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Abstract—The practical deployment of federated learning (FL)
over wireless networks requires balancing energy efficiency,
convergence rate, and a target accuracy due to the limited
available resources of devices. Prior art on FL often trains
deep neural networks (DNNs) to achieve high accuracy and
fast convergence using 32 bits of precision level. However, such
scenarios will be impractical for resource-constrained devices
since DNNs typically have high computational complexity and
memory requirements. Thus, there is a need to reduce the
precision level in DNNs to reduce the energy expenditure. In
this paper, a green-quantized FL framework, which represents
data with a finite precision level in both local training and uplink
transmission, is proposed. Here, the finite precision level is cap-
tured through the use of quantized neural networks (QNNs) that
quantize weights and activations in fixed-precision format. In the
considered FL model, each device trains its QNN and transmits
a quantized training result to the base station. Energy models
for the local training and the transmission with quantization
are rigorously derived. To minimize the energy consumption and
the number of communication rounds simultaneously, a multi-
objective optimization problem is formulated with respect to the
number of local iterations, the number of selected devices, and
the precision levels for both local training and transmission while
ensuring convergence under a target accuracy constraint. To solve
this problem, the convergence rate of the proposed FL system is
analytically derived with respect to the system control variables.
Then, the Pareto boundary of the problem is characterized to
provide efficient solutions using the normal boundary inspection
method. Design insights on balancing the tradeoff between the
two objectives while achieving a target accuracy are drawn from
using the Nash bargaining solution and analyzing the derived
convergence rate. Simulation results show that the proposed FL
framework can reduce energy consumption until convergence by
up to 70% compared to a baseline FL algorithm that represents
data with full precision without damaging the convergence rate.

I. INTRODUCTION

Federated learning (FL) is an emerging paradigm that

enables distributed learning among wireless devices [2]. In

FL, a central server (e.g., a base station (BS)) and multiple

mobile devices collaborate to train a shared machine learning

model without sharing raw data. Many FL works employ

deep neural networks (DNNs), whose size constantly grows
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to match the increasing demand for higher accuracy [3]. Such

DNN architectures can have tens of millions of parameters and

billions of multiply-accumulate (MAC) operations. Moreover,

to achieve fast convergence, these networks typically represent

data in 32 bits of full precision level, which may consume

significant energy due to high computational complexity and

memory requirements [4]. Additionally, a large DNN can

induce a significant communication overhead [5]. Under such

practical constraints, it may be challenging to deploy FL

over resource-constrained Internet of Things (IoT) devices

due to its large energy cost. To design an energy-efficient,

green FL scheme, one can reduce the precision level to

decrease the energy consumption during the local training

and communication phase. However, a low precision level can

jeopardize the convergence rate by introducing quantization

errors. Therefore, finding the optimal precision level that

balances energy efficiency and convergence rate while meeting

desired FL accuracy constraints will be a major challenge for

the practical deployment of green FL over wireless networks.

Several works have studied the energy efficiency of FL from

a system-level perspective [6]–[11]. The work in [6] investi-

gated the energy efficiency of FL algorithms in terms of the

carbon footprint compared to centralized learning. In [7], the

authors formulated a joint minimization problem for energy

consumption and training time by optimizing heterogeneous

computing and wireless resources. The work in [8] developed

an approach to minimize the total energy consumption by

controlling a target accuracy during local training based on a

derived convergence rate. The authors in [9] proposed a sum

energy minimization problem by considering joint bandwidth

and workload allocation of heterogeneous devices. In [10],

the authors studied a joint optimization problem to minimize

the energy and the training time under a target accuracy. The

work in [11] developed a resource management scheme by

leveraging the information of loss functions of each device to

maximize the accuracy under constrained communication and

computation resources. However, these works [6]–[11] did not

consider the energy efficiency of their DNN structure during

training. Since mobile devices have limited computing and

memory resources, deploying an energy-efficient DNN will

be necessary for green FL.

To further improve FL energy efficiency, model compression

methods such as quantization were studied in [12]–[15]. In

[12], the authors developed an over-the-air FL system that

uses one-bit gradient quantization aggregation scheme. The

authors in [13] developed an approach to minimize the training

time by optimizing transmission precision level and bandwidth

allocation. The work in [14] proposed an approach to minimize

http://arxiv.org/abs/2207.09387v3
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the energy consumption and the loss function by optimizing

model compression design for uplink transmission and device

selection strategy. In [15], the authors studied an energy min-

imization problem by controlling local iterations, bandwidth

allocation, and precision level for both local training and

transmission under full device participation scheme. However,

the works in [12]–[14] only considered the communication

efficiency while there can be a large energy consumption

in local training due to high precision level. Although the

work in [15] considered quantization for both local training

and transmission, it used full device participation scheme,

which is not practical due to stragglers, and only the energy

consumption is minimized. In our previous work [1], an

energy minimization problem was formulated to investigate

the tradeoff between energy, precision, and accuracy. However,

the same precision level was used for local training and

transmission as done in [15]. As such, the results of [1] cannot

be directly applied for more general cases such as those with

heterogeneous devices and non-i.i.d datasets. Moreover, the

number of local iterations and the number of selected devices

were not jointly optimized. To the best of our knowledge,

there are no current works that jointly consider the tradeoff

between energy efficiency, convergence rate, and accuracy

while simultaneously controlling local iterations, the number

of scheduled devices, and precision levels in local training and

transmission for green FL over wireless networks.

The main contribution of this paper is a novel green,

energy-efficient quantized FL framework that can represent

data with a finite precision level in both local training and

uplink transmission. Our contributions include:

• We propose an FL framework that takes into account

stochastic quantization in both local training and trans-

mission with different precision levels. All devices train

their quantized neural networks (QNNs), whose weights

and activations are quantized with a finite precision level,

so as to decrease energy consumption for computation

and memory access. In uplink communication, each

device performs quantization to its training result to

improve the communication efficiency.

• To quantify the energy consumption, we propose a rig-

orous energy model for the local training based on

the physical structure of a processing chip. We also

derive the energy model for the uplink transmission with

quantization. Although a low precision level can save

the energy consumption per iteration, it decreases the

convergence rate because of quantization errors. Thus,

there is a need for a new approach to analyze the

tradeoff between energy efficiency, convergence rate, and

target accuracy by optimizing the precision levels. To this

end, we formulate a novel multi-objective optimization

problem by controlling the precision levels to jointly

minimize the total energy consumption and the number of

communication rounds while ensuring convergence with

a target accuracy. We also incorporate two additional

control variables: the number of local iterations and the

number of selected devices at each communication round,

which have a significant impact on both the energy

Fig. 1: An illustration of the quantized FL model over wireless

network.

consumption and the convergence time.

• To solve this problem, we first analytically derive the

convergence rate of our FL framework with respect to

the control variables under non-iid data distribution. We

then optimize sampling probabilities for devices based

on the derived convergence rate. Subsequently, we use

the normal boundary inspection (NBI) method to obtain

the Pareto boundary of our multi-objective optimization

problem. To balance the tradeoff between the two ob-

jectives, we present and analyze two practical operating

points: the Nash bargaining solution (NBS) and the sum

minimizing solution (SUM) points.

• Based on the aforementioned operating points and the

derived convergence rate, we provide design insights into

the proposed FL framework. For instance, the total energy

consumption initially decreases as the precision levels

increase, however, after a certain threshold, a higher

precision will induce higher energy costs. Meanwhile,

the convergence rate will always improve with a higher

precision. However, this improvement becomes negligible

after a certain level. We also show that we need a higher

precision level to achieve higher target accuracy at the

expense of more energy and communication rounds. We

then provide the impacts of system parameters such as the

number of devices and model size on the performance of

the proposed FL.

Simulation results show that our FL model can reduce the

energy consumption around 70% compared to FedAvg without

damaging the convergence rate.

The rest of this paper is organized as follows. Section

II presents the system model. In Section III, we describe

the studied problem. Section IV provides simulation results.

Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL

Consider an FL system having N devices connected to a

BS as shown in Fig. 1. Each device k has its own local

dataset Dk = {xkl,ykl}, where l = 1, . . . , Dk. For example,

{xkl,ykl} can be an input-output pair for image classifi-

cation, where xkl is an input vector and ykl is the corre-
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TABLE I: List of notations.

Notation Description Notation Description
N Number of devices P tx

k
Transmission power

(xkl,ykl) Data sample h̄k Average channel gain
Dk Dataset size N0 Power spectral density of noise

w
k Model parameters EUL,k(m) Energy consumption for uplink transmission

Fk(·) Local loss function L Smoothness parameter
I Number of local iterations µ Convexity parameter
K Number of sampled devices Γ Degree of non-iidness
m Precision level for transmission G Bound of the norm of stochastic gradients
n Precision level for local training σ Bound of the variance of stochastic gradients
ǫ Target accuracy d Number of model parameters

EC,k(n) Energy consumption for one local iteration Nc Number of MAC operations
B Allocated bandwidth Os Number of neurons

sponding output. We define a loss function f(wk,xkl,ykl)
to quantify the performance of a machine learning (ML)

model with parameters wk ∈ R
d over {xkl,ykl}, where d

is the number of parameters. Since device k has Dk data

samples, its local loss function can be given by Fk(w
k) =

1
Dk

∑Dk

l=1 f(w
k,xkl,ykl). The FL process aims to find the

global parameters w that can solve the following optimization

problem:

min
w

1,...,wN
F (w)=

N∑

k=1

Dk

D
Fk(w

k)=
1

D

N∑

k=1

Dk∑

l=1

f(wk,xkl,ykl)

(1)

s.t. w1 = w2 = · · · = wN = w, (2)

where D =
∑N

k=1 Dk is the total size of the entire dataset

D = ∪N
k=1Dk. Without loss of generality, we assume datasets

across devices are non-iid.

Solving problem (2) typically requires an iterative process

between the BS and devices. However, in practical systems,

such as IoT systems, these devices are resource-constrained,

particularly when it comes to computing and energy. Hence,

we propose to manage the precision level of parameters used

in our FL algorithm to reduce the energy consumption for

computation, memory access, and transmission. As such, we

adopt a QNN architecture whose weights and activations are

quantized in fixed-point format rather than conventional 32-bit

floating-point format [16]. During the training time, a QNN

can reduce the energy consumption for MAC operation and

memory access due to quantized weights and activations.

A. Quantized Neural Networks

In our model, each device trains a QNN of identical

structure using n bits for quantization. High precision can

be achieved if we increase n at the cost of more energy

usage. We can represent any given number in a fixed-point

format such as [Ω.Φ], where Ω is the integer part and Φ is the

fractional part of the given number [17]. Here, we use one bit

to represent the integer part and (n− 1) bits for the fractional

part. Then, the smallest positive number that we can present

is κ = 2−n+1, and the possible range of numbers with n bits

will be [−1, 1− 2−n+1]. Note that a QNN restricts the value

of weights to [-1, 1]. Otherwise, weights can be very large

without meaningful impact on the performance. We consider a

stochastic quantization scheme [17] since it generally performs

better than deterministic quantization [18]. Any given number

w ∈ w can be stochastically quantized as follows:

Q(w) =

{

⌊w⌋, with probability
⌊w⌋+κ−w

κ ,

⌊w⌋+ κ, with probability
w−⌊w⌋

κ ,
(3)

where ⌊w⌋ is the largest integer multiple of κ less than or

equal to w. In the following lemma, we analyze the features

of the stochastic quantization.

Lemma 1. For the stochastic quantization Q(·), a scalar w,

and a vector w ∈ R
d, we have

E[Q(w)] = w, E[(Q(w) − w)2] ≤ 1

22n
, (4)

E[Q(w)] = w, E[||Q(w)−w||2] ≤ d

22n
. (5)

Proof. We first derive E[Q(w)] as

E[Q(w)] = ⌊w⌋⌊w⌋+κ−w

κ
+(⌊w⌋+κ)

w−⌊w⌋
κ

=w. (6)

Similarly, E[(Q(w) − w)2] can be obtained as

E[(Q(w)−w)2]= (⌊w⌋−w)2
⌊w⌋+κ−w

κ
+(⌊w⌋+κ−w)2

w−⌊w⌋
κ

= (w − ⌊w⌋)(⌊w⌋ + κ− w) ≤ κ2

4
=

1

22n
,

(7)

where (7) follows from the arithmetic mean and geometric

mean inequality. Since expectation is a linear operator, we

have E[Q(w)] = w from (6). From the definition of the square

norm, E[||Q(w)−w||2] can obtained as

E[||Q(w)−w||2] =
d∑

j=1

E[(Q(wj)− wj)
2] ≤ d

22n
. (8)

From Lemma 1, we can see that our quantization scheme is

unbiased as its expectation is zero. However, the quantization

error can still increase for a large model.

For device k, we denote the quantized weights of layer l
as w

Q,k
(l) = Q(wk

(l)), where wk
(l) is the parameters of layer l.

Then, the output of layer l will be: o(l) = g(l)(w
Q,k
(l) , o(l−1)),

where o(l−1) is the output from the previous layer l − 1, and

g(·) is the operation of layer l on the input, including the linear

sum of w
Q,k
(l) and o(l−1), batch normalization, and activation.
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Note that our activation includes the stochastic quantization

after a normal activation function such as ReLU. Then, the

output of layer l, i.e., o(l), is fed into the next layer as an input.

For training, we use the stochastic gradient descent (SGD)

algorithm as follows

wk
τ+1 ← wk

τ − η∇Fk(w
Q,k
τ , ξkτ ), (9)

where τ = 1 . . . I is training iteration, η is the learning rate,

and ξ is a sample from Dk for the current update. The update

of weights is done in full precision so that stochastic gradient

(SG) noise can be averaged out properly [16]. Then, we restrict

the values of wk
τ+1 to [−1, 1] as wk

τ+1 ← clip(wk
τ+1,−1, 1)

where clip(·,−1, 1) projects an input to 1 if it is larger than 1,

and projects an input to -1 if it is smaller than -1. Otherwise,

it returns the same value as the input. Otherwise, wk
τ+1 can

become significantly large without a meaningful impact on

quantization [16]. After each training, wk
τ+1 will be quantized

as w
Q,k
τ+1 for the forward propagation.

B. FL model

For learning, without loss of generality, we adopt FedAvg

[4] to solve problem (2). At each communication round t, the

BS selects K devices according to probability pk for device k
such that

∑N
k=1 pk = 1, and we denote the sampled set as Nt.

The BS transmits the current global model wt to the scheduled

devices. Each device in Nt trains its local model based on the

received global model by running I steps of SGD as below

wk
t,τ =wk

t,τ−1−ηt∇Fk(w
Q,k
t,τ−1, ξ

k
τ ), ∀τ =1, . . . , I, (10)

where ηt is the learning rate at communication round t. Note

that unscheduled devices do not perform local training. Then,

each device in Nt calculates the model update d
k
t+1 = wk

t+1−
wk

t , where wk
t+1 = wk

t,I−1 and wk
t = wk

t,0 [19]. Typically,

dk
t+1 has millions of elements for DNN. It is not practical to

send dk
t+1 with full precision for energy-constrained devices.

Hence, we apply the same quantization scheme used in QNNs

to dk
t+1 by denoting its quantized equivalent as d

Q,k
t+1 with

precision level m. Thus, each device in Nt clips its model

update dk
t+1 using clip(·) to match the quantization range and

transmits its quantized version to the BS. The received model

updates are averaged by the BS, and the next global model

wt+1 will be generated as below

wt+1 = wt +
1

K

∑

k∈Nt+1

d
Q,k
t+1. (11)

The FL system repeats this process until the global loss

function converges to a target accuracy constraint ǫ. We

summarize this algorithm in Algorithm 1. Next, we propose

the energy model for the computation and the transmission of

our FL system.

C. Computing and Transmission model

1) Computing model: We consider a typical two-

dimensional processing chip for convolutional neural networks

(CNNs) as shown in Fig. 2 [5]. This chip has a DRAM, a

parallel neuron array with p MAC units, and two memory

Algorithm 1: Quantized FL Algorithm

Input: K , I , initial model w0, t = 0, target accuracy ǫ
1 repeat

2 The BS randomly selects a subset of devices Nt

and transmits wt to the selected devices;

3 Each device k ∈ Nt trains its QNN by running I
steps of SGD as (9);

4 Each device k ∈ Nt transmits d
Q,k
t+1 to the BS;

5 The BS generates a new global model

wt+1 = wt +
1
K

∑

k∈Nt
d
Q,k
t+1;

6 t ← t+ 1;

7 until target accuracy ǫ is satisfied;

Fig. 2: An illustration of the two-dimensional processing chip.

levels: a main SRAM buffer that stores the weights and acti-

vations and a local buffer that caches currently used weights

and activations. Since the main SRAM buffer has a limited

size, the input dataset is stored in the DRAM. Some weights

can also be stored in the DRAM, if the whole weights cannot

be fit in the main SRAM buffer. We use the MAC operation

energy model of [20] whereby EMAC(n) = A (n/nmax)
α

for

precision level n, where A > 0, 1 < α < 2, and nmax is

the maximum precision level. Here, a MAC operation includes

neuron output calculation, batch normalization, activation, and

back-propagation. From [20], the energy consumption for

accessing a local buffer can be modeled as EMAC(n), and

the energy for accessing a main buffer can be given by

Em(n) = 2EMAC(n). The energy consumption to access a

DRAM can be modeled as ED(n) = AdEMAC(n), where

Ad >> 1. [5].

The energy consumption of device k for doing inference

(i.e., forward propagation) is Ek
inf(n) when n bits are used for

the quantization. Then, Ek
inf(n) is the sum of the computing

energy EC(n), the access energy for fetching weights from

the buffers EW(n), the access energy for fetching activations

from the buffers EA(n) and the access energy for fetching

input features and weights from the DRAM EDRAM(n), as

follows [20]:

Ek
inf(n) = EC(n) + EW(n) + EA(n) + EDRAM(n),

EC(n) = EMAC(n)Nc + 2Oc EMAC(nmax),

EW(n) = Em(n)d + EMAC(n)Nc

√

n/pnmax,

EA(n) = 2Em(n)Oc + EMAC(n)Nc

√

n/pnmax,

EDRAM(n) = ED(nmax)xin + 2ED(n)max(dn+Ocn− S, 0),
(12)

where Nc is the number of MAC operations, d is the number

of weights, Oc is the number of intermediate outputs in the
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network, xin is the input dimension, and S is the size of the

main SRAM buffer. For EC(n), in a QNN, batch normalization

and activation are done in full-precision nmax to each output

[16]. We store quantized weights and activations in the SRAM

main buffer. Once we fetch weights from a main to a local

buffer, they can be reused in the local buffer afterward as

shown in EW(n). In Fig. 2, a MAC unit fetches weights

from a local buffer to do computation. Since we are using a

two-dimensional MAC array of p MAC units, they can share

fetched weights with the same row and column, which has√
p MAC units respectively. In addition, a MAC unit can

fetch more weights due to the n bits quantization compared

with when weights are represented in nmax bits. Thus, we can

reduce the energy consumption to access a local buffer by

the amount of
√

n/pnmax. A similar process applies to EA(n)
since activations are fetched from the main buffer and should

be saved back to it for the calculation in the next layer. For

EDRAM(n), input features are processed in full-precision, and

weights that cannot be stored in the SRAM will be fetched

and stored to the DRAM.

As introduced in Section II-A, we calculate gradients in

full-precision to average out the noise from SGD. In back-

propagation, each layer calculates the gradients of its weights

and the gradients of the activations of the previous layer.

Hence, we can approximate the number of MAC operations

as 2Nc as done in [21]. Then, the energy consumption for

back-propagation is

Eback = 2NcEMAC(nmax) + 2Em(nmax)Oc + Em(nmax)d

+ 2EMAC(nmax)Nc

√
1

p

+ 2ED(nmax)max(dnmax +Ocnmax − sm, 0). (13)

Since back-propagation is done in full-precision, weights must

first be fetched from the DRAM. Then, we fetch weights from

the main buffer to the local buffer. The neuron MAC array

proceeds with the calculation by fetching the cached weights

and activations from the local buffer. Therefore, the energy

consumption for one iteration of device k is given by

EC,k(n) = Ek
inf(n) + Eback, k ∈ {1, . . . , N}. (14)

2) Transmission Model: We use the orthogonal frequency

domain multiple access (OFDMA) to transmit model updates

to the BS. Each device occupies one resource block. The

achievable rate of device k will be:

rk = B log2

(

1 +
P tx
k h̄k

N0B

)

, (15)

where B is the allocated bandwidth, h̄k is the average channel

gain between device k and the BS during training12, P tx
k is the

transmit power of device k, and N0 is the power spectral den-

sity of white noise. After local training, device k normalizes

the model update as d
k
t /||dk

t || to match the predetermined

1For future work, our approach can be extended to the case with in-
stantaneous time-varying channels by considering a stochastic optimization
formulation.

2An important subject of future work here can be the integration of more
advanced MIMO-based communication channels.

quantization range [−1, 1]. Then, it transmits d
Q,k
t to the BS

at given communication round t. The transmission time Tk for

uploading d
Q,k
t is given by

Tk(m) =
dm

rk
. (16)

Then, the energy consumption for the uplink transmission is

given by

EUL,k(m) = Tk(m)× P tx
k =

P tx
k dm

B log2

(

1 +
P tx

k
h̄k

N0B

) . (17)

III. TIME AND ENERGY EFFICIENT FEDERATED QNN

Given our model, we now formulate a multi-objective

optimization problem to minimize the energy consumption

and the number of communication rounds while ensuring

convergence under a target accuracy. We show that a tradeoff

exists between the energy consumption and the number of

communication rounds as a function of I , K , m, and n.

For instance, we can reduce the amount of energy spent

per iteration by using low precision and sampling a small

number of devices. However, this slows the convergence rate

because of quantization errors. Meanwhile, the system can

allocate more bits and sample more devices to converge faster,

i.e, to reduce the number of communication rounds, at the

expense of spending more energy. However, this improvement

becomes negligible after a certain threshold as shown later in

the convergence analysis and simulations (see Theorem 1 and

Section IV. Hence, finding the optimal solutions is important

to balance this tradeoff and to achieve the target accuracy.

We aim to minimize both the expected total energy con-

sumption and the number of communication rounds3 until

convergence under a target accuracy ǫ as follows:

min
I,K,m,n

[

E

[
T∑

t=1

∑

k∈Nt

EUL,k(m) + IEC,k(n)

]

, T

]

(18a)

s.t. I ∈ [Imin, . . . , Imax],K ∈ [Kmin, . . . , N ] (18b)

m ∈ [1, . . . ,mmax], n ∈ [1, . . . , nmax] (18c)

E[F (wT )]− F (w∗) ≤ ǫ, (18d)

where I is the number of local iterations, Imin and Imax denote

the minimum and maximum of I , respectively, E[F (wT )] is

the expectation of global loss function after T communication

rounds, F (w∗) is the minimum value of F , and ǫ is the target

accuracy. The possible values of I and K are given by (18b).

Constraint (18c) represents the maximum precision levels in

the transmission and the computation, respectively. Constraints

(18d) captures the required number of communication rounds

to achieve ǫ.
This problem is challenging since the analytical expression

of (18d) with respect to the control variables is unknown.

Hence, it is not trivial to derive the exact number of T
to satisfy (18d). Quantization errors from local training and

transmission will slow the convergence rate, thereby making

achieving the target accuracy challenging. The convergence

3Minimizing the total training time by considering the impact of quantiza-
tion on the computation time can be an important subject of future research.
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is also not always guaranteed under non-iid data distribu-

tion. Lastly, a global optimal solution, which minimizes each

objective function simultaneously, is generally infeasible for

a multi-objective optimization problem [22]. Therefore, a

closed-form solution may not exist due to the tradeoff between

two objectives.

To solve this problem, we first obtain the analytical rela-

tionship between (18d) and I,K,m, and n to derive T with

respect to ǫ. As done in [10], [19], [23], we make the following

assumptions on the loss function as follows

Assumption 1. The loss function has the following properties

• Fk(w) is L-smooth: ∀ v and w Fk(v) ≤ Fk(w) + (v−
w)T∇Fk(w) + L

2 ||v −w||2
• Fk(w) is µ-strongly convex: ∀ v and w Fk(v) ≥

Fk(w) + (v −w)T∇Fk(w) + µ
2 ||v −w||2

• The variance of SG is bounded: E[||∇Fk(w
k
t , ξ

k
t ) −

∇Fk(w
k
t )||2] ≤ σ2

k, ∀k = 1, . . . , N.
• The squared norm of SG is bounded:

E[||∇Fk(w
k
t , ξ

k
t )||2] ≤ G2, ∀k = 1, . . . , N .

These assumptions hold for some practical loss functions.

Such examples include logistic regression, l2 norm regularized

linear regression, and softmax classifier [24]. Since we use

the quantization in both local training and transmission, the

quantization error negatively affects the accuracy and the

convergence of our FL system. We next leverage the results of

Lemma 1 so as to derive T with respect to ǫ in the following

theorem.

Theorem 1. For learning rate ηt = min( β
t+γ ,

1
ρ ), β > 1

µ , ρ ≫
1, γ ≥ 0 and, the degree of non-iid Γ =

∑N
k=1 pk(Fk(w

∗) −
F ∗
k )), we have

E[F (wT )− F (w∗)] ≤ Lβ

2(βµ− 1)

[
βψ2

TI + γ
+ ψ1

]

, (19)

where ψ1 and ψ2 are

ψ1 =
d(ρ− µ)

22n
,

ψ2 =

N∑

k=1

p2kσ
2
k + 4(I − 1)2G2 +

4dIG2

K22m
+

4I2G2

K
+ 4LΓ.

(20)

Proof. See Appendix C.

We can see that ψ1 is unavoidable because of the quantiza-

tion in local training. We also observe that high precision levels

for n and m can improve the convergence rate. In particular,

we can decrease the quantization error related terms in ψ1

and ψ2 by increasing n and m. However, this improvement

becomes negligible after a certain level since those terms

decrease exponentially with respect to precision levels. For

Γ, it quantifies the difference between the loss function at the

global optimum Fk(w
∗) and the one at the local optimum F ∗

k .

Hence, we can see that the degree of non-iid Γ degrades the

convergence rate. If we set n = nmax and m = mmax, we can

approximately recover the result of [23] since the quantization

error decays exponentially with respect to n and m. The

convergence rate also increases with K . However, all these

improvements come at the cost of consuming more energy. We

can also see that (19) has the sampling probabilities related

term
∑N

k=1 p
2
kσ

2
k in its numerator. Therefore, we can further

improve the convergence rate by optimizing pk as follows

min
p1,...,pN

N∑

k=1

p2kσ
2
k, s.t.

N∑

k=1

pk = 1, pk ≥ 0, ∀k. (21)

Since the above problem is convex, we can use KKT condition

to solve the problem. Then, the optimal sampling probabilities

can be given by pk =
1/σ2

k∑
N
k=1

1/σ2
k

.

From Theorem 1, we can bound (19) using ǫ in (18d) as

follows

E[F (wT )− F (w∗)] ≤ Lβ

2(βµ− 1)

[
βψ2

TI + γ
+ ψ1

]

≤ ǫ.

(22)

Since ψ1 term is not decreasing with T , there exists the

minimum value of precision level nmin to achieve ǫ as follows

nmin =

⌈
1

2
log2

(

Lβ
d(ρ− µ)

2ǫ

)⌉

, (23)

where ⌈·⌉ is the smallest integer larger than or equal to the

input. To guarantee the convergence, we change the constraint

of n in (18c) as n ∈ [nmin, . . . , nmax]. Now, we express each

objective function as function of the control variables using

Theorem 1. For notational simplicity, we use g1(I,K,m, n)
for the expected total energy consumption and g2(I,K,m, n)
for the number of communication rounds T . Since each device

k is selected with probability pk, ∀k, we can derive the

expectation of the energy consumption in (18a) as follows

g1(I,K,m, n)=E

[
T∑

t=1

∑

k∈Nt

EUL,k(m)+IEC,k(n)

]

=KT

N∑

k=1

pk
{
EUL,k(m)+IEC,k(n)

}
. (24)

Next, we derive g2(I,K,m, n) in a closed-form to fully

express the objective functions and to remove the accuracy

constraint (18d). For any feasible solution that satisfies (18d)

with equality, we can always choose T0 > T such that T0 still

satisfies (18d). Since such T0 will increase the value of the

objectives, the accuracy constraint (18d) should be satisfied

with equality [10]. Hence, we take equality in (22) to obtain:

g2(I,K,m, n)=
β2ψ2

I(βµ− 1)(2ǫL − βψ1

βµ−1 )
− γ

I
. (25)

Then, we can change the original problem as below

min
I,K,m,n

[g1(I,K,m, n), g2(I,K,m, n)] s.t. (18b), (18c).

(26a)

Since we have two conflicting objective functions, it is

infeasible to find a global optimal solution to minimize each

objective function simultaneously. Although introducing a

weighted sum of the objective functions might provide a

unique solution, its optimality is not always guaranteed. We
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also need to solve the problem again if those weights change.

Hence, we instead consider the set of Pareto optimal points

to obtain an efficient collection of solutions to minimize each

objective function and capture the tradeoff. It is known that

the set of all Pareto optimal points forms a Pareto boundary in

two-dimensional space. Therefore, we use the so-called normal

boundary inspection (NBI) method since it provides evenly

distributed Pareto optimal points [25].

We first introduce some terminologies to facilitate

the analysis. For a multi-objective function g(x) =
[g1(x), g2(x), . . . gM (x)]T and a feasible set C, we define x∗

i

as a global solution to minimize gi(x), i = 1 . . .M , over

x ∈ C. Let g∗
i = g(x∗

i ) for i = 1 . . .M , and we define

the utopia point g∗, which is composed of individual global

minima g∗
i . We define the M×M matrix Φ, whose ith column

is g∗
i −g∗. The set of the convex combinations of g∗

i −g∗ such

that {Φζ | ζi ≥ 0 and
∑M

i=1 ζi = 1} is defined as convex hull

of individual minima (CHIM) [25]. For simplicity, we now

use C to represent all feasible constraint sets (18b) - (18c).

We also define x∗
i as (I,K,m, n) such that gi(I,K,m, n)

can be minimized over C for i = 1 and 2.

The basic premise of NBI is that any intersection points

between the boundary of {g(I,K,m, n) | (I,K,m, n) ∈ C}
and a vector pointing toward the utopia point emanating from

the CHIM are Pareto optimal. We can imagine that the set of

Pareto optimal points will form a curve connecting g(x∗
1) =

[g1(x
∗
1), g2(x

∗
1)] and g(x∗

2) = [g1(x
∗
2), g2(x

∗
2)]. Hence, we

first need to obtain x∗
1 and x∗

2. In the next two subsections, we

will minimize g1(I,K,m, n) and g2(I,K,m, n) separately.

A. Minimizing g1(I,K,m, n)

Since x∗
1 is a global solution to minimize g1(I,K,m, n),

we can find it solving:

min
I,K,m,n

g1(I,K,m, n), s.t. (I,K,m, n) ∈ C. (27a)

This problem is non-convex because the control variables

are an integer and the constraints are not a convex set.

For tractability, we relax the control variables as continu-

ous variables. The relaxed variables will be rounded back

to integers for feasibility. From (24) and (25), we can see

that g1(I,K,m, n) is a linear function with respect to K .

Therefore, Kmin always minimizes g1(I,K,m, n). Moreover,

the relaxed problem is convex with respect to I since
∂2g1(I,K,m,n)

∂I2 > 0. Hence, we can obtain the optimal I to

minimize g1(I,K,m, n) from the first derivative test as

∂g1(I,K,m, n)

∂I
= H1I

3 +H2I
2 +H3 = 0, (28)

where

H1 = (8KG2 + 8G2)

N∑

k=1

pkE
C,k(n), (29)

H2= (4KG2 + 4G2)
N∑

k=1

pkE
UL,k(m)

+ (−8KG2 +
4dG2

22m
)

N∑

k=1

pkE
C,k(n), (30)

H3 = −K

(
N∑

k=1

p2kσ
2
k + 4G2 + 4LΓ

−γ(βµ− 1)

(
2ǫ

L
− βψ1

βµ− 1

)
1

β2

) N∑

k=1

pkE
UL,k(m)

(31)

Here, H1 and H3 express the cost of local training and the

cost of transmission, respectively, while H2 depends on both

of them. We next present a closed-form solution of the above

equation from Cardano’s formula [26].

Lemma 2. For given m and n, the optimal I ′ to minimize

g1(I,K,m, n) is given by

I ′=
3

√
√
√
√− H3

2

27H3
1

− H3

2H1
+

√

1

4

(
2H3

2

27H3
1

+
H3

H1

)2

+
1

27

(
H2

2

3H2
1

)3

+
3

√
√
√
√− H3

2

27H3
1

− H3

2H1
−
√

1

4

(
2H3

2

27H3
1

+
H3

H1

)2

+
1

27

(
H2

2

3H2
1

)3

− H2

3H1
(32)

From Lemma 2, we can see that the value of I ′ decreases

due to the increased cost of local training H1 as we allo-

cate a larger n. Since the quantization error decreases as n
increases, a large I ′ is not required. Hence, an FL system

can decrease the value of I ′ to reduce the increased local

computation energy. We can also see that I ′ increases as the

cost of transmission H3 increases. Then, for convergence, the

FL algorithm can perform more local iterations instead of

frequently exchanging model parameters due to the increased

communication overhead.

Although g1(I,K,m, n) is non-convex with respect to m,

there exists m′ ∈ C such that for m ≤ m′, g1(I,K,m, n)
is non-increasing, and for m ≥ m′, g1(I,K,m, n) is non-

decreasing. This is because g1(I,K,m, n) decreases as the

convergence rate becomes faster for increasing m. Then,

g1(I,K,m, n) increases after m′ due to unnecessarily allo-

cated bits. Since g1(I,K,m, n) is differentiable at m, we can

find such local optimal m′ from ∂g1(I,K,m, n)/∂m = 0
using Fermat’s Theorem [4]. To obtain m′, we formulate the

transcendental equation as below

∂g1(I,K,m, n)

∂m
= 0 ↔ m = MA2

2m +MB, (33)

where

MA =
K(

∑N
k=1 p

2
kσ

2
k + 4(I − 1)2G2 + 4I2G2/K + 4LΓ

4dIG2 log 4

−
γ I(βµ−1)(2ǫ/L−βd(ρ−µ))/(22n(βµ−1))))

β2I

4dIG2 log 4
,

MB =
4dIG2MC

K − 4I2G2 log 4
∑N

k=1 pkE
C,k(n)

4dIG2 log 4MC

MC =
N∑

k=1

pk
P tx
k

B log2

(

1 +
P tx

k
h̄k

N0B

) . (34)
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We present a closed-form solution of the above equation in

the following Lemma.

Lemma 3. For given I and n, the local optimal m′ to

minimize g1(I,K,m, n) will be:

m′ = MB − 1

log 4
W (−MA log 4 exp(MB log 4)) , (35)

where W (·) is the Lambert W function.

Following the same logic of obtaining m′, we can find a lo-

cal optimal solution n′ from the first derivative test. Although

there is no analytical solution for n′, we can still obtain it

numerically using a line search method. Then, problem (27a)

can be optimized iteratively. We first obtain two analytical

solutions for I and m. From these solutions, we numerically

find a local optimal n′. Since g1(I,K,m, n) has a unique

solution to each variable, it converges to a stationary point

[27]. Although these points cannot guarantee to obtain globally

Pareto optimal, using the NBI method, we are still guaranteed

to reach locally Pareto optimal points [25]. In Section IV,

we will also numerically show that the obtained points can

still cover most of the practical portion of a global Pareto

boundary. For ease of exposition, hereinafter, we refer to these

local Pareto optimal points as “Pareto optimal”.

B. Minimizing g2(I,K,m, n)

Now, we obtain x∗
2 from the following problem to complete

finding the utopia point.

min
I,K,m,n

g2(I,K,m, n), s.t. (I,K,m, n) ∈ C. (36a)

From (25), the objective function is a decreasing function with

respect to K,m, and n. Hence, N,mmax, and nmax are always

the optimal solutions to the above problem. Then, the problem

can be reduced to a single variable optimization problem with

respect to I . We check the convexity of the reduced problem

as follows:

∂2g2(I,K,m, n)

∂I2
=

β2

(βµ− 1)(2ǫL − βψ1

βµ−1 )

×
{

N∑

k=1

2p2kσ
2
k

I3
+

8G2

I3
+

8LΓ

I3

}

− 2γ

I3
.

(37)

Hence, it is a convex problem for γ <
β2

(βµ−1)( 2ǫ
L
−

βψ1
βµ−1

)

{
∑N

k=1 p
2
kσ

2
k + 4G2 + 4LΓ

}

. Since γ

is an arbitrary constant such that γ ≥ 0, we can always find

γ that satisfies the above condition. We present a closed-form

solution of I from the first derivative test in the following

lemma.

Lemma 4. For γ <
β2{∑N

k=1
p2
kσ

2
k+4G2+4LΓ}

(βµ−1)( 2ǫ
L
−

βψ1
βµ−1

)
, the optimal

value of I ′′ to minimize g2(I,K,m, n) is given by

I ′′=

√
√
√
√

∑N
k=1p

2
kσ

2
k+4G2+4LΓ−γ(βµ− 1)(2ǫL − βψ1

βµ−1 )/β
2

4G2 + 4G2

K .

(38)

From Lemma 4, we can see that the optimal value of I ′′

increases as n decreases. This is because the system has to

reduce quantization error by training more number of times.

C. Normal Boundary Inspection

We now obtain the Pareto boundary using NBI. We redefine

g(I,K,m, n) := g(I,K,m, n)− g∗ so that the utopia point

can be located at the origin. The NBI method aims to find

intersection points between the boundary of g(I,K,m, n) and

a normal vector n̂ = −Φ1, where 1 denotes the column vector

consisting of only ones which are pointing toward the origin.

Then, the set of points on such a normal vector will be: Φζ+
sn̂, where s ∈ R. The intersection points can be obtained from

the following subproblem:

max
I,K,m,n,s

s (39a)

s.t. (I,K,m, n) ∈ C (39b)

Φζ + sn̂ = g(I,K,m, n), (39c)

where (39c) makes the set of points on Φζ + sn̂ be in the

feasible area. From the definitions of Φ and n̂, constraint (39c)

can be given as

Φζ + sn̂ =

[
g1(x

∗
2)(ζ2 − s)

g2(x
∗
1)(ζ1 − s)

]

=

[
g1(I,K,m, n)
g2(I,K,m, n)

]

. (40)

From (40), we obtain the expression of s as below

s = ζ1 −
g2(I,K,m, n)

g2(x∗
1)

= ζ2 −
g1(I,K,m, n)

g1(x∗
2)

. (41)

Hence, we can change problem (39a) as follows

min
I,K,m,n

g2(I,K,m, n)

g2(x∗
1)

− ζ1 (42a)

s.t. (I,K,m, n) ∈ C (42b)

1− 2ζ1 +
g2(I,K,m, n)

g2(x∗
1)

− g1(I,K,m, n)

g1(x∗
2)

= 0,

(42c)

where we substituted s with (41) for the objective function,

constraint (42c) is from (41), and ζ1 + ζ2 = 1. To remove

the equality constraint (42c), we approximate the problem by

introducing a quadratic penalty term λ as below

min
I,K,m,n

g2(I,K,m, n)

g2(x∗
1)

− ζ1 + λ

(

1− 2ζ1 +
g2(I,K,m, n)

g2(x∗
1)

−g1(I,K,m, n)

g1(x∗
2)

)2

(43a)

s.t. (I,K,m, n) ∈ C. (43b)

For λ, we consider an increasing sequence {λi} with λi →
∞ as i → ∞ to penalize the constraint violation more

strongly. We then obtain the corresponding solution xi, which

is (I,K,m, n) for minimizing problem (43a) with penalty

parameter λi.

Theorem 2. For λi → ∞ as i → ∞, solution xi approaches

the global optimal solution of problem (43a), and it also

becomes Pareto optimal.



9

Proof. For notational simplicity, we use x to denote

(I,K,m, n) ∈ C. Let qp(x) denote the quadratic penalty term

in problem (43a). We also define a global optimal solution to

the problem (42a) as x̄. Since xi minimizes the above problem

with penalty parameter λi, we have

g2(x
i)

g2(x∗
1)

− ζ1 + λiq
p(xi) ≤ g2(x̄)

g2(x∗
1)

− ζ1 + λiq
p(x̄)

≤ g2(x̄)

g2(x∗
1)

− ζ1, (44)

where the last inequality is from the fact that x̄ minimizes

problem (42a) with the equality constraint of qp(x̄) being zero.

Then, we obtain the inequality of qp(xi) as follows

qp(xi) ≤ 1

λi

(
g2(x̄)

g2(x∗
1)

− g2(x
i)

g2(x∗
1)

)

. (45)

By taking the limit as i → ∞, we have

lim
i→∞

qp(xi) ≤ lim
i→∞

1

λi

(
g2(x̄)

g2(x∗
1)

− g2(x
i)

g2(x∗
1)

)

= 0. (46)

Hence, as λi → ∞, we can see that xi approaches the global

optimal solution of (42a), which aims to find a Pareto optimal

point.

From Theorem 2, we can obtain a global optimal solution

of (42a), and this correspond to a Pareto optimal point for

specific values of ζ1 and ζ2. Note that problem (43a) can be

solved using a software solver. To fully visualize the boundary,

we iterate problem (39a) for various combinations of ζ1 and

ζ2. The overall algorithm is given in Algorithm 2.

The main complexity of Algorithm 2 at each iteration is to

solve problem (42a), which corresponds to line 9 − 13. We

approximated problem (42a) to problem (43a), which can be

solved by a software solver. If we use the interior point method

with a desired accuracy ǫin, then the complexity can given by

O(log( 1
ǫin
)) [28]. Since we solve (43a) by increasing λi at

iteration i, the complexity of this outer loop can be given

by O(log( 1
ǫout

)) with a desired accuracy ǫout. Therefore, the

complexity of Algorithm 2 is O(log( 1
ǫout

) log( 1
ǫin
)).

D. Nash Bargaining Solution

Since the solutions from (18a) are Pareto optimal, there is

always an issue of choosing the best point. This is because

any improvement on one objective function leads to the

degradation of another. We can tackle this problem considering

a bargaining process [29] between two players: one tries to

minimize the energy consumption and another aims to reduce

the number of communication rounds. Since the parameters of

FL, i.e., (I,K,m, n), are shared, the players should reach a

certain agreement over the parameters. It is known that NBS

can be a unique solution to this bargaining process. The NBS

was chosen here because it satisfies several fairness axioms

[29], and thus, it has been used as a fair solution to resource

management problems [30], [31]. We can obtain the NBS from

the following problem [29]:

max
g1(x),g2(x)

(g1(D)− g1(x))(g2(D)− g2(x))

s.t. (g1(x), g2(x)) ∈ gach, (47a)

Algorithm 2: NBI approach to obtain Pareto boundary

Input: N,B, P tx, Imin,Kmin,mmax, nmax, β, γ,G, σ, µ, L,A, α,

accuracy constraint ǫ, loss function Fk(·),
stopping criterion ǫuto and ǫout, and a structure

of QNN

1 To find g∗
1, initialize (I,K,m, n) and set K = N

2 while
√

(I − I ′)2 + (m−m′)2 + (n− n′)2 > ǫuto do

3 Update (I,m, n) as (I ′,m′, n′)
4 Obtain I’ from (32)

5 Obtain m′ for fixed I ′ from (35)

6 Obtain n′ for fixed I ′ and m′ using a line search

7 To find g∗
2, calculate I ′′ from Lemma 4 and set

(K,m, n) = (N,mmax, nmax)
8 while ζ1 ≤ 1 do

9 Initialize x, which denotes a vector (I,K,m, n)
repeat

10 Update x as x′

11 Obtain x′ from problem (43a)

12 Increase λ

13 until
√

||x− x′||2 ≤ ǫout;

14 Round (I,K,m, n) and increase ζ1

where gach = ∪
x∈C

(g1(x), g2(x)) is the achievable set of

(g1(x), g2(x)), gach represents the convex hull of gach, and

D is the outcome when the players fail to cooperate. Since

the NBS always lies on the Pareto boundary, we perform

the bargaining process on the obtained boundary from Al-

gorithm 2. Then, we can find the NBS graphically by find-

ing a tangential point where the boundary and a parabola

(g1(D)−g1(x))(g2(D)−g2(x) = ∆ intersects with constant

∆.

IV. SIMULATION RESULTS AND ANALYSIS

For our simulations, unless stated otherwise, we uniformly

deploy N = 50 devices over a square area of size 500 m

× 500 m serviced by one BS at the center, and we assume

a Rayleigh fading channel with a path loss exponent of 4.

We assume that the FL algorithm is used for a classification

task with MNIST dataset. We distribute the training dataset

over devices in a non-iid fashion by allocating labels from a

Dirichlet distribution with parameter 0.1. A softmax classifier

is used to measure our FL performance. We also use P tx
k = 100

mW, B = 10 MHz, N0 = −173 dBm, S = 2 MB, xin = 786,

mmax = 32 bits, nmax = 32 bits, Imin = 1, Imax = 30,

Kmin = 1, ǫ = 0.1, ρ = 100, and γ = 1, ∀k = 1, . . . , N .

For L, we used the reported value L = 0.097 with the same

dataset and the loss function [32]. However, estimating µ is

more challenging than the estimation of L. Since the value of

µ is widely assumed to be a small value between [0.001, 1]
[33] [34], we used µ = 0.05 as done in [34] with the same

dataset. We assume that each device trains a QNN structure

with five convolutional layers and three fully-connected layers.

Specifically, the convolutional layers consist of 128 kernels

of size 3 × 3, two of 64 kernels of size 3×3, and two of

32 kernels of size 3x3. The first layer is followed by 3x3
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Fig. 3: Pareto Boundary from Algorithm 2 and feasible area

from exhaustive search

pooling and the second and the fifth layer are followed by

3x3 max pooling with a stride of two. Then, we have one

dense layer of 2000 neurons, one fully-connected layer of

100 neurons, and the output layer. In this setting, we have

Nc = 0.0405 × 109, d = 0.41 × 106, and Os = 4990.
To estimate G and σk, we measure every device’s average

maximum norm of stochastic gradients Gk for the initial 20

local iterations and set G = maxk Gk, ∀k = {1, . . . , N}.
We used the same gradients information to estimate σk while

measuring Gk. Since the norm of the stochastic gradient gen-

erally decreases with training epochs, we use the initial values

of Gk to estimate G as in [35]. Similarly, since loss functions

are in general decreasing with training epoch, we can bound

Γ as Γ =
∑N

k=1 pk(Fk(w
∗) − F ∗

k ) ≤ ∑N
k=1 pkFk(w

∗) ≤
∑N

k=1 pkFk(w
′), where w′ can be a global model in early

stage. From the above setting, we estimated G = 0.25. We

then used the global model, which was used to measure G, to

estimate Γ = 0.6. For the computing model, we use a 28 nm

technology processing chip and set A = 3.7 pJ, Ad = 150, and

α = 1.25 as done in [20]. For the disagreement point D, we

use (Imax, 1, 1, nmin) as this setting is neither biased towards

minimizing the energy consumption nor towards the number

of communication rounds. We assume that each device has the

same architecture of the processing chip. All statistical results

are averaged over a number of independent runs.

Figure 3 shows the Pareto boundary from Algorithm 2

as well as the feasible area obtained from the exhaustive

search for N = 50. We can see that our boundary and the

actual Pareto boundary match well. Although we cannot find

the global Pareto optimal points due to the non-convexity of

problem (27a), it is clear that our analysis can still cover most

of the important points that can effectively show the tradeoff

in the feasible region.

Figure 4 and Table IIa show the Pareto boundaries obtained

from the Algorithm 2 and the solutions of four possible

operating points, respectively, for varying N . Each solution

represents (I,K,m, n), where I is the number of local it-

N = 10 N = 50 N = 200
NBS (2, 2, 12, 19) (1, 5, 12, 19) (1, 23, 12, 19)
SUM (3, 3, 12, 20) (1, 7, 12, 20) (1, 35.12.19)
Emin (1, 1, 10, 15) (1, 1, 11, 15) (1, 1, 12, 15)
Tmin (3, 10, 32, 32) (1, 50, 32, 32) (1, 200, 32, 32)

(a) Solutions for varying N

CNN1 CNN2 CNN3
NBS (1, 3, 11, 19) (1, 5, 12, 19) (1, 8, 14, 20)
SUM (1, 4, 11, 20) (1, 7, 12, 20) (1, 2, 14, 20)
Emin (1, 1, 10, 15) (1, 1, 11, 15) (1, 1, 14, 16)
Tmin (2, 50, 32, 32) (1, 50, 32, 32) (1, 50, 32, 32)

(b) Solutions for varying model size

TABLE II: Solutions of NBS, SUM, Emin, and Tmin for varying

N and the model size.

erations, K is the number of sampled devices, m is the

precision level for transmission, and n is the precision level

for local training. SUM represents the point that minimizes

the sum of the two objectives. We can obtain the SUM by

finding a tangential point between the Pareto boundary and

the line g1(I,K,m, n) + g2(I,K,m, n) = ∆ with ∆ ∈ R

using a bisection algorithm. Emin and Tmin are the solutions

that separately optimize g1(I,K,m, n) and g2(I,K,m, n),
respectively. From Fig. 4, we can see that the energy consump-

tion increases while the number of communication rounds

decreases to achieve the target accuracy for increasing N . The

FL system can choose more devices at each communication

round as N increases. Hence, the impact of SG variance

decreases as shown in Theorem 1. Since involving more

devices in the averaging process implies an increase in the

size of the batch, the convergence rate increases by using more

energy [36].

From Table IIa and Fig. 4, we can see that NBS points are

more biased toward reducing the energy consumption while

the SUM points focus on minimizing communication rounds.

We can also see that, as N becomes larger, the optimal I
decreases while K increases. This is because I is a decreasing

function with respect to G as shown in Lemmas 2 and 4.

Hence, the FL system decreases I to avoid model discrepancy

over devices since the estimated value of G becomes larger for

increasing N . However, a small I will slow down the process

to reach optimal weights in the local training. To mitigate

this, the FL system then increases K so that it can obtain

more information in the averaging process by selecting more

devices.

Figure 5 and Table IIb present the Pareto boundaries from

the Algorithm 2 and the corresponding solutions when in-

creasing the size of the neural networks. We keep the same

structure of our default CNN, but we now increase the number

of neurons in the convolutional and fully-connected layers.

For each CNN model, the number of parameters will be

0.27 × 106, 0.41 × 106, and 1.61 × 106, respectively. Fig.

5 and Table IIb show that the energy consumption and the

number of communication rounds until convergence increase

with the model size. For CNN3, the energy cost increased

significantly since its large model size cannot be fit into the

SRAM even after quantization. From Table IIb, we can see that

the FL system requires higher precision levels for larger neural
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Fig. 4: Pareto boundaries, NBS, and SUM points for varying the number of devices N .
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Fig. 5: Pareto boundaries, NBS, and SUM points for varying the model size.

networks. This is because the quantization error increases

for larger neural networks, as per Lemma 1. Hence, the FL

system allocates more bits for both the computation and the

transmission so as to mitigate the quantization error. This, in

turn, means that the use of larger neural networks will naturally

require more energy, even if the neural network is quantized.

Figure 6a presents the impact of target accuracy ǫ on the

optimal precision level n and the performance. We can see

that as target accuracy ǫ increases, the optimal precision level

n also increases to achieve the convergence. This is because

quantization in local training yields the unavoidable term ψ1

as shown in Theorem 1. Hence, to achieve a higher target

accuracy ǫ, we need to allocate more precision level n for local

training to achieve the convergence. However, this can increase

the number of DRAM accesses to fetch model parameters due

to the increased memory size. Since the DRAM access energy

is much larger than the MAC operation energy, the energy

consumption may increase significantly. In Fig. 6b, we can see

that we need much more energy and communication rounds

to achieve a higher target accuracy ǫ.

In Fig. 7, we show the performance of the NBS and

the SUM points with increasing K . We can see that the

required communication rounds decrease as K increases for

both schemes. Hence, we can improve the convergence rate by

increasing K at the expense of more energy. This corroborates

the analysis in Section III-A, which shows the total energy

consumption is linear with respect to K . Similarly, it also

corroborates the fact that the required number of communi-

cation rounds to achieve a certain ǫ is a decreasing function

of K , i.e., O( 1
K ), in Section III-B. However, we can see that

this improvement is not much beneficial [23] as it linearly

increases the energy consumption.

Figure 8 shows the required energy and communication

rounds to achieve ǫ using the NBS points. For FedAvg [4],

we use (2, 5, 32, 32). FedPaq algorithm [37] uses periodic

averaging, partial client participation, and quantization in

transmission. Hence, we only optimize m and use the same

setting as FedAvg. iFedAvg scheme is proposed in [10], and

it optimizes (I,K) while data is represented in full-precision.

UnifiedQ is a baseline introduced in the work in [15], and

it optimizes (I, n). We use m = 16 as done in [15]. Here,

we set K = 5 for a fair comparison while the original version

sampled whole devices at each round. For mnFedAvg, we only

optimize (m,n) with (I,K) = (2, 5). All optimal parameters

of the baselines are obtained from solving (18a). From Figs.

8a and 8b, we can see that our algorithm is the most efficient

because it consumes the least energy and converges faster than

other baselines to achieve ǫ. This is because we optimize all

system parameters (I,K,m, n) simultaneously. From Baseline

1 and 2, we observe that quantization during transmission is

beneficial to save the energy, and it does not significantly affect

the convergence rate. In particular, we can achieve around 70%

of energy savings compared to FedAvg and around 16% of

energy savings compared to UnifiedQ.
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Fig. 6: Impact of target accuracy ǫ on the optimal precision level n and the performance
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Fig. 7: Performance of NBS and SUM points for increasing K .

V. CONCLUSION

In this paper, we have studied the problem of energy-

efficient quantized FL over wireless networks. We have pre-

sented the energy model for our FL based on the physical

structure of a processing chip considering the quantization.

Then, we have formulated a multi-objective optimization prob-

lem to minimize the energy consumption and the number of

communication rounds simultaneously under a target accuracy

by controlling the number of local iterations, the number of

selected users, the precision levels for the transmission, and

the training. To solve this problem, we first have derived

the convergence rate of our quantized FL. Based on it, we

have used the NBI method to obtain the Pareto boundary. We

also have derived analytical solutions that can optimize each

objective function separately. Simulation results have validated

our theoretical analysis and provided design insights with two

practical operating points. We have also shown that our model

requires much less energy than a standard FL model and the

baselines to achieve the convergence. In essence, this work

provides the first systematic study on how to optimally design

quantized FL balancing the tradeoff between energy efficiency

and convergence rate, and the target accuracy over wireless

networks.

APPENDIX

A. Additional Notations

As done in [23], we define t as the round of the local

iteration with a slight abuse of notation. Then, wk
t becomes

the model parameter at local iteration t of device k. If t ∈ I,

where I = {jI | j = 1, 2, . . .}, each device transmits model

update d
Q,k
t to the BS. We introduce an auxiliary variable

vk
t+1 to represent the result of one step of local training from

wk
t . At each local training, device k updates its local model

using SGD as below

vk
t+1 = wk

t − ηt∇Fk(w
Q,k
t , ξkt ). (48)

The result of the (t+1)th local training will be wk
t+1 = vk

t+1 if

t+1 6∈ I because device k does not send a model update to the

BS. If t+1 ∈ I, each device calculates and transmits its model

update, and then the global model is generated as wt+1 =
wt−I+1 + 1

K

∑

k∈Nt+1
d
Q,k
t+1. Note that d

Q,k
t+1 = Q(vk

t+1 −
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Fig. 8: Performance comparison between the proposed model and the baselines to achieve ǫ.

wt−I+1) and wt−I+1 is the most recent global model received

from the BS. We provide the aforementioned cases below:

wk
t+1 =

{

vk
t+1 if t+ 1 6∈ I,

wt−I+1 +
1
K

∑

k∈Nt+1
d
Q,k
t+1 if t+ 1 ∈ I.

(49)

Now, we define two more auxiliary variables: v̄t =
∑N

k=1 pkv
k
t and w̄t =

∑N
k=1 pkw

k
t . Similarly, we denote δt =

∑N
k=1 pk∇Fk(w

Q,k
t , ξkt ) and δ̄t =

∑N
k=1 pk∇Fk(w

Q,k
t ).

From (48), we can see that v̄t+1 = w̄t − ηtδt.

B. The result of one local iteration

We present a preliminary lemma to prove Theorem 1. We

first present the result of one iteration of local training in the

following lemma.

Lemma 5. Under Assumption 1, we have

E
[
||v̄t+1−w∗||2

]
≤ (1− µηt)E

[
||w̄t −w∗||2

]
+

ηtd(ρ− µ)

22d

+η2t

(
N∑

k=1

p2kσ
2
k + 4(I − 1)2G2+4LΓ

)

.

(50)

Proof. From v̄t+1 = w̄t − ηtδt, we have

||v̄t+1 −w∗||2 = ||w̄t − ηtδt −w∗ − ηtδ̄t + ηtδ̄t||2

= ||w̄t −w∗ − ηt̄δt||2
︸ ︷︷ ︸

A1

+ 2ηt 〈w̄t−w∗−ηtδ̄t, δ̄t−δ〉
︸ ︷︷ ︸

A2

+η2t ||δt− δ̄t||2
︸ ︷︷ ︸

A3

.

(51)

Since E[δt] = δ̄t, we know that A2 becomes zero after taking

expectation. We also split A1 into the three terms as follows:

A1 = ||w̄t −w∗ − ηtδ̄t||2

= ||w̄t −w∗||2 −2ηt〈w̄t −w∗, δ̄t〉
︸ ︷︷ ︸

B1

+ η2t ||δ̄t||2
︸ ︷︷ ︸

B2

. (52)

We now derive an upper bound of B1. From the definition of

w̄t and δ̄t, we express B1 as

B1=−2ηt〈w̄t−w∗, δ̄t〉 =−2ηt

N∑

k=1

pk〈w̄t−w∗,∇Fk(w
Q,k
t )〉

= −2ηt

N∑

k=1

pk〈w̄t −w
Q,k
t ,∇Fk(w

Q,k
t )〉

− 2ηt

N∑

k=1

pk〈wQ,k
t −w∗,∇Fk(w

Q,k
t )〉. (53)

We first derive an upper bound of −〈w̄t−w
Q,k
t ,∇Fk(w

Q,k
t )〉

using the Cauchy-Schwarz inequality as well as arithmetic

mean and geometric mean inequalities as follows:

−〈w̄t−w
Q,k
t ,∇Fk(w

Q,k
t )〉

≤ 1√
ηt
||wQ,k

t −w̄t||
√
ηt||∇Fk(w

Q,k
t )||

≤ 1

2ηt
||wQ,k

t − w̄t||2 +
ηt
2
||∇Fk(w

Q,k
t )||2. (54)

We use the assumption of µ-convexity of the loss function

to derive an upper bound of −〈wQ,k
t − w∗,∇Fk(w

Q,k
t )〉.

From the fact that Fk(w
∗) ≥ Fk(w

Q,k
t ) + 〈w∗ −

w
Q,k
t ,∇Fk(w

Q,k
t )〉+ µ

2 ||w∗ −w
Q,k
t ||2, we have

−〈wQ,k
t −w∗,∇Fk(w

Q,k
t )〉 ≤ −{Fk(w

Q,k
t )− Fk(w

∗)}
− µ

2
||w∗ −w

Q,k
t ||2. (55)

For B2, we use L-smoothness of the loss function to obtain

the upper bound as below

B2 = η2t ||δ̄t||2 ≤ η2t

N∑

k=1

pk||∇Fk(w
Q,k
t )||2

≤ 2Lη2t

N∑

k=1

pk(Fk(w
Q,k
t )− F ∗

k ). (56)
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Then, we obtain an upper bound of A1 using (54), (55), and

(56) as follows

A1 = ||w̄t −w∗||2 − µηt

N∑

k=1

pk||wQ,k
t −w∗||2

+

N∑

k=1

pk||wQ,k
t − w̄t||2 + η2t

N∑

k=1

pk||∇Fk(w
Q,k
t )||2

− 2ηt

N∑

k=1

pk

{

Fk(w
Q,k
t )− Fk(w

∗)
}

+ 2Lη2t

N∑

k=1

pk

{

Fk(w
Q,k
t )− F ∗

k

}

≤||w̄t −w∗||2 − µηt

N∑

k=1

pk||wQ,k
t −w∗||2

+ρηt

N∑

k=1

pk||wQ,k
t −w̄t||2+4Lη2t

N∑

k=1

pk

{

Fk(w
Q,k
t )−F ∗

k

}

︸ ︷︷ ︸

C

−2ηt

N∑

k=1

pk

{

Fk(w
Q,k
t )− Fk(w

∗)
}

︸ ︷︷ ︸

C

, (57)

where the last inequality follows from the L-smoothness of the

loss function using ||∇Fk(w
Q,k
t )||2 ≤ 2L(Fk(w

Q,k
t ) − F ∗

k )
and ρηt ≥ 1 with ρ ≫ 1. Note that F ∗

k is the minimum value

of Fk. For ηt ≤ 1
2L , we can derive the upper bound of C as

follows

C ≤ 4Lη2t

N∑

k=1

pk

{

Fk(w
Q,k
t )− F ∗

k − Fk(w
Q,k
t ) + Fk(w

∗)
}

= 4Lη2t

N∑

k=1

pkΓ = 4Lη2tΓ. (58)

Then, A1 can be upper bounded as below

A1 ≤ ||w̄t −w∗||2 − µηt

N∑

k=1

pk||wQ,k
t −w∗||2

+ ρηt

N∑

k=1

pk||wQ,k
t − w̄t||2 + 4η2tLΓ. (59)

Next, we derive ||wQ,k
t −w∗||2 in A1 as follows

||wQ,k
t −w∗||2 = ||wQ,k

t −wk
t +wk

t −w∗||2

= ||wQ,k
t −wk

t ||2 + ||wk
t −w∗||2

+ 2〈wQ,k
t −wk

t ,w
k
t −w∗〉. (60)

Note that 〈wQ,k
t −wk

t ,w
k
t −w∗〉 becomes zero after taking

expectation due to Lemma 1. Then, we can bound A1 as

follows

A1 ≤ (1− µηt)||w̄t −w∗||2 − µηt

N∑

k=1

pk||wQ,k
t −wk

t ||2

+ ρηt

N∑

k=1

pk||wQ,k
t − w̄t||2 + 4Lη2tΓ (61)

Now we obtain the expectation of (51) using (61) as follows

E
[
||v̄t+1 −w∗||2

]

≤ (1 − µηt)E
[
||w̄t −w∗||2

]
+ η2tE

[
||δt − δ̄t||2

]

− µηt

N∑

k=1

pkE
[

||wQ,k
t −wk

t ||2
]

+ ρηt

N∑

k=1

pkE
[

||w̄t −w
Q,k
t ||2

]

+ 4Lη2tΓ (62)

To further bound (62), we express E
[
||δt − δ̄t||2

]
as

E
[
||δt−δ̄t||2

]
=

N∑

k=1

p2kE

[∣
∣
∣
∣

∣
∣
∣
∣
∇Fk(w

Q,k
t , ξkt )−∇Fk(w

Q,k
t )

∣
∣
∣
∣

∣
∣
∣
∣

2
]

≤
N∑

k=1

p2kσ
2
k, (63)

where (63) is from E[∇Fk(w
Q,k
t , ξkt )] = ∇Fk(w

Q,k
t ) and the

last inequality is from Assumption 1. We also derive the upper

bound of E
[

||w̄t −w
Q,k
t ||2

]

as below

E

[

||w̄t −w
Q,k
t ||2

]

= E

[

||wk
t −w

Q,k
t ||2 + ||w̄t −wk

t ||2

+2〈wk
t −w

Q,k
t , w̄t −wk

t 〉
]

≤ E

[

||wk
t −w

Q,k
t ||2

]

+ 4η2t (I − 1)2G2,

(64)

where the last inequality is from Lemma 1 and the result of

[23] for ηt ≤ 2ηt+I using

N∑

k=1

pkE
[
||w̄t −wk

t ||2
]
≤ 4η2t (I − 1)2G2. (65)

Then, we can obtain Lemma 5 by using (5) in Lemma 1.

C. Proof of Theorem 1

Since we use quantization in both local training and trans-

mission, we cannot directly use the result of [23] to derive

the convergence rate due to the quantization errors. We first

define an additional auxiliary variable as done in [19] to prove

Theorem 1 as below

uk
t+1 =

{

vk
t+1 if t+ 1 6∈ I,
1
K

∑

k∈Nt+1
vk
t+1 if t+ 1 ∈ I. (66)

We also define ūt =
∑N

k=1 pku
k
t for convenience. Since we

are interested in the result of global iterations, we focus on

t+ 1 ∈ I. Then, we have

||w̄t+1 −w∗||2 = ||w̄t+1 − ūt+1||2
︸ ︷︷ ︸

D1

+ ||ūt+1 −w∗||2
︸ ︷︷ ︸

D2

+ 2〈w̄t+1 − ūt+1, ūt+1 −w∗〉
︸ ︷︷ ︸

D3

. (67)

To simplify (67), we adopt the result of w̄t+1 and ūt+1 from

[19] as follows:

E[w̄t+1] = ūt+1, (68)
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E
[
||w̄t+1 − ūt+1||2

]
≤ 4dη2t IG

2

K22m
. (69)

Then, we can know that D3 becomes zero after taking the

expectation from (68) and D1 can be bounded by (69). We

further obtain the upper bound D2 as below

D2 = ||ūt+1 − v̄t+1||2
︸ ︷︷ ︸

E1

+ ||v̄t+1 −w∗||2
︸ ︷︷ ︸

E2

+ 2〈ūt+1 − v̄t+1, v̄t+1 −w∗〉
︸ ︷︷ ︸

E3

. (70)

We leverage the result of the random scheduling from [19] to

simplify (70) as follows

E[ūt+1] = v̄t+1 (71)

E[v̄t+1 − ūt+1||2] ≤
4

K
η2t I

2G2. (72)

We can see that E3 will vanish due to (71). E1 and E2 can be

upper bounded by (72) and Lemma 5, respectively. Therefore,

we have

E [||w̄t+1 −w∗||]2 ≤ E [||v̄t+1−w∗||] + 4η2tG
2

K

(
dI

22m
+ I2

)

≤ (1−µηt)E
[
||w̄t−w∗||2

]
+η2tψ2+ ηtψ1,

(73)

where

ψ1 =
d(ρ− µ)

22n
,

ψ2 =
N∑

k=1

p2kσ
2
k + 4(I − 1)2G2 +

4dIG2

K22m
+

4I2G2

K
+ 4LΓ.

(74)

Since E [||w̄t −w∗||] ≤ β2ψ2

(βµ−1)(t+γ) +
βψ1

βµ−1 satisfies (74) for

ηt =
β

t+γ as shown in [23]. Then, we can obtain Theorem 1

from L - smoothness of the loss function using E[F (w̄t+1)−
F (w∗)] ≤ L

2 E [||w̄t+1 −w∗||]2. Finally, we change the time

scale to local iteration.
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