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extending the m-value framework to account for the correlation structure between traits.
This framework enables a significant increase in the identification of per trait effects.

Introduction

Genome-wide association studies (GWAS) have been instrumental in identifying genetic vari-
ants associated with complex traits [1–3]. As a result, there are tens of thousands of unique
associations in the GWAS catalog [4]. With ever increasing sample sizes in GWAS, more and
more associated variants have been discovered. This suggests the presence of a large number of
variants with small effect sizes that are not identified due to statistical power [5]. With the
number of traits examined as well as sample sizes increasing over time, numerous variants are
observed affecting more than one trait (i.e., pleiotropy) [6–10]. Some examples of pleiotropic
effects include muscle mass and bone geometry, male pattern baldness and bone mineral den-
sity, as well as between multiple psychiatric disorders [11–13].

We hypothesize that because variants often affect more than one trait, we can leverage this
pleiotropy to jointly analyze multiple traits. This would potentially increase statistical power
and identify variants with even weaker effect sizes. Following this intuition, there have been
many approaches for performing association tests using summary statistics across multiple
traits [14–26]. While simultaneously analyzing multiple traits is advantageous for identifying
novel variants, performing an omnibus test is inherently difficult to interpret. This is because
an omnibus test assigns one p-value per variant for the set of traits, and it is not clear how to
assign a per trait significance level in this context. Even when this is done, it is not straightfor-
ward to interpret due to issues such as inflation in false discovery rates when the assumption
of homogeneity in effect sizes is violated [25].

In this paper, we propose an alternative framework with a two step procedure. First, all
traits are jointly analyzed to produce one p-value for each variant. If this p-value is significant,
it suggests that the variant is associated with one or more of the traits. To accomplish this first
step, we develop an efficient method called pleiotropic association test (PAT) which leverages
the estimated genome-wide genetic correlation between the traits to improve power and uses
null simulations to accurately calibrate p-values. PAT also utilizes importance sampling to
allow for estimation of significant p-values efficiently. The second step builds upon an inter-
pretation framework first developed in the context of meta-analysis, m-values, to compute the
posterior probability that a variant is associated with each trait [27]. We extend the m-value
framework to take into account environmental and genetic correlation between traits.

In simulated data reflecting estimates of genetic and environmental covariance between
real UK Biobank traits, we find that PAT is able to correctly control for false positives and
increase power to identify novel associations. In comparisons to three multi-trait methods,
MTAG, HIPO and ASSET, PAT has a 15.3% increase in the number of associations over the
next best method [14, 24, 25, 28]. These results were then interpreted using the m-value frame-
work where PAT identified 37.5% more per trait associations. Additionally while HIPO has
only a 16.0% increase in power relative to MTAG for omnibus association testing, using the
m-value framework to interpret HIPO’s associations resulted in a 46.6% increase in per trait
associations relative to MTAG. Finally, we analyzed four traits in the UK Biobank where PAT
identified 22,095 novel variants and interpret the results for every trait using m-values. In two
of the four traits, the number of per trait associations was almost three times greater than those
found using the standard single trait GWAS, and it nearly doubled the number of per trait
associations for another trait. PAT is freely available at https://github.com/koditaraszka/pat.
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We note that when c = (1, . . ., 1), Sg = Sg(c). With this in mind, m-values works by sum-
ming the posterior probabilities that corresponding to the configurations in Ci and dividing by
the the total sum of all posterior probabilities (set of configuration in C). Therefore, for each
trait i:

mi à
P

c2Ci
PÖSjm à 0;S à Se á SgÖcÜÜP

c2CPÖSjm à 0;S à Se á SgÖcÜÜ

where S are summary statistics across the T traits for one variant, and the m-value mi is the
proportion of the all posterior probabilities compatible with there being an effect in trait i.
When mi> 0.9, the variant is assumed to be associated with the ith trait. Otherwise, the inter-
pretation is left ambiguous.

While we assume the covariance structure of Sg follows the polygenic model, for interpreta-
tion purposes this assumption is relaxed. Under the polygenic model, every variant has an
effect; therefore, the expected effect size of each variant is 1

M ⇥ h2 where M is the total number

of variants and h2 is the estimated additive heritability of the trait. When only considering the
variants found genome-wide significant, the expected effect size of these variants needs to be
to estimated. We do this by estimating the number of causal variants Q and rescale the genetic
covariance matrix Sg by M

Q for the m-value interpretation framework.

This is necessary because h2 2 [0, 1] and with genome-wide association studies using mil-
lions of variants, Sg + Se⇡ Se under the polygenic model. While a valid model for association
testing, distinguishing between different configurations of Sg(c) to calculate the m-value is
very difficult. Therefore, we scale Sg and the resulting Sg(c) by randomly selecting one associ-
ated variant per 100KB region for a total of k variants. We then perform a grid search for Q 2
[1, M] and retain the value of Q which maximizes the likelihood function as shown below:

argmax
Q2â1;Mä

Yk

ià1

P Sijm à 0;S à M
Q
Sg á Se

✓ ◆

Results

Methods overview

Pleiotropic association test. Here we introduce PAT (pleiotropic association test) which
takes in GWAS summary statistics measured for T traits and assumes each variant is drawn
according to the multivariate normal (MVN) distribution: S ⇠ N Ö0;SÜ. Furthermore, it
assumes the covariance matrix can be decomposed into two independent components, envi-
ronment and genetics (S = Se + Sg). With this assumption in mind, PAT performs a likelihood
ratio test (LRT) between two proposed MVN distributions. The null hypothesis is Sg = 0;
therefore, the summary statistics for one variant, S = {s1, . . ., sT} has the following distribution:
S ⇠ N Ö0;SeÜ.

Under the alternative hypothesis (Sg 6à 0), PAT models the genetic effect size according to
the polygenic model and assumes the standard genetic correlation structure between traits
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its accuracy. M-values were produced by enumerating over the set of configurations C = {0, 1}4

which indicate which trait(s) have a genetic effect, Sg(c). We note that the configuration c = (1,
1, 1, 1) indicates a genetic effect in all four traits (i.e. Sg(c) = Sg). For each configuration, we
calculated the posterior probability P(S|μ = 0, S = Se + Sg(c)). We then take the sum of the con-
figurations compatible with trait i (ci = 1) and divide by the total probability over all configura-
tions to produce the m-value for trait i. If this ratio mi> 0.9, we interpreted the omnibus
variant-trait association to be an association between the variant and trait i. If this ratio mi
0.9, we left the interpretation as ambiguous. We note that m-values are a Bayesian quantity
whose threshold is a matter of convention established in previous work [27]; in Fig B in S1
Text, we gave some empirical support for this threshold as the m-value can be seen as a very
conservative bound on the false assignment rate.

In Fig 4, we simulated one million variants under two model conditions. In Fig 4A, there
was a genetic effect in all four traits: body mass index, diastolic blood pressure, height, and sys-
tolic blood pressure while in Fig 4B, we modeled a genetic effect in only body mass index and
height. In Fig 4, the truly associated traits were denoted with an asterisks (⇤) around the trait
name. The effect sizes were simulated such that the first model has 50% power and 44% when
there was a genetic effect in only body mass index and height. We split the summary statistics
(z-scores) for each trait based on whether there was even modest signal in a particular trait (|z-
score| > 3). This distinction was due to differing expectations on the ability to correctly inter-
pret an association. We note that the inclusion of variants with a |z-score| 3 for a particular
trait was primarily done for completeness and their interpretation was overwhelmingly ambig-
uous (Fig 4 right panel). We therefore, focus on the left panel of Fig 4 where the |z-score| > 3.

When there was a genetic effect in all four traits (top row left side), the m-value was greater
than 0.9 for the vast majority of z-scores which means the majority of variants were correctly
interpreted as associated with all traits. Diastolic and systolic blood pressure had the most
ambiguous associated variants with 3,381 and 2,959, respectively. This, however, was still less

Fig 4. Interpreting per trait associations from omnibus significant variants. We simulated one million variants for
four traits under two models. The first set of simulations assumed there was a genetic effect in every trait (A), while the
second model only has a genetic effect in body mass index and height (B). The associated traits are noted with an
asterisks (⇤). The results for each trait were split based on the absolute value of the z-score and showed the
interpretation as either ambiguous or associated. The threshold for associated is an m-value greater than 0.9.

https://doi.org/10.1371/journal.pgen.1010447.g004
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Table 1. Comparison of multi-trait GWAS methods. 1.5 million variants were simulated with z-scores for four traits with 10% of variants as truly associated. The first col-
umn lists which trait has a genetic effect. The second column is the number of variants simulated under this specific model. The third column is the genetic effect size. The
remaining four columns contain the number of variants identified as associated by four methods: PAT, HIPO, MTAG, and ASSET. The final row of the table contains
each methods running time.

Genetic Effect Number of Variants Sh2
causal

Genome-Wide Significant

PAT HIPO MTAG ASSET

No Trait 1,350,000 0 0 0 0 0

B;D;H;S 5,000 40,000 113 54 60 103

3,000 24,000 198 113 119 196

2,000 16,000 291 194 196 326

B;D;H 5,000 40,000 108 53 56 76

3,000 24,000 204 113 121 170

2,000 16,000 307 216 226 286

B;D;S 5,000 40,000 0 2 3 1

3,000 24,000 0 12 7 5

2,000 16,000 0 26 12 11

B;H;S 5,000 40,000 124 73 58 92

3,000 24,000 216 166 128 199

2,000 16,000 352 281 219 334

D;H;S 5,000 40,000 88 28 36 56

3,000 24,000 161 105 111 131

2,000 16,000 257 173 176 227

B;D 5,000 40,000 0 2 1 0

3,000 24,000 0 15 6 2

2,000 16,000 0 34 4 1

B;H 5,000 40,000 96 36 40 60

3,000 24,000 160 106 116 138

2,000 16,000 260 196 201 255

B;S 5,000 40,000 0 33 11 5

3,000 24,000 5 81 32 30

2,000 16,000 12 128 61 48

D;H 5,000 40,000 90 40 42 41

3,000 24,000 177 111 114 127

2,000 16,000 253 195 185 204

D;S 5,000 40,000 0 3 0 0

3,000 24,000 0 7 2 2

2,000 16,000 0 23 14 9

H;S 5,000 40,000 80 40 32 46

3,000 24,000 185 127 94 131

2,000 16,000 225 191 144 179

B 5,000 40,000 0 12 8 4

3,000 24,000 1 32 20 9

2,000 16,000 6 51 45 30

D 5,000 40,000 0 5 1 0

3,000 24,000 0 14 4 1

2,000 16,000 1 35 15 7

H 5,000 40,000 89 36 46 47

3,000 24,000 154 82 92 94

2,000 16,000 191 126 139 134

(Continued)
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pressure (D), height (H), and systolic blood pressure (S). The final row in Table 1 contains the
running time for each method. Here, we see ASSET was significantly slower than the other
three methods which were comparable to each other. PAT’s efficient running time indicates
that the use of importance sampling can enables a speed up comparable to deriving p-values
analytically; the differences in compute time between PAT, HIPO, and MTAG were likely due
to other factors (e.g. MTAG does a number of sanity checks prior to analysis).

While no simulation framework truly reflects the real world, this arrangement attempted to
non-exhaustively model different scenarios that occur when analyzing z-scores from multiple
traits. Namely, we explored the power to discover summary statistics with different causal
effect sizes and violations of a pleiotropic effect in all traits. Under the various configurations
shown here, all of the methods were under powered due to the simulations being centered
around zero; however, PAT was the most powerful method in nearly half of the simulated sce-
narios as well as overall. Across all scenarios PAT identified 4,405 associated variants which
was an 15.3% increase over ASSET (3,820), a 26.4% increase over HIPO (3,486) and a 46.6%
increase over MTAG (3,005). While PAT generally performed the best, the other methods did
significantly better when the genetic effect in height was absent. Without considering environ-
mental correlation, this scenario was similar to that seen in Fig 3B and 3E. There we saw that
the closer one trait’s z-score was to 0, the larger the other trait’s effect size needed to be.
Another factor was the environmental correlation; the other three traits have more environ-
mental correlation to each other than to height which was similar to the scenario in Fig 3K. In
this case, PAT was shown to be conservative in the direction of environmental correlation. To
better understand the effect of environmental correlation on statistical power, we conducted
further simulations in the supplementary materials (see Fig A and Table E in S1 Text). Finally,
we explore the simulations from this section on a per trait level below.

M-values enable more per trait interpretations in multi-trait GWAS

The four multi-trait methods were previously compared in regards to their power to perform
omnibus association testing (see above). Here, we investigated the per trait interpretation of
these associations. As MTAG computes a p-value for every trait, the method provides a direct
per trait interpretation; therefore, for each respective trait we reported the variants with a p-
value <5 × 10−8. The method, ASSET, considers all possible subsets and selects the one that
maximizes its test statistic. This is done separately in the positive and negative directions of
effect and are then combined for a two-tailed test which determines the omnibus association.
For the associated variants, we tested each direction separately for significance (p-value
<5 × 10−8 and interpreted the subsets that produced a significant association as the trait(s)
driving the association. The last two methods, HIPO and PAT, only provided an omnibus
interpretation; therefore, we applied the m-value framework to assign a per trait association to
variants whose omnibus p-value <5 × 10−8. For both methods, this was done by taking the

Table 1. (Continued)

Genetic Effect Number of Variants Sh2
causal

Genome-Wide Significant

PAT HIPO MTAG ASSET

S 5,000 40,000 0 11 1 0

3,000 24,000 0 39 3 2

2,000 16,000 1 66 4 2

Total 1,500,000 — 4,405 3,486 3,005 3,820

Running Time (seconds) — — 72 96 150 54,709

https://doi.org/10.1371/journal.pgen.1010447.t001
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associated variants and calculating the posterior predictive probability (m-value) of
whether there was a genetic effect in each particular trait. If the m-value was greater than 0.9,
the variant was deemed associated with the trait. Otherwise, the interpretation was left
ambiguous.

Prior to exploring the per trait interpretation, we note that only MTAG controls the false
positive per trait interpretation due to its use of p-values for the assignment; m-values do not
directly control for false positives. As a result, m-values are only meant to provide empirical
insights and interpretation to p-values not replace them. This means the comparisons in
Table 2 between MTAG’s p-values and the m-value interpretations are not an apples to apples
comparison. In Fig C in S1 Text, we provide a fairer comparison by ranking the p-values and
m-values. There we show that for any false positive rate, PAT and HIPO have more true posi-
tive per trait assignments than MTAG. Separately, we acknowledge that while ASSET provides
the subset of traits with the strongest association signal with the intent of a more interpretable
multi-trait association. It is possible that a trait was included in the optimal subset due to its
tagging the causal signal in another trait. In this case, including the trait was useful for increas-
ing the association power but would lead to an incorrect interpretation.

In Table 2, all methods analyzed 1.5 millions simulations with 10% (150,000) causal variants
equally divided across all configurations of genetic effect. For each of the configurations, differ-
ent effect sizes were also considered (see above). In Table 2, the number of per trait associa-
tions was reported by trait under each configuration. When the variant did not truly have a
genetic effect on the trait, the box was greyed to indicate false positives. Overall, Table 2 resem-
bled the results shown in Table 1.

One example of an exception was when there was a genetic effect in body mass index,
height, and systolic blood pressure (B;H;SÜ. While PAT identified more associated variants,
HIPO has more per trait associations for systolic blood pressure. This means that while HIPO
has less power than PAT for the omnibus test (see Table 1), it was able to provide the most per
trait interpretations for this trait. This was due to HIPO identifying different associated vari-
ants than PAT which were then interpreted on a per trait level. We also saw this phenomenon
when there was a genetic effect in height and systolic blood pressure (H;S).

Overall, PAT identified 6,264 true per trait associations from its 4,405 omnibus associa-
tions. For HIPO, the m-value framework interprets 4,557 true per trait associations from its
3,486 significant variants. When comparing PAT to HIPO, there are 37.5% more true per trait
associations than HIPO due to PAT having more power as an omnibus method. The method,
ASSET, identified 3,820 significant associations with 3,944 traits correctly placed in the opti-
mal subset. Finally, we consider MTAG which directly identified 3,064 total per trait associa-
tions (3,005 omnibus associations). While HIPO and PAT identified 16.0% and 46.6% more
omnibus associations than MTAG, respectively the m-value framework enabled a 48.7%
increase for HIPO and a 104.4% increase for PAT in per trait associations relative to MTAG, a
method designed for per trait interpretation. When comparing HIPO and PAT and their m-
values to ASSET, we saw that HIPO had 8.7% fewer omnibus associations than ASSET but
15.5% more per trait assignments. Separately, while PAT had 15.3% more omnibus associa-
tions than ASSET, there were 58.8% more per trait findings.

While m-values enabled a significant increase in per trait interpretations, as stated before,
the m-value threshold does not directly control for false positives. In Table 2, MTAG had no
false positive per trait associations. The m-values produced for PAT and HIPO, however, did
result in a small number of false positive assignments, 58 and 42 respectively. This was 0.92%
and 0.91% of their respective per trait interpretations. When we considered the subsets pro-
duced by ASSET, we observed there were 28 false positive placements (0.73%).

PLOS GENETICS Joint analysis of pleiotropic traits with per trait interpretations

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010447 November 7, 2022 15 / 24

https://doi.org/10.1371/journal.pgen.1010447


Table 2. Four multi-trait GWAS methods with per trait interpretation. 1.5 million variants were simulated with z-scores for four traits with 10% of variants being truly
associated. The first column lists which trait has a genetic effect. The second column is the number of variants simulated under this specific model. The third column is the
genetic effect size of the variant. The remaining columns are split by trait where the performance of the four methods are shown for each trait. These 16 columns present
the number of variants identified as associated by each method for the specific trait. MTAG uses p-values, ASSET uses the optimal subset, while PAT and HIPO use the m-
value framework to provide per trait associations.

Genetic
Effect

Number
of

Variants

Sh2
causal

Body Mass Index Diastolic Blood Pressure Height Systolic Blood Pressure

PAT HIPO MTAG ASSET PAT HIPO MTAG ASSET PAT HIPO MTAG ASSET PAT HIPO MTAG ASSET

B;D;H;S 5,000 40,000 28 17 10 15 5 3 0 4 113 44 50 74 8 2 0 1

3,000 24,000 64 38 17 39 31 15 2 10 198 96 98 143 35 22 3 16

2,000 16,000 131 89 44 78 71 44 8 21 284 157 139 221 70 56 18 47

B;D;H 5,000 40,000 34 15 8 12 11 10 1 4 108 43 47 56 1 1 0 1

3,000 24,000 64 42 26 43 41 22 7 16 200 87 89 118 2 1 0 1

2,000 16,000 139 96 47 85 85 61 18 29 301 182 171 224 2 3 0 0

B;D;S 5,000 40,000 0 0 0 0 0 1 1 0 0 0 0 0 0 2 2 1

3,000 24,000 0 0 0 0 0 8 5 3 0 0 0 0 0 10 3 5

2,000 16,000 0 0 0 0 0 15 7 9 0 0 0 0 0 21 5 6

B;H;S 5,000 40,000 39 29 12 12 3 2 0 1 124 52 46 64 16 25 0 1

3,000 24,000 74 60 25 49 3 1 0 0 215 108 101 145 51 63 3 17

2,000 16,000 160 125 53 92 4 3 0 0 345 206 170 244 97 115 6 40

D;H;S 5,000 40,000 1 1 0 0 6 1 1 4 88 26 35 46 8 3 0 6

3,000 24,000 1 1 0 0 24 19 3 6 161 98 107 116 25 18 3 6

2,000 16,000 3 1 0 1 53 37 9 11 257 162 163 195 61 40 8 21

B;D 5,000 40,000 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0

3,000 24,000 0 0 0 0 0 14 6 2 0 0 0 0 0 0 0 0

2,000 16,000 0 0 0 0 0 32 4 1 0 1 0 0 0 0 0 0

B;H 5,000 40,000 26 14 6 15 2 0 0 1 96 31 34 50 1 0 0 1

3,000 24,000 57 44 28 29 0 0 0 1 159 88 90 110 2 1 0 1

2,000 16,000 116 102 64 76 0 0 0 0 255 151 144 177 1 1 0 0

B;S 5,000 40,000 0 19 11 5 0 1 0 0 0 0 0 0 0 18 0 1

3,000 24,000 5 47 30 26 0 0 0 0 0 1 0 1 3 56 2 3

2,000 16,000 10 85 54 41 0 0 0 0 0 0 0 2 6 74 7 11

D;H 5,000 40,000 1 0 0 0 7 5 0 0 90 37 42 40 0 1 0 0

3,000 24,000 3 0 0 2 36 23 3 4 177 100 111 117 0 0 0 0

2,000 16,000 3 2 0 3 87 81 18 24 253 174 173 185 3 2 0 0

D;S 5,000 40,000 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0

3,000 24,000 0 0 0 0 0 4 1 2 0 0 0 1 0 4 2 2

2,000 16,000 0 0 0 0 0 14 8 7 0 0 0 0 0 17 6 5

H;S 5,000 40,000 1 0 0 0 1 2 0 0 80 33 32 40 12 10 0 3

3,000 24,000 1 0 0 1 2 1 0 1 185 99 92 119 39 48 2 11

2,000 16,000 5 2 0 6 2 1 0 0 225 155 141 166 54 83 3 17

B 5,000 40,000 0 12 8 4 0 0 0 0 0 0 0 0 0 0 0 0

3,000 24,000 1 32 20 9 0 0 0 0 0 0 0 0 0 0 0 0

2,000 16,000 6 51 45 30 0 0 0 0 0 0 0 1 0 1 0 0

D 5,000 40,000 0 1 0 0 0 4 1 0 0 0 0 0 0 0 0 0

3,000 24,000 0 0 0 0 0 14 4 1 0 0 0 0 0 0 0 0

2,000 16,000 0 0 0 0 1 33 15 6 0 0 0 0 0 1 0 0

H 5,000 40,000 1 1 0 0 1 1 0 0 89 36 46 47 1 1 0 0

3,000 24,000 2 1 0 1 1 1 0 0 154 82 92 94 1 1 0 1

2,000 16,000 0 0 0 0 2 1 0 0 191 126 139 133 1 1 0 0

(Continued)
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PAT discovers novel per trait associations in the UK Biobank

While simulations have indicated PAT is a powerful method for association testing and m-val-
ues enable a per trait interpretation, we now apply this two step approach to real data. We ana-
lyzed the UK Biobank summary statistic for body mass index, diastolic blood pressure, height,
and systolic blood pressure [28]. Here, five methods were compared: Single Trait GWAS (how
the z-scores and p-values were derived), MTAG, MI GWAS, HIPO and PAT [14, 25]. The set
of variants were processed such that only variants which were biallelic, have non-ambiguous
strands, a minor allele frequency greater than 1%, and an INFO score greater than 80% were
retained. This left 7,025,734 variants that meet the criteria for all four traits. The reference and
alternate allele were coordinated across traits by flipping the direction of the effect when neces-
sary. LD-Score regression and cross-trait LD-Score regression were used to calculate the
genetic and environmental covariance structure (see S1 Text) [35, 36].

Using standard single trait GWAS, there were 211,546 uniquely associated variants across
the four traits of interest. With MTAG, 164,263 uniquely associated variants were identified,
931 of which were novel associations. MI GWAS implicated 183,669 variants as associated, but
none of the variants were novel discoveries due to MI GWAS having less power than single
trait GWAS by design. When analyzing the traits with HIPO, 177,519 associated variants were
found with 19,829 being new variants. PAT identified 200,112 uniquely associated variants
with 22,095 being novel. None of the multi-trait methods identified more distinct variants
than the standard single trait GWAS though MTAG, HIPO, and PAT identified new variants.
This was likely due to insufficient power to capture variants associated with only one trait. For
further exploration of the omnibus results see the Table F in S1 Text.

When comparing the methods on their per trait associations, more associations were iden-
tified by leveraging multiple traits. While standard single trait GWAS identified 211,546
uniquely associated variants, only 18,764 were implicated as associated with more than one
trait for a total of 233,540 associations as reported in Table 3. When analyzing the traits using
MTAG, 18,054 out of 164,263 uniquely associated variants were found to be associated with

Table 2. (Continued)

Genetic
Effect

Number
of

Variants

Sh2
causal

Body Mass Index Diastolic Blood Pressure Height Systolic Blood Pressure

PAT HIPO MTAG ASSET PAT HIPO MTAG ASSET PAT HIPO MTAG ASSET PAT HIPO MTAG ASSET

S 5,000 40,000 0 0 0 0 0 0 0 0 0 0 0 0 0 11 1 0

3,000 24,000 0 0 0 0 0 0 0 0 0 0 0 0 0 39 3 2

2,000 16,000 0 0 0 0 0 0 0 0 0 0 0 0 1 66 4 2

https://doi.org/10.1371/journal.pgen.1010447.t002

Table 3. UK Biobank data interpretation. We analyzed four traits from the UK Biobank using five methods: Single Trait GWAS, MTAG, MI GWAS, HIPO, and PAT
and show the variants associated with each trait. For Single Trait GWAS and MTAG, the per trait association was directly computed. For MI GWAS, HIPO and PAT, an
omnibus association was first performed. The significant variants were then interpreted using the m-value framework using 0.9 as the threshold.

Trait Interpreted Directly From GWAS M-value >0.90

Single Trait GWAS MTAG MI GWAS HIPO PAT

body mass index (B) 37,205 32,527 64,706 65,462 67,139

diastolic blood pressure (D) 18,593 17,610 56,369 58,294 56,271

height (H) 160,227 117,882 155,730 136,519 191,420

systolic blood pressure (S) 17,515 16,927 48,308 51,234 49,125

Total 233,540 184,946 325,113 311,509 363,955

https://doi.org/10.1371/journal.pgen.1010447.t003
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more than one trait. This resulted in there being a total of 184,946 per trait associations. While
single trait GWAS and MTAG provided a per trait p-value, MI GWAS, HIPO, and PAT did
not. In order to interpret their associations, a per trait m-value must be assigned. When using
the m-value framework, MI GWAS interpreted 325,113 per trait associations due to 96,519 of
its 183,669 associated variants being associated with more than one trait. Out of the set of
183,669 uniquely associated variants, there were 8,213 whose interpretation was left ambigu-
ous. This means that while those variants were significantly associated with the set of traits
according to the omnibus test, the interpretation as to which of the traits was still ambiguous.
HIPO identified 177,519 associated variants where 94,5333 were interpreted as associated with
more than one trait. There were 862 with an ambiguous interpretation while 311,509 were
interpreted as associated with at least one trait. Finally, the m-value framework was applied to
PAT resulting in 363,955 per trait associations from the set of 200,112 unique variants. Out of
which 111,126 variants were interpreted as associated with more than one trait and 9,869 were
left with an ambiguous interpretation.

We note that while MI GWAS cannot by definition have more power than Single Trait
GWAS, once a variant was implicated as associated with at least one trait the interpretation
could be assigned to multiple traits. This means that as long as the effect size in one trait was
large enough to result in MI GWAS finding the variant significant, the weaker effect sizes
could still be interpreted using m-values. This is because the m-value framework leveraged the
genetic and environmental covariation between traits regardless of whether or not the original
method modeled it which enables an increase in per trait associations. In fact, PAT had over
100,000 more per trait associations than single trait GWAS in Table 3 even though it impli-
cated fewer variants. For body mass index, PAT, MI GWAS and HIPO almost doubled the
number of per trait associations and nearly tripled it for systolic blood pressure. For diastolic
blood pressure, the number of per trait associations was more than tripled due to the m-value
framework. In Table 3, MTAG performed on par with single trait GWAS on a per trait level.
One reason for the difference in performance was the nature of the methods. For MI GWAS,
HIPO, and PAT, the variant was first implicated and then interpreted on a per trait basis while
MTAG and single trait GWAS assigned statistical significance for each trait separately.

Replicating novel associations in the GIANT consortium

The three methods PAT, HIPO, and MTAG respectively identified 22,095, 19,829, and 931
novel associations when jointly analyzing four traits from the UK Biobank. For PAT, all novel
associations had an m-value greater than 0.9 in at least one trait which means all associations
had a per trait interpretation. The breakdown of the per trait associations were: 12,261 variants
interpreted as associated with body mass index, 7,868 with diastolic blood pressure, 21,119
with height, and 7,605 were interpreted as associated with systolic blood pressure. For HIPO,
there were 862 associations with an ambiguous interpretation. The breakdown of the 18,967
variants with a per trait interpretation were: 6,202 associated with body mass index, 8,420 with
diastolic blood pressure, 6,396 with height, and 9,844 with systolic blood pressure. For MTAG
which provided per trait p-values, 33 of the 931 novel associations were associated with body
mass index, 254 with diastolic blood pressure, zero with height, and 644 were associated with
systolic blood pressure. Now equipped with novel per trait associations, these discoveries
should be validated in an external dataset; therefore, we used the GIANT consortium to see if
any of the new associations for body mass index or height could be reproduced [37, 38].

For body mass index, the European summary statistics from the GIANT consortium con-
tained 2,554,638 variants which were separately matched to the variants identified by PAT,
HIPO, and MTAG using the RSID, reference, and alternate allele and had a minor allele
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While PAT was shown to be an effective method for leveraging pleiotropy between traits,
the optimal number of traits to jointly model was not explored. As the number of traits
increase, the genome-wide estimate of genetic correlation ceases to hold across all traits. This
would result in fewer novel associations as the power gains would be stunted by model misspe-
cification. Further exploration is needed to determine which traits should be analyzed together
and how to effectively cluster the traits into these sets.

Another limitation to PAT was it assumed the genetic covariance structure was constant
across the genome. PAT was agnostic to the environmental and genetic covariance between
traits and treated these as input. As all variants were tested independently, the user could input
a different covariance structure for each variant or a set of variants. This may enable a signifi-
cant power increase as modeling local covariance structure better reflects the covariance struc-
ture between z-scores [40–42]. Our method, however, only considered the global estimate of
genetic and environmental correlation between traits and further work is needed to quantify
the impact of such modifications on both power and false positives which other’s have
explored [19].

One limitation to the m-value interpretation framework was how it estimated the number
of causal variants for the genetic covariance matrix. Currently, for association testing the
genetic covariance matrix was scaled according to the polygenic model (i.e. all variants were
causal). Once variants were implicated as associated, we used grid search to find the genetic
covariance matrix scaling that best reflected the average effect size of independent variants.
This in effect was an approximation to the number of causal variants. Further work is merited
to better estimate the number of causal variants for each trait as well as the number shared
between traits.
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