytical gradients match TDDFT very well in larger
molecules and nanoclusters generally within 0.10 eV. The
benefit of using TDDFT+TB is that the accuracy has shown
to match TDDFT well, but drastically cuts on cost. Therefore,
it is imperative to not only compare the emission energy, but
also the total run time of the calculation. A few results are
shown in table 8. Note: the run time is presented in ’days-
hours:minutes:seconds’. In addition to run time and accuracy,
it is important that this method can still obtain different emis-
sive points. To double check that TDDFT+TB can achieve
multiple minima, and not fall back into the same local mini-
mum point, calculations were performed from an intermedi-
ate geometry on Au14Cd(S-Adm)12, which has been shown to
have dual emission from states’ S1 and S1’.14 The results are
displayed in table 9.

Overall, the TDDFT+TB method takes approximately a
third of the overall run time compared to TDDFT. While this
difference is not as important for diatomic and small organic
molecules, it really adds up when computing larger systems
and nanoclusters. Au22(PA)18, for example, has 256 total
atoms and takes 17 days to optimize the S1 state with TDDFT.
With TDDFT+TB, the calculation achieves essentially the
same result in less than a week. Further, on a different type
of node, the same calculation optimizes a geometry that has
an emission energy of 1.21 eV with TDDFT and 1.20 eV with
TDDFT+TB. This means that the difference between TDDFT
and TDDFT+TB is well within the error from the small fluctu-
ations seen within the same calculation on different compute
nodes.

D. Discussion

Overall, the TDDFT+TB gradient code has shown to repro-
duce emission energies on average within 0.70 eV of diatomic
molecules, 0.15 eV for organic molecules, 0.02 eV for nan-
oclusters, and 0.04 eV for chromophores of various sizes. Of
course, as an approximate method, TDDFT+TB gradients are
not perfect and there exist test cases in which the TDDFT+TB
results do not match as well with the results obtained from
TDDFT. It is critical to keep in mind that the TDDFT+TB
method has some problems modelling local transitions due to
the atomic transition charges. This problem comes in with
the definition of the TDDFT+TB method, specifically in the
monopole approximation to the transition density. With this
approximation, the basis functions that are on the same atom
do not contribute to the atomic transition charges which un-
derestimate vertical excitation energies for σ to π∗ and n to
π∗ transitions.25 This issue has been found to be less impor-
tant as the system size increases and as the system becomes
less symmetrical; thus, the method is ideal for larger systems.

The current state of the code is advantageous for larger
chemical systems and plasmonic nanoparticles. As the chem-
ical system gets bigger, the TDDFT+TB gradients seem to
get more accurate compared to TDDFT, and the error is often
significantly less than 0.30 eV. This is a good cost to accuracy
relationship, especially for the continued study of photochem-
ical systems.

V. CONCLUSION

Tight binding approximations are extremely useful and can
drastically cut the cost of excited state calculations. This work
demonstrated the derivation and implementation of the ana-
lytical excited state gradients for TDDFT+TB. To derive the
analytical excited state gradients, four steps were introduced:
defining an energy functional that is equivalent to the vertical
excitation energy of that system, setting up an energy func-
tional that is stationary with respect to the molecular orbital
coefficients, solving the Lagrange multipliers after the con-
straints have been defined, and taking the full derivative of
each term in the energy functional to obtain the full analyti-
cal gradient with respect to the position of the nuclear coordi-
nates. This method is currently implemented into the ADF en-
gine of the Amsterdam Modelling Suite and will be available
for the 2023 release. The code works in serial and in parallel,
with and without scalar relativistic effects, and produces emis-
sion energies for singlet-singlet and singlet-triplet excitations.
Overall, the TDDFT+TB gradients have found to cut the over-
all cost of TDDFT gradients roughly by a factor of 3, while
reproducing the TDDFT emission energy of different excited
states within 0.15 eV for small organic molecules, and larger
systems such as chromophores and noble metal nanoclusters.
It is recommended that this method be used for chemical sys-
tems that are larger than 50 atoms in size.

SUPPLEMENTARY MATERIAL

See supplementary material for extended derivation, list-
ing of the chromophore set, equations for MAD and RMS,
numerical and analytical gradient differences at different dis-
placements, and a comparison of emission energy and runtime
with different chemical systems in serial and parallel.
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TABLE VIII. S1 minimum calculated with TDDFT and TDDFT+TB in different chemical systems

Molecule Method Runtime Emission Energy (eV) Number of Geometry Steps
LiH TDDFT 00:01:00 2.31 40

TDDFT+TB 00:00:42 2.24 49
Octatetraene TDDFT 00:19:03 3.63 6

TDDFT+TB 00:05:08 3.65 6
Cytosine TDDFT 00:15:55 1.23 9

TDDFT+TB 00:04:59 1.21 9
Au3+

7 TDDFT 01:10:13 1.76 13
TDDFT+TB 00:17:00 1.73 10

Au22(PA)18 TDDFT 17-06:40:45 1.19 193
TDDFT+TB 6-13:20:19 1.21 153

TABLE IX. Optimized minima of Au14Cd(S-Adm)12 on the first excited state singlet

State Method Runtime Emission Energy (eV) Number of Geometry Steps
S1 TDDFT 5-20:02:55 1.11 50
S1 TDDFT+TB 1-20:02:23 1.10 41
S1’ TDDFT 5-07:50:17 0.88 51
S1’ TDDFT+TB 3-17:14:54 0.88 108
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