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Abstract— Submillimeter fMRI plays a vital role in studying
the brain function at the mesoscale level, allowing investigation
of functional activity in small cortical structures. However,
such resolutions require extreme trade-offs between SNR,
spatio-temporal resolution and coverage leading to numer-
ous challenges. Therefore, interpretable locally low-rank de-
noising methods based on random matrix theory have been
proposed and built into fMRI pipelines, but they require
well-characterized noise distributions on reconstructed images,
which hinders the use of emerging physics-driven deep learning
reconstructions. In this work, we re-envision the conventional
fMRI computational imaging pipeline to an alternative where
denoising is performed prior to reconstruction. This allows
for a synergistic combination of random matrix theory based
thermal noise suppression and physics-driven deep learning re-
construction, enabling high-quality 0.Smm isotropic functional
MRI. Our results show that the proposed strategy improves
on denoising or physics-driven deep learning reconstruction
alone, with better delineation of brain structures, higher tSNR
particularly in mid-brain areas and the largest expected extent
of activation in GLM-derived t-maps.

I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) has revo-
lutionized our understanding of the human brain by allowing
non-invasive imaging of neural activity based on blood oxy-
genation level dependent (BOLD) signal [1], and has been
a staple of numerous neuroscientific studies, including the
Human Connectome Project (HCP) [2]. With recent advances
in fMRI hardware, acquisition and processing, submillimeter
resolution fMRI has received interest as a means for studying
brain function at the mesoscale level [3]. At this scale,
the most fundamental units of neural computations, such as
layers and columns [4] can be examined. However, to ade-
quately determine layer-specific activation maps through the
columnar and laminar structures, fMRI acquisitions require
~0.5mm isotropic or better resolution [5], [6]. Such target
resolutions inherently cause diminished signal-to-noise ratio
(SNR) and necessitate high acceleration rates for sufficient
coverage of the brain.

Even at coarser resolutions, the poor SNR of fMRI ac-
quisitions have made reducing the effects of thermal noise
in fMRI image series a longstanding research topic. Early
works for fMRI denoising relied on principal component
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analysis (PCA) and independent component analysis (ICA)
[7], [8] with heuristic strategies for selecting the retained
components. The current state-of-the-art methods rely on
a combination of locally low-rank (LLR) modeling and
random matrix theory [6], [9]-[12]. Application of ideas
from random matrix theory requires the noise in the image
series to be well-characterized by a known distribution, e.g.
Rician or Gaussian [13], [14]. Thus, they are typically used
with linear reconstruction methods [15]-[17], such as parallel
imaging, and are not compatible with non-linear reconstruc-
tion methods that lead to poorly understood reconstruction
noise distributions [18].

Among such non-linear reconstruction methods, physics-
driven deep learning (DL) has recently emerged as a pow-
erful alternative approach for MRI reconstruction with im-
proved image quality at higher acceleration rates [19]-[21].
In physics-driven DL reconstruction, MR physics knowledge
is incorporated via the forward encoding operator to impose
data fidelity with acquired measurements, while the regular-
ization is learned implicitly via a neural network. Physics-
driven deep learning has already been applied to fMRI
successfully, showing that it does not alter the subsequent
analysis [22], [23], for HCP-style acquisitions. However,
physics-driven deep learning still faces challenges for very
high-resolution fMRI, since at lower SNRs or very high
accelerations, it may lead to over-regularization [24].

Thus, in order to enable high-quality fMRI at ~ 0.5mm
resolution, it may be desirable to combine the state-of-the-art
in fMRI denoising and reconstruction, namely random matrix
theory based LLR denoising methods with physics-driven DL
techniques. However, the conventional fMRI computational
imaging pipeline is built on performing reconstruction fol-
lowed by denoising. As aforementioned, this makes the state-
of-the-art fMRI denoising and MRI reconstruction methods
incompatible. In this work, we propose a new workflow
that overturns this traditional approach to enable denoising
using random matrix theory based LLR methods prior to
(non-linear) reconstruction. This allows for a synergistic
combination of thermal noise suppression followed by DL
reconstruction, leveraging the best of both worlds while un-
locking high-quality 0.5mm isotropic resolution fMRI. The
proposed strategy improves upon using noise suppression
after reconstruction or physics-driven DL alone for 0.5mm
isotropic fMRI acquisitions, both visually, and quantitatively
in terms of tSNR and GLM-derived t-maps.



II. METHODS

A. Locally Low Rank Model and Random Matrix Theory
Based Denoising for fMRI

Denoising in the conventional computational MRI pipeline
is performed on a reconstructed fMRI series. First, a k; x
ko x kg patch of a volume from a time-frame 7 € {1,--- ,T'}
in the time series is extracted. This is then vectorized as
yr € CM, where M = k; - ko - k3. Next, corresponding
vectorized patches from all time-frames are concatenated to
form a Casorati matrix Y = [y, -+ ,y,, -+ ,yr| € CM*T,
This noisy data across the time series is modeled as:

Y =X+N, (D

where X € CM*N s the underlying data matrix, and
N € CM*N js additive Gaussian noise. The LLR model
assumes that the data matrix X for a given patch is low-rank
[25], [26], and corresponding denoising methods typically
perform singular value thresholding on the noisy data matrix
Y to eliminate unwanted noise components (shown in Figure
la) [10], [11], [27]. In particular, let the singular value
decomposition of Y be USV | where S is a diagonal matrix
whose entries are the spectrum of ordered singular values
sj,j € {1,---,min(M,T)}. For a thresholding value of A,
the soft- [28] or hard-thresholded [29] matrix, S is used to
form the denoised matrix as US,\ V. The denoised images
are then obtained by extracting the patches for each time-
frame from these denoised matrices, and performing patch
averaging to account for overlaps between patches [9], [11].

The state-of-the-art LLR approaches [9]-[12] use random
matrix theory formulations to determine the aforementioned
threshold A\ automatically. Typically, these methods perform
a number of processing steps to ensure that N has inde-
pendent identically distributed (i.i.d.) entries. Subsequently,
the threshold is determined by either asymptotic properties,
such as the Marchenko-Pastur distribution on the singular
values of N [11], or using non-asymptotic variants [9]. In
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particular, in NOise Reduction with DIstribution Corrected
(NORDIC) denoising [9], N being a Gaussian matrix was
ensured by correcting for spatial noise variations in the
reconstructed images due to g-factors [15], and threshold
was determined using a non-asymptotic characterization of
the largest singular value of such Gaussian matrices in a
parameter-free manner. This leads to the interpretation that
NORDIC removes all principal components of Y that cannot
be distinguished from the Gaussian noise level. NORDIC
applied after image reconstruction was shown to improve
fMRI analysis without introducing image blurring across a
variety of spatial resolutions and field strengths [6].

B. Physics-driven Deep Learning Reconstruction

The forward model for MRI acquisition is given as:

2

where yn € CF are the acquired k-space measurements,
x € C™m1*™2 ig the image of interest, Eq : C™M1*™m2 —, CP
is the multi-coil encoding operator, € is the undersampling
pattern, and n is the measurement noise. The regularized
inverse problem for recovering x from ygq is given as [30]:

3)

where the quadratic term enforces data fidelity (DF) with
the acquired k-space measurements and R (-) is a regularizer.
This objective function can be solved via variable splitting
with quadratic penalty [31] that splits the optimization prob-
lem in (3) into two sub-problems:

Yo = EQX+1’1,

argmin [[ye — Eox||3 + R(x),

“4)

x = argmin [y — Eox|3 + pllx —2z¢"V[3, )

2=V = argmin p||xY — 2|2 + R(z),

where x( is the reconstructed image at iteration [, z( is an

auxiliary image, and p is the quadratic penalty parameter.
Physics-driven DL reconstruction alternates between Eq.

(4)-(5) for a fixed number of iterations [18] in a process
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Fig. 1: a) Noise suppression after image reconstruction with LLR model and random matrix theory based threshold (conventional paradigm).
Local patches are extracted from reconstructed images to form Casorati matrices. Singular value thresholding is performed using a random
matrix theory based threshold that removes unwanted noise components. Lastly, patch averaging is performed to form the denoised image
series. b) An example of rank sub-additivity of the Casorati matrices at an acceleration rate of R = 3. When uniform undersampling is
performed, the small patches fold onto other patches preserving LLR properties. ¢) NORDIC denoising is performed on aliased images

from individual channels of acquired k-space prior to reconstruction.



called algorithm unrolling [32]. Though the DF sub-problem
in Eq. (5) has a closed-form solution, it can be efficiently
solved by iterative linear methods, such as conjugate gradient
[33]. On the other hand, the proximal operation in Eq. (4) is
solved implicitly using neural networks [19], [20]. Finally,
this unrolled network is trained end-to-end, typically using
a loss function with respect to a reference image [18]. For
such supervised training, this corresponds to the loss:

N
1
WUN nZ:l L(Xret,ns (Y2, Ban; 0)), (©6)

where f(yq,Eq;0) is the output of the unrolled network
parametrized by 6, N is the number of training datasets in
the database, L(-, ) is a loss function, and Xrefns Y,n and
Eq , are the reference image, acquired k-space data and
the corresponding multi-coil encoding operator for the n"
training sample.

III. PROPOSED COMPUTATIONAL IMAGING PIPELINE FOR
HIGH-RESOLUTION FMRI

While denoising methods based on the LLR model and
random matrix theory based thresholds, and reconstruction
approaches based on physics-driven deep learning offer state-
of-the-art for their respective tasks, they are not compatible
with each other in the conventional pipeline of reconstruction
followed by denoising. Thus, our strategy is to re-envision
this processing pipeline, and to enable the application of LLR
denoising methods based on random matrix theory prior to
physics-driven deep learning reconstruction.

When the data are acquired with uniformly undersampled
patterns, as in fMRI with echo planar imaging (EPI), the
aliasing artifact is a foldover artifact (shown in Figure 1b),
in which R pixels of the full field-of-view image are folded
onto each other in this aliased field-of-view, where R is
the acceleration rate. The effect is similar on patches in
the image, where a patch in the undersampled image with
foldover artifacts corresponds to the summation of R patches
from the full field-of-view image. Repeating the process
across the fMRI time series, and noting the sub-additivity
of matrix rank

R R
rank( Z Yr) < Z rank(Y,.), (7)
r=1 r=1

we note that the Casorati matrices for the patches in the
undersampled images are likely to be low-rank if the Casorati
matrices corresponding to the patches in the full field-of-view
image are sufficiently low-rank (Fig. 1c¢).

Based on this observation, we modify the NORDIC ap-
proach [6], [9] for pre-reconstruction denoising using several
steps. First, since the aliasing artifacts occur independently
in each receiver coil, we process the data from each coil
individually, where the acquisition noise is i.i.d. in nature.
This also eliminates the need for the g-factor correction in
the original NORDIC method. Thus, the acquired undersam-
pled k-space for a given coil is first converted to image
domain, albeit with the foldover aliasing artifacts. Then,
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Fig. 2: A schematic of self-supervised physics-driven deep learning
reconstruction. Algorithm unrolling alternates between data fidelity
(DF) and regularizer units. DF units incorporate the MRI physics
information through the encoding operator using coil sensitivity
maps and sampling masks, whereas regularizer is learned by a
neural network. For self-supervised training without fully-sampled
data, multi-mask SSDU approach is used, where the acquired k-
space indices, €2, are split into multiple pairs of disjoint sets Oy
and Ay. Oy is used in DF units and Ay, is to define training loss.

image patches from different time-frames in the fMRI image
series are extracted, vectorized and concatenated to form
the noisy and aliased Casorati matrices. This is followed by
singular value thresholding, using an LLR model based on
the sub-additivity of the matrix rank. Here, the threshold is
again chosen based on the previous random matrix theory
characterization [9]. This is followed by patch averaging to
generate the denoised foldedover images for each time-series
for the given coil. Finally, these images are taken back to
undersampled k-space for each coil (Fig. 1d).

The denoised k-space data is then used to train a physics-
driven reconstruction neural network. Since fully-sampled
reference data is not available, the supervised training strat-
egy described in Section II-B is not applicable. Instead,
we rely on unsupervised strategies that allow training with-
out fully-sampled data [34]. In particular, we use a self-
supervised learning technique, called Self-Supervised learn-
ing via Data Undersampling (SSDU) [21], [35], which splits
the acquired k-space locations, €2 into two disjoint sets ©
and A. © is used in the DF units while A remains unseen
by the network and is used define the k-space training loss.
To further improve the performance, multiple disjoint pairs
of (©k,Ar) k € {1,..., K} can be used in a multi-mask
version of SSDU [36], [37]. This leads to following training
loss

mlIl

N K
ZZ yAk7n7EAk,n(f(ye)k,n7E@k,n;e)))v
S ®)

where N is the number of training data in the database,
L(-,-) is the loss function, and O,n and Aj,n are the
k" DF and loss masks for the n*" training data sample,
respectively (Figure 2).



IV. EXPERIMENTS AND RESULTS
A. fMRI data acquisition

Imaging experiments were performed at 7T (Siemens
Magnetom) in 3 subjects using a 32-channel NOVA head
coil. The study was approved by our institutional review
board and written informed consent was acquired before each
scan. A T5-weighted 3D GE-EPI sequence was performed
that covers 40 slices with TR = 83ms (Volume Acquisition
Time = 3654 ms with 10% slice oversampling). The relevant
imaging parameters were: TE = 32.4ms, flip angle = 13°,
bandwidth = 820Hz, phase-encoding acceleration R = 3,
partial-Fourier = 6/8, 0.5mm isotropic resolution. In total
8 runs were acquired each lasting around 5:30 minutes. All
runs are collected with a standard 24s on, 24s off visual
block design paradigm with a center/target and surrounded
checkerboard counter phase flickering at 6 Hz.

B. Implementation details

NORDIC denoising was applied on the undersampled 3D-
EPI images as described in Section III. After read-out over-
sampling was removed, eddy current and timing correction
were applied. Then, an inverse Fourier transform was applied
along each of the three k-space dimensions firstly each chan-
nel individually. A 3D spatial patch, with a spatial:temporal
ratio of 11:1 was used. For an acquisition with T" =~ 90, this
corresponds to 10 x 10 x 10 patches in the images with
foldover along the phase-encoding direction. These were
used to form the Casorati matrices for LLR modeling. For
each channel, the thermal noise level was determined from
the readout direction using the standard deviation of all
the signals with the highest and lowest frequency. Using
the standard deviation of the thermal noise, a matrix with
i.i.d. entries of identical dimension to the Casorati matrix
and identical standard deviation to the thermal noise was
generated. From the i.i.d. generated matrix, the sample mean
for the highest singular value was determined, and used as
the threshold for singular value thresholding on the noisy
Casorati matrices.

Following denoising, a physics-driven deep learning re-
construction network was trained with multi-mask SSDU
[36] using K = 3 masks. First, the 3D-EPI k-space was
inverse Fourier transformed along the slice direction, and
these slices were processed individually leading less memory
requirements. The physics-driven deep learning was unrolled
for 10 iterations alternating between the regularizer and
the DF sub-problems in Eq. (4)-(5). The latter was solved
using conjugate gradient, which itself was unrolled for 10
iterations [33]. The proximal operator for the regularizer in
(4) was solved by a convolutional neural network based on a
ResNet structure [21]. Sensitivitity maps are estimated using
ESPIRIT [38] from a low resolution scan, and were used
in DF units. A normalized ¢;-¢5 loss was used for L(-,")
[21]. Adam optimizer with learning rate of 3 - 10~* was
used over 100 epochs. Training was performed using a total
number of 352 2D k-spaces consisting of 2 subjects, each
having 4 runs and 44 slices with 1 time-frame per subject.

Testing was performed on a different subject unseen by the
network, where all runs, all slices and all time-frames were
reconstructed. Note that during the deep learning reconstruc-
tion each time-frame was reconstructed individually, thus no
temporal information was shared across image series.

Comparisons were made between four methods: 1)
Conventional parallel imaging, using GRAPPA [16], per-
formed on acquired (non-denoised) raw k-space, referred
to as “Non-denoised GRAPPA”. 2) NORDIC denoising ap-
plied to k-space prior to GRAPPA reconstruction, referred
to as “NORDIC-denoised GRAPPA”. 3) Physics-driven
deep learning reconstruction performed on acquired (non-
denoised) raw k-space, referred to as “Non-denoised Physics-
Driven (PD) DL”. 4) The proposed method, where physics-
driven deep learning reconstruction was performed on the
NORDIC-denoised raw k-space, referred to as “NORDIC-
denoised Physics-Driven (PD) DL”. GRAPPA kernels were
calibrated using 5 x 4 kernel size for in-plane unaliasing,
using the same calibration data utilized for the generation of
the ESPIRIT coil maps for physics-driven deep learning. Sep-
arate trainings for non-denoised and NORDIC-denoised raw
k-spaces were performed for deep learning reconstruction
using the same setup, since the performance of deep learning
methods have been reported to depend on the underlying
SNR [39].

C. Data Analysis

Functional pre-processing was performed in BrainVoyager
[40]. First, 3D rigid body motion correction was applied,
where for each run, each volume was realigned to first
volume of the first run using sinc interpolation. Additionally,
de-trending was performed by regressing out low-drifts, up
to 3rd order discrete cosine transform from the motion
corrected time series. Subsequently, standard general linear
model (GLM) with ordinary least squares minimization was
performed to estimate BOLD-evoked response amplitudes.
GLM design matrices were generated by convolving of a
double gamma with a “box car” function, the latter repre-
senting the stimuli’s onsets and offsets. GLM analyses were
performed on all runs concatenated for each reconstruction
independently. For each voxel, percent signal change am-
plitudes were computed by dividing the GLM beta weights
(representing BOLD evoked responses) by the mean of
the pre-processed time series. Temporal SNR (tSNR) was
computed on a pixel basis, by dividing the mean of the pre-
processed time courses by their standard deviations.

D. Evaluation

Representative reconstructed slices are shown in Figure 3.
Among all methods, non-denoised GRAPPA shows substan-
tial amount of noise amplification rendering unusable image
quality. NORDIC-denoised GRAPPA (1% row,2™ column)
and non-denoised physics-driven DL (2™ row, 1% column)
both reduce the noise compared to non-denoised GRAPPA.
Note some loss of details are seen in non-denoised physics-
driven DL reconstruction shown by yellow arrows, indica-
tive of spatial smoothing. The proposed NORDIC-denoised
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Fig. 3: A representative slice of 0.5mm isotropic fMRI data with in-
plane acceleration rate of 3. NORDIC-denoised GRAPPA reduces
noise compared to non-denoised GRAPPA, which shows substan-
tial noise amplification. Non-denoised physics-driven DL shows
improved image quality compared to non-denoised GRAPPA, but
shows loss of details compared to NORDIC-denoised GRAPPA
(yellow arrows). NORDIC-denoised physics-driven DL reconstruc-
tion shows the highest image quality among all methods preserving
the sharpness.

physics-driven DL reconstruction (2", 2" column) shows
visually the best image quality with reduced noise and
preservation of fine details.

tSNR maps are depicted in Figure 4 for all methods. Non-
denoised GRAPPA shows the lowest tSNR among all meth-
ods, while NORDIC-denoised GRAPPA substantially im-
proves upon it. Although tSNR gain is also seen in the non-
denoised physics-driven DL, there is lower tSNR in brain
periphery regions compared to NORDIC-denoised GRAPPA.
Additionally, these tSNR maps show anatomical structures,
indicative of over-regularization in the non-denoised physics-
driven DL. The proposed NORDIC-denoised physics-driven
DL reconstruction shows the highest tSNR gain among
all including gains in the central brain regions, with no
discernible over-regularization.

Figure 5 shows GLM-derived t-maps for the contrast target
and surround > O for all reconstructions. Non-denoised
GRAPPA t-maps are dominated by thermal noise, leading
to no meaningful activation. NORDIC-denoised GRAPPA
and non-denoised physics-driven DL allow retrieval of the
retinotopically expected extent of activation. The NORDIC-
denoised physics-driven DL leads to the largest expected
extent of activation.

V. DISCUSSION AND CONCLUSION

This paper proposes a new computational imaging pipeline
for high-resolution fMRI to enable target voxel volumes of
< 0.1puL set forth by the Brain Initiative working group
[41]. Particularly for layer fMRI, even 0.8mm resolution
can be insufficient to capture subtle modulations across the
6 layers spanning a cortical thickness of 1.5mm to 4.5mm
approximately, necessitating 0.5mm or higher resolutions [6].
By redesigning the standard pipeline of image reconstruction

Input: Non-denoised Input: NORDIC-denoised

raw k-space

GRAPPA
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Fig. 4: tSNR maps of a slice for all four methods. Non-denoised
GRAPPA shows the lowest tSNR. NORDIC-denoised GRAPPA
and non-denoised physics-driven DL reconstruction improve upon
it substantially, with similar tSNR levels. However, non-denoised
physics-driven DL shows anatomical structures, indicative of over-
regularization. The proposed NORDIC-denoised physics-driven DL
reconstruction shows the highest tSNR among all methods, includ-
ing substantial gains in central brain regions.

followed by denoising, our work enables a synergistic com-
bination of state-of-the-art fMRI denoising methods based
on LLR modeling and random matrix theory with physics-
driven deep learning reconstruction. Our results show that
the proposed processing outperforms physics-driven deep
learning or NORDIC denoising alone, both visually, and
in terms of tSNR and GLM-derived t-maps, enabling high-
quality 0.5mm isotropic resolution fMRIL.

This study has limitations. Although multiple runs were
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Fig. 5: GLM-derived t-maps for the contrast target using four
different reconstructions. Non-denoised GRAPPA is dominated
by thermal noise and does not show any meaningful activation.
NORDIC-denoised GRAPPA and non-denoised physics-driven DL
reveal retinotopically expected extent of activations. NORDIC-
denoised physics-driven DL reconstruction (2", 2" column) shows
the largest expected extent of activation.



acquired for each subject, leading to higher statistical power

(6],

further evaluation in a larger cohort is warranted. This

work exploited the retinotopic properties of V1, which
provide a ground truth as to the spatial extent of activa-
tion elicited by our stimuli (or the flickering gratings) [6].
The performance of the neural network for the physics-
driven deep learning reconstruction may further be improved
with higher capacity neural networks, but this may require
more training samples. Additionally, further investigations at
higher acceleration rates are also warranted to harness the
full potential at higher spatial resolutions with the proposed
combination.
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