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Abstract: Quantile regression for right- or left-censored outcomes has attracted attention due to its ability
to accommodate heterogeneity in regression analysis of survival times. Rank-based inferential methods
have desirable properties for quantile regression analysis, but censored data poses challenges to the general
concept of ranking. In this article, we propose a notion of censored quantile regression rank scores, which
enables us to construct rank-based tests for quantile regression coefficients at a single quantile or over a
quantile region. A model-based bootstrap algorithm is proposed to implement the tests. We also illustrate
the advantage of focusing on a quantile region instead of a single quantile level when testing the effect of
certain covariates in a quantile regression framework.
Résumé: En analyse de survie pour données censurées à gauche ou à droite, la régression quantile a suscité
beaucoup d’attention en raison de sa capacité à accommoder l’hétérogénéité dans le cadre d’analyses de
régression. Les méthodes inférentielles fondées sur les rangs ont de nombreuses propriétés attrayantes pour
des analyse de régression quantile, mais elles sont confrontées à des défis posés par le concept d’ordre
en présence de censure. Pour contourner cette difficulté, les auteurs de ce travail proposent un concept de
régression quantile à scores de rangs censurés. Cette approche permet de construire des tests de rangs pour
les coefficients du modèle de régression quantile en question, que ce soit pour un seul quantile ou tout un
ensemble de quantiles. L’implantation de tels tests repose sur un algorithme bootstrap fondé sur un modèle.
Enfin, les auteurs illustrent l’avantage de cibler une région quantile plutôt qu’un quantile unique lorsqu’il
est question de tester l’effet de certaines covariables dans un cadre de régression quantile.

1. INTRODUCTION

Since first proposed by Koenker & Bassett (1978), quantile regression has emerged as a powerful
tool to study the relationship between a response variable and a set of covariates. By modelling
the regression coefficients as a function of quantile level 𝜏 ∈ (0, 1), quantile regression is partic-
ularly useful when the effect of the covariates on the response varies across different regions of 𝜏.
This phenomenon is often observed in biomedical studies, where the effect of certain treatments
is heterogeneous in the population and dependant on certain unobserved characteristics of the
subjects.

In biomedical studies, the responses/outcomes (commonly known as the survival times) are
often censored from the right because the participating subjects may drop out of the study or a
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clinical trial has to terminate after a certain period of time. The accelerated failure time (AFT)
model and the Cox proportional hazards model are popular regression models to study censored
outcomes. However, the AFT model works on the conditional mean of the responses and is
unable to capture the possible changes in the treatment effect across 𝜏. The Cox proportional
hazards model requires the conditional quantiles of the response to follow a specific form as
discussed in Section 3 of Portnoy (2003), which precludes certain types of heterogeneity of the
treatment effect (e.g., negative or zero effect at low 𝜏 but positive effect at high 𝜏). In this article,
we focus on statistical inference for quantile regression with censored outcomes, allowing the
quantile treatment effect to vary with the quantile level.

Censored quantile regression was studied in Powell (1984, 1986), where the censoring time
is assumed to be known. Wang & Fygenson (2009) developed methods for longitudinal data
with fixed censoring. Ying, Jung & Wei (1995), Zhou (2006), and Bang & Tsiatis (2002), among
others, proposed different estimating equations assuming the censored time is independent
of the outcome. A less stringent assumption in the literature assumes the censored time is
conditionally independent of the outcome given the covariates. Several estimation methods have
been proposed under this assumption, and they can be classified into two groups by whether
the linear (or more generally, parametric) quantile regression model is assumed to hold locally
at one 𝜏 or globally at all 𝜏.

Under the local linear quantile regression assumption, Wang & Wang (2009), Leng &
Tong (2013), and Backer, Ghouch & Keilegom (2019) constructed various forms of adapted
loss functions for censored quantile regression, but they all share the same feature that the
conditional distribution of either the survival time or the censored time needs to be estimated
non-parametrically to carry out the estimation.

Under the global linear quantile regression model, Portnoy (2003) proposed an iterative
self-consistency algorithm based on the idea of redistribution of mass, while Peng & Huang (2008)
constructed their estimation equation through a Martingale related to the counting process of the
signs of the residuals. Under the global linear quantile assumption, the conditional distribution
of the survival time is determined by the quantile regression coefficient function of 𝜏, so explicit
estimation of the conditional distributions is not needed.

The focus of the present article is statistical inference on quantile regression coefficients
over a given quantile region, with a single quantile level as a special case. To distinguish it from
modelling and inference at just a single quantile level, we call the former “regional quantile
regression inference”. In applications, it is typically more meaningful to evaluate the impact of a
covariate on the outcome at many quantile levels than at one specific quantile level. He, Hsu &
Hu (2010) discussed the detection of treatment effects in the upper quantiles (e.g., 𝜏 ≥ 0.75) of
the outcome in clinical trials. Park & He (2017), Sun & He (2021), and Chen et al. (2021) showed
that regional quantile regression inferences are often more stable and powerful than hypothesis
testing at a single quantile level.

A natural approach to regional quantile regression inference is to consider the quantile process
in that region. A test statistic that characterizes the quantile coefficients over the region can take
various forms, including averaging or taking the supremum norm. As has been demonstrated
in the earlier work on quantile regression (Gutenbrunner & Jurečková, 1992; Kocherginsky,
He & Mu, 2005), regression rank-based statistics are particularly useful for their robustness in
quantile regression analysis. This motivates us to consider rank-based tests under the global
linear quantile regression model with random right censoring.

We address two major challenges in developing rank-based tests in this article. First, for
quantile regression without censoring, the rank-based test is constructed with the regression rank
scores, which are the solutions to the dual problem of optimizing the quantile loss function.
However, the regression rank score is not naturally defined for censored observations. We
propose a (generalized) regression rank score for censored quantile regression by utilizing the
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idea of redistribution of mass for the censored observations as used in Portnoy (2003) and Wang &
Wang (2009). Second, rank-based test statistics do not have simple limiting distributions and
their critical values are not easily available. If we use the bootstrap method in the hypothesis
testing framework, the bootstrap sample should be generated from the null hypothesis to
ensure bootstrap consistency. Resampling schemes like the paired bootstrap or the generalized
bootstrap (done by perturbing the weights to each observation) generate data from the full model
and are therefore not applicable to our method. We propose a new bootstrap procedure that
approximates the data generating procedure under a global linear quantile model satisfying the null
hypothesis.

In other words, the main contributions of our work are the construction of regression rank
scores for censored quantile regression and the development of a model-based bootstrap method
that can be used in a general hypothesis testing framework for regional censored quantile
regression inference.

The remaining parts of the article are organized as follows. Section 2 presents our main
results. More specifically, we introduce the problem setting in Section 2.1, construct the censored
regression rank scores in Section 2.2, and then propose the rank-based tests, the model-based
bootstrap algorithm, and study the relevant large-sample properties of the proposed tests in
Sections 2.3, 2.4, and 2.5, respectively. We give simulated results in Section 3 to demonstrate
the robustness and power of the proposed test. In Section 4, we apply our method to study the
natural mortality of bighorn sheep as an illustrative example for our proposed methodology. In
Section 5, we conclude the article with summary comments.

2. METHODOLOGY AND MAIN RESULTS

2.1. Problem Setting
We consider a random sample of size 𝑛 that follows the linear quantile model

𝑄
𝑇
𝑖

(
𝜏|x

𝑖1, x𝑖2
)
= x𝑇

𝑖1𝜷1(𝜏) + x𝑇
𝑖2𝜷2(𝜏), ∀𝜏 ∈ (0, 𝜏

𝑈
], 𝑖 = 1, 2,… , 𝑛, (1)

for a given value 𝜏
𝑈

between 0 and 1, where 𝑇
𝑖

denotes the survival times (or responses
in general) that are subject to right censoring, and 𝑄

𝑇
𝑖

(𝜏|x
𝑖1, x𝑖2) denotes the 𝜏th conditional

quantile of 𝑇
𝑖

given the covariates of interest x
𝑖1 ∈ ℝ𝑝 and x

𝑖2 ∈ ℝ𝑞 . The first component of
x
𝑖1 is taken to be 1 to represent the intercept. Note that model (1) can be equivalently written as
𝑇
𝑖
= x𝑇

𝑖1𝜷1(𝜏) + x𝑇
𝑖2𝜷2(𝜏) + 𝑒

𝑖,𝜏
, where the conditional 𝜏th quantile of 𝑒

𝑖,𝜏
given x

𝑖
= (x

𝑖1, x𝑖2) is
assumed to be 0 to make 𝜷(𝜏) =

(
𝜷1(𝜏), 𝜷2(𝜏)

)
identifiable.

One implication from right censoring is that 𝜷(𝜏) may not be identifiable for some upper
quantiles. At the population level, we consider 𝜏

𝑈
to be the highest quantile level at which 𝜷(𝜏)

is identifiable. Regional quantile regression inference will obviously be limited to any subset of
𝜏 within (0, 𝜏

𝑈
].

Due to censoring, the observed data are given by the triples (𝑌
𝑖
, x

𝑖
,Δ

𝑖
), where 𝑌

𝑖
= min(𝑇

𝑖
, 𝐶

𝑖
)

and Δ
𝑖
= 𝕀(𝑇

𝑖
≤ 𝐶

𝑖
), with 𝐶

𝑖
denoting the censoring time. We further assume that 𝑇

𝑖
and

𝐶
𝑖

are independent for a given x
𝑖
, which is commonly assumed in the survival analysis

literature.
For such global censored quantile regression models, the estimation methods proposed in

Portnoy (2003) and Peng & Huang (2008) operate sequentially on a set of 𝑀 + 1 grid points
 = (𝑡0, 𝑡1,… , 𝑡

𝑀
), where 0 < 𝑡0 < 𝑡

𝑀
= 𝜏

𝑈
. In this article, we utilize those methods for the

estimation of 𝜷(𝜏), but we are interested in testing the hypothesis

𝐻0 ∶ 𝜷2(𝜏) = 0 for all 𝜏 ∈ (0, 𝜏
𝑈
] versus𝐻1 ∶ 𝜷2(𝜏) ≠ 0 for some 𝜏 ∈ [𝜏

𝑎
, 𝜏

𝑏
],
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where [𝜏
𝑎
, 𝜏

𝑏
] is a user-specific proper subset of (0, 𝑡

𝑈
], reflecting the alternative hypothesis of

interest in a particular problem.
For quantile regression without censoring, rank-based tests have been shown to be robust

and effective; we refer to Gutenbrunner et al. (1993), Koenker & Machado (1999), Wang (2009),
and Sun & He (2021) for details. Regression rank scores, however, need to be appropriately
constructed for censored observations.

2.2. Censored Regression Rank Scores
To motivate and construct the censored regression rank scores, we first give a brief review of
regression rank scores for complete data.

When times 𝑇
𝑖

in model (1) are fully observed, Koenker & Bassett (1978) proposed the
quantile regression estimator 𝜷(𝜏) by solving the following optimization problem

̂𝜷(𝜏) = argmin
t∈ℝ𝑝+𝑞

𝑛∑

𝑖=1

𝜌
𝜏

(
𝑇
𝑖
− x𝑇

𝑖
t
)
, (2)

where 𝜌
𝜏
(𝑢) = 𝑢 (𝜏 − 𝕀(𝑢 < 0)) is the quantile loss function. The optimization problem (2)

corresponds to its dual problem

â(𝜏) = argmax
a∈[0,1]𝑛

{
a𝑇T | X𝑇 a = (1 − 𝜏)X𝑇 1

𝑛

}
, (3)

where T = (𝑇1, 𝑇2,… , 𝑇
𝑛
), X =

(
x𝑇1 ,… , x𝑇

𝑛

)
𝑇 , and 1

𝑛
denotes the 𝑛-dimensional vector of 1s.

By the duality between Equations (2) and (3), we have the following relationship,

â
𝑖
(𝜏) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1, 𝑇
𝑖
> x𝑇

𝑖

̂𝜷(𝜏),

∈ (0, 1), 𝑇
𝑖
= x𝑇

𝑖

̂𝜷(𝜏),

0, 𝑇
𝑖
< x𝑇

𝑖

̂𝜷(𝜏),

(4)

which implies â
𝑖
(𝜏) can be seen as the indicator of whether the 𝑖th observation is above the 𝜏th

fitted quantile function. Gutenbrunner & Jurečková (1992) studied the properties of â
𝑖
(𝜏) and

named it the regression rank score for the 𝑖th observation.
However, the formulation of the censored quantile regression is not simply an optimization

problem with a similar duality to Equation (3), and thus we do not have a direct generalization
of the regression rank scores to the censored data.

We observe from Equation (4) that â
𝑖
(𝜏) = 𝕀

(
𝑇
𝑖
> x𝑇

𝑖

̂𝜷(𝜏)
)

unless 𝑇
𝑖

is exactly equal
to the fitted 𝜏-quantile. For the uncensored cases where 𝑇

𝑖
has a continuous distribution,

the number of observations fit exactly by the estimated quantile function is 𝑝 + 𝑞 for any
𝜏 with probability 1. Therefore the difference between â

𝑖
(𝜏) and 𝕀

(
𝑇
𝑖
> x𝑇

𝑖

̂𝜷(𝜏)
)

is of a
small order and most asymptotic properties are not influenced if â

𝑖
(𝜏) is replaced with

𝕀
(
𝑇
𝑖
> x𝑇

𝑖

̂𝜷(𝜏)
)
.

Also note that only the sign of 𝑇
𝑖
− x𝑇

𝑖

̂𝜷(𝜏), rather than the magnitude of the residual, is
needed to determine the rank scores, so any censored observation that is above x𝑇

𝑖

̂𝜷(𝜏) would
have the same sign no matter what the unobserved 𝑇

𝑖
is. On the other hand, 𝑇

𝑖
− x𝑇

𝑖

̂𝜷(𝜏) for a
censored observation below x𝑇

𝑖

̂𝜷(𝜏) can be either positive or negative. With these observations
in mind, we take the following steps.
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Based on the censored quantile regression estimate ̂𝜷(𝜏) for 𝜏 ∈  = (𝑡0, 𝑡1,… , 𝑡
𝑀
), we

construct ̃𝜷(𝜏) as a function of 𝜏 by taking the linear interpolation between the grid points in  ,
and set ̃𝜷(𝜏) = ̂𝜷(𝑡

𝑀
) for 𝜏 > 𝑡

𝑀
. Then, let

𝜏
𝑖
= inf

𝜏≥𝑡0

{
x𝑇
𝑖

̃𝜷(𝜏) ≥ 𝑌
𝑖

}
,

with the understanding that 𝜏
𝑖
= 𝑡

𝑀
if 𝑌

𝑖
> x𝑇

𝑖

̃𝜷(𝜏). Now for each observation, we define the
weight ŵ

𝑖
(𝜏) for 𝜏 ∈ (0, 1) as

ŵ
𝑖
(𝜏) =

⎧
⎪
⎨
⎪
⎩

𝜏−𝜏
𝑖

1−𝜏
𝑖

, Δ
𝑖
= 0, 𝜏 ≥ 𝜏

𝑖
,

1, Δ
𝑖
= 0, 𝜏 < 𝜏

𝑖
,

1, Δ
𝑖
= 1,

(5)

and the censored regression rank score as

â𝑐
𝑖
(𝜏) = 1 − ŵ

𝑖
(𝜏)𝕀

(
𝑌
𝑖
− x𝑇

𝑖

̃𝜷(𝜏) < 0
)
. (6)

To understand the weights for the censored observations with Δ
𝑖
= 0, we note the following.

If 𝜏 < 𝜏
𝑖
, which implies 𝐶

𝑖
> x𝑇

𝑖

̃𝜷(𝜏), and therefore 𝑇
𝑖
> x𝑇

𝑖

̃𝜷(𝜏), it does not matter exactly what
𝑇
𝑖

is for the determination of the 𝜏-quantile. In this case, we can simply treat the observation as
uncensored. If 𝜏 ≥ 𝜏

𝑖
, we have 𝐶

𝑖
< x𝑇

𝑖

̃𝜷(𝜏) and in this case, 𝑇
𝑖
could be above or below x𝑇

𝑖

̃𝜷(𝜏).
The weight assigned to this point is ŵ

𝑖
(𝜏) = ℙ

(
𝑇
𝑖
< x𝑇

𝑖

̃𝜷(𝜏)|𝑇
𝑖
> 𝐶

𝑖

)
= (𝜏 − 𝜏

𝑖
)∕(1 − 𝜏

𝑖
). This

is essentially redistributing the censored point into two values, one above and the other below
the 𝜏-quantile.

The idea of the redistribution of mass for each censored observation was used in
Portnoy (2003) and Wang & Wang (2009) in quantile regression. To be more specific,
each censored observation (𝑌

𝑖
, x

𝑖
,Δ

𝑖
) can be equivalently viewed as a weighted combination of

two fully observed pseudo points: one point at (𝑌
𝑖
, x

𝑖
) with weight ŵ

𝑖
(𝜏) and the other at (𝑌∞, x𝑖)

with weight 1 − ŵ
𝑖
(𝜏), where 𝑌∞ is a sufficiently large time value (which could be taken as

infinity). For 𝜏 ∈  , Portnoy’s censored quantile regression estimator can be written as

̂𝜷(𝜏) = argmin
b∈ℝ𝑝+𝑞

𝑛∑

𝑖=1

(
ŵ
𝑖
(𝜏)𝜌

𝜏
(𝑌

𝑖
− x𝑇

𝑖
b) + (1 − ŵ

𝑖
(𝜏))𝜌

𝜏
(𝑌∞ − x𝑇

𝑖
b)
)
. (7)

The following proposition shows that the censored regression rank score â𝑐
𝑖
(𝜏) is approximately

the weighted sum of the regression rank scores of the two pseudo points.

Proposition 1. For any 𝜏 ∈  , the optimization problem (7) can be transformed into a dual
problem

ǎ(𝜏) = argmax
a∈[0,1]2𝑛

{(
̌W(𝜏)a

)𝑇
̌Y | ̌X

𝑇 (
̌W(𝜏)a

)
= (1 − 𝜏) ̌X𝑇

w̌(𝜏)
}
, (8)

where ̌Y =
(
𝑌1, 𝑌∞,… , 𝑌

𝑛
, 𝑌∞

)
∈ ℝ2𝑛, ̌X =

(
x𝑇1 , x

𝑇

1 ,… , x𝑇
𝑛
, x𝑇

𝑛

)
𝑇 ∈ ℝ2𝑛×(𝑝+𝑞), w̌(𝜏) =

(
ŵ1(𝜏), 1 − ŵ1(𝜏),… , ŵ

𝑛
(𝜏), 1 − ŵ

𝑛
(𝜏)

)
is a 2𝑛-dimensional function, and ̌W ∈ ℝ2𝑛×2𝑛 is

a diagonal matrix with diagonal term w̌(𝜏).

DOI: 10.1002/cjs.11740 The Canadian Journal of Statistics / La revue canadienne de statistique

 1708945x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cjs.11740 by W

ashington U
niversity School, W

iley O
nline Library on [20/10/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



6 SUN AND HE Vol. 00, No. 00

Because of the duality between Equations (7) and (8), 𝑎̌2𝑖(𝜏) is always 1 and

𝑎̌2𝑖−1(𝜏) =
⎧
⎪
⎨
⎪
⎩

1, 𝑌
𝑖
> x𝑇

𝑖

̂𝜷(𝜏),

∈ (0, 1), 𝑌
𝑖
= x𝑇

𝑖

̂𝜷(𝜏),

0, 𝑌
𝑖
< x𝑇

𝑖

̂𝜷(𝜏).

Therefore, for any 𝜏 ∈  and 𝑖 = 1, 2,… , 𝑛,

â𝑐
𝑖
(𝜏) = ŵ

𝑖
(𝜏)𝕀

(
𝑌
𝑖
≥ x𝑇

𝑖

̃𝜷(𝜏)
)
+ 1 − ŵ

𝑖
(𝜏)

≈ ŵ
𝑖
(𝜏)𝑎̌2𝑖−1(𝜏) +

(
1 − ŵ

𝑖
(𝜏)

)
𝑎̌2𝑖(𝜏).

Similar to the regression rank scores for the complete data, â𝑐
𝑖
(𝜏) can be interpreted as a

generalization of ranks to the regression setting. For two observations 𝑖 and 𝑗, if ∫ 1
0 â𝑐

𝑖
(𝜏)𝑑𝜏 >

∫
1
0 â𝑐

𝑗
(𝜏)𝑑𝜏, observation 𝑖 is considered to have higher rank than observation 𝑗 after adjusting for

the covariates.

Remark 1. When Portnoy’s censored quantile regression is used for estimation, we may define
â𝑐
𝑖
(𝜏) ∶= ŵ

𝑖
(𝜏)𝑎̌2𝑖−1(𝜏) +

(
1 − ŵ

𝑖
(𝜏)

)
𝑎̌2𝑖(𝜏). However, our definition (6) may accommodate

other estimation procedures.

2.3. Test Statistics
We utilize â𝑐

𝑖
(𝜏) to construct the rank-based test statistics. To do so, we fix some notations first.

We write the design matrix of model (1) as X = [X1,X2], and then let ̂X2 = X1(X𝑇

1 X1)−1X𝑇

1 X2
be the projection of X2 into the spaces spanned by the columns of X1. We define

S(𝜏) = 𝑛
−1∕2

∑

𝑖

(
x
𝑖2 − x̂

𝑖2
)

â𝑐
𝑖
(𝜏),

where â𝑐
𝑖
(𝜏) is given in Equation (6) but calculated under the restricted model (under the null

hypothesis) that only includes X1 as the covariates. Intuitively, â𝑐
𝑖
(𝜏) here represents the position

of observation 𝑖 relative to the 𝜏th quantile after adjusting for X1. If the null hypothesis is true, no
more variation in â𝑐

𝑖
(𝜏) can be further explained by X2 − ̂X2, so we expect S(𝜏) to be close to 0.

With Q
𝑛
= 𝑛

−1(X2 − ̂X2)𝑇 (X2 − ̂X2), we construct the following two test statistics,

1 =

(
∑

𝑡
𝑚
∈∩[𝜏

𝑎
,𝜏
𝑏
]
S(𝑡

𝑚
)
(
𝑡
𝑚
− 𝑡

𝑚−1
)
)
𝑇

Q−1
𝑛

(
∑

𝑡
𝑚
∈∩[𝜏

𝑎
,𝜏
𝑏
]
S(𝑡

𝑚
)
(
𝑡
𝑚
− 𝑡

𝑚−1
)
)

, (9)

2 =
∑

𝑡
𝑚
∈∩[𝜏

𝑎
,𝜏
𝑏
]

(
S(𝑡

𝑚
)𝑇Q−1

𝑛
S(𝑡

𝑚
)
) (
𝑡
𝑚
− 𝑡

𝑚−1
)
. (10)

The first test statistic 1 takes a weighted sum of S(𝜏) over all the grid points in [𝜏
𝑎
, 𝜏

𝑏
],

aiming at detecting the effect of X2 over the [𝜏
𝑎
, 𝜏

𝑏
] region. It is a generalization of the regional

quantile regression rank test for fully observed data proposed in Sun & He (2021).
When the effect of X2 is positive at some quantile levels but negative at the other quantile

levels, the use of averaging in 1 could reduce power at detecting the effect because of the
cancellation of effects in different directions. Alternatively, we consider the test statistic 2

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11740
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2022 RANK-BASED INFERENCE FOR CENSORED QUANTILE REGRESSION 7

where the weighted sum is taken over a quadratic form of S(𝜏). We expect 2 to have better
power in the aforementioned scenario. The performances of 1 and 2 are compared numerically
in Section 3.

As shown in Section 2.5, the large-sample null distribution of the rank-based test statistics
are either mixed chi-squares or an integral of a squared Gaussian process, so we resort to an
appropriate bootstrap method to approximate the critical values of the tests.

2.4. Model-Based Bootstrap
To approximate the null distribution of 1 or 2, we propose a new model-based bootstrap
algorithm in this subsection.

We generate bootstrap samples of 𝑇 ∗
𝑖

and 𝐶
∗
𝑖

independently while keeping x
𝑖1 and x

𝑖2

fixed. To generate 𝑇
∗
𝑖

, notice that under 𝐻0, we have 𝑄
𝑇
𝑖

(
𝜏|x

𝑖1
)
= x𝑇

𝑖1𝜷1(𝜏). Therefore, it is
natural to generate 𝑢

𝑖
independently from 𝑈 (0, 1) and set 𝑇 ∗

𝑖
= x𝑇

𝑖1
̃𝜷1(𝑢𝑖). One complication here

is that the quantile estimate ̂𝜷1(𝜏) may be available only for 𝜏 < 𝜏
𝑈

. However, our test focuses
on the interval [𝜏

𝑎
, 𝜏

𝑏
], and the exact value of ̂𝜷1(𝜏) when 𝜏 > 𝜏

𝑈
has no influence on 1 and 2;

therefore, we can simply let ̃𝜷1(𝜏) = ̂𝜷1(𝜏𝑈 ) for 𝜏 > 𝜏
𝑈

.
To resample 𝐶∗

𝑖
, we estimate 𝐺

(
⋅|x

𝑖1, x𝑖2
)
, the conditional distribution of 𝐶

𝑖
, using the local

Kaplan–Meier (KM) estimator. Specifically, let

̂
𝐺(𝑦|x) = 1 −

𝑛∏

𝑘=1

(

1 −
𝐵
𝑛𝑘
(x)

∑
𝑗
𝕀
(
𝑌
𝑘
≤ 𝑌

𝑗

)
𝐵
𝑛𝑗
(x)

)𝕀(𝑌
𝑘
<𝑦,Δ

𝑘
=0)

, (11)

where 𝐵
𝑛𝑗
(x) = 𝐾((x−x

𝑗
)∕ℎ

𝑛
)

∑
𝑘
𝐾((x−x

𝑘
)∕ℎ

𝑛
) , 𝐾(⋅) is a selected kernel density function and ℎ

𝑛
is a sequence

of bandwidths that tends to 0 as 𝑛 increases. We then generate v
𝑖
∼ 𝑈 (0, 1) independent of 𝑢

𝑖
to

obtain 𝐶∗
𝑖
= ̂
𝐺

−1(v
𝑖
|x
𝑖1, x𝑖2).

We need to address two challenges with this method of generating 𝐶
∗
𝑖

. First, it is likely
that sup

𝑦

̂
𝐺

(
𝑦|x

𝑖1, x𝑖2
)
< 1, so ̂

𝐺
−1
(
𝜏|x

𝑖1, x𝑖2
)

is undefined for large values of 𝜏. We can
simply assign a very large value to 𝐶

∗
𝑖

when ̂
𝐺

−1
(
v
𝑖
|x
𝑖1, x𝑖2

)
is undefined. If we look at

any (x
𝑖1, x𝑖2) in the covariate space, 𝐺

(
𝑦|x

𝑖1, x𝑖2
)

is not fully identifiable when the largest
attainable value of 𝑇

𝑖
is smaller than the largest attainable value of 𝐶

𝑖
. In this case, we have

no information about the distribution of 𝐶
𝑖

for 𝐶
𝑖
> sup 𝑇

𝑖
, and 𝐺

(
𝑦|x

𝑖1, x𝑖2
)

is unidentifiable
for 𝑦 > sup 𝑇

𝑖
. The above statement also holds in the bootstrap space with probability tending

to 1. Therefore for v
𝑖

where ̂
𝐺

−1(v
𝑖
|x
𝑖1, x𝑖2) is undefined, since 𝑇 ∗

𝑖
is the outcome of interest,

the exact value of 𝐶∗
𝑖

is not important, as long as 𝑇
∗
𝑖

can be observed with a sufficiently
large 𝐶∗

𝑖
.

Second, it is difficult to get an accurate estimate of 𝐺

(
⋅|x

𝑖1, x𝑖2
)

using the local KM
estimator unless 𝑝 + 𝑞 is small. Alternatively, we could fit a censored quantile regression
𝑄
𝐶
𝑖

(
𝜏|x

𝑖1, x𝑖2
)
= x𝑇

𝑖1𝜸1(𝜏) + x𝑇
𝑖2𝜸2(𝜏) and let 𝐶∗

𝑖
= x𝑇

𝑖1𝜸̂1(v𝑖) + x𝑇
𝑖2𝜸̂2(v𝑖). This approach requires

the additional assumption that the linear quantile model also holds for 𝐶
𝑖
.

We are now ready to provide the proposed algorithm for the model-based bootstrap. We
do this for the test statistic 1 and use the local KM to resample 𝐶

∗
𝑖

; the algorithm for
2 because of the test statistic or for using censored quantile regression to resample 𝐶

∗
𝑖

is
similar.

Step 1: Fit the censored quantile regression under 𝐻0 (using Portnoy’s method, for example).
Calculate 1 from Equation (9).
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8 SUN AND HE Vol. 00, No. 00

Step 2: For 𝑖 = 1,… , 𝑛, generate random numbers 𝑢
𝑖
∼ 𝑈 (0, 1). Let 𝑇 ∗

𝑖
= x

𝑖1
̃𝜷(𝑢

𝑖
), where ̃𝜷(𝜏)

is the linear interpolation of { ̂𝜷1(𝜏𝑚), 𝑚 ∈ } calculated in Step 1. Set ̃𝜷1(𝜏) = ̂𝜷1(𝜏𝑈 )
for 𝜏 > 𝜏

𝑈
.

Step 3: For 𝑖 = 1,… , 𝑛, generate random numbers v
𝑖
∼ 𝑈 (0, 1) independent of 𝑢

𝑖
. Let

𝐶
∗
𝑖
= ̂
𝐺

−1(v
𝑖
|x
𝑖1, x𝑖2), where ̂

𝐺(⋅|x
𝑖1, x𝑖2) is estimated using the local KM estimator

described in Equation (11). Set 𝐶∗
𝑖

to be an arbitrarily large number if ̂
𝐺

−1(⋅|x
𝑖1, x𝑖2)

is undefined at v
𝑖
.

Step 4: Construct a bootstrap sample
(
𝑌

∗
𝑖
,Δ∗

𝑖
, x

𝑖1, x𝑖2
)
, where 𝑌

∗
𝑖
= min{𝑇 ∗

𝑖
, 𝐶

∗
𝑖
},

Δ∗
𝑖
= 𝕀

(
𝑇
∗
𝑖
< 𝐶

∗
𝑖

)
. Calculate 

∗
1 with this bootstrap sample.

Step 5: Repeat Steps 2–4 for 𝐵 iterations to get { ∗
11, 

∗
12,… , 

∗
1𝐵}. The resulting 𝑃 -value is

calculated by 𝐵−1∑
𝑏
𝕀
(
1 > 

∗
1𝑏

)
.

2.5. Asymptotic Properties
In this subsection, we first study the asymptotic properties of 1 and 2, and then show the
validity of the proposed bootstrap inference. Detailed proofs of the results in this subsection are
provided in the Appendix.

Let 𝑓 (⋅|x
𝑖
) and 𝑔(⋅|x

𝑖
) be the conditional densities of 𝑇

𝑖
and 𝐶

𝑖
for a given x

𝑖
, respectively.

We assume the following regularity conditions.

(C1) Let 0 < 𝜖 = 𝑡0 < 2𝜖 = 𝑡1 < · · · < 𝑡
𝑀

= min(1 − 𝜖, 𝜏
𝑈
) be a set of grid points where

0 < 𝜖 < 1∕2 is a small constant and 𝑛−1∕2
≪ 𝑡

𝑗
− 𝑡

𝑗−1 ≪ 𝑛
−1∕4, 𝑗 = 2,… ,𝑀 .

(C2) Norms ||x
𝑖
|| are bounded uniformly in 𝑖 = 1,… , 𝑛.

(C3) The conditional densities 𝑓
(
x𝑇
𝑖
𝜷(𝜏)|x

𝑖

)
and 𝑔

(
x𝑇
𝑖
𝜷(𝜏)|x

𝑖

)
are strictly positive and have

uniformly bounded derivatives with respect to 𝜏, for any 𝜏 ∈ [𝜖, 𝜏
𝑈
].

(C4) The limit of 1
𝑛

∑
𝑖
x
𝑖
x𝑇
𝑖

exists and is positive definite.
(C5) The functions 𝐹

(
𝑠|x

𝑖

)
and 𝐺

(
𝑠|x

𝑖

)
have second-order partial derivatives with respect to

x
𝑖

and are bounded uniformly in 𝑠 and xi.
(C6) The kernel density function 𝐾(⋅) used in Equation (11) is positive, with compact

support, and Lipschitz continuous of order 1. Furthermore, ∫ 𝐾(𝑢)𝑑𝑢 = 1, ∫ 𝑢𝐾(𝑢)𝑑𝑢 = 0,
∫ 𝐾2(𝑢)𝑑𝑢 < ∞ and ∫ |𝑢|2𝐾(𝑢)𝑑𝑢 < ∞.

(C7) The bandwidth satisfies ℎ
𝑛
= 𝑐

𝑛
𝑛
−1∕2+𝛾0 , with 𝑐

𝑛
→ 𝑐, where 𝑐 is a constant, and

0 < 𝛾0 < 1∕4.
(C8) There is no censoring below the 2𝜖-quantile. That is, for any 𝜏 < 2𝜖, x𝑇

𝑖
𝜷(𝜏) < 𝐶

𝑖
.

(C9) The censored quantile regression estimator satisfies the following asymptotic property
for ̂𝜷1(𝜏): B

𝑛
(𝜏) ∶=

√
𝑛

(
̂𝜷1(𝜏) − 𝜷1(𝜏)

)
converges weakly, as 𝑛 → ∞, to a zero-mean

Gaussian process for 𝜏 ∈ [𝜖, 𝜏
𝑈
].

Condition (C1) restricts the grid size (the distance between two adjacent grid points) on
the quantile levels to between 𝑛

−1∕2 and 𝑛
−1∕4. The same condition is required in Portnoy &

Lin (2010) to establish the asymptotic normality of ̂𝜷(𝜏) with Portnoy’s method. The main
requirement is that there are sufficiently fine grids to ensure good approximation of the quantile
estimates at all 𝜏, and there is no benefit of using grids finer than 𝑛

−1∕2, because finer grids
do not further improve approximation accuracy but add more complexity to both the theory
and the computations. In (C2), we assume that the covariates are bounded, which may appear
restrictive. However, under the regional or global linear quantile model, the quantile functions
x𝑇𝜷(𝜏1) and x𝑇𝜷(𝜏2) will cross if x is allowed to go unbounded, unless x𝑇𝜷(𝜏1) and x𝑇 𝜷(𝜏2)
are parallel. Therefore, to accommodate heterogeneity in the model, it is necessary to restrict
the linear quantile model to a bounded region for the covariates. Conditions (C3) and (C4) are

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11740
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2022 RANK-BASED INFERENCE FOR CENSORED QUANTILE REGRESSION 9

common assumptions assumed when studying the asymptotic properties of censored quantile
regression. Conditions (C5), (C6), and (C7) are needed in Theorem 2.1 of Gonzalez-Manteiga &
Cadarso-Suarez (1994) where the asymptotic behaviour of ̂

𝐺 (𝑦|x) is studied. Condition (C8)
is required by Portnoy’s method to ensure that it is valid to use quantile regression without
censoring to estimate ̂𝜷(𝑡0). This assumption could be relaxed to allow the number of censored
points below the 2𝜖-quantile to be of a smaller order than 𝑛1∕2.

If ̂𝜷1(𝜏) is estimated with Portnoy’s method, then (C9) is satisfied under Conditions
(C1)–(C4) and (C8), by Theorem 3.1 of Portnoy & Lin (2010). If Peng and Huang’s
estimator is used, (C9) holds under slightly different assumptions by Theorem 2 of Peng &
Huang (2008).

Theorem 1. Assume regularity Conditions (C1)–(C4) as well as (C9). We have, under 𝐻0,
that 1 converges in distribution to 𝜒

2, a mixed chi-square distribution as a weighted sum of
𝑞 chi-square variables of one degree of freedom, and that 2 converges in distribution to an
integral of a squared Gaussian process.

To establish Theorem 1, we provide an asymptotic representation for S(𝜏). To do so, let
𝜏
𝑖
= inf

𝜏
{x𝑇

𝑖1𝜷1(𝜏) ≥ 𝑌
𝑖
} and w

𝑖
be the “true” weight where 𝜏

𝑖
in Equation (5) is replaced with 𝜏

𝑖
.

Furthermore, let 𝑎𝑐
𝑖
(𝜏) ∶= 1 − w

𝑖
(𝜏)𝕀(𝑌

𝑖
− x𝑇

𝑖1𝜷1(𝜏) < 0). To show that S(𝜏) converges weakly to
a zero-mean Gaussian process for 𝜏 ∈ [𝜏

𝑎
, 𝜏

𝑏
], we derive the following representation

S(𝜏) = 1
√
𝑛

∑

𝑖

(x
𝑖2 − x̂

𝑖2)𝑎𝑐𝑖 (𝜏) + Kx
𝑖2−x̂

𝑖2
(𝜏)B

𝑛
(𝜏)

+
∫

𝜏

0
𝚪x

𝑖2−x̂
𝑖2
(𝑢)B

𝑛
(𝑢)𝑑𝑢 + 𝑜

𝑝
(1)

uniformly for 𝜏 ∈ [𝜏
𝑎
, 𝜏

𝑏
] using empirical process theory, where Kx

𝑖2−x̂
𝑖2
(𝜏) and 𝚪x

𝑖2−x̂
𝑖2
(𝜏) are

𝑞 × 𝑝 matrices defined in the proof of this result in the Appendix.
To show the validity of the proposed bootstrap inference, we further require that B∗

𝑛
(𝜏) ∶=

√
𝑛

(
̂𝜷
∗
1(𝜏) − ̂𝜷1(𝜏)

)
is bootstrap consistent.

Proposition 2. Using Portnoy’s censored quantile regression estimator, and under regularity
Conditions (C1)–(C8), B∗

𝑛
(𝜏) is bootstrap consistent. That is, conditional on the data, B∗

𝑛
(𝜏)

converges weakly to the same Gaussian process as B
𝑛
(𝜏) does for 𝜏 ∈ [𝜏

𝑎
, 𝜏

𝑏
].

Proposition 2 can be verified by establishing the Bahadur representation for B∗
𝑛
(𝜏) and B

𝑛
(𝜏)

using results from the product-integration theory of Gill & Johansen (1990) and comparing the
expansions term by term. The next theorem shows the proposed bootstrap inference is valid.

Theorem 2. Assume regularity Conditions (C1)–(C7) and (C9). If B∗
𝑛
(𝜏) is bootstrap consistent,

then we have, under 𝐻0, that the conditional distributions of 
∗

1 and 
∗

2 converge to the same
limiting distributions as 1 and 2, respectively.

3. SIMULATIONS

In this section, we evaluate the performance of the proposed tests in finite samples using Monte
Carlo simulations.

We generate the data from the following model

𝑇
𝑖
= 𝛽0(𝑢𝑖) + 𝑧

𝑖1𝛽1(𝑢𝑖) + 𝑧
𝑖2𝛽2(𝑢𝑖) + 𝑧

𝑖3𝛽3(𝑢𝑖), 𝑖 = 1,… , 𝑛, (12)
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FIGURE 1: Curves of quantile coefficients of Cases (i) and (ii) under the alternative.

where 𝑢
𝑖
∼ 𝑈 (0, 1), 𝑧

𝑖2 ∼ 𝑈 (0, 2), 𝑧
𝑖3 ∼ 𝑈 (0, 2), 𝑧

𝑖1|𝑧𝑖2 ∼ 𝑈 (1, 3) when 𝑧
𝑖2 < 1 but

𝑧
𝑖1|𝑧𝑖2 ∼ 𝑈 (0, 2) when 𝑧

𝑖2 ≥ 1. Furthermore, we have 𝛽0(𝜏) = Φ−1(𝜏), the inverse of the
standard normal distribution function, and 𝛽1(𝜏) = 𝜏

2. For the rest of the model specifications,
we consider two cases, and the null hypothesis is 𝐻0 ∶ 𝛽2(𝜏) = 𝛽3(𝜏) = 0 in both cases.

For Case (i), let 𝛽2(𝜏) =
2 exp(15(𝜏−0.5))

1+exp(15(𝜏−0.5)) and 𝛽3(𝜏) =
2 exp(10(𝜏−0.5))

1+exp(10(𝜏−0.5)) under the alternative

hypothesis𝐻1 (Figure 1). The censoring variable is𝐶
𝑖
|z
𝑖
∼ 𝑈

(
−0.5𝑧

𝑖1, 5 − 0.5𝑧
𝑖1
)

under𝐻0 and
𝐶
𝑖
|z
𝑖
∼ 𝑈 (2 − 0.5𝑧

𝑖1, 7 − 0.5𝑧
𝑖1) under 𝐻1, where z

𝑖
= (𝑧

𝑖1, 𝑧𝑖2, 𝑧𝑖3). Case (i) is designed to
represent a scenario where the effects of 𝑧

𝑖1 and 𝑧
𝑖2 are mostly expected at upper quantile levels,

and the interval [𝜏
𝑎
, 𝜏

𝑏
] is chosen to focus on the upper tail (see He, Hsu & Hu, 2010 for a

motivating example).
For Case (ii), let 𝛽2(𝜏) = −2𝕀(𝜏 < 0.4) + 20(𝜏 − 0.4)𝕀(0.4 < 𝜏 < 0.6) + 2𝕀(𝜏 > 0.6), and

𝛽3(𝜏) = −3𝕀(𝜏 < 0.4) + 30(𝜏 − 0.4)𝕀(0.4 < 𝜏 < 0.6) + 3𝕀(𝜏 > 0.6) under the alternative hypoth-
esis (Figure 1). The censoring variable is 𝐶

𝑖
|z
𝑖
∼ 𝑈 (−𝑧

𝑖1, 5 − 𝑧
𝑖1) under 𝐻0 and 𝐶

𝑖
|z
𝑖
∼

𝑈 (2 − 𝑧
𝑖1, 7 − 𝑧

𝑖1) under 𝐻1. In this case, the effects of 𝑧
𝑖2 and 𝑧

𝑖3 change from negative to
positive as 𝜏 increases. Case (ii) is designed to represent a scenario when the goal is to detect an
overall effect of 𝑧

𝑖2 and 𝑧
𝑖3, and [𝜏

𝑎
, 𝜏

𝑏
] is chosen to cover a relatively large quantile region.

In Cases (i) and (ii), we compare the performance of 1, 2, and the following test statistic
that focuses on a single quantile level 𝜏,

3 = S(𝜏)𝑇Q−1
𝑛

S(𝜏).

Notice that 3 is a special case for 1 and 2 when we set 𝜏
𝑎
= 𝜏

𝑏
.

In the bootstrap method, 𝐶∗
𝑖

can be sampled from the local KM estimator or the censored
quantile regression model. We include both options in the comparisons.

The simulation uses 1000 Monte Carlo data sets and the bootstrap size is𝐵 = 500 throughout.
Tables B1 and B2 in the Appendix summarize the numerical results, and they show that all the
tests under consideration here maintain the nominal significance level quite well. Figures 2 and
3 visually compare the power results.

As shown in Figure 2, the tests have similar power regardless of whether we use the local KM
or the censored quantile regression to sample 𝐶∗

𝑖
. The performances of 1 and 2 are comparable

in Case (i). However, 2 has greater power than 1 in Case (ii), because by design, the signs of
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FIGURE 2: Comparison of the empirical power between 1 and 2. The chosen quantile region is [0.5, 0.85]
for Case (i) and [0.1, 0.7] for Case (ii). (T1,km) and (T2,km) denote the test statistic 1 and 2, respectively,
with 𝐶∗

𝑖
sampled from the local KM estimator. Similarly, (T1,qr) and (T2,qr) denote the two test statistics

with 𝐶∗
𝑖

sampled from the censored quantile regression model.

𝛽2(𝜏) and 𝛽3(𝜏) change from negative to positive as 𝜏 increases in this case. The test 1 targets
the average effect over 𝜏, so there is cancellation in the average.

From Figure 3, we see that the power of 3 varies greatly with the choice of the quantile level
𝜏. The choice of quantile region does have some impact on the power of 2 but much less so.
Also note that in Case (ii), even though the magnitude of the effect is the same at 𝜏 and 1 − 𝜏,
the structure of the model implies that the differences in the lower tail are much easier to detect
than those in the upper tail.

Overall, our empirical results suggest that 2 is a preferred test for regional quantile regression.

4. AN EXAMPLE: NATURAL MORTALITY IN BIGHORN SHEEP

In this section, we apply our proposed method to test the effect of early environment conditions
on the natural mortality of adult bighorn sheep using the data analyzed in Douhard et al. (2019).
This data set is available for download from the Dryad Digital Repository: https://doi.org/10
.5061/dryad.6bm4228. The data set contains the survival times of 351 bighorn sheep born at
Ram Mountain in Alberta, Canada, from 1973 to 2010. Other covariates included in the data
are sex, adult environment conditions, and an indicator of whether cougar predation exists
nearby. The early and adult environment conditions are measured as the 3-year average of
the average mass of the 15-month-old yearlings. Because we are interested in the natural
mortality rate, the lifetimes of sheep that were shot by hunters are considered as censored. In
the data, the lifetimes of 19 of 191 female sheep are censored and 53 of 160 male sheep are
censored.

Douhard et al. (2019) use the logarithm of survival time as the response and sex, cougar
predation, early environment conditions, adult environment conditions, and the interaction
between sex and the early environment conditions as predictors. Results from the Cox proportional
hazards model used in Douhard et al. (2019) show that female sheep with a better early
environment tend to live longer (𝑃 -value = 0.0042). But this phenomenon is not observed for
male sheep (𝑃 -value = 0.1747), and the interaction effect between sex and early environment is
not significant either (𝑃 -value = 0.4341). This seemingly contradictory result may be due to the
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FIGURE 3: Comparison of the empirical power between 2 and 3 with different quantile regions/levels. T2
[𝜏

𝑎
, 𝜏

𝑏
] denotes the test statistic 2 over 𝜏 in [𝜏

𝑎
, 𝜏

𝑏
] and T3 [𝜏] denotes the test statistic 3 at 𝜏. The value

𝐶
∗
𝑖

is sampled from the censored quantile regression model.

lack of statistical power to detect the early environment effect on male sheep or the interaction
effect between sex and early environment.

The Cox proportional hazards model assumes that the effect of a covariate on the hazard ratio
is a constant, which precludes many forms of heterogeneity. Alternatively, we fit the model with
censored quantile regression with the same covariates. Figure 4 shows the estimated coefficients
and the 95% pointwise confidence band built with the paired bootstrap. We notice that the
estimated coefficient for cougar predation is positive at the lower tail and is close to 0 for the upper
tail. This type of heterogeneity cannot be observed under the Cox proportional hazards model.

From Figure 4, we see that the effect of early environment conditions for female sheep is
significant for a large range of 𝜏. But the effect of early environment conditions for male sheep
is only significant for values of 𝜏 around 0.2. It is very difficult to detect the early environment
effect on male sheep if one only looks at a single value of 𝜏 because it is hard to know which
𝜏 to look at beforehand and a multiplicity adjustment would be needed if one conducts tests at
several quantile levels individually.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11740
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2022 RANK-BASED INFERENCE FOR CENSORED QUANTILE REGRESSION 13

FIGURE 4: Pointwise confidence bands for the censored quantile regression coefficients. The horizontal
axes are the quantile level 𝜏.

In the next step, we conduct the proposed rank-based test. Because our aim is to test the
overall effect of early environment conditions on male and female sheep, we choose [𝜏

𝑎
, 𝜏

𝑏
]

to cover a large quantile region. With the test 2 and [𝜏
𝑎
, 𝜏

𝑏
] = [0.01, 0.8], we find that the

interaction between early environment and sex is significant (𝑃 -value = 0.016). Furthermore, we
detect that male sheep with better early environments tend to live longer (𝑃 -value = 0.020), and
that the same holds for female sheep (𝑃 -value < 0.001). According to our analysis, good early
environment conditions have a positive effect on the survival time for both male and female
sheep, and the effect on female sheep is greater than on male sheep. We are able to arrive
at the same conclusion if 1 is used or if we set [𝜏

𝑎
, 𝜏

𝑏
] to be other quantile regions such as

[0.1, 0.8] or [0.1, 0.7], indicating the robustness of the proposed test to the choice of the quantile
regions.

5. CONCLUDING REMARKS

In the present article, we propose rank-based tests for censored quantile regression inference
with a new construction of regression rank scores for censored outcomes. We show that the
rank-based tests can be used naturally for regional quantile regression inference to detect the
impact of certain covariates over a quantile region, and that such tests often enjoy better stability
than statistical tests targeted at a single quantile level. We develop a model-based bootstrap
method that can effectively estimate the reference distributions of the rank-based tests under the
global null hypothesis.

To further enhance the power of the rank-based tests, it is possible to use the weighted
rank-score statistics with adaptively selected weights to reflect the heterogeneity of the
conditional distributions across different values of the covariates. There has been some recent
work in identifying the optimally efficient quantile regression estimation under the regional
or global linear quantile models, for example, see Chen et al. (2017). It is an interesting open
problem as to how optimally weighted rank-based tests can be implemented for censored
quantile regression inference.
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APPENDIX A: PROOFS

In this section, we present the proofs of Theorem 1, Theorem 2, and Proposition 2. To simplify
the notations, we write 𝐹 (⋅|x

𝑖
), 𝑓 (⋅|x

𝑖
), 𝐺(⋅|x

𝑖
), and 𝑔(⋅|x

𝑖
) as 𝐹

𝑖
(⋅), 𝑓

𝑖
(⋅), 𝐺

𝑖
(⋅), and 𝑔

𝑖
(⋅),

respectively.

Proof of Theorem 1. Let d
𝑖

be an 𝑙-dimensional vector with bounded support. Write

Ψ (w(𝑡), b) =
∑

𝑖

d
𝑖

(
w
𝑖
(𝑡)𝜓

(
𝑌
𝑖
− x𝑇

𝑖1b, 𝑡
)
+
(
1 − w

𝑖
(𝑡)
)
𝜓

(
𝑌∞ − x𝑇

𝑖1b, 𝑡
))
,

where 𝜓(𝑢, 𝑡) = 𝑡 − 𝕀(𝑢 < 0).
Notice that for any 𝑙-dimensional vector v and a compact set  ∈ ℝ𝑝, the class of functions

 =
{

v𝑇 d
𝑖

(
w
𝑖
(𝑡)𝜓

(
𝑌
𝑖
− x𝑇

𝑖1b, 𝑡
)
+ (1 − w

𝑖
(𝑡))𝜓

(
𝑌∞ − x𝑇

𝑖1b, 𝑡
))
, b ∈ 

}

is a VC subgraph class with𝔼(𝑔2) < ∞ for 𝑔 ∈ . Without loss of generality assume x𝑇
𝑖1b1 ≤ x𝑇

𝑖1b2,

𝔼
(
𝑔(b1) − 𝑔(b2)

)2
≤ 𝔼

((
v𝑇 d

𝑖

)2𝕀
(
x𝑇
𝑖1b1 ≤ 𝑌

𝑖
≤ x𝑇

𝑖1b2
))

+ 𝔼
((

v𝑇 d
𝑖

)2𝕀
(
x𝑇
𝑖1b1 ≤ 𝑌∞ ≤ x𝑇

𝑖1b2
))

≤ 𝐾||b1 − b2||,

where 𝐾 is a large constant. Because ||𝜷1(𝑡) − ̃𝜷1(𝑡)|| is 𝑂
𝑝
(𝑛−1∕2) uniformly for 𝑡 ∈ [𝑡0, 𝑡𝑀 ] by

(C9), we have

Ψ
(
w(𝑡), ̃𝜷1(𝑡)

)
− Ψ

(
w(𝑡), 𝜷1(𝑡)

)
− 𝔼

(
Ψ
(
w(𝑡), ̃𝜷1(𝑡)

)
− Ψ

(
w(𝑡), 𝜷1(𝑡)

))
= 𝑜

𝑝
(𝑛1∕2),

uniformly for 𝑡 ∈ [𝑡0, 𝑡𝑀 ]. Calculating the expectation term in the above equation,

𝔼
(
Ψ
(
w(𝑡), ̃𝜷1(𝑡)

)
− Ψ

(
w(𝑡),𝜷1(𝑡)

))

=
∑

𝑖

d
𝑖
𝔼
((
𝕀
(
𝑇
𝑖
≤ x𝑇

𝑖1
̃𝜷1(𝑡)

)
− 𝕀

(
𝑇
𝑖
≤ x𝑇

𝑖1𝜷1(𝑡)
))

𝕀(𝑇
𝑖
≤ 𝐶

𝑖
)

+w
𝑖
(𝑡)

(
𝕀
(
𝐶
𝑖
≤ x𝑇

𝑖1
̃𝜷1(𝑡)

)
− 𝕀

(
𝐶
𝑖
≤ x𝑇

𝑖1𝜷1(𝑡)
))

𝕀(𝑇
𝑖
> 𝐶

𝑖
)
)

=
∑

𝑖

d
𝑖
𝔼
((
𝕀
(
𝑇
𝑖
≤ x𝑇

𝑖1
̃𝜷1(𝑡)

)
− 𝕀

(
𝑇
𝑖
≤ x𝑇

𝑖1𝜷1(𝑡)
))

𝕀
(
x𝑇
𝑖1𝜷1(𝑡) ≤ 𝐶

𝑖

)

+ w
𝑖
(𝑡)
(
𝕀
(
𝐶
𝑖
≤ x𝑇

𝑖1
̃𝜷1(𝑡)

)
− 𝕀

(
𝐶
𝑖
≤ x𝑇

𝑖1𝜷1(𝑡)
))
𝕀
(
𝑇
𝑖
> x𝑇

𝑖1𝜷1(𝑡)
))

+ 𝑂
𝑝
(1)

=
∑

𝑖

d
𝑖
𝔼
((
𝕀(𝑇

𝑖
≤ x𝑇

𝑖1
̃𝜷1(𝑡)

)
− 𝕀

(
𝑇
𝑖
≤ x𝑇

𝑖1𝜷1(𝑡)
))
𝕀
(
x𝑇
𝑖1𝜷1(𝑡) ≤ 𝐶

𝑖

))
+ 𝑂

𝑝
(1)

=
∑

𝑖

d
𝑖
𝔼
(
𝕀(𝑇

𝑖
≤ x𝑇

𝑖1
̃𝜷1(𝑡)

)
− 𝕀

(
𝑇
𝑖
≤ x𝑇

𝑖1𝜷1(𝑡)
))
𝔼
(
𝕀
(
x𝑇
𝑖1𝜷1(𝑡) ≤ 𝐶

𝑖

))
+ 𝑂

𝑝
(1). (A1)
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In the above derivation, the second equality follows because the probability that both 𝑇
𝑖

and
𝐶
𝑖

are between x𝑇
𝑖1
̃𝜷1(𝑡) and x𝑇

𝑖1𝜷1(𝑡) is of order 𝑛−1 for || ̃𝜷1(𝑡) − 𝜷1(𝑡)|| = 𝑂(𝑛−1∕2). The third
equality follows because the probability that 𝐶

𝑖
is between x𝑇

𝑖1
̃𝜷1(𝑡) and x𝑇

𝑖1𝜷1(𝑡) is of order 𝑛−1∕2

and w
𝑖
(𝑡) is 𝑂

𝑝
(𝑛−1∕2) for such terms. By the Taylor expansion,

𝔼
(
𝕀
(
𝑇
𝑖
≤ x𝑇

𝑖1
̃𝜷1(𝑡)

)
− 𝕀

(
𝑇
𝑖
≤ x𝑇

𝑖1𝜷1(𝑡)
))

= x𝑇
𝑖1𝑓𝑖

(
x𝑇
𝑖1𝜷1(𝑡)

)(
̃𝜷1(𝑡) − 𝜷1(𝑡)

)
+ 𝑂(𝑛−1).

Therefore

Ψ
(
w(𝑡), ̃𝜷1(𝑡)

)
− Ψ(w(𝑡), 𝜷1(𝑡)) − D𝑇V(𝑡)X1

(
̃𝜷1(𝑡) − 𝜷1(𝑡)

)
= 𝑜

𝑝
(𝑛1∕2),

where V(𝑡) is a diagonal matrix with 𝑉
𝑖𝑖
(𝑡) = 𝑓

𝑖

(
x𝑇
𝑖1𝜷1(𝑡)

) (
1 − 𝐺

𝑖

(
x𝑇
𝑖1𝜷1(𝑡)

))
and D is an 𝑛 × 𝑝

matrix with d𝑇
𝑖

as the 𝑖th row. Let 𝐶𝐼
𝑡
∶= {𝑖 ∶ Δ

𝑖
= 0 and 𝑡 > 𝜏

𝑖
}. Because ŵ

𝑖
(𝑡) ≠ w

𝑖
(𝑡) only

for 𝑖 ∈ 𝐶𝐼
𝑡
,

Ψ
(
ŵ(𝑡), ̃𝜷1(𝑡)

)
=

∑

𝑖∈𝐶𝐼
𝑙

d
𝑖

(
ŵ
𝑖
(𝑡) − w

𝑖
(𝑡)
)
𝕀
(
𝐶
𝑖
< x𝑇

𝑖1
̃𝜷1(𝑡)

)
+ Ψ

(
w(𝑡), 𝜷1(𝑡)

)

+ D𝑇V(𝑡)X1
(
̃𝜷1(𝑡) − 𝜷1(𝑡)

)
+ 𝑜

𝑝
(𝑛1∕2), (A2)

uniformly for 𝑡 ∈  . Define 𝑎𝑐
𝑖
(𝑡) ∶= 1 − w

𝑖
(𝑡)𝕀

(
𝑌
𝑖
− x𝑇

𝑖1𝜷1(𝑡) < 0
)
. Notice thatΨ

(
ŵ(𝑡), ̃𝜷1(𝑡)

)
=

∑
𝑖

(
â𝑐
𝑖
(𝑡) − 1 + 𝑡

)
and Ψ

(
w(𝑡), 𝜷1(𝑡)

)
=
∑

𝑖

(
𝑎
𝑐

𝑖
(𝑡) − 1 + 𝑡

)
, Equation (A2) gives us

1
√
𝑛

∑

𝑖

d
𝑖

(
â𝑐
𝑖
(𝑡) − 1 + 𝑡

)
= 1

√
𝑛

∑

𝑖

d
𝑖

(
𝑎
𝑐

𝑖
(𝑡) − 1 + 𝑡

)
+ 1
𝑛

D𝑇V(𝑡)X1

√
𝑛

(
̃𝜷1(𝑡) − 𝜷1(𝑡)

)

+ 1
𝑛

∑

𝑖

d
𝑖

√
𝑛(𝜏

𝑖
− 𝜏

𝑖
)

(1 − 𝜏
𝑖
)2

𝕀
(
𝑌
𝑖
> 𝐶

𝑖

)
𝕀
(
x𝑇
𝑖1
̃𝜷1(𝑡) ≥ 𝐶

𝑖

)
+ 𝑜

𝑝
(1). (A3)

Notice that the first two terms also appear in the derivation of quantile regression without
censoring in similar forms, while the third term is the error incurred by estimating w

𝑖
(𝑡)

with ŵ
𝑖
(𝑡). Following Theorem 3.1 from the study by Portnoy & Lin (2010), the third term

DT
𝑛,𝑑

(𝑡) ∶= 1
𝑛

∑
𝑖
d
𝑖

√
𝑛(𝜏

𝑖
−𝜏

𝑖
)

(1−𝜏
𝑖
)2 𝕀(𝑌

𝑖
> 𝐶

𝑖
)𝕀
(
x𝑇
𝑖1
̃𝜷1(𝑡) ≥ 𝐶

𝑖

)
converges to

DT
𝑑
(𝑡) =

∫

𝑡

0
𝚪
𝑑
(𝑢)B

𝑛
(𝑢)𝑑𝑢,

where

𝚪
𝑑
(𝑡) = lim

𝑛→∞
1
𝑛

𝑛∑

𝑖=1

𝑔
𝑖

(
x𝑇
𝑖1𝜷1(𝑡)

)

(1 − 𝑡)
(
1 − 𝐺

𝑖

(
x𝑇
𝑖1𝜷1(𝑡)

))d
𝑖
x𝑇
𝑖1.

Set d
𝑖
= x

𝑖2 − x̂
𝑖2, Equation (A3) becomes

1
√
𝑛

∑

𝑖

(
x
𝑖2 − x̂

𝑖2
)

â𝑐
𝑖
(𝑡) = W

𝑛,𝑥
𝑖2−𝑥̂𝑖2(𝑡) + K

𝑥
𝑖2−𝑥̂𝑖2(𝑡)B𝑛

(𝑡) + DT
𝑛,𝑥

𝑖2−𝑥̂𝑖2(𝑡) + 𝑜
𝑝
(1), (A4)

where W
𝑛,𝑑

(𝑡) = 1√
𝑛

∑
𝑖
d
𝑖

(
𝑎
𝑐

𝑖
(𝑡) − 1 + 𝑡

)
and K

𝑑
(𝑡) = lim

𝑛

1
𝑛

D𝑇V(𝑡)X1.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11740
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By (C9), B
𝑛
(𝑡) converges to a Gaussian process B(𝑡) for 𝑡 ∈ [𝑡0, 𝑡𝑀 ]. It is easy to see that

the W
𝑛,𝑥

𝑖2−𝑥̂𝑖2(𝑡) converges to a zero-mean Gaussian process W
𝑥
𝑖2−𝑥̂𝑖2 (𝑡). Thus, under the null

hypothesis, 1√
𝑛

∑
𝑖

(
x
𝑖2 − x̂

𝑖2
)

â𝑐
𝑖
(𝑡) converges to a zero-mean Gaussian process. Then the desired

result follows naturally. ◼

Write 𝜏∗
𝑖
= inf

𝜏

{
x𝑇
𝑖1
̃𝜷1(𝜏) ≥ 𝐶

∗
𝑖

}
and 𝜏∗

𝑖
= inf

𝜏

{
x𝑇
𝑖1
̃𝜷
∗
1(𝜏𝑖) ≥ 𝐶

∗
𝑖

}
, and define

ŵ∗
𝑖
(𝜏) =

⎧
⎪
⎨
⎪
⎩

𝜏−𝜏∗
𝑖

1−𝜏∗
𝑖

, Δ∗
𝑖
= 0, 𝜏 ≥ 𝜏

∗
𝑖
,

1, Δ∗
𝑖
= 0, 𝜏 < 𝜏

𝑖
,

1, Δ∗
𝑖
= 1,

(A5)

Let w∗
𝑖
(𝜏) be defined as (A5) where 𝜏∗

𝑖
is replaced by 𝜏∗

𝑖
.

Lemma 1. Using Portnoy’s censored quantile regression estimator, and under regularity
Conditions (C1)-(C8), given the sample

{
𝑌
𝑖
,Δ

𝑖
, x

𝑖

}
𝑛

𝑖=1, for 𝑘 = 1,… ,𝑀 ,

sup
𝑘

|| ̂𝜷
∗
1(𝑡𝑘) − ̂𝜷1(𝑡𝑘)|| = 𝑂

𝑝
∗ (𝑛−1∕2) (A6)

with probability going to 1 in the original space.

Proof . We restrict our analysis to the set  where x𝑇
𝑖1
̃𝜷1(𝜏) is monotone in 𝜏. As shown in

the study by Portnoy & Lin (2010), ℙ() → 1. For x𝑇
𝑖1
̃𝜷1(𝜏) monotone, 𝑇 ∗

𝑖
is generated from

a valid quantile process x𝑇
𝑖1
̃𝜷1(𝜏) and many arguments in Portnoy & Lin (2010) can be carried

over to the bootstrap space. Following Portnoy & Lin (2010), we shall show by induction that
for 𝑘 = 1,… ,𝑀 ,

∑

𝑖∈𝐶𝐼
𝑘

|𝜏∗
𝑖
− 𝜏

∗
𝑖
| ≤ 𝑐

𝑘,𝑛
, (A7)

|| ̂𝜷
∗
1(𝑡𝑘) − ̂𝜷1(𝑡𝑘)|| ≤ 2𝑟1𝑛

−1
𝑐
𝑘,𝑛
, (A8)

where 𝑐
𝑘,𝑛

= 𝑅
𝑛

(
1 + 2𝑟1𝑟2𝐸

∗
𝑛
𝛿
𝑛

)
𝑘−1, 𝑅

𝑛
= sup

𝑘
||Ψ∗ (w∗(𝑡

𝑘
), ̂𝜷(𝑡

𝑘
)
)
||, 𝐸

∗
𝑛
= max(

̃
𝐸
𝑛

2𝑟1𝑟2
, 1 + ̃

𝐸
𝑛
𝛿
𝑛

)
with ̃

𝐸
𝑛

a random bound and 𝑛
−1∕2

≪ 𝛿
𝑛
≪ 𝑛

−1∕4 is the grid size,
and 𝑟1 and 𝑟2 are the two constants given in Equations (A12) and (A15) below.

When 𝑘 = 1, by (C8), there is no censoring for 𝑡 ≤ 𝑡1 with 𝑜
𝑝
(1), thus

∑
𝑖∈𝐶𝐼

𝑡1
|𝜏∗
𝑖
− 𝜏

∗
𝑖
| = 0.

Since there is no censoring at the 𝑡1-quantile, || ̂𝜷
∗
1(𝑡1) − ̂𝜷1(𝑡1)|| ≤ 2𝑟1𝑛

−1
𝑐1,𝑛 is given by Theorem

3.1 of the study by Sun & He (2021), where the root-𝑛 consistency of ̂𝜷
∗
1(𝑡) for the model-based

bootstrap without censoring is proved.
Assume Equations (A7) and (A8) are satisfied when 𝑘 = 𝑙. At the 𝑡

𝑙+1 level,

𝑛∑

𝑖=1

|ŵ∗
𝑖
(𝑡
𝑙+1) − w∗

𝑖
(𝑡
𝑙+1)| =

∑

𝑖∈𝐶𝐼
𝑙

|ŵ∗
𝑖
(𝑡
𝑙+1) − w∗

𝑖
(𝑡
𝑙+1)| +

∑

x𝑇
𝑖1
̂𝜷
∗
1(𝑡𝑙)<𝐶

∗
𝑖
<x𝑇

𝑖1
̂𝜷1(𝑡𝑙)

|ŵ∗
𝑖
(𝑡
𝑙+1) − w∗

𝑖
(𝑡
𝑙+1)|

=
∑

𝑖∈𝐶𝐼
𝑙

(
1 − 𝑡

𝑙+1|𝜏
∗
𝑖
− 𝜏

∗
𝑖
|
)

(1 − 𝜏
∗
𝑖
)

+
√
𝑛𝐸

𝑛
𝛿
𝑛
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≤

∑

𝑖∈𝐶𝐼
𝑙

1 − 𝜖

𝜖
2

|𝜏∗
𝑖
− 𝜏

∗
𝑖
| +

√
𝑛𝐸

𝑛
𝛿
𝑛

≤
1 − 𝜖

𝜖
2
𝑐
𝑙,𝑛

(
1 + ̃

𝐸
𝑛
𝛿
𝑛

)
,

where 𝐸
𝑛

and ̃
𝐸
𝑛

are two random bounds. By Lemma 4.1 of the study by He & Shao (1996), we
have

{
𝜽 ∶ ||𝜽 − ̂𝜷1(𝑡𝑙+1)|| ≤ 𝐾𝑛

−1∕2
}

,

Ψ∗ (w∗(𝑡
𝑙+1),𝜽

)
−Ψ∗ (w∗(𝑡

𝑙+1), ̂𝜷1(𝑡𝑙+1)
)

− 𝔼∗ (Ψ∗ (w∗(𝑡
𝑙+1),𝜽

)
− Ψ∗ (w∗(𝑡

𝑙+1), ̂𝜷1(𝑡𝑙+1)
))

= 𝑂
∗
𝑝

(
𝑛

1∕4 log 𝑛
)
. (A9)

Similar to the derivation of Equation (A1),

𝔼∗ (Ψ∗
𝑙+1

(
w(𝑡

𝑙+1),𝜽
)
− Ψ∗

𝑙+1

(
w(𝑡

𝑙+1
)
,
̂𝜷1(𝑡𝑙+1)

))

=
∑

𝑖

d
𝑖
𝔼∗ (𝕀

(
𝑇
∗
𝑖
≤ x𝑇

𝑖1𝜽
)
− 𝕀

(
𝑇
∗
𝑖
≤ x𝑇

𝑖1
̂𝜷1(𝑡𝑙+1)

))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I

𝔼∗ (𝕀
(
x𝑇
𝑖1
̂𝜷1(𝑡𝑘) ≤ 𝐶

∗
𝑖

))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

II

+ 𝑂
𝑝
∗ (1).

We now calculate the expectation of I and II. According to the bootstrap algorithm,
𝑇
∗
𝑖
= x𝑇

𝑖1
̃𝜷1(𝑢𝑖) for 2𝜖 < 𝑢

𝑖
< min(1 − 𝜖, 𝜏

𝑈
). When 𝑢

𝑖
< 2𝜖 or 𝑢

𝑖
> 1 − 𝜖, the probability that

𝑇
∗
𝑖

is between x𝑇
𝑖1𝜽 and x𝑇

𝑖1
̂𝜷1(𝑡𝑙+1) tends to 0 by the asymptotic monotonicity of x𝑇

𝑖1
̃𝜷1(⋅). Let

𝜼 = ̃𝜷1(𝑢𝑖) − 𝜷1(𝑢𝑖), we have for 2𝜖 < 𝑢
𝑖
< min(1 − 𝜖, 𝜏

𝑈
),

I = 𝔼∗ (𝕀(x𝑇
𝑖1𝜽 − x𝑇

𝑖1𝜼 < x𝑇
𝑖1𝜷1(𝑢𝑖) < x𝑇

𝑖1
̂𝜷1(𝑡𝑙+1) − x𝑇

𝑖1𝜼)
)

=
∫

x𝑇
𝑖1
̂𝜷1(𝑡𝑙+1)−x𝑇

𝑖1𝜼

x𝑇
𝑖1𝜽−x𝑇

𝑖1𝜼

𝑓
𝑖
(𝑐)𝑑𝑐

=
∫

x𝑇
𝑖1
̂𝜷1(𝑡𝑙+1)−x𝑇

𝑖1𝜼

x𝑇
𝑖1𝜽−x𝑇

𝑖1𝜼

𝑓
𝑖

(
x𝑇
𝑖1𝜷1(𝑡𝑙+1)

)
+ 𝑂

(
𝑐 − x𝑇

𝑖1𝜷1(𝑡𝑙+1)
)
𝑑𝑐

= 𝑓
𝑖

(
x𝑇
𝑖1𝜷1(𝑡𝑙+1)

) (
x𝑇
𝑖1
̂𝜷1(𝑡𝑙+1) − x𝑇

𝑖1𝜽
)
+ 𝑂

𝑝
(𝑛−1).

By the bootstrap design 𝐶
∗
𝑖
= ̂
𝐺

−1(v
𝑖
|x
𝑖1, x𝑖2) for v

𝑖
< 𝜏

𝑉
𝑖

, where 𝜏
𝑉
𝑖

is the largest value,
𝐺

−1(⋅|x
𝑖1, x𝑖2) is identifiable. Notice that 𝐺

−1(𝜏
𝑉
𝑖

|x
𝑖1, x𝑖2) ≥ x𝑇

𝑖1𝜷1(𝑡𝑙+1) because otherwise
𝐺

−1(⋅|x
𝑖1, x𝑖2) would be identifiable at 𝜏

𝑉
𝑖

. If v
𝑖
≥ 𝜏

𝑉
𝑖

then x𝑇
𝑖1
̂𝜷1(𝑡𝑙+1) ≤ 𝐶

∗
𝑖

since we impute a
very large value for 𝐶∗

𝑖
. Thus

ℙ∗(
𝐶

∗
𝑖
< x𝑇

𝑖1
̂𝜷1(𝑡𝑙+1)

)
= ℙ∗ (v

𝑖
<

̂
𝐺
𝑖

(
x𝑇
𝑖1
̂𝜷1(𝑡𝑙+1)

))
= ̂
𝐺
𝑖

(
x𝑇
𝑖1
̂𝜷1(𝑡𝑙+1)

)
.

By Theorem 2.1 of Gonzalez-Manteiga & Cadarso-Suarez (1994),

sup
𝑡

sup
x
| ̂𝐺(𝑡|x) − 𝐺(𝑡|x)| = 𝑂

𝑝
((log 𝑛)1∕2

𝑛
−1∕4−𝛾0∕2),

where 0 < 𝛾0 < 1∕4. Thus

II = 1 − ̂
𝐺
𝑖

(
x𝑇
𝑖1
̂𝜷1(𝑡𝑙+1)

)
= 1 − 𝐺

𝑖

(
x𝑇
𝑖1𝜷1(𝑡𝑙+1)

)
+ 𝑂

𝑝
(𝑛−1∕4 log 𝑛),
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and

𝔼∗ (Ψ∗(w∗(𝑡
𝑙+1),𝜽

)
− Ψ∗(w∗(𝑡

𝑙+1), ̂𝜷1(𝑡𝑙+1)
))

=
∑

𝑖

d
𝑖
𝑓
𝑖

(
x𝑇
𝑖1𝜷1(𝑡𝑙+1)

) (
1 − 𝐺

𝑖

(
x𝑇
𝑖1𝜷1(𝑡𝑙+1)

)) (
x𝑇
𝑖1
̂𝜷1(𝑡𝑙+1) − x𝑇

𝑖1𝜽
)
+ 𝑂

𝑝
(𝑛1∕4 log 𝑛) + 𝑂

∗
𝑝
(1).

(A10)

Then Equation (A9) becomes

Ψ∗(ŵ∗(𝑡
𝑙+1),𝜽

)
=
∑

𝑖∈𝐶𝐼
𝑙

d
𝑖

(
ŵ∗
𝑖
(𝑡
𝑙+1) − w∗

𝑖
(𝑡
𝑙+1)

)
𝕀
(
𝐶

∗
𝑖
< x𝑇

𝑖1𝜽
)
+ Ψ∗(w∗(𝑡

𝑙+1), ̂𝜷1(𝑡𝑙+1)
)

+ D𝑇V(𝑡)X1
(
𝜽 − ̂𝜷1(𝑡𝑙+1)

)
+ 𝑂

𝑝
(𝑛1∕4 log 𝑛) + 𝑂

∗
𝑝
(1). (A11)

Set 𝜽 = ̂𝜷
∗
1(𝑡𝑙+1) and d

𝑖
= x

𝑖1 in the above equation. (This is possible because if || ̂𝜷
∗
1(𝑡𝑙+1) −

̂𝜷1(𝑡𝑙+1)|| ≥ 𝐾𝑛
−1∕2 for 𝐾 is large, the gradient condition cannot be satisfied by Equation (A11).)

Then,

|| ̂𝜷
∗
1(𝑡𝑙+1) − ̂𝜷1(𝑡𝑙+1)|| =

‖‖‖
(
X𝑇

1 V(𝑡
𝑙+1)X1

)−1

(
∑

𝑖∈𝐶𝐼
𝑙

x
𝑖1
(
ŵ∗
𝑖
(𝑡
𝑙+1) − w∗

𝑖
(𝑡
𝑙+1)

)
𝕀
(
𝐶

∗
𝑖
< x𝑇

𝑖1
̂𝜷
∗
1(𝑡𝑙+1)

)

− Ψ∗(ŵ∗(𝑡
𝑙+1), ̂𝜷

∗
1(𝑡𝑙+1)

)
+ Ψ∗(w∗(𝑡

𝑙+1), ̂𝜷1(𝑡𝑙+1)
)
+ 𝑂

𝑝
∗ (𝑛1∕4 log 𝑛)

+ 𝑂
𝑝
(𝑛1∕4 log 𝑛)

)
‖‖‖.

By (C3) and (C4), there exists an 𝑎 > 0 such that the largest eigenvalue of
(
X𝑇

1 V(𝑡)X1
)−1

≤ 𝑎𝑛
−1.

Let

𝑟1 = 𝑎𝑛
−1 1 − 𝜖

𝜖
2
, (A12)

|| ̂𝜷
∗
1(𝑡𝑙+1) − ̂𝜷1(𝑡𝑙+1)|| ≤ 𝑎𝑛

−1
( ∑

𝑖∈𝐶𝐼
𝑙

(
ŵ∗
𝑖
(𝑡
𝑙+1) − w∗

𝑖
(𝑡
𝑙+1)

)
+ ||Ψ∗

𝑙+1

(
ŵ∗(𝑡

𝑙+1), ̂𝜷
∗
1(𝑡𝑙+1)

)
||

+ ||Ψ∗
𝑙+1

(
w∗(𝑡

𝑙+1), ̂𝜷1(𝑡𝑙+1)
)
|| + 𝑂

𝑝
∗ (𝑛1∕4 log 𝑛) + 𝑂

𝑝
(𝑛1∕4 log 𝑛))

≤ 𝑎𝑛
−1

(1 − 𝜖

𝜖
2
𝑐
𝑙,𝑛

(
1 + ̃

𝐸
𝑛
𝛿
𝑛

)
+𝑅

𝑛

)

≤ 𝑟1𝑛
−1
𝑐
𝑙,𝑛

(
1 + ̃

𝐸𝛿
𝑛

)
+ 𝑟1𝑛

−1
𝑐
𝑙,𝑛

≤ 2𝑟1𝑛
−1
𝑐
𝑙+1,𝑛.

Therefore, Equation (A8) holds. To verify Equation (A7), consider

∑

𝑖∈𝐶𝐼
𝑙+1

|𝜏∗
𝑖
− 𝜏

∗
𝑖
| ≤

∑

𝑖∈𝐶𝐼
𝑙

|𝜏∗
𝑖
− 𝜏

∗
𝑖
| +

∑

𝑖

|𝜏∗
𝑖
− 𝜏

∗
𝑖
|𝕀
(

x𝑇
𝑖1
̂𝜷
∗
1(𝑡𝑙) < 𝐶

∗
𝑖
< x𝑇

𝑖1
̂𝜷
∗
1(𝑡𝑙+1)

)
. (A13)
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We aim to bound the last term in the previous equation. Let 𝑗 = 𝑗(𝑖) such that 𝑡
𝑗
≤ 𝜏

∗
𝑖
≤ 𝑡

𝑗+1,
since both x𝑇

𝑖1
̃𝜷
∗
1

(
𝜏
∗
𝑖

)
and x𝑇

𝑖1
̃𝜷1

(
𝜏
∗
𝑖

)
are equal to 𝐶∗

𝑖
,

0 = x𝑇
𝑖1

(
̃𝜷
∗
1

(
𝜏
∗
𝑖

)
− ̃𝜷1

(
𝜏
∗
𝑖

))
+ x𝑇

𝑖1

(
̃𝜷1

(
𝜏
∗
𝑖

)
− ̃𝜷1

(
𝜏
∗
𝑖

))
.

Define 𝛼̂∗
𝑖

such that ̃𝜷∗
1

(
𝜏
∗
𝑖

)
= ̂𝜷

∗
1(𝑡𝑗) + 𝛼̂

∗
𝑖

(
̂𝜷
∗
1(𝑡𝑗+1) − ̂𝜷

∗
1(𝑡𝑗)

)
,

x𝑇
𝑖1

(
̃𝜷
∗
1

(
𝜏
∗
𝑖

)
− ̃𝜷1

(
𝜏
∗
𝑖

))
= 𝛼̂

∗
𝑖
x𝑇
𝑖1

(
̂𝜷
∗
1(𝑡𝑗) − ̂𝜷1(𝑡𝑗)

)
+
(
1 − 𝛼̂

∗
𝑖

)
x𝑇
𝑖1

(
̂𝜷
∗
1(𝑡𝑗+1) − ̂𝜷1(𝑡𝑗+1)

)
.

Let ℎ
𝑖
(⋅) be the right derivative of x𝑇

𝑖1
̃𝜷1(⋅), by the Taylor expansion,

x𝑇
𝑖1

(
̃𝜷1

(
𝜏
∗
𝑖

)
− ̃𝜷1

(
𝜏
∗
𝑖

))
=
(
𝜏
∗
𝑖
− 𝜏

𝑖

)
ℎ
𝑖
(𝑡
𝑗
) + 𝑂

(
𝛿

2
𝑛

)
.

Thus, we have
√
𝑛

(
𝜏
∗
𝑖
− 𝜏

∗
𝑖

)
= ℎ

𝑖
(𝑡
𝑗
)x𝑇
𝑖1B∗

𝑖,𝑗
+ 𝑂

(
𝛿

2
𝑛

)
, (A14)

where

B∗
𝑖,𝑗

=
√
𝑛

(
𝛼̂
∗
𝑖

(
̂𝜷
∗
1(𝑡𝑗) − ̂𝜷1(𝑡𝑗)

)
+
(
1 − 𝛼̂

∗
𝑖

) (
̂𝜷
∗
1(𝑡𝑗+1) − ̂𝜷1(𝑡𝑗+1)

))
.

Set 𝑟2 to be a constant that satisfies

𝑟2 ≥ ||x
𝑖1||𝑔𝑖

(
x𝑇
𝑖1𝜷1(𝑡𝑙)

)
for any 𝑖, 𝑙. (A15)

By Equation (A14), Equation (A13) becomes

∑

𝑖∈𝐶𝐼
𝑙+1

|𝜏∗
𝑖
− 𝜏

∗
𝑖
| ≤ 𝑐

𝑙,𝑛
+
∑

𝑖

(
𝑛
−1∕2

ℎ
𝑖
(𝑡
𝑗
)B∗

𝑖,𝑙
𝕀
(

x𝑇
𝑖1
̂𝜷
∗
1(𝑡𝑙) < 𝐶

∗
𝑖
< x𝑇

𝑖1
̂𝜷
∗
1(𝑡𝑙+1)

))
+ 𝑂

𝑝
∗
(
𝑛𝛿

2
𝑛

)

≤ 𝑐
𝑙,𝑛

+
∑

𝑖

(
𝑟2𝑛

−1∕2x𝑇
𝑖1B∗

𝑖,𝑙
𝛿
𝑛

)

≤ 𝑐
𝑙,𝑛

+ 2𝑟1𝑟2𝑐𝑙,𝑛
(
1 + ̃

𝐸
𝑛
𝛿
𝑛

)
𝛿
𝑛

≤ 𝑐
𝑙+1,𝑛.

In the second line of the above derivation, we replace 𝕀(x𝑇
𝑖1
̂𝜷
∗
1(𝑡𝑙) < 𝐶

∗
𝑖
< x𝑇

𝑖1
̂𝜷
∗
1(𝑡𝑙+1)) with its

expectation, which is of order 𝛿
𝑛
. The error incurred by this replacement is dominated by 𝑐

𝑙,𝑛

because

𝔼∗

(
∑

𝑖

(
𝕀
(

x𝑇
𝑖1
̂𝜷
∗
1(𝑡𝑙) < 𝐶

∗
𝑖
< x𝑇

𝑖1
̂𝜷
∗
1(𝑡𝑙+1)

)
− 𝔼∗

(
𝕀
(

x𝑇
𝑖1
̂𝜷
∗
1(𝑡𝑙) < 𝐶

∗
𝑖
< x𝑇

𝑖1
̂𝜷
∗
1(𝑡𝑙+1)

))))2

=
∑

𝑖

𝔼∗
(
𝕀
(

x𝑇
𝑖1
̂𝜷
∗
1(𝑡𝑙) < 𝐶

∗
𝑖
< x𝑇

𝑖1
̂𝜷
∗
1(𝑡𝑙+1)

)
− 𝔼∗

(
𝕀
(

x𝑇
𝑖1
̂𝜷
∗
1(𝑡𝑙) < 𝐶

∗
𝑖
< x𝑇

𝑖1
̂𝜷
∗
1(𝑡𝑙+1)

)))2

= 𝑂(𝑛𝛿
𝑛
).

◼
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Lemma 2. Let DT∗
𝑛,𝑑

(𝑡) ∶= 1
𝑛

∑
𝑖
d
𝑖

√
𝑛

(
𝜏
∗
𝑖
−𝜏∗

𝑖

)

(
1−𝜏∗

𝑖

)2 𝕀
(
𝑌

∗
𝑖
> 𝐶

∗
𝑖

)
𝕀
(

x𝑇
𝑖1
̂𝜷
∗
1(𝑡) ≥ 𝐶

∗
𝑖

)
. Assume regularity

Conditions (C1)–(C7) and (C9), given the sample
{
𝑌
𝑖
,Δ

𝑖
, x

𝑖

}
𝑛

𝑖=1, DT∗
𝑛,𝑑

(𝑡) converges to

DT∗
𝑑
(𝑡) ∶=

∫

𝑡

0
𝚪
𝑑
(𝑢)B∗

𝑛
(𝑢)𝑑𝑢,

uniformly for 𝑡 ∈ [𝑡1, 𝑡𝑀 ], with probability going to 1 in the original space.

Proof . The lemma can be proved by adjusting the arguments that study DT
𝑛,𝑑

in Theorem 3.1
in Portnoy & Lin (2010) to the bootstrap space. ◼

Proof of Proposition 2. By Lemma 1 and arguments similar to those in the proof of Theorem 1,

Ψ
(
w∗(𝑡), ̃𝜷∗

1(𝑡)
)
− Ψ

(
w∗(𝑡), ̃𝜷1(𝑡)

)
− 𝔼∗ (Ψ

(
w∗(𝑡), ̃𝜷∗

1(𝑡)
)
− Ψ

(
w∗(𝑡), ̃𝜷1(𝑡)

))
= 𝑜

𝑝
∗
(
𝑛

1∕2)
,

uniformly for 𝑡 ∈ [𝑡1, 𝑡𝑀 ]. By Equation (A10),

1
√
𝑛

∑

𝑖

d
𝑖

(
â𝑐∗
𝑖
(𝑡) − 1 + 𝑡

)
= 1

√
𝑛

∑

𝑖

d
𝑖

(
𝑎
𝑐∗
𝑖
(𝑡) − 1 + 𝑡

)
+ 1
𝑛

D𝑇V(𝑡)X1

√
𝑛

(
̂𝜷
∗
1(𝑡) − ̂𝜷1(𝑡)

)

+ 1
𝑛

∑

𝑖

d
𝑖

√
𝑛

(
𝜏
∗
𝑖
− 𝜏

∗
𝑖

)

(
1 − 𝜏

∗
𝑖

)2
𝕀
(
𝑌

∗
𝑖
> 𝐶

∗
𝑖

)
𝕀
(

x𝑇
𝑖1
̂𝜷
∗
1(𝑡) ≥ 𝐶

∗
𝑖

)
+ 𝑜

𝑝
∗ (1),

(A16)

where â𝑐∗
𝑖
(𝑡) = 1 − ŵ∗

𝑖
(𝑡)𝕀

(
𝑌

∗
𝑖
− x𝑇

𝑖1
̃𝜷
∗
1(𝑡) < 0

)
and 𝑎𝑐∗

𝑖
(𝑡) = 1 − w∗

𝑖
(𝑡)𝕀

(
𝑌

∗
𝑖
− x𝑇

𝑖1
̃𝜷1(𝑡) < 0

)
.

Set d
𝑖
= x

𝑖1, we have 1√
𝑛

∑
𝑖
x
𝑖1
(
â𝑐∗
𝑖
(𝑡) − 1 + 𝑡

)
= 𝑜(1), and Equation (A16) becomes

Kx
𝑖1
(𝑡)B∗

𝑛
(𝑡) =

∫

𝑡

0
𝚪x

𝑖1
(𝑢)B∗

𝑛
(𝑢)𝑑𝑢 + W∗

𝑛,x
𝑖1
(𝑡) + 𝑜

𝑝
∗ (1), (A17)

where W∗
𝑛,𝑑

𝑖

(𝑡) = 1√
𝑛

∑
d
𝑖

(
𝑎
𝑐∗
𝑖
(𝑡) − 1 + 𝑡

)
.

Set d
𝑖
= x

𝑖1 in Equation (A3), we have

Kx
𝑖1
(𝑡)B

𝑛
(𝑡) =

∫

𝑡

0
𝚪x1

(𝑢)B
𝑛
(𝑢)𝑑𝑢 + W

𝑛,x1
(𝑡) + 𝑜

𝑝
(1). (A18)

Solving B
𝑛
(𝑡) in Equation (A18) by Theorem 10 in Gill & Johansen (1990), we have

Kx
𝑖1
(𝑡)B

𝑛
(𝑡) = W

𝑛,x
𝑖1
(𝑡) +

∫

𝑡

0
(𝑠, 𝑡)𝚪x

𝑖1
(𝑠)K−1

x
𝑖1
(𝑠)W

𝑛,x
𝑖1
(𝑠)𝑑𝑠 + 𝑜

𝑝
(1), (A19)

where (𝑠, 𝑡) = 𝚷
𝑢∈(𝑠,𝑡]

(
𝐼
𝑝
+ 𝑑𝚪x

𝑖1
(𝑢)K−1

x
𝑖1
(𝑢)

)
. Solving B∗

𝑛
(𝑡) in Equation (A17),

Kx
𝑖1
(𝑡)B∗

𝑛
(𝑡) = W∗

𝑛,x
𝑖1
(𝑡) +

∫

𝑡

0
(𝑠, 𝑡)𝚪x

𝑖1
(𝑠)K−1

x
𝑖1
(𝑠)W∗

𝑛,x
𝑖1
(𝑠)𝑑𝑠 + 𝑜

∗
𝑝
(1). (A20)
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We only need to compare the limiting distribution of W
𝑛,x

𝑖1
(𝑡) and W∗

𝑛,x
𝑖1
(𝑡). By calculation,

𝔼
(
𝑎
𝑐

𝑖
(𝑡)
)
= ℙ

(
𝑇
𝑖
> x𝑇

𝑖1𝜷1(𝑡)
)
= 1 − 𝑡, and 𝔼∗ (

𝑎
𝑐∗
𝑖
(𝑡)
)
= ℙ

(
𝑇
∗
𝑖
> x𝑇

𝑖1
̃𝜷1(𝑡)

)
= 1 − 𝑡 with proba-

bility going to 1. Now consider the second moment, for 𝑡1 ≤ 𝑡2,

𝔼
((

1 − 𝑎
𝑐

𝑖
(𝑡1)

) (
1 − 𝑎

𝑐

𝑖
(𝑡2)

))

= ℙ
(
𝑇
𝑖
< 𝐶

𝑖
, 𝑇

𝑖
< x𝑇

𝑖1𝜷1(𝑡1)
)
+ w

𝑖
(𝑡1)w𝑖

(𝑡2)ℙ
(
𝑇
𝑖
> 𝐶

𝑖
, 𝐶

𝑖
< x𝑇

𝑖1𝜷1(𝑡1)
)

= 𝑡1 −

(
(1 − 𝑡2)𝐺𝑖

(
x𝑇
𝑖1𝜷1(𝑡2)

)) (
∫
𝑡1
0 𝐺

𝑖
(x𝑇
𝑖1𝜷1(𝑢))𝑑𝑢

)

∫
𝑡2
0 𝐺

𝑖

(
x𝑇
𝑖1𝜷1(𝑢)

)
𝑑𝑢

.

Repeating the same calculation in the bootstrap space,

𝔼∗( (1 − 𝑎
𝑐∗
𝑖
(𝑡1)

) (
1 − 𝑎

𝑐∗
𝑖
(𝑡2)

)
= 𝑡1 −

(
(1 − 𝑡2) ̂𝐺𝑖

(
x𝑇
𝑖1
̃𝜷1(𝑡2)

)) (
∫
𝑡1
0
̂
𝐺
𝑖
(x𝑇
𝑖1
̃𝜷1(𝑢))𝑑𝑢

)

∫
𝑡2
0 𝐺

𝑖

(
x𝑇
𝑖1
̃𝜷1(𝑢)

)
𝑑𝑢

= 𝔼
((

1 − 𝑎
𝑐

𝑖
(𝑡1)

) (
1 − 𝑎

𝑐

𝑖
(𝑡2)

))
+ 𝑜

𝑝
(1).

Thus, W
𝑛,x

𝑖1
(𝑡) and W∗

𝑛,x
𝑖1
(𝑡) converge to the same Gaussian process. Therefore B

𝑛
(𝑡) and B∗

𝑛
(𝑡)

converge to the same Gaussian process by Equations (A19) and (A20). ◼

Proof of Theorem 2. Set d
𝑖
= x

𝑖2 − x̂
𝑖2 in Equation (A16),

1
√
𝑛

∑

𝑖

(
x
𝑖2 − x̂

𝑖2
)

â𝑐∗
𝑖
(𝑡) = W∗

𝑛,x
𝑖2−x̂

𝑖2
(𝑡) + Kx

𝑖2−x̂
𝑖2
(𝑡)B∗

𝑛
(𝑡) + DT∗

𝑛,𝑥
𝑖2−x̂

𝑖2
(𝑡) + 𝑜

∗
𝑝
(1). (A21)

By the assumption that B∗
𝑛
(𝑡) is bootstrap consistent, given the data, 1√

𝑛

∑
𝑖

(
x
𝑖2 − x̂

𝑖2
)

â𝑐∗
𝑖
(𝑡)

converges to the same process as 1√
𝑛

∑
𝑖

(
x
𝑖2 − x̂

𝑖2
)

â𝑐
𝑖
(𝑡). Then it follows immediately that the

conditional distribution of  ∗
1 / ∗

2 will converge to the same limiting distribution as 1/2. ◼
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APPENDIX B: SIMULATION RESULTS

TABLE B1: Comparison of the empirical Type I error rate and power under Case (i).

𝑛 = 100 𝑛 = 200 𝑛 = 500

Type I error Power Type I error Power Type I error Power


km

1 [0.50, 0.85] 0.046 0.365 0.047 0.651 0.057 0.979


km

1 [0.75, 0.85] 0.056 0.438 0.029 0.798 0.057 0.998


km

2 [0.50, 0.85] 0.049 0.352 0.048 0.647 0.054 0.979


km

2 [0.75, 0.85] 0.056 0.433 0.029 0.797 0.055 0.998


qr

1 [0.50, 0.85] 0.057 0.372 0.048 0.660 0.059 0.981


qr

1 [0.75, 0.85] 0.061 0.440 0.037 0.809 0.056 0.998


qr

2 [0.50, 0.85] 0.061 0.361 0.047 0.653 0.056 0.982


qr

2 [0.75, 0.85] 0.062 0.435 0.036 0.805 0.057 0.998


qr

3 [0.50] 0.044 0.165 0.055 0.280 0.054 0.549


qr

3 [0.60] 0.056 0.308 0.051 0.537 0.052 0.902


qr

3 [0.75] 0.059 0.431 0.041 0.772 0.057 0.998


qr

3 [0.85] 0.064 0.390 0.046 0.784 0.058 0.998

Note:  km
1 [𝜏

𝑎
, 𝜏
𝑏
] denotes the test statistic 1 over 𝜏 in [𝜏

𝑎
, 𝜏
𝑏
] with 𝐶∗

𝑖
sampled from the local KM estimator. Similarly,


qr

2 [𝜏
𝑎
, 𝜏
𝑏
] denotes the test statistic 2 over 𝜏 in [𝜏

𝑎
, 𝜏
𝑏
] with 𝐶∗

𝑖
sampled from the censored quantile regression model.

The term 
qr

3 [𝜏] denotes the test statistic 3 at 𝜏. All tests use the nominal significance level of 0.05. The standard errors
for the Type I errors are no higher than 0.007.
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TABLE B2: Comparison of the empirical Type I error rate and power under Case (ii).

𝑛 = 100 𝑛 = 200 𝑛 = 500

Type I error Power Type I error Power Type I error Power


km

1 [0.10, 0.70] 0.046 0.350 0.057 0.621 0.049 0.935


km

1 [0.20, 0.80] 0.042 0.158 0.058 0.273 0.053 0.502


km

2 [0.10, 0.70] 0.044 0.763 0.063 1.000 0.051 1.000


km

2 [0.20, 0.80] 0.038 0.514 0.064 0.939 0.056 1.000


qr

1 [0.10, 0.70] 0.045 0.351 0.063 0.625 0.051 0.936


qr

1 [0.20, 0.80] 0.045 0.108 0.056 0.274 0.057 0.497


qr

2 [0.10, 0.70] 0.046 0.766 0.064 1.000 0.053 1.000


qr

2 [0.20, 0.80] 0.045 0.519 0.058 0.944 0.055 1.000


qr

3 [0.10] 0.034 0.995 0.05 1.000 0.047 1.000


qr

3 [0.30] 0.040 0.77 0.06 0.969 0.056 0.999


qr

3 [0.70] 0.039 0.116 0.045 0.240 0.064 0.623


qr

3 [0.90] 0.051 0.065 0.055 0.143 0.051 0.565

Note: See the Note of Table B1 for more details.
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