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Abstract

Physics-driven deep learning methods have emerged as a powerful tool for computational magnetic

resonance imaging (MRI) problems, pushing reconstruction performance to new limits. This article

provides an overview of the recent developments in incorporating physics information into learning-

based MRI reconstruction. We consider inverse problems with both linear and non-linear forward mod-

els for computational MRI, and review the classical approaches for solving these. We then focus on

physics-driven deep learning approaches, covering physics-driven loss functions, plug-and-play methods,

generative models, and unrolled networks. We highlight domain-specific challenges such as real- and

complex-valued building blocks of neural networks, and translational applications in MRI with linear

and non-linear forward models. Finally, we discuss common issues and open challenges, and draw

connections to the importance of physics-driven learning when combined with other downstream tasks

in the medical imaging pipeline.
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I. INTRODUCTION

Magnetic resonance imaging (MRI) is a non-invasive radiation-free imaging modality with a plethora of

clinical applications and extensively-studied physics underpinnings. The relationship between the acquired

MRI data and the underlying magnetization is characterized by Bloch equations, and depends on a

number of parameters, including the magnetic fields (e.g. the static B0 magnetic field), relaxation effects

(e.g. T1, T2 relaxation), motions at different scales (e.g. physiological, flow, diffusion and perfusion),

and acquisition parameters (e.g. echo time, flip angle) [1]. These intricate dependencies are encoded in

the so-called k-space, corresponding to the spatial Fourier transform of the object’s magnetization. The

acquired k-space signal y(t) at time t, prior to discretization, is given as

y(t) =

∫
M(ρ(r),ϑ, t, r)e−j2πk(t)·r dr + n(t) (1)

where r is the spatial location; ρ(r) is the underlying spin densities/transverse magnetization; ϑ is a

set of (potentially unknown) parameters that model physiological or systemic changes, and themselves

may depend on r; k(t) is the k-space location at time t sampled along a k-space trajectory under the

influence of spatially and temporally varying magnetic fields; and n(t) is measurement noise. The physics-

based signal model M(ρ(r),ϑ, tj , r), sampled at times tj , thereby describes the effects that influence the

underlying magnetization, based on pre-specified and known image acquisition parameters. It depends

on the imaging sequence and reflects physiological, functional or hardware characteristics. For many

applications, an analytical expression can be derived (e.g. via hard pulse approximation from the Bloch

equations) for which a few examples are summarized in Table I (linear and non-linear models). If no

analytical expression can be derived for the imaging sequence, the Bloch equations need to be integrated

directly as the signal model.

TABLE I: Analytically derived physics-based signal models for pre-specified imaging sequences for set and known

image acquisition parameters (dominant one influencing the signal model is depicted) and the to be estimated

unknown parameters [1, 2].

physical effect image acquisition parameters unknown parameter ϑ signal model M(ρ(r),ϑ, tj , r)

off-resonance echo time tj ∆ω ej∆ω(r)tjρ(r)

motion echo time tj motion field Uj ρ (Uj(r)) | det(∇Uj)(r)|

T1 relaxation inversion times tk, equilibrium magnetization ρ0 T1 ρ0(r)(1− e
−

tj
T1(r) )

T2 relaxation echo time tj T2 e
−

tj
T2(r) ρ(r)

flow velocity v flow-encoded acquisitions Vj v ejv·Vjρ(r)

diffusion tensor D diffusion-encoded acquisitions bj D e−bT
j Dbjρ(r)
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For a simplified acquisition model, the signal in M(ρ(r),ϑ, t, r) is often characterized as x(r), which

absorbs the dependencies on the physiologic or systemic effects, as well as the signal evolution (or

time-course), into the image/magnetization of interest. For example, this type of simplification is used

when referring to images with different contrast weightings, such as T1 or T2 weighting. In this setup,

following discretization, the physics-based forward model becomes linear and can be expressed as

y = Ex + n, (2)

where x ∈ Cn is the image/magnetization of interest, y∈ Cm denotes the corresponding k-space measure-

ments, E: Cn → Cm is the forward MRI encoding operator, and n∈ Cm is discretized measurement noise.

In its simplest form, E corresponds to a sub-sampled discrete Fourier transform matrix FΩ: Cn → Cm

which samples the k-space locations specified by Ω. In practice, however, all clinical MRI scanners

from all vendors are equipped with multi-coil receiver arrays, and the corresponding multi-coil forward

operator E: Cn → Cm·nc is given as

E =


FΩC1

...

FΩCnc

 ,
where nc is the number of coils in the receiver array, and Cq: Cn → Cn is a diagonal matrix containing

the sensitivity profile of the qth receiver coil. These coil sensitivities are typically pre-estimated from

subject-specific calibration data [3]. We note that while FΩ typically refers to a sub-sampled Cartesian

acquisition that can be implemented efficiently with a fast Fourier transform, non-Cartesian acquisitions

are also used in some clinical applications.

Formation of images and other information from these measured k-space data constitutes the basis of

computational MRI, which in itself has a rich history. The canonical inverse problem for computational

MRI relates to the formation of images from sub-sampled/degraded k-space data. Solving such inverse

problems often necessitates incorporation of additional information about MRI encoding and/or the nature

of MR images. Earlier works concentrated on the properties of the k-space, such as partial Fourier imaging

methods that utilize Hermitian symmetry. With the advent of multi-coil receiver arrays, the redundancies

among these coil elements became the important information for the next generation of inverse problems

[3].

In addition to the above canonical linear inverse problems, there is a class of computational MRI

methods that deals with the more complicated non-linear forward models incorporating physical, systemic
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and physiological parameters, as stated in Table I. The forward model in this case can be broadly given

as [1]:

y = E(v) + n, (3)

where v ∈ Cnv is a vector that includes all unknown imaging/quantity and parameters of interest that

describes the signal evolution in Eq. (1), and E : Cnv → Cm·nc is a non-linear encoding operator, i.e.

the signal evolution arising from the physics-based signal model of Eq. (1). It can be decomposed into

E = EM, where E is the canonical multi-coil forward operator and M : Cnvnϑ → Cn is the discretized

signal model describing the spin physics. Here, we make the distinction that v includes all unknown

quantities of interest that describes the signal evolution, as opposed to just an image as in Eq. (2). This

broad definition is necessary to incorporate different setups [1], which are partially described in Table I.

For example, for the motion model in Table I, v includes both the motion field and the image of interest.

For this model, the former was specified by ϑ as the unknown physiological parameter, but one is typically

interested in recovering the image itself. For a relaxation model, v includes both the magnetization and

the relaxation map (e.g. T1 or T2). In this setup, the quantity of interest is the relaxation map, which

was specified by ϑ as the unknown physical parameter, but the magnetization also needs to be recovered

to fully describe the model. Thus, it is not straightforward to tease out the unknown parameter from the

magnetization in all cases, where the object of clinical interest may be either. Hence the unified notation

[1] makes the inverse problem easier to specify without going into application details. Traditionally, the

inverse problem corresponding to Eq. (3) is solved using model-based reconstructions.

Recently, deep learning methods have emerged as a powerful tool for solving many inverse problems

in computational MRI. Among these, MRI reconstruction for accelerated acquisitions remains the most

well-studied [4–6], along with several strategies for quantitative MRI [7], motion [8] and other non-linear

physical models [9]. Out of a plethora of approaches for these problems, physics-driven methods,which

explicitly use the known physics-based forward imaging models in deep learning architectures and/or

training to control the consistency of the reconstruction with k-space measurements, have emerged as

the most well-received deep learning techniques by the MRI community due to their incorporation of

the MR domain knowledge. The goal of this manuscript is to provide a comprehensive review of inverse

problems for computational MRI, and how physics-driven deep learning techniques involving the raw

k-space data are being used for these applications.

II. CLASSICAL APPROACHES FOR COMPUTATIONAL MRI

The simplest image reconstruction problem for computational MRI concerns the case where E is

exactly the discrete Fourier transform matrix in Eq. (2), corresponding to Nyquist rate sampling for a
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given resolution and field-of-view. In this case, the image of interest is recovered via inverse discrete

Fourier transform.

In practical settings, often a sub-Nyquist rate is employed to enable faster imaging, where the previous

simple strategy of taking the inverse Fourier transform leads to aliasing artifacts. Thus, in this regime,

an inverse problem, incorporating additional domain knowledge, needs to be solved for image formation.

The most commonly used clinical strategy for accelerated MRI is parallel imaging [3], which uses the

redundancies among these coil elements for image reconstruction. Succinctly, parallel imaging methods

that work in image domain [3] solved

x̂PI = arg min
x

1

2
||y −Ex||22 = (EHE)−1EHy, (4)

where H denotes the Hermitian transpose. In theory, with nc coil elements, the ratio between the image

size and the cardinality of Ω, or the acceleration rate (R), can be as high as nc. However, due to spatial or

statistical dependencies between {Ck} and ill-conditioning of E that leads to noise amplification due to

the matrix inversion [3], the achievable rates are often limited. Subsequently, compressed sensing methods

were proposed to utilize the compressibility of MR images to reconstruct images from sub-sampled k-

space data. These methods solve a regularized least squares objective function [10]

x̂CS = arg min
x

1

2
||y −Ex||22 + τ ||Wx||1, (5)

where || · ||1 denotes the `1 norm, W is a sparsifying linear transform, and τ is a weight term. Unlike (4),

the objective function does not have a closed form solution. We also note that Eq. (5) corresponds to the

analysis formulation of `1 regularization, while the synthesis formulation which performs regularization

in the transform domain directly also remains popular. The two are equivalent when W is a unitary

transformation. Both the synthesis and analysis formulations lead to a convex problem, and can be

solved using numerous iterative algorithms [10].

A. Solving the linear inverse problem in classical computational MRI

In general, we will consider a regularized least squares objective with a broader class of regularizers:

x̂reg = arg min
x

1

2
||y −Ex||22 +R(x), (6)

where R(·) may be one of the aforementioned regularizers, such as the `1 norm of transform domain

coefficients, or implicitly implemented via machine learning techniques, as we will later see.

There is a number of iterative algorithms for solving such objective functions, especially when it is

convex [10]. A classical approach, when R(·) is differentiable, is based on gradient descent:

x(i) = x(i−1) + ηEH(y −Ex(i−1))− η∇xR(x)|x=x(i−1) , (7)
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where x(i) is the image of interest at the ith iteration. However, often times nonsmooth regularizers are

used in computational MRI. In this case, proximal algorithms are widely used [10]. One such method is

proximal gradient descent, which amounts to solving two sub-problems:

z(i) = x(i−1) + ηEH(y −Ex(i−1)), (8a)

x(i) = arg min
x

1

2
||z(i) − x||22 + ηR(x) , proxR,η(z

(i)) (8b)

where x(i) and z(i) are the image of interest and an intermediate image at the ith iteration respectively,

Eq. (8b) corresponds to the so-called proximal operator for the regularizer, Eq. (8a) encourages data

consistency, and η is a step size.

Another class of popular approaches rely on variable splitting, such as the alternating direction method

of multipliers (ADMM), which solves:

x(i) =
(
EHE + ρI

)−1(
EHy + ρ(z(i−1) − u(i−1))

)
, (9a)

z(i) = arg min
z

1

2

∣∣∣∣(x(i) + u(i−1))− z
∣∣∣∣2

2
+

1

ρ
R(z), (9b)

u(i) = u(i−1) + (x(i) − z(i)), (9c)

where x(i) is the image of interest at the ith iteration, z(i) and u(i) are intermediate images, and ρ is

a penalty weight. Here, (9a), (9b) and (9c) corresponds to data consistency, proximal operator and dual

update sub-problems respectively. A simpler version of variable splitting is based on a quadratic penalty

[10], which leads to the following equations:

x(i) =
(
EHE + ρI

)−1(
EHy + ρz(i−1)

)
, (10a)

z(i) = arg min
z

1

2

∣∣∣∣x(i) − z
∣∣∣∣2

2
+

1

ρ
R(z), (10b)

B. Solving the non-linear inverse problem in classical computational MRI

The general unconstrained optimization problem for a model-based reconstruction for the forward

model in Eq. (3) can be stated as:

v̂ = arg min
v
‖EM(v)− y‖22 +Rv(v) (11)

where Rv is a (combination of) regularizer that acts on all unknown quantities of interest. While the

notation is general, the regularizer may be separable among different quantities, e. g. different regularizers

for the motion field and the image of interest. This description can be used to combine parallel imaging,

compressed sensing and model-based reconstruction in a unified formulation. In addition to the motion
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and T2 mapping models discussed earlier in Section I, a non-linear forward model can also be used to

describe dynamic imaging scenarios, such as contrast-enhanced imaging. Consider the signal model in Eq.

(1), and time instances specified τ0(t) , 0, τ1(t), τ2(t), . . . , τn(t). These time instances may correspond

to different physical events, e.g. RF excitation for single-shot EPI acquisitions, sampling after an inversion

pulse for T1 mapping, or cardiac triggering for myocardial parameter mapping or perfusion cardiac MRI.

Let the discretized k-space measurements between τi−1(t) and τi(t) be denoted by yi. Thus, each yi,

corresponding to {y(t)}τi−1(t)≤t<τi(t), essentially captures a snap-shot of this dynamic process between

the specified sample instances. In the same vein as Eq. (3), these can be vectorized into y, where the

corresponding v models the relevant pharmacokinetic quantities.

For the inverse problems with non-linear forward operators, the algorithms are less standardized, and

typically application-dependent. Eq. (11) is usually non-convex, making its optimization a challenging

task. Furthermore, inaccuracies or incompleteness of the modelling can further influence the optimization.

One approach is to employ a Gauss-Newton algorithm, and linearize the problem around the solution of

the previous iteration or by approximating the non-linear behaviour with a linear combination of basis

functions.

III. PHYSICS-DRIVEN ML METHODS IN COMPUTATIONAL MRI

Deep learning methods have recently emerged as a powerful tool for computational MRI. These

methods can be broadly split into two classes: purely data-driven and physics-driven [6]. The former

methods are typically implemented in image space, as removing artifacts from aliased images. These im-

age enhancement networks are typically trained to map corrupted and undersampled images to artifact-free

images. Indeed, learning image enhancement networks is the key ingredient to remove artifacts in image

domain. However, when only image enhancement methods are used, the information of the acquisition

physics is entirely discarded, hence, k-space consistency cannot be guaranteed. In this section, we will

give an extensive overview on physics-driven deep learning methods for computational MRI, ranging

from physics-informed enhancement methods to learned unrolled optimization, as well as reconstruction

with generative models and plug-and-play priors.

A. Physics Information in Image/k-space Enhancement Methods

As aforementioned, image enhancement networks typically learn a mapping from the aliased/degraded

image, such as the zero-filled reconstruction, to a reference image, without consideration of the measured

k-space data during the reconstruction process. For Cartesian sampling, several attempts have been made

to incorporate physics information in this line of work [11, 12] , including enforcing k-space consistency
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directly after image enhancement [11], or adding k-space consistency as an additional cost function term

during training [12]. The former approach directly replaces the measured k-space lines, which may lead

to artifacts, while the latter cannot guarantee k-space consistency during inference, especially for cases

with unseen pathologies. Specifically, in [11], enforcing hard k-space consistency directly after image

enhancement was proposed, where the enhanced image was transformed into Fourier space, and the points

at the sampled locations were replaced by the original k-space measurements. However, we note that this

approach cannot be applied to more complex sampling trajectories in non-Cartesian imaging. In [12], k-

space consistency was added as an additional cost function term during training. However, this approach

cannot guarantee k-space consistency during inference, especially for cases with unseen pathologies.

Similarly, enhancement has been proposed in k-space, as a method of interpolation [13], where a non-

linear interpolation function is learned from calibration data. This can be seen as an extension to the linear

convolution kernels used in generalized autocalibrating partially parallel acquisitions (GRAPPA). As only

the calibration data is required for training, this approach can be used when large training databases are

not available, but its performance may be limited at high acceleration rates where the calibration data

may be insufficient [6].

B. Plug-and-play Methods with Deep Denoisers

Plug-and-play (PnP) algorithms decouple image modeling from the physics of the MRI acquisition,

by noting that the proximal operators in Eq. (8b) or Eq. (9b) correspond to conventional denoising

problems [14]. In the proximal-based formulation, these proximal denoisers are replaced by other powerful

denoising algorithms, which do not necessarily have a corresponding closed form R(·) expression, such

as BM3D [14]. A related approach is the regularization by denoising (RED) framework, which considers

finding x that solves the first-order optimality condition

0 = EH(Ex− y) + λ(x− d(x)), (12)

where d(·) is the plug-in denoiser [14], and λ > 0 denotes the regularization parameter. The advantage

of the RED formulation is that under certain conditions, the regularizer, R(·) can be explicitly tied to the

denoiser, d(·). We refer the reader to a comprehensive review article on the subject [14] for more details.

We also note that, beyond the computational MRI community, there has been work characterizing the

guaranteed convergence of plug-and-play networks.

Recently, more effort has been made towards implementing CNN-based denoisers in these PnP frame-

works [14, 15], depicted in Figure 1. These denoisers are typically trained using reference images in

a supervised manner, where different levels of noise are retrospectively added to these images, and a
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Fig. 1: Overview of the PnP framework in physics-driven deep learning methods for computational MRI. The data

consistency layer enforces fidelity with k-space measurements based on the known forward model. Note that a

Cartesian sampling scheme is shown for easier depiction, but data consistency is also applicable to non-Cartesian

trajectories.

mapping from the noisy images to reference images are learned [14]. In applications, where reference

images are unavailable, Noise2Noise denoising framework has been proposed for training using pairs of

noisy images. Extending on this work, regularization by artifact removal (RARE) trained CNN denoisers

on a database of pairs of images with artifacts generated from non-Cartesian acquisitions [15]. These pairs

were generated by splitting the acquired measurements in half, and reconstructing these with least squares

as in Eq.(4), corresponding to a parallel imaging reconstruction, which led to starting images of sufficient

quality for non-Cartesian trajectories that oversample the central region of k-space. The appeal of these

methods is that the CNN-based denoisers are trained independently of the broader inverse problem. Thus,

only the denoising network has to be stored in memory, allowing for easier translation to larger-scale as

proposed in RARE [15] for 3D MRI datasets . This approach is also appealing since only one denoiser

has to be trained on any data. Hence, this denoiser can, in principle, be applied across different rates or

undersampling patterns. In practice, it is beneficial to provide the denoiser with additional information,

such as the undersampling artifacts arising from uniform undersampling pattern in order to recognize

characteristic aliasing artifacts.

C. Generative Models

While we have reviewed explicit regularization in Eq. (6), regularization can also be achieved by an

implicit prior in order to constrain the solution space for our optimization problem. This concept is

proposed by Deep Image Prior (DIP) as follows:

min
θ

1

2
‖EGθ(z)− y‖22, (13)

where a generator network, Gθ: Cd → Cn parametrized by θ∈ Rp, reconstructs an image x = Gθ(z) ∈

Cn from a random d-dimensional latent vector z∈ Cd. This loss function is used to train the generator
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network with parameters θ. This formulation has the advantage that it works for limited (even single)

datasets without ground-truth. However, early stopping has to be performed to not overfit to the noisy

measurements. An extension of the DIP framework to dynamic non-Cartesian MRI was proposed in [16].

A mapping network first generated an expressive latent space from a fixed low-dimensional manifold,

e.g. a straight-line manifold, using fully connected layers and non-linearities. A subsequent generative

CNN generates the finally reconstructed image.

An alternative line of work is based on generative adverserial networks (GANs), where a generator and

a discriminator network play a minimax game. The generator network samples from a fixed distribution

in latent space such as Gaussian distribution and aims to map the sampling to a real data distribution in

the ambient image space. Conversely, the discriminator network aims to differentiate between generated

and real samples. The minimax training objective is defined as

min
θG

max
θD

LGAN (θD,θG) , Ex[logDθD
(x)] + Ez[log(1−DθD

(GθG
(z))], (14)

where the distribution on x is the real data distribution, whereas the one on z is a fixed distribution on the

latent space, and Ez and Ex denote the expected values defined over the random variables z and x. The

generator GθG
, parametrized by θG∈ RpG , tries to map samples from the latent space to samples from

the ambient image space, and the discriminator DθD
, parametrized by θD∈ RpD , tries to differentiate

between the generated and the real samples.

The idea of using GANs in computational MRI was first proposed in [17]. In this case, the generator

network used the zero-filled images as input instead of a random distribution, leading to the loss function

min
θG

max
θD

Ex[logDθD
(x)] + Ey[log(1−DθD

(GθG
(EHy))]. (15)

At inference time, the generator was used to produce the desired output. Here GθG
was an image

enhancement network, followed by a data consistency step, for instance implemented by a gradient descent

step as in Eq. (8a); while the discriminator DθD
was essentially used to implement an adversarial loss

term to improve the recovery of finer details. Thus, this formulation used supervised training with paired

data. A high-level overview of this approach is shown in Figure 2. A more recent work replaced this

generator with a variational autoencoder based generator that also allowed for uncertainty quantification

[18].

Another approach is based on inverse GANs, which utilize generative learning, followed by optimization

similar to the DIP [19]. First, a GAN is trained to generate an MR image from a latent noise vector. The

GAN does not involve any physics-based knowledge, as only clean MRI reference images are used for
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Fig. 2: Overview of GAN methods in physics-driven deep learning methods for computational MRI. A generator

network (G), typically followed by a data consistency layer, implemented using a gradient descent step as in Eq. (8a),

is used to generate an image. In the supervised setting, this generator is jointly trained with a discriminator network

(D) that implements an adversarial loss to aid in the recovery of fine details of the image. In the unsupervised

setting, such as cycleGANs, physics information is further enforced in the loss function both in image and k-space

domains. Note that the figure shows the training phase, and at inference time, only the G network is used.

training. The physics-based information and the trained generator network GθG
are then included in the

optimization problem

min
z

1

2
‖EGθG

(z)− y‖22. (16)

This solves for the latent vector z which is bounded from above by a hypersphere constraint, generating

an image that lies in the range space of the generator. In a final step, both the generator parameters and

the latent vector are optimized following:

min
θG,z

1

2
‖EGθG

(z)− y‖22, (17)

This allows for adaptation of the generator to the undersampled k-space data at test time, and is not

restricted to any sampling pattern. Initialization of (17) by the optimal latent vector found in (16) and

early stopping (before reaching the minimum), allow the generator parameters θG to not deviate too far

from the original generator parameters. The reconstructed image x is obtained by using the optimized

values θ∗G, z
∗ for the generator, i.e., x = Gθ G∗(z∗).

In another line of work, cycle consistent GANs (cycleGAN) that enable unpaired image-to-image

translation, have been analyzed using optimal transport, which provides a means to transport probability

measures by minimizing average transport between measures [20]. While traditional GANs and DIP-like

networks are trained to minimize a distance measure in either image space or k-space, CycleGAN aims
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to minimize this in both k-space and image domain. In essence, this is achieved by minimizing two forms

of losses, one for cyclic consistency and one for GAN training. The former is given by

Lcycle(θG) = Ex[||x−GθG
(Ex)||22] + Ey[||y −EGθG

(y)||22], (18)

where the generator uses k-space measurements y as input. Here, the first term ensures consistency in

the image domain, while the latter enforces consistency in the k-space domain. The second part of the

training loss is a Wasserstein GAN loss,

LWGAN(θG,θD) = max
||DθD

||L≤1
Ex[DθD

(x)]− Ez[DθD
(GθG

(z))]. (19)

This equation is a generalization of Eq. (14) with improved training stability, where the DθD
now outputs

a scalar value instead of a probability and as such is referred to as a critic instead of a discriminator, and

||DθD
||L ≤ 1 indicates that it is restricted to be a Lipschitz-1 function. The final training loss is given

as a weighted combination of these

LcycleGAN = γLcycle(θG) + LWGAN(θG,θD), (20)

where γ is a weighting hyperparameter. This approach was applied to unsupervised training of generative

models for MRI reconstruction [20].

Variational Autoencoders (VAEs) build on the dimensionality-reducing encoder-decoder structure of

autoencoders. Different from autoencoders, the encoder in a VAE learns a conditional distribution on

the latent space, conditioned on the input distribution. Then, a vector is sampled from this probability

distribution and fed to a decoder, which approximates the original data distribution conditioned on the

latent space distribution. Hence, the latent code is learned in VAEs for a class of input images, while

for conventional GANs, the latent vector amounts to random noise. Another application of VAEs in the

field of MRI reconstruction is uncertainty quantification [18], where the VAE encodes the acquisition

uncertainty and a Monte Carlo sampling approach is used to sample from the learned distribution and

generate uncertainty maps along with the reconstructed image.

D. Algorithm unrolling and unrolled networks

Algorithm unrolling considers the traditional iterative approaches considered in Section II-A and adapts

them in a manner that is amenable to learning the optimal parameters for image reconstruction [6].

Traditional approaches require numerous iterations during optimization to solve the MRI reconstruction

problem. Additionally, only a fixed, handcrafted regularizer is used, which do not necessarily model

MR images accurately. Instead of solving a new optimization problem for each task, the whole iterative

reconstruction procedure, including the image regularizer, can be learned. The original idea was proposed
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in the context of sparse coding, but has found great use in computational imaging applications, including

computational MRI. In this line of work, a conventional iterative algorithm for solving Eq. (6) is unrolled

and solved for a fixed number of iterations, as overviewed in Figure 3. The concept of algorithm unrolling

will be introduced throughout this section. In practice, any iterative optimization algorithm can be unrolled

for solving Eq. (6). In the context of MRI, algorithm unrolling is based on ADMM as described in

Eq. (9a)-(9c), gradient descent schemes [4], proximal gradient schemes [21], primal-dual methods [22],

or variable splitting methods [5, 23]. Note that these algorithms contain a processing step associated with

the regularization, such as the proximal operator as in Eq. (8b) or (9b), and a data consistency step that

ensures the image estimate is consistent with the acquired k-space data, such as the gradient descent step

in Eq. (8a) or the `2 minimization step in (9a). We refer to this latter step that controls fidelity with the

raw k-space data as data consistency layer (or block).

Fig. 3: Overview of algorithm unrolling in physics-driven deep learning methods for computational MRI. An

iterative algorithm for solving Eq. (6) is unrolled for a fixed number of iterations, and trained end-to-end using

corresponding fully-sampled/reference data. The red network block R denotes a regularization network. This is

followed by a data consistency (DC) layer. The implementation of the DC layer depends on which algorithm

is used for unrolling. If a gradient descent scheme is used, the DC layer implements a gradient descent update

involving the raw k-space data, and other constants that are involved in the forward model. If variable splitting

based methods are used, this involves solving a problem similar to Eq. (9a). The parameters can be either shared

or vary over the single iterations, also termed stages.
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We introduce the concept of unrolled networks on Variational Networks (VNs), which are an example

for an unrolled gradient descent scheme. In this method, the gradient descent approach in Eq. (7) is

unrolled for a fixed number of Nt steps. In VNs, the gradient of the regularizer ∇xR(x)|x=x(i−1) is

derived from the Fields-of-Experts (FoE) regularizer [4], i.e.,

R(x) =

Nk∑
j=1

Φj(Kjx).

This can be seen as a generalization of the Total Variation semi-norm for a number of Nk convolution

operators Kj : CNx → CNx and non-linear potential functions Φj : CNx → R. Calculating the gradient

with respect to x yields:

∇xR(x) =

Nk∑
j=1

KH
j Φ′j(Kjx), (21)

where Φ′j : CNx → CNx denotes the gradient vector of Φj with respect to x. Plugging Eq. (21) in Eq. (7)

yields

x(i) = x(i−1) + ηEH(y −Ex(i−1))−
Nk∑
j=1

KH
j Φ′j(Kjx

(i−1)) i = 0, . . . Nt − 1, (22)

where Nt denotes the number of cascaded stages, and one updated (i) denotes a single stage. The

network is said to be unrolled for a fixed number of stages Ni for training. In Eq. (23) the trainable

network parameters are the convolution operators Kj , the activation functions Φ′j and the weight η. The

parameters can be shared over stages or varied over stages. The activation functions Φ′ are modelled by

a weighted combination of Gaussian radial basis functions, whose weights are learned, allowing us to

approximate arbitrary activation functions.

x(i) = x(i−1) + ηEH(y −Ex(i−1))−
Nk∑
j=1

KH
j Φ′j(Kjx

(i−1)) i = 0, . . . Nt − 1, (23)

VNs are characterized by the energy-based formulation of the regularizer such as the FoE regular-

izer [4]. In other approaches, this energy-based formulation is discarded and the gradient with respect to

x is replaced by a CNN with trainable parameters θ:

∇R(x)|x=x(i−1) = CNNθ(x(i−1)). (24)

Another line of work considers the variable splitting approach in Eq. (10a)-(10b), used in data consistent

CNNs [21] and MoDL [5], which again replace the gradient with respect to x by a CNN with trainable

parameters θ as in Eq. (24). This leads to the following scheme:

x(i) =
(
EHE + ηI

)−1(
EHy + ηz(i)), (25a)

z(i) = CNNθ(x(i−1)) (25b)
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where η is an additional learnable parameter. Eq. (25a) can be solved directly via matrix inversion for

single-coil datasets [21], or using an iterative optimization approach based on conjugate gradient (CG)

for the more commonly used multi-coil setup [5], where matrix inversion is computationally infeasible.

Note in this case, the CG algorithm itself has to be unrolled for a fixed number of iterations for easy

back-propagation through the whole network. Once again, the CNN in Eq. (25b) can be any kind of

regularization network, as the idea is agnostic to the particulars of the CNN that is used in this step.

Proximal gradient descent unrolling, which utilizes Eq. (8a)-(8b), leads to the replacement of the

proximal operator of R(·) by a CNN with trainable parameters θ, leading to:

z(i) = x(i−i) + ηEH(y −Ex(i−i)). (26a)

x(i) = CNNθ(z(i)) (26b)

This method was utilized in [21].

In the context of learned unrolled schemes, classical multi-layer CNNs [5, 21] or multi-scale regularizers

such as UNET, Down-Up Networks [24], multi-level wavelet CNNs [22] are commonly used. Also, the

parameters of these networks can be either shared, e.g. [5], or varied, e.g. [4], over the stages. However,

similar performance has been achieved with both gradient descent and variable splitting-type algorithms

as reported in the first fastMRI reconstruction challenge [25]. The differences reported in the context

of the second fastMRI reconstruction challenge focus more on managing different coil sensitivities and

regularization networks [26].

1) Training unrolled networks: The output of the unrolled network depends on the variables in

both the regularization network and data consistency layers, and can be represented with a function

funroll(y,E; {θi, ηi}Nt

i=1). For the most generalized representation, we allow the regularizer CNN param-

eters θ and the data consistency parameters η to vary across the unrolled iterations (cascaded stages).

However, as noted earlier, the parameters can also be shared between stages. While for ease of notation,

we have referred to the multi-coil operator as E, this operator implicitly includes the sub-sampling mask

Ω. For the following, we will make this dependence explicit, and use EΩ and yΩ for the multi-coil

operator and the measured k-space data, respectively.

The standard learning strategy for unrolled networks is to train them end-to-end, using the full network

that has been unrolled for Nt steps. For end-to-end training of unrolled networks, the most commonly

used paradigm relies on supervised learning, where a database of fully-sampled measurements/ground-

truth images as a reference. Given a database of pairs of input and reference data, the supervised learning

loss function can be written as
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min
{θi,ηi}Nt

i=1

1

N

N∑
n=1

L(xnref, f(ynΩ,E
n
Ω; {θi, ηi}Nt

i=1)), (27)

where θ represents the network parameters, N is the number of samples in the training database, L(·, ·) is

a loss function characterizing the difference between network output and referenced data, xnref denotes the

ground-truth image for subject n. The domain for the loss function can be image, k-space or a mixture

of them. Numerous loss functions such as `1, `2, adversarial and perceptual losses have been used in

supervised deep learning approaches [6].

However, in many applications, fully-sampled reference data may be impossible to acquire, for instance

due to organ motion or signal decay, or may be impractical due to excessively long scan times. In

these cases, self-supervised learning enables training of neural networks without fully-sampled data by

generating training data from the sub-sampled measurements themselves. One of the first works in this

area, self-supervised learning via data undersampling (SSDU) [23], partitions the acquired measurements

Ω, for each scan into two disjoint sets, Θ and Λ. One of these sets, Θ, is used during training to enforce

data consistency within the network, while the other set, Λ, remains unseen by the unrolled network and

is used to define the loss function in k-space. Hence, SSDU performs end-to-end training by minimizing

the following self-supervised loss:

min
θ

1

N

N∑
n=1

L
(
ynΛ, En

Λ

(
f(ynΘ,E

n
Θ;θ)

))
, (28)

where the network output is transformed back to k-space by applying the encoding operator En
Λ at

unseen locations in training. Thus, the self-supervised loss function measures the reconstruction quality

of the model by characterizing the discrepancy between the unseen acquired measurements and network

output measurements at the corresponding locations. Once the network is trained, the reconstruction

for unseen test data is performed by using all acquired measurements Ω. In another line of work [27],

Stein’s unbiased risk estimate of mean square error (MSE) is leveraged to enable unsupervised training

of neural networks for MRI reconstruction. In particular, the loss function obtained from an ensemble of

images, each acquired by employing different undersampling operator, has been shown to be an unbiased

estimator for MSE.

Finally, like generative models based on DIP, there has been interest in training unrolled networks on

single datasets without a database. In this setting, the number of trainable parameters is usually larger

than the number of pixels/k-space measurements, and training may lead to overfitting. Recent work in

this area has tackled this challenge by developing a zero-shot self-supervised learning [28] approach that

includes a third additional partition, which is used to monitor a self-validation loss in addition to the

previous self-supervision setup. This self-validation loss starts to increase once overfitting is observed.
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Once the model training is stopped, the final reconstruction is calculated by using the network parameters

from the stopping epoch, while using all acquired measurements.

2) Memory challenges of unrolled networks and deep equilibrium networks: A major challenge for

training unrolled networks is their large memory footprint. When an algorithm is unrolled for Nt iterations,

a straightforward implementation involves the storage of Nt CNNs, along with Nt DC operations in

GPU memory. The latter itself can have a large footprint, when a CG-type approach is used [5]. This

creates challenges for training unrolled networks for large-scale or multi-dimensional datasets, especially

since deeper networks tend to lead to better performance [25, 26]. Recently, this was tackled with

the development of memory-efficient learning schemes [29]. In memory-efficient learning, intermediate

outputs from each unrolled iteration are stored on host memory during forward pass, and backpropagation

gradients are computed using this intermediate data and gradients from the preceeding step. Thus, this

approach conceptually supports as many unrolling steps as desired, with the drawback of additional data

transfer between GPU and the host memory.

Another alternative for handling the large memory footprint of unrolled networks is deep equilibrium

networks [30]. Unrolled networks that share learnable weights across stages show competitive performance

[5], while each stage can be represented with a single function leading to a compact representation.

Unrolled networks execute this function for a finite number of steps Nt, whereas deep equilibrium

networks characterize the limit as the Nt →∞. Provided this limit exists, it corresponds to the solution

of the fixed point equation for an operator corresponding to a single stage. This approach leads to two

advantages for training. First, only one stage has to be stored during training, leading to a smaller memory

usage. Second, the convergence behavior for different values of Nt during inference is more well-behaved

compared to unrolled networks, which are designed to achieve maximal performance for a specific value

of Nt. On the other hand, deep equilibrium networks are run until convergence and do not have fixed

inference time unlike unrolled networks, which may not be ideal in clinical applications. Furthermore,

these approaches require large training time due to the Jacobian inversion during gradient computation.

IV. STATE-OF-THE-ART IN MRI PRACTICE AND DOMAIN-SPECIFIC CHALLENGES

A. Real vs complex building blocks

As complex-valued data is used in computational MRI, this has to be considered in the network

processing pipeline, not only during data consistency, but also in the network blocks itself. Two processing

modes are possible: 1) Real/Imaginary or magnitude/phase are considered in two input channels stacked

via the feature dimension, 2) Complex-valued operations are performed on complex-valued tensors. While

the former allows us to use real-valued operations, the complex-valued relationship between real and
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imaginary parts is lost. Complex-valued operations maintain the complex nature of the data, but some

operations require twice the amount of trainable parameters. For example in complex-valued convolutions,

a real and imaginary filter kernel needs to be learned. Additionally, the number of multiplications doubles

compared to real-valued processing. If complex-valued layers and tensors are involved, complex back-

propagation following Wirtinger calculus has to be considered [31] which is supported in most recent

frameworks (Tensorflow ≥ v1.0, PyTorch ≥ v1.10). An overview of the most common layer operations

together with their complex-valued Wirtinger derivatives is shown in Table II. In the context of MRI

reconstruction, complex-valued processing is conducted in both ways.

TABLE II: Overview of important functions along with their pair of Wirtinger derivatives.

Function f(x) ∂f
∂x

∂f
∂xH

Magnitude |x| =
(
xHx

)0.5 xH

2f(x)
x

2f(x)

Phase −i log x
|x| − i

2x
i

2xH

Real Component 1
2

(
x + xH

)
1
2

1
2

Imaginary Component 1
2i

(
x + xH

)
1
2i

i
2

Normalization x

(xHx)0.5
1

2(xHx)0.5
− z2

2(xHx)1.5

Scalar product wHx wH 0

Max Pooling xn, n = arg maxk|xk|

1 if n = arg maxk|xk|

0 else
0

Dropout


1
p
xn if n ∈ Ω

0 else


1
p

if n ∈ Ω

0 else
0

Separable activation

(ReLU, Sigmoid, ...) f(Re(x)) + if(Im(x)) 1
2

(
∂f
∂x

(Re(x)) + ∂f
∂x

(Im(x))
)

1
2

(
∂f
∂x

(Re(x))− ∂f
∂x

(Im(x))
)

Cardioid [31] 1
2

(1 + cos(∠x))x 1
2

+ 1
2

cos(∠x) + i
4

sin(∠x) − i
4

sin(∠x) x
xH

Complex sigmoid 1
1+e−x

e−x

(1+e−x)2
0

1) Convolution: The discrete convolution maps the Nf,in input feature channels to Nf,out output feature

channels of an image x ∈ Kn with filter kernels ki,j ∈ Kk of kernel size k via

x̂j =

Nf,in∑
i=1

xi ∗ ki,j j = 1, . . . , Nf,out, (29)

where the subscripts denote the feature channels. Convolutions can be performed along multiple dimen-

sions. For real-valued convolutions it is K = R. For complex convolutions, K = C, the convolution
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operation is extended to

xi ∗ ki,j = (Re(xi) ∗Re(ki,j)− Im(xi) ∗ Im(ki,j))

+ i · (Im(xi) ∗Re(ki,j) +Re(xi) ∗ Im(ki,j)) (30)

2) Activation: While convolution functions operate in a local neighborhood of a pixel, activation

functions operate in a pixel-wise way. When applying non-linear activation functions φ to complex

values, the impact on magnitude and phase information needs to be considered. The reader is referred

to [31] for some comparative work. One possibility is to apply the activation function to the real and

imaginary part separately as separable activations, however, the natural correlation between real and

imaginary channels are not considered in this case. When using separable ReLUs, phase information is

mapped to the first quadrant, i.e., the interval [0, π2 ], as all negative real and imaginary parts are set to

zero and only the positive parts are kept. Alternative approaches have been proposed that retain phase

information, for example siglog, defined as

φsiglog =
x

1 + |x|
.

As another option, the phase information can be fixed and only the magnitude information is altered by

the activation. An example therefore is the ModReLU

φModReLU(x) = max(0, |x|+ β)
x

|x|
(31)

where β is the bias that is trainable. A new complex activation function called Cardioid was also proposed

for MRI processing [31]

φCardioid(x) =
1

2
(1 + cos(∠x + β)) x (32)

The complex cardioid can be seen as a generalization of ReLU activation functions to the complex plane.

Compared to other complex activation functions, the complex cardioid acts on the input phase rather than

the input magnitude. A bias β can be additionally learned.

The specific choice among these complex activation functions is application-dependent. For phase

sensitive applications, such as water-fat imaging and phase contrast imaging, it was shown that complex

networks outperformed the real-valued networks, with the separable ReLUs performing best, whereas for

MR fingerprinting, the complex cardioid outperformed other activations functions [31].

3) Normalization: Adding normalization layers (batch, instance or layer/group normalization) directly

after convolution layers are a common way to enable faster and more stable training of networks. Statistics

are estimated from the input and used to re-parametrize the input. Complex-valued normalization layers

require to estimate the normalization via the covariance matrix and are straight-forward to implement.
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The subsequent layers are less tolerant to changes in previous layers. The selection of the normalization

layer is task dependent. Although normalization layers are often important to train a network, they might

lead to unwanted artifacts for image restoration tasks.

4) Pooling: Pooling layers are used as down-sampling operation to reduce the spatial resolution in the

image and to introduce approximate invariance to small translations. Small patches are analyzed in the

individual features maps to keep important information about extracted features. Common pooling layers

are Average Pooling and Max Pooling. For complex-valued images, the maximum operation does not

exist. Instead, the pooling layer is modified such that it keeps values with, e.g., the maximum magnitude

response.

Fig. 4: Down-Up Networks combined with a proximal mapping layer for data consistency [24], trained with different

data configuration. While the reconstruction performance generalizes well independent of the type of training data

for R=4, the ventricles of the brain change here when trained with the wrong data, i.e., knee data for R=8.

B. Canonical MRI reconstruction with the linear forward model

Physics-driven MRI deep learning methods have become the most popular approach in computational

MRI due to their improved robustness, especially for the accelerated MRI problem that relies on the linear

forward model in Eq. (2). Such methods have been the top performers in community-wide reconstruction

challenges, such as the fastMRI challenge [25, 26], for Cartesian sampling. The success for physics-

driven learning for MRI reconstruction is not limited to the Cartesian sampling pattern. Promising results

were also shown for non-Cartesian sampling schemes [15, 22]. These algorithms have in common that
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data consistency is included, and expressive regularization networks are used. Imaged pathologies do

not need to be included in the training dataset as long as enough k-space data is available to guide the

reconstruction to recover the pathology encoded in k-space. Additionally it was shown that the pathologies

may appear or disappear depending on the selection of the undersampling pattern for a given number of

sampled k-space lines [25]. Theoretical analysis, reader studies and uncertainty quantification are tools

that might support us to identify the clinically possible acceleration limit.

However, even physics-driven deep learning methods face some challenges for accelerated MRI. The

impact of domain shift, i.e., training and testing on different data was studied in [24], for different

acceleration factors. All training and evaluation is based on the fastMRI knee and neuro datasets [25].

While for acceleration 4, the proposed Down-Up networks with varying data consistency layers generalize

well for both anatomies, the type and amount of training data becomes more critical for acceleration factor

8. Since fewer data is available for data consistency at this acceleration, the networks start to reconstruct

anatomical structures that are not real. When trained on a subset of knee data and applied to neuro data,

the ventricles start resembling knee structures, for acceleration 8 as depicted in Figure 4.

Fig. 5: A) CINENet combines data consistency layers and a UNet architecture with complex-valued building blocks

for convolution, activation, normalization and pooling layers. To process the 3D+t data, convolutions are split into

3D spatial convolutions and 1D temporal convolutions. B) Impact of complex-valued operations over 2-channel

(real/imaginary) processing in two subjects for a prospectively undersampled 3D cardiac CINE (3D+t) acquisition

with R=15. A separate fully-sampled (R=1) reference scan is obtained for comparison.

All previously mentioned approaches consider the complex-valued MR images as images with two
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real-valued feature channels. CINENet [32] combined both data consistency layers with complex-valued

building blocks as depicted in Figure 5, for dynamic 3D (3D+t) data. These complex-valued building

blocks include convolutions, activations, pooling, and normalization layers. To process the 3D+t in the

regularization network, convolution operations are split into 3D spatial convolutions, followed by 1D

temporal convolutions.

Finally, as aforementioned the need for fully-sampled data for training had hindered the use of deep

learning reconstructions for certain applications. Thus, alternative methods have been explored. Dynamic

contrast-enhanced MRI (DCE-MRI) represents one such challenging acquisition, where k-space data is

acquired continuously while contrast agent been injected to the patient. The dynamic distribution of

the contrast agent causes the image contrast dynamics, hence, both the k-space and image are time-

series. With the recent advances outlined in Section III-D1, training in such scenarios can also be done

in with more realistic datasets without resorting to simulations. For instance, in another contrast-based

cardiac acquisition, called late gadolinium enhancement imaging, unrolled networks have been trained

using prospectively accelerated acquisitions without fully-sampled reference data [33], and were shown

to improve on clinically used compressed sensing methods, doubling the achievable acceleration rates,

as depicted in Figure 6.

Fig. 6: Reconstruction results from a high-resolution late gadolinium enhancement acquisition on a cardiac patient

(arrows: scar areas). This scan cannot be fully-sampled due to contrast-related scan time constraints. Unrolled

networks can be trained in a self-supervised manner [23], leading to reconstructions that outperform current clinically

used approaches, such as compressed sensing, and allowing acceleration rates twice as fast [33].
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C. Inverse problems in MRI with non-linear forward models

Recently, deep learning models have been proposed to address the computationally demanding task

of non-linear inverse problems in MRI. A neural network fNM,θ : Cm·nc → Cnv , parametrized by θ,

which maps the acquired data y to the unknown parameters v (e.g. magnetization and relaxation maps)

is learned either in a supervised setup [7]:

arg min
θ

Ey ‖EM(fNM,θ(y))− y‖22 + λ||fNM,θ(y)− vref||22 (33)

or in a self-supervised setup

arg min
θ

Ey ‖EM(fNM,θ(y))− y‖22 +R(fNM,θ(y)), (34)

where figureR(·) is a conventional regularizer that is not based on reference data, such as spatial total

variation. In the following, we will expand on some applications for which non-linear forward models

are beneficial.

1) Relaxivity mapping: MRI allows for quantitative measurements of inherent tissue parameters (T1,

T2, T∗2, T1ρ), which is often referred to as relaxivity or quantitative mapping. In recent years, research

developments have contributed towards the goal of retrieving multiple parametric maps from a single scan

[1]. A model-based reconstruction in these cases eliminates the need for reconstructing individual images

along the relaxivity curve (data sampled at different time-points along the T1/T2/T∗2/T1ρ relaxation based

on Eq. (1) after excitation with appropriate preparatory pulses). However, model-based reconstruction

methods have prolonged reconstruction times compared to reconstruction of individual images followed

by a parametric fitting, which hinders their clinical translation. Deep learning models have been proposed

to enable fast inference and shifting time-demanding workloads to the offline training procedure, showing

feasibility in a number of quantitative mapping applications [7, 31]. In this setting, physics information,

arising from the underlying known forward model (Eq. (2) or (3)), has primarily been incorporated to

the loss function during training, similar to Eqs. (33) and (34) [7].

2) Susceptibility mapping: Physics-driven deep learning methods have also been studied in the context

of quantitative susceptibility mapping. First works incorporated the physical principles of the dipole

inversion model that describes the susceptibility-phase relationship into the loss function during neural

network training [9]. More recently, the idea of fine-tuning pre-trained network weights on a scan-specific

basis using the physics model was proposed [34], similar to the loss function in Eq. (34) without the

additional regularizers.

3) Motion: Acquisitions under physiological and patient motion require methods for handling motion

in order to avoid aliasing or blurring of the imaged anatomy. In addition to various prospective motion
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triggering, gating or correction methods, motion can be retrospectively modeled into the forward model

and can thus be considered inside a motion-compensated/corrected reconstruction [2]. These methods

perform two fundamental operations: image registration and image reconstruction. Hence, they require

reliable motion-resolved images from which the motion can be estimated. Motion field estimation can

be controlled or supported by external motion surrogate signals or initial motion field estimates [2].

While deep learning allows for efficient motion estimation, only few works embed motion estimation

in image reconstruction. Among these, LAPNet formulates non-rigid registration directly in k-space [35],

inspired by the optical flow formulation. The estimated motion fields are then used to enhance the data

consistency and exploit the information of all motion resolved states to reconstruct images of the body

trunk. In the context of coronary MRI, a motion-informed MoDL network was proposed [8], using

diffeomorphic motion fields estimated from the zero-filled images using a UNet and subsequent scaling

and squaring layer. These motion fields are then embedded into the data consistency layer, solved via

the conjugate gradient algorithm as in MoDL. The network is unrolled for 3 iterations, with intermittent

denoising networks. The full model is trained using a reconstruction loss and a motion estimation loss.

Hence, both reconstruction and motion estimation improve as the motion-estimation networks rely on

the reconstructions of the previous unrolled iteration. Another approach achieved motion correction by

rejecting motion-affected k-space lines [36]. Inspired by [2], warping with a motion field is embedded

in the forward operator for Cartesian cine imaging, where the motion fields are estimated by a neural

network [37]. An example reconstruction results of the systole and diastole for accelerations R=4 and

R=8 is depicted in Figure 7.

V. DISCUSSION

A. Issues and open problems

Deep learning has dominated research in computational MRI during the last few years, and while there

are still a number of open questions and issues, both on the basic science and on the translational front,

they evolved as the developments are going on in the field. During the early stages of the developments,

access to raw MRI k-space training data was a major limiting factor hat held the field back. The availability

of open databases has largely removed this obstacle and public research challenges have also helped to

compare developed approaches on standardized datasets [25, 26]. However, they have also highlighted

new issues. While it was demonstrated that deep learning models generally outperform handcrafted

regularizers in iterative image reconstruction in terms of quantitative metrics like SSIM, PSNR and

RMSE, their performance in the regime of over-regularization (when the influence of the prior becomes

dominant because of the low-quality of the data) is challenging to assess. The results of classic regularizers
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Fig. 7: Motion-Compensated reconstruction. A motion estimation network (GRAFT) is embedded in the recon-

struction procedure [37]. The motion-compensated reconstruction outperforms iterative SENSE without motion

compensation. If motion compensation is not performed, undersampling artifacts are substantially present. Systole

and diastole frames are depicted for R=1, R=4 and R=8.

like Tikhonov, total variation or `1-wavelets in this scenario can be interpreted much easier by end-users.

They lead to very characteristic artifact patterns that are easy to spot as being technical artifacts. Deep

learning models have the computational capacity to generate realistic-looking images with either missing

or artificially hallucinated image features [24] that are inconsistent with the measurement data if they are

used at acceleration levels that are too high with respect to the encoding capabilities of the multi-element

receive coil.

A solution is to move from qualitative image assessment towards the assessment of clinical outcomes.

In particular, does the diagnostic quality improve for patients when deep learning methods are used

instead of handcrafted regularizers? However, conducting such clinical studies is slow and costly, and

in many cases an imaging exam cannot even be considered to be a true ground truth, which requires

follow-ups with pathology or surgery departments.

Research challenges are also limited in terms of their ability to assess model generalization. The 2020

fastMRI challenge [26] included a track that specifically evaluated generalization with respect to deploying

a trained model at a scanner from a different manufacturer. While the winning models performed well

in this test, the performance of some approaches was impacted negatively by trivial modifications in the

data, for example whether raw data is saved with oversampling in the readout direction or not. In light

of the substantial range of imaging parameters that can be changed during an MRI acquisition, it is still

an open question if deep learning models should serve a general purpose role, or if specialized models
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should be tailored to a more narrow range of imaging settings for dedicated exams.

Another open issue of almost all developments is that they are performed with retrospectively acceler-

ated acquisitions, i.e., the accelerated acquisition is obtained by applying a simulated undersampling on

the fully sampled dataset. While this is acceptable if true k-space raw data is used and no subtle data crime

is performed [38], not all MR-signal-acquisition effects are captured with retrospective undersampling.

In particular, spin-history, gradient and RF-hardware related effects seen in prospectively accelerated

acquisitions, i.e. when data is acquired with true undersampling on the scanner, are usually not captured

in retrospective acceleration. This can cause issues when moving to prospectively accelerated acquisitions

on real MR-scanners. However, it should be pointed out that this is a general issue of all computational

imaging methods that are developed retrospectively, and not a unique issue of deep learning techniques.

While physics-based learning for MRI reconstruction has been successfully established over the past

years, there are some potential pitfalls and limitations of these approaches in practice. or instance, when

DICOM images are used for experiments instead of raw k-space data, learning-based approaches may

lead to overall optimistic results, while real-world unprocessed data performs much worse, resulting in

biased state-of-the-art results [38]. In another line of work, the stability of various single-coil networks

to small adversarial perturbations at their input was studied [39], and it was found that networks

may exhibit large perturbations at the output. Furthermore, the definition of acceleration factor might

also often be misleading. As shown in [25], different sampling patterns yield different results, which

opens the question how potential mis-reconstructions can be identified and how the uncertainty of the

reconstructions regarding the sampling pattern can be quantified. Finally, we would like to note that the

reported undersampling factor and acceleration rates have to be carefully investigated. In the Cartesian

setting, undersampling factor and acceleration rates are equivalent and defined by the number of sampled

lines divided by the number of total lines in k-space. However, in the non-Cartesian case, the overall

effective undersampling depends on the size of oversampling performed along the readout trajectories,

without affecting the acceleration factor between the readouts.

B. Domain-specific knowledge in post-processing and multi-task imaging

The medical imaging pipeline consists of many tasks that are mostly viewed separately. The imaging

pipeline starts with data acquisition, followed by image reconstruction. The reconstructed image is then

further analyzed using post-processing tasks, image segmentation, and quantitative evaluation, and/or

methods for diagnosis and treatment planning are applied to facilitate medical decisions.

Thus, there have been efforts to combine several of these tasks into a multi-task imaging framework.

Most work on solving multiple tasks jointly has been conducted in the field of motion-corrected image
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reconstruction, as summarized in Section IV-C3. In [36], joint motion detection, correction and seg-

mentation was proposed. In contrast to the previously mentioned approaches, the motion was detected

directly in k-space and, hence, influence the data consistency layer. Additionally, a bidirectional recurrent

CNN (BCRNN) was used to account for spatio-temporal redundancies. The motion-corrected image was

obtained by cascading 10 data consistency layers and BCRNNs. Afterwards, a UNet was applied for

cardiac segmentation. Evaluated on the UK Biobank data, this work showed that training a joint network

for reconstruction and segmentation outperforms sequential training of these networks.

A unified network for joint MRI reconstruction and segmentation was also proposed [40]. For image

reconstruction, an unrolled network with alternating data consistency layers and denoising networks are

used. The denoising networks are based on an encoder-decoder structure, where the encoder is shared

with the image segmentation network. Hence, common features are extracted using the encoder, while

the decoder adapts to the underlying task. Evaluation and simulation of k-space is performed on the

MRBrainS segmentation challenge dataset. Their results suggests that high-quality segmentation benefits

from this multi-task architecture. While this method both optimizes for image reconstruction and another

downstream task such as segmentation, it is still an open question if intermediately reconstructed images

are needed, or if one could directly obtain, e.g., segmentation in k-space.

VI. CONCLUSION

Physics-driven deep learning techniques are the current state-of-the-art methods for computational

MRI. Spanning methods that incorporate physics of MRI acquisitions into loss functions to plug-and-

play techniques, and generative models to unrolled networks, a large number of approaches have been

proposed to improve the solution of linear and non-linear inverse problems that arise in MRI. These

methods are starting to make their way into translational and clinical settings, while also potentially

altering the downstream tasks in the medical imaging pipeline. Thus, there are numerous opportunities

for new technical developments and applications in physics-driven computational MRI from the signal

processing community.
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[35] T. Küstner, J. Pan, et al., “LAPNet: Non-rigid registration derived in k-space for magnetic resonance

imaging,” IEEE Transactions on Medical Imaging, vol. 40, no. 12, pp. 3686–3697, 2021.

[36] I. Oksuz, J. R. Clough, et al., “Deep learning-based detection and correction of cardiac MR

motion artefacts during reconstruction for high-quality segmentation,” IEEE Transactions on Medical

Imaging, vol. 39, pp. 4001–4010, 12 2020.

[37] K. Hammernik, J. Pan, D. Rueckert, and T. Küstner, “Motion-guided physics-based learning for
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