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Abstract—The practical deployment of federated learning (FL)
over wireless networks requires balancing energy efficiency,
convergence rate, and a target accuracy due to the limited
available resources of devices. Prior art on FL often trains
deep neural networks (DNNs) to achieve high accuracy and
fast convergence using 32 bits of precision level. However, such
scenarios will be impractical for resource-constrained devices
since DNNs typically have high computational complexity and
memory requirements. Thus, there is a need to reduce the
precision level in DNNs to reduce the energy expenditure. In
this paper, a green-quantized FL framework, which represents
data with a finite precision level in both local training and uplink
transmission, is proposed. Here, the finite precision level is cap-
tured through the use of quantized neural networks (QNNs) that
quantize weights and activations in fixed-precision format. In the
considered FL model, each device trains its QNN and transmits
a quantized training result to the base station. Energy models
for the local training and the transmission with quantization
are rigorously derived. To minimize the energy consumption and
the number of communication rounds simultaneously, a multi-
objective optimization problem is formulated with respect to the
number of local iterations, the number of selected devices, and
the precision levels for both local training and transmission while
ensuring convergence under a target accuracy constraint. To solve
this problem, the convergence rate of the proposed FL system is
analytically derived with respect to the system control variables.
Then, the Pareto boundary of the problem is characterized to
provide efficient solutions using the normal boundary inspection
method. Design insights on balancing the tradeoff between the
two objectives while achieving a target accuracy are drawn from
using the Nash bargaining solution and analyzing the derived
convergence rate. Simulation results show that the proposed FL
framework can reduce energy consumption until convergence by
up to 70% compared to a baseline FL algorithm that represents
data with full precision without damaging the convergence rate.

I. INTRODUCTION

Federated learning (FL) is an emerging paradigm that
enables distributed learning among wireless devices [2]. In
FL, a central server (e.g., a base station (BS)) and multiple
mobile devices collaborate to train a shared machine learning
model without sharing raw data. Many FL works employ
deep neural networks (DNNs), whose size constantly grows
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to match the increasing demand for higher accuracy [3]. Such
DNN architectures can have tens of millions of parameters and
billions of multiply-accumulate (MAC) operations. Moreover,
to achieve fast convergence, these networks typically represent
data in 32 bits of full precision level, which may consume
significant energy due to high computational complexity and
memory requirements [4]. Additionally, a large DNN can
induce a significant communication overhead [5]. Under such
practical constraints, it may be challenging to deploy FL
over resource-constrained Internet of Things (IoT) devices
due to its large energy cost. To design an energy-efficient,
green FL scheme, one can reduce the precision level to
decrease the energy consumption during the local training
and communication phase. However, a low precision level can
jeopardize the convergence rate by introducing quantization
errors. Therefore, finding the optimal precision level that
balances energy efficiency and convergence rate while meeting
desired FL accuracy constraints will be a major challenge for
the practical deployment of green FL over wireless networks.

Several works have studied the energy efficiency of FL from
a system-level perspective [6]-[11]. The work in [6] investi-
gated the energy efficiency of FL algorithms in terms of the
carbon footprint compared to centralized learning. In [7], the
authors formulated a joint minimization problem for energy
consumption and training time by optimizing heterogeneous
computing and wireless resources. The work in [8] developed
an approach to minimize the total energy consumption by
controlling a target accuracy during local training based on a
derived convergence rate. The authors in [9] proposed a sum
energy minimization problem by considering joint bandwidth
and workload allocation of heterogeneous devices. In [10],
the authors studied a joint optimization problem to minimize
the energy and the training time under a target accuracy. The
work in [11] developed a resource management scheme by
leveraging the information of loss functions of each device to
maximize the accuracy under constrained communication and
computation resources. However, these works [6]-[11] did not
consider the energy efficiency of their DNN structure during
training. Since mobile devices have limited computing and
memory resources, deploying an energy-efficient DNN will
be necessary for green FL.

To further improve FL energy efficiency, model compression
methods such as quantization were studied in [12]-[15]. In
[12], the authors developed an over-the-air FL system that
uses one-bit gradient quantization aggregation scheme. The
authors in [13] developed an approach to minimize the training
time by optimizing transmission precision level and bandwidth
allocation. The work in [14] proposed an approach to minimize
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the energy consumption and the loss function by optimizing
model compression design for uplink transmission and device
selection strategy. In [15], the authors studied an energy min-
imization problem by controlling local iterations, bandwidth
allocation, and precision level for both local training and
transmission under full device participation scheme. However,
the works in [12]-[14] only considered the communication
efficiency while there can be a large energy consumption
in local training due to high precision level. Although the
work in [15] considered quantization for both local training
and transmission, it used full device participation scheme,
which is not practical due to stragglers, and only the energy
consumption is minimized. In our previous work [1], an
energy minimization problem was formulated to investigate
the tradeoff between energy, precision, and accuracy. However,
the same precision level was used for local training and
transmission as done in [15]. As such, the results of [1] cannot
be directly applied for more general cases such as those with
heterogeneous devices and non-i.i.d datasets. Moreover, the
number of local iterations and the number of selected devices
were not jointly optimized. To the best of our knowledge,
there are no current works that jointly consider the tradeoff
between energy efficiency, convergence rate, and accuracy
while simultaneously controlling local iterations, the number
of scheduled devices, and precision levels in local training and
transmission for green FL over wireless networks.

The main contribution of this paper is a novel green,
energy-efficient quantized FL framework that can represent
data with a finite precision level in both local training and
uplink transmission. Our contributions include:

e« We propose an FL framework that takes into account
stochastic quantization in both local training and trans-
mission with different precision levels. All devices train
their quantized neural networks (QNNs), whose weights
and activations are quantized with a finite precision level,
so as to decrease energy consumption for computation
and memory access. In uplink communication, each
device performs quantization to its training result to
improve the communication efficiency.

o To quantify the energy consumption, we propose a rig-
orous energy model for the local training based on
the physical structure of a processing chip. We also
derive the energy model for the uplink transmission with
quantization. Although a low precision level can save
the energy consumption per iteration, it decreases the
convergence rate because of quantization errors. Thus,
there is a need for a new approach to analyze the
tradeoff between energy efficiency, convergence rate, and
target accuracy by optimizing the precision levels. To this
end, we formulate a novel multi-objective optimization
problem by controlling the precision levels to jointly
minimize the total energy consumption and the number of
communication rounds while ensuring convergence with
a target accuracy. We also incorporate two additional
control variables: the number of local iterations and the
number of selected devices at each communication round,
which have a significant impact on both the energy
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Fig. 1: An illustration of the quantized FL. model over wireless
network.

consumption and the convergence time.

o To solve this problem, we first analytically derive the
convergence rate of our FL framework with respect to
the control variables under non-iid data distribution. We
then optimize sampling probabilities for devices based
on the derived convergence rate. Subsequently, we use
the normal boundary inspection (NBI) method to obtain
the Pareto boundary of our multi-objective optimization
problem. To balance the tradeoff between the two ob-
jectives, we present and analyze two practical operating
points: the Nash bargaining solution (NBS) and the sum
minimizing solution (SUM) points.

o Based on the aforementioned operating points and the
derived convergence rate, we provide design insights into
the proposed FL framework. For instance, the total energy
consumption initially decreases as the precision levels
increase, however, after a certain threshold, a higher
precision will induce higher energy costs. Meanwhile,
the convergence rate will always improve with a higher
precision. However, this improvement becomes negligible
after a certain level. We also show that we need a higher
precision level to achieve higher target accuracy at the
expense of more energy and communication rounds. We
then provide the impacts of system parameters such as the
number of devices and model size on the performance of
the proposed FL.

Simulation results show that our FL model can reduce the
energy consumption around 70% compared to FedAvg without
damaging the convergence rate.

The rest of this paper is organized as follows. Section
IT presents the system model. In Section III, we describe
the studied problem. Section IV provides simulation results.
Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL

Consider an FL system having N devices connected to a
BS as shown in Fig. 1. Each device k has its own local
dataset Dy, = {@n, Yy}, where [ = 1,..., Dj. For example,
{®k, Yy} can be an input-output pair for image classifi-
cation, where xj; is an input vector and y,; is the corre-



TABLE I: List of notations.

Notation Description Notation Description
N Number of devices P}j Transmission power
(r1, Yrt) Data sample hy, Average channel gain
Dy, Dataset size No Power spectral density of noise
wh Model parameters EULF(m) | Energy consumption for uplink transmission
Fr.() Local loss function L Smoothness parameter
I Number of local iterations “w Convexity parameter
K Number of sampled devices r Degree of non-iidness
m Precision level for transmission G Bound of the norm of stochastic gradients
n Precision level for local training o Bound of the variance of stochastic gradients
€ Target accuracy d Number of model parameters
ECF(n) Energy consumption for one local iteration Ne Number of MAC operations
B Allocated bandwidth Os Number of neurons

sponding output. We define a loss function f(w",xx,yy,;)
to quantify the performance of a machine learning (ML)
model with parameters w* € R¢ over {zx;,y,,}, where d
is the number of parameters. Since device k£ has Dj data
samples, its local loss function can be given by Fj(w*) =
~ l[i’“l f(w*, 21, y,,). The FL process aims to find the
global parameters w that can solve the following optimization

problem:

N D, 1L &
_ _ k
Inln F _Zf —BZZf(w STkl Ypr)
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(D
s.t. w1:w2:~-~:’wN:w, 2

where D = Zgzl Dy, is the total size of the entire dataset
D = UN_, Dy.. Without loss of generality, we assume datasets
across devices are non-iid.

Solving problem (2) typically requires an iterative process
between the BS and devices. However, in practical systems,
such as IoT systems, these devices are resource-constrained,
particularly when it comes to computing and energy. Hence,
we propose to manage the precision level of parameters used
in our FL algorithm to reduce the energy consumption for
computation, memory access, and transmission. As such, we
adopt a QNN architecture whose weights and activations are
quantized in fixed-point format rather than conventional 32-bit
floating-point format [16]. During the training time, a QNN
can reduce the energy consumption for MAC operation and
memory access due to quantized weights and activations.

A. Quantized Neural Networks

In our model, each device trains a QNN of identical
structure using n bits for quantization. High precision can
be achieved if we increase n at the cost of more energy
usage. We can represent any given number in a fixed-point
format such as [Q.9], where (2 is the integer part and ® is the
fractional part of the given number [17]. Here, we use one bit
to represent the integer part and (n — 1) bits for the fractional
part. Then, the smallest positive number that we can present
is k = 27"+, and the possible range of numbers with n bits
will be [—1,1 — 27"*+1]. Note that a QNN restricts the value
of weights to [-1, 1]. Otherwise, weights can be very large
without meaningful impact on the performance. We consider a
stochastic quantization scheme [17] since it generally performs

better than deterministic quantization [18]. Any given number
w € w can be stochastically quantized as follows:

[w],
lw] + &,

with probability L=

Q(w) = 3)

with probability ~“=LL
where |w] is the largest integer multiple of x less than or
equal to w. In the following lemma, we analyze the features
of the stochastic quantization.

Lemma 1. For the stochastic quantization Q(-), a scalar w,
and a vector w € R, we have

EQu)) =w, E(QWw)-wf<s, @
EQMw) =w, E[IQw) - wlf]< 5 ©
Proof. We first derive E[Q(w)] as
BlQ(w)] = L Y 4 (w4 )
Similarly, E[(Q(w) — w)?] can be obtained as
Q) )} = (]~ AT 4 (4?21
IQQ
= (w— ) (] +5—w) < 5 = o

@)

where (7) follows from the arithmetic mean and geometric
mean inequality. Since expectation is a linear operator, we

have E[Q(w)] = w from (6). From the definition of the square
norm, E[||Q(w) — w||?] can obtained as
d d
E[|Q(w) — w]l’] = Y _E[(Q(w)) —w;)’] < 55 (8)
j=1
(]

From Lemma 1, we can see that our quantization scheme is
unbiased as its expectation is zero. However, the quantization
error can still increase for a large model.

For device k, we denote the quantized weights of layer [
as w(Ql)’k = Q(wé“l)), where wé“l) is the parameters of layer .
Then, the output of layer I will be: o) = g(l)(w%k, 0(1-1)),
where o(;_1) is the output from the previous layer [ — 1, and
g(+) is the operation of layer [ on the input, including the linear
sum of w and o(;_1), batch normalization, and activation.



Note that our activation includes the stochastic quantization
after a normal activation function such as ReLU. Then, the
output of layer [, i.e., 0(;), is fed into the next layer as an input.
For training, we use the stochastic gradient descent (SGD)
algorithm as follows

wh |« wh -V (w?*, ¢h), 9)

where 7 = 1...[ is training iteration, 7 is the learning rate,
and £ is a sample from Dy, for the current update. The update
of weights is done in full precision so that stochastic gradient
(SG) noise can be averaged out properly [16]. Then, We restrict
the values of w¥_; to [-1,1] as w*, + clip(w® |, —1,1)
where clip(-, —1, 1) projects an input to 1 if it is larger than 1,
and projects an input to -1 if it is smaller than -1. Otherwise,
it returns the same value as the input. Otherwise, w” 41 can
become significantly large without a meaningful impact on
quantization [16]. After each training, w? +1 will be quantized

as wQ’ for the forward propagation.

B. FL model

For learning, without loss of generality, we adopt FedAvg
[4] to solve problem (2). At each communication round ¢, the
BS selects K devices according to probability py for device k
such that Zivzl pr = 1, and we denote the sampled set as N;.
The BS transmits the current global model w, to the scheduled
devices. Each device in N; trains its local model based on the
received global model by running I steps of SGD as below

k
wt,T

:wzlfc,'r 1 ntVFk(th 1) )VT— v 1, (10)

where 7); is the learning rate at communication round ¢. Note
that unscheduled devices do not perform local training. Then,
each device in NV; calculates the model update d,’f = wk 1
w¥, where wf+1 = wf)l_l and wf = wf)o [19]. Typically,
df "1 has millions of elements for DNN. It is not practical to
send df "1 with full precision for energy-constrained devices.
Hence, we apply the same quantization scheme used in QNNs
to df 1 by denoting its quantized equivalent as dgH with
precision level m. Thus, each device in N; clips its model
update df 1 using clip(-) to match the quantization range and
transmits its quantized version to the BS. The received model
updates are averaged by the BS, and the next global model

w1 Will be generated as below

:wt—|—% Z

kENt+1

Q,k
dt+1

(1)

Wi41

The FL system repeats this process until the global loss
function converges to a target accuracy constraint e. We
summarize this algorithm in Algorithm 1. Next, we propose
the energy model for the computation and the transmission of
our FL system.

C. Computing and Transmission model

1) Computing model: We consider a typical two-
dimensional processing chip for convolutional neural networks
(CNNs) as shown in Fig. 2 [S]. This chip has a DRAM, a
parallel neuron array with p MAC units, and two memory

Algorithm 1: Quantized FL Algorithm

Input: K, I, initial model wy, ¢t = 0, target accuracy e
1 repeat
2 The BS randomly selects a subset of devices N;
and transmits w; to the selected devices;
3 Each device k € N; trains its QNN by running 7
steps of SGD as (9);
4 Each device k € N; transmits dQ’1 to the BS;

5 The BS generates a new global model
Wil = Wy + % Zke/\/t dt+’1,
6 t—t+1;

7 until rarget accuracy ¢ is satisfied,
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Fig. 2: An illustration of the two-dimensional processing chip.

levels: a main SRAM buffer that stores the weights and acti-
vations and a local buffer that caches currently used weights
and activations. Since the main SRAM buffer has a limited
size, the input dataset is stored in the DRAM. Some weights
can also be stored in the DRAM, if the whole weights cannot
be fit in the main SRAM buffer. We use the MAC operation
energy model of [20] whereby Eyac(n) = A (n/nmax)” for
precision level n, where A > 0, 1 < a < 2, and Ny, 1S
the maximum precision level. Here, a MAC operation includes
neuron output calculation, batch normalization, activation, and
back-propagation. From [20], the energy consumption for
accessing a local buffer can be modeled as Eyac(n), and
the energy for accessing a main buffer can be given by
En(n) = 2FEyac(n). The energy consumption to access a
DRAM can be modeled as Fp(n) = AgFmac(n), where
Ag >> 1. [5].

The energy consumption of device k for doing inference
(i.e., forward propagation) is EX:(n) when n bits are used for
the quantization. Then, EX.(n) is the sum of the computing
energy Ec(n), the access energy for fetching weights from
the buffers Ew(n), the access energy for fetching activations
from the buffers Ea(n) and the access energy for fetching
input features and weights from the DRAM Epram(n), as
follows [20]:

Ef(n) = Ec(n) + Ew(n) + Ea(n) + Epram(n),
Ec(n) = Emac(n)Ne + 20 Evac(Mmax),
Ew(n) = En(n)d + Emac(n)N.
Ea(n) = 2E4(n)O¢ + Emac(n)N,

Epram(n)

n/pnmaxv

n/pnmaxa
= Ep(Nmax)Tin + 2Ep(n) max(dn + O.n — S,0),
(12)

where IV, is the number of MAC operations, d is the number
of weights, O, is the number of intermediate outputs in the



network, zj, is the input dimension, and S is the size of the
main SRAM buffer. For E¢(n), in a QNN, batch normalization
and activation are done in full-precision npy,x to each output
[16]. We store quantized weights and activations in the SRAM
main buffer. Once we fetch weights from a main to a local
buffer, they can be reused in the local buffer afterward as
shown in Ew(n). In Fig. 2, a MAC unit fetches weights
from a local buffer to do computation. Since we are using a
two-dimensional MAC array of p MAC units, they can share
fetched weights with the same row and column, which has
/P MAC units respectively. In addition, a MAC unit can
fetch more weights due to the n bits quantization compared
with when weights are represented in nyax bits. Thus, we can
reduce the energy consumption to access a local buffer by
the amount of \/7n/pnmax. A similar process applies to Ea(n)
since activations are fetched from the main buffer and should
be saved back to it for the calculation in the next layer. For
Epram(n), input features are processed in full-precision, and
weights that cannot be stored in the SRAM will be fetched
and stored to the DRAM.

As introduced in Section II-A, we calculate gradients in
full-precision to average out the noise from SGD. In back-
propagation, each layer calculates the gradients of its weights
and the gradients of the activations of the previous layer.
Hence, we can approximate the number of MAC operations
as 2N, as done in [21]. Then, the energy consumption for
back-propagation is

Edek = 2N, EMAC nmdx + 2E nmax)oc + Em(nmax)d

+ 2EWMAC nmdx N \/7

+ 2Ep (nmax) max(dnmax + Oclimax — Sm, 0).  (13)

Since back-propagation is done in full-precision, weights must
first be fetched from the DRAM. Then, we fetch weights from
the main buffer to the local buffer. The neuron MAC array
proceeds with the calculation by fetching the cached weights
and activations from the local buffer. Therefore, the energy
consumption for one iteration of device k is given by

EC*(n) = BE(n) + Byack, k€ {1,...,N}. (14)

2) Transmission Model: We use the orthogonal frequency
domain multiple access (OFDMA) to transmit model updates
to the BS. Each device occupies one resource block. The
achievable rate of device k will be:

PXhy, )
NoB )’

where B is the allocated bandwidth, hy, is the average channel
gain between device k and the BS during training!?, P is the
transmit power of device k, and NNy is the power spectral den-
sity of white noise. After local training, device k£ normalizes
the model update as d¥/||dF|| to match the predetermined

T, = Blog, (1 + (15)

'For future work, our approach can be extended to the case with in-
stantaneous time-varying channels by considering a stochastic optimization
formulation.

2 An important subject of future work here can be the integration of more
advanced MIMO-based communication channels.

quantization range [—1,1]. Then, it transmits d** to the BS

at given communication round ¢. The transmission time 7}, for
uploading dtQ s given by

dm

Tk (m) = —.

Tk

(16)
Then, the energy consumption for the uplink transmission is
given by

P¥dm

EUL’k(m) .
PXhy
Blog, (1+ 5% )

= Tk (m) X P,;X

a7

III. TIME AND ENERGY EFFICIENT FEDERATED QNN

Given our model, we now formulate a multi-objective
optimization problem to minimize the energy consumption
and the number of communication rounds while ensuring
convergence under a target accuracy. We show that a tradeoff
exists between the energy consumption and the number of
communication rounds as a function of I, K, m, and n.
For instance, we can reduce the amount of energy spent
per iteration by using low precision and sampling a small
number of devices. However, this slows the convergence rate
because of quantization errors. Meanwhile, the system can
allocate more bits and sample more devices to converge faster,
i.e, to reduce the number of communication rounds, at the
expense of spending more energy. However, this improvement
becomes negligible after a certain threshold as shown later in
the convergence analysis and simulations (see Theorem 1 and
Section IV. Hence, finding the optimal solutions is important
to balance this tradeoff and to achieve the target accuracy.

We aim to minimize both the expected total energy con-
sumption and the number of communication rounds® until
convergence under a target accuracy e as follows:

min [ Z > EVEE(m) + IE9*(n) (18a)
I, K,m,n =1 ke,
st 1€ [Inns- s Inax)s K € [Kmins ... N]  (18b)
me[l,...,Mmaux),n € [1,..., Nmax (18¢)
E[F(wr)] — F(w*) <, (18d)

where [ is the number of local iterations, I, and I;,,x denote
the minimum and maximum of I, respectively, E[F(wr)] is
the expectation of global loss function after 7' communication
rounds, F'(w*) is the minimum value of F', and € is the target
accuracy. The possible values of I and K are given by (18b).
Constraint (18c) represents the maximum precision levels in
the transmission and the computation, respectively. Constraints
(18d) captures the required number of communication rounds
to achieve e.

This problem is challenging since the analytical expression
of (18d) with respect to the control variables is unknown.
Hence, it is not trivial to derive the exact number of T
to satisfy (18d). Quantization errors from local training and
transmission will slow the convergence rate, thereby making
achieving the target accuracy challenging. The convergence

3Minimizing the total training time by considering the impact of quantiza-
tion on the computation time can be an important subject of future research.



is also not always guaranteed under non-iid data distribu-
tion. Lastly, a global optimal solution, which minimizes each
objective function simultaneously, is generally infeasible for
a multi-objective optimization problem [22]. Therefore, a
closed-form solution may not exist due to the tradeoff between
two objectives.

To solve this problem, we first obtain the analytical rela-
tionship between (18d) and I, K, m, and n to derive T' with
respect to €. As done in [10], [19], [23], we make the following
assumptions on the loss function as follows

Assumption 1. The loss function has the following properties

o Fi(w) is L-smooth: ¥ v and w Fj,(v) < Fi(w) + (v —
w) "V (w) + 5 lv - w|f?

o Fi(w) is p-strongly convex: ¥ v and w Fjp(v) >
Fr(w) + (v —w) ' VF,(w) + &|jv — w||?

e The variance of SG is bounded: E[||VFj(wk, ¢F) —
VF(wh)|)] <02, Vk=1,...,N.

e The squared norm of SG s
E[||VE.(wf, 0)|?] < G2, Yk =1,...,N.

bounded:

These assumptions hold for some practical loss functions.
Such examples include logistic regression, /o norm regularized
linear regression, and softmax classifier [24]. Since we use
the quantization in both local training and transmission, the
quantization error negatively affects the accuracy and the
convergence of our FL system. We next leverage the results of
Lemma 1 so as to derive 1" with respect to ¢ in the following
theorem.

Theorem 1. For learning rate n; = min(%, %), 8> i, p>
1,v > 0 and, the degree of non-iid I = Ziv:lpk(Fk(w*) -

FF)), we have

Lp B2
E[F — F(w*)] < 1
Flwor) - Pl < 5 |22 i a9
where 11 and o are
d(p — p)
= 9o
N
4dIG?  4I’G?
_ 2 2 22
Yy = ;pkak A = 1)*G* + o + 5 +HALT.
(20)
Proof. See Appendix C. (|

We can see that 1)1 is unavoidable because of the quantiza-
tion in local training. We also observe that high precision levels
for n and m can improve the convergence rate. In particular,
we can decrease the quantization error related terms in )
and 12 by increasing n and m. However, this improvement
becomes negligible after a certain level since those terms
decrease exponentially with respect to precision levels. For
I, it quantifies the difference between the loss function at the
global optimum Fj,(w*) and the one at the local optimum F}'.
Hence, we can see that the degree of non-iid I' degrades the
convergence rate. If we set 1 = npmax and m = Mmpax, We can
approximately recover the result of [23] since the quantization
error decays exponentially with respect to m and m. The

convergence rate also increases with K. However, all these
improvements come at the cost of consuming more energy. We
can also see that (19) has the sampling probabilities related
term Zszl pioi in its numerator. Therefore, we can further
improve the convergence rate by optimizing p; as follows

N

E 2 2
Pr0k;

k=1

Since the above problem is convex, we can use KKT condition

to solve the problem. Then, the optimal sampling probabilities
1/03
et 1k op
From Theorem 1, we can bound (19) using € in (18d) as
follows

N

st Y pe=1,px >0,Vk (2D
k=1

min
D1y DN

can be given by p; =

Biba
TI+~

E[F(wr) — Fw*)] < = [

~2(Bu—1) i wl] =

(22)

Since 1 term is not decreasing with T, there exists the
minimum value of precision level ny, to achieve € as follows

Nmin = ’V% 10g2 (Lﬁd(pzi:u)) -‘7

where [-] is the smallest integer larger than or equal to the
input. To guarantee the convergence, we change the constraint
of n in (18¢c) as n € [Nmin, - - - ; Mmax|. NOW, We express each
objective function as function of the control variables using
Theorem 1. For notational simplicity, we use g1 (I, K,m,n)
for the expected total energy consumption and g2 (I, K, m,n)
for the number of communication rounds 7'. Since each device
k is selected with probability py, Vk, we can derive the
expectation of the energy consumption in (18a) as follows

(23)

T
g1(I, K,m,n)=E Z Z EVER(m)+TEY(n)
t=1 keN;
N
=KTY pp{EVEF(m)+IEY*(n)}. (24)
k=1

Next, we derive go(I, K,m,n) in a closed-form to fully
express the objective functions and to remove the accuracy
constraint (18d). For any feasible solution that satisfies (18d)
with equality, we can always choose Ty > T' such that T} still
satisfies (18d). Since such T will increase the value of the
objectives, the accuracy constraint (18d) should be satisfied
with equality [10]. Hence, we take equality in (22) to obtain:

B*ta o
I(Bu—1)(5 -

Bi1 ) I’
Then, we can change the original problem as below

g2(I, K, m,n)= (25)

Bu—1

I%nn [g1(I, K,m,n),g92(I, K,m,n)] st (18b),(18c).
o (26a)

Since we have two conflicting objective functions, it is
infeasible to find a global optimal solution to minimize each
objective function simultaneously. Although introducing a
weighted sum of the objective functions might provide a
unique solution, its optimality is not always guaranteed. We



also need to solve the problem again if those weights change.
Hence, we instead consider the set of Pareto optimal points
to obtain an efficient collection of solutions to minimize each
objective function and capture the tradeoff. It is known that
the set of all Pareto optimal points forms a Pareto boundary in
two-dimensional space. Therefore, we use the so-called normal
boundary inspection (NBI) method since it provides evenly
distributed Pareto optimal points [25].

We first introduce some terminologies to facilitate
the analysis. For a multi-objective function g(x) =
[g1(x), g2(x), ... gn(x)]T and a feasible set C, we define z}
as a global solution to minimize g¢;(x), i = 1...M, over
x € C. Let g = g(z}) for ¢ = 1...M, and we define
the utopia point g*, which is composed of individual global
minima g; . We define the M x M matrix ®, whose ith column
is g7 —g*. The set of the convex combinations of g; —g* such
that {®¢ | {; > 0 and Zf\il ¢; = 1} is defined as convex hull
of individual minima (CHIM) [25]. For simplicity, we now
use C to represent all feasible constraint sets (18b) - (18c).
We also define xF as (I, K,m,n) such that g;(I, K,m,n)
can be minimized over C for ¢ = 1 and 2.

The basic premise of NBI is that any intersection points
between the boundary of {g(I, K, m,n) | (I, K,m,n) € C}
and a vector pointing toward the utopia point emanating from
the CHIM are Pareto optimal. We can imagine that the set of
Pareto optimal points will form a curve connecting g(x7}) =
[91(). ga(a})] and g(a3) = [g1(23), ga(@5)]. Hence, we
first need to obtain =] and x35. In the next two subsections, we
will minimize g1 (1, K, m,n) and g2(I, K, m, n) separately.

A. Minimizing ¢1(I, K,m,n)
Since x7 is a global solution to minimize g1 (I, K, m,n),
we can find it solving:

min

I,Kmn gl(IaKvmvn)a s.t.

(I, K,m,n) €C. (27a)
This problem is non-convex because the control variables
are an integer and the constraints are not a convex set.
For tractability, we relax the control variables as continu-
ous variables. The relaxed variables will be rounded back
to integers for feasibility. From (24) and (25), we can see
that ¢g1(I, K,m,n) is a linear function with respect to K.
Therefore, K, always minimizes g1 (I, K, m,n). Moreover,
the relaxed problem is convex with respect to I since
w > 0. Hence, we can obtain the optimal I to
minimize g1 (I, K, m,n) from the first derivative test as

dg1(I, K, m,n)

8[ 1 + 2 + 3 }

(28)

where

N
Hy = (8KG®+8G?) Y prEY*(n), (29)

k=1

N
Hy= (4KG* +4G?) Y prEV5*(m)
k=1

N
+ (-8KG? + 4dG2)Z ECk 30
S Pk (n), (30)

2
k=1

N
Hs = —K (Z prol +4G? +4LT
k=1

N
0= (- 7)) o)

k=1
(€19

Here, H; and Hj express the cost of local training and the
cost of transmission, respectively, while Hy depends on both
of them. We next present a closed-form solution of the above
equation from Cardano’s formula [26].

Lemma 2. For given m and n, the optimal I' to minimize
g1(I, K, m,n) is given by

o M Hy 1 /2H}  Hy\ 1 H3
27TH]  2H,; 4 \27H} " Hy) 27 \3H?

Lol HE Hs o L02H}  Hg\T 1 HE\
27TH? 2H, \4\27H} H,) 27\3H?

(32)

From Lemma 2, we can see that the value of I’ decreases
due to the increased cost of local training H; as we allo-
cate a larger n. Since the quantization error decreases as n
increases, a large I’ is not required. Hence, an FL system
can decrease the value of I’ to reduce the increased local
computation energy. We can also see that I’ increases as the
cost of transmission Hs increases. Then, for convergence, the
FL algorithm can perform more local iterations instead of
frequently exchanging model parameters due to the increased
communication overhead.

Although g1 (I, K,m,n) is non-convex with respect to m,
there exists m’ € C such that for m < m’, g1(I, K,m,n)
is non-increasing, and for m > m/, ¢1(I, K, m,n) is non-
decreasing. This is because gi1(I, K, m,n) decreases as the
convergence rate becomes faster for increasing m. Then,
91(I, K, m,n) increases after m’ due to unnecessarily allo-
cated bits. Since g1 (I, K, m,n) is differentiable at m, we can
find such local optimal m’ from dgy(I, K,m,n)/0m = 0
using Fermat’s Theorem [4]. To obtain m/, we formulate the
transcendental equation as below

og1(I, K
Ol Ksmm) o a0 4 My, (33)
om
where
2ty - KOl pRof +4(T = 1°G? +41°G? /K + ALT
4dIG?log 4
I(Bp—1)(2¢/L—Bd(p—p))/(2*" (Bu—1))))
_ Y B3I
1d1G?log 4 ’
2 N
My — e ZAPG logd 3y prECH ()
4dIG?log4M¢
N
Plx
MC = Pk b P%he \ (34)
k=1 Blog, (1 + 5 )



We present a closed-form solution of the above equation in
the following Lemma.

Lemma 3. For given I and n, the local optimal m’ to
minimize g1(I, K, m,n) will be:

b
log4

where W () is the Lambert W function.

Following the same logic of obtaining m’, we can find a lo-
cal optimal solution n’ from the first derivative test. Although
there is no analytical solution for n’, we can still obtain it
numerically using a line search method. Then, problem (27a)
can be optimized iteratively. We first obtain two analytical
solutions for I and m. From these solutions, we numerically
find a local optimal n’. Since gi(I, K, m,n) has a unique
solution to each variable, it converges to a stationary point
[27]. Although these points cannot guarantee to obtain globally
Pareto optimal, using the NBI method, we are still guaranteed
to reach locally Pareto optimal points [25]. In Section IV,
we will also numerically show that the obtained points can
still cover most of the practical portion of a global Pareto
boundary. For ease of exposition, hereinafter, we refer to these
local Pareto optimal points as “Pareto optimal”.

m' = Mp W (=Malogdexp(Mglog4)), (35)

B. Minimizing g2(I, K, m,n)

Now, we obtain x5 from the following problem to complete
finding the utopia point.

, %nnrlln g2(I, K,m,n), st (I,K,m,n)eC. (36a)
From (25), the objective function is a decreasing function with
respect to K, m, and n. Hence, N, mpax, and nm.x are always
the optimal solutions to the above problem. Then, the problem
can be reduced to a single variable optimization problem with
respect to I. We check the convexity of the reduced problem

as follows:

6292(11K7m7n) _ 62
or Bu— D% -~ 72)
N
2pioi  8G* 8LT 2y
x {; FtE et TE T
(37

Hence, . it is a convex problem for 7 <
e [T pho? +4G2 +4LT}. Since  +
is an arbitrary constant such that v > 0, we can always find
~ that satisfies the above condition. We present a closed-form
solution of I from the first derivative test in the following
lemma.

B2{ >N, pror+4G2+4LT}

(Bu—1)(2—221)

value of 1" to minimize g2(I, K, m,n) is given by

Lemma 4. For v <

, the optimal

S a PRORHAG2 +ALT —y (B — 1)(2 — L) /32

I// .
- 4G?
4G* + .

(38)

From Lemma 4, we can see that the optimal value of I”
increases as n decreases. This is because the system has to
reduce quantization error by training more number of times.

C. Normal Boundary Inspection

We now obtain the Pareto boundary using NBI. We redefine
g(I,K,m,n) := g(I, K,m,n) — g* so that the utopia point
can be located at the origin. The NBI method aims to find
intersection points between the boundary of g(I, K, m,n) and
a normal vector n = —®1, where 1 denotes the column vector
consisting of only ones which are pointing toward the origin.
Then, the set of points on such a normal vector will be: ®{ +
sn, where s € R. The intersection points can be obtained from
the following subproblem:

max s (39a)

I,K,mmn,s
S.t. (I, K,m,n)eC (39b)
®¢ +sn=g(,K,m,n), (39¢)

where (39c) makes the set of points on ®( + sn be in the
feasible area. From the definitions of ® and n, constraint (39¢)
can be given as

N 91(333)(42 _S) _ gl(IaKvmvn)
BCH o= |:92(w1<)(41 _S)] B [QQ(IaKvmvn)] - GO

From (40), we obtain the expression of s as below

I,K,m,n I, K,m,n
S=§1—92(7*)=C2—91(7*)- (41)
g2(x7) 91(x3)
Hence, we can change problem (39a) as follows
min 792(1’1(’1”’") -G (42a)
I,K,m,n g?(iL‘l)
s.t. (I, K,m,n) eC (42b)
1926 + QQ(I,K,Inan) . g1(1, Kvinvn) -0,
92(x}) g1(x3)
(42¢)

where we substituted s with (41) for the objective function,
constraint (42c) is from (41), and (3 + (3 = 1. To remove
the equality constraint (42c), we approximate the problem by
introducing a quadratic penalty term A as below

min LKMo /\(1 _gg 4 LK mn)
IL,K,m,n ga(x7) ga(x7)
IK 2
_gl( ) alnan)) (433)
91(332)
s.t. (I, K,m,n) eC. (43b)

For )\, we consider an increasing sequence {)\;} with \; —
oo as ¢ — oo to penalize the constraint violation more
strongly. We then obtain the corresponding solution ?, which
is (I, K,m,n) for minimizing problem (43a) with penalty
parameter \;.

Theorem 2. For \; — oo as i — oo, solution x* approaches
the global optimal solution of problem (43a), and it also
becomes Pareto optimal.



Proof. For notational simplicity, we use x to denote
(I,K,m,n) € C. Let ¢P(x) denote the quadratic penalty term
in problem (43a). We also define a global optimal solution to
the problem (42a) as Z. Since =’ minimizes the above problem
with penalty parameter \;, we have

p@) o w@
< 2@ . (44)
ga(x7)

where the last inequality is from the fact that & minimizes
problem (42a) with the equality constraint of ¢” (Z) being zero.
Then, we obtain the inequality of ¢P(z?) as follows

N o L ([ 92(®) gz(%”))
qu1§—< o~ = |- (45)
(=) Ai \g2(27)  g2(aT)
By taking the limit as ¢ — oo, we have
. 1 T i
lim ¢”(z') < lim — ( gg(w*) - gg(:c*)) =0. (46)
=00 imoo Ai \g2(x7)  ga2(x])

Hence, as \; — 0o, we can see that &’ approaches the global
optimal solution of (42a), which aims to find a Pareto optimal
point. |

From Theorem 2, we can obtain a global optimal solution
of (42a), and this correspond to a Pareto optimal point for
specific values of (; and (2. Note that problem (43a) can be
solved using a software solver. To fully visualize the boundary,
we iterate problem (39a) for various combinations of (; and
(2. The overall algorithm is given in Algorithm 2.

The main complexity of Algorithm 2 at each iteration is to
solve problem (42a), which corresponds to line 9 — 13. We
approximated problem (42a) to problem (43a), which can be
solved by a software solver. If we use the interior point method
with a desired accuracy ej,, then the complexity can given by
O(log(X)) [28]. Since we solve (43a) by increasing A; at
iterationmi, the complexity of this outer loop can be given
by O(log( ﬁ)) with a desired accuracy €y Therefore, the
complexity of Algorithm 2 is O(log()log(L)).

D. Nash Bargaining Solution

Since the solutions from (18a) are Pareto optimal, there is
always an issue of choosing the best point. This is because
any improvement on one objective function leads to the
degradation of another. We can tackle this problem considering
a bargaining process [29] between two players: one tries to
minimize the energy consumption and another aims to reduce
the number of communication rounds. Since the parameters of
FL, i.e., (I, K, m,n), are shared, the players should reach a
certain agreement over the parameters. It is known that NBS
can be a unique solution to this bargaining process. The NBS
was chosen here because it satisfies several fairness axioms
[29], and thus, it has been used as a fair solution to resource
management problems [30], [31]. We can obtain the NBS from
the following problem [29]:

91(x))(92(D) — ga(x))

91(2)92(x) B
x), 92(x)) € Gach,

max (91(D)
S.t. (91(

(47a)

Algorithm 2: NBI approach to obtain Pareto boundary

Input: Nv Bv Ptx’ Imina Kmina Mmax, Tmax Bv Vs Ga g, W, Lv A, «,

accuracy constraint e, loss function Fj(-),
stopping criterion €y, and €y, and a structure
of QNN

1 To find g3, initialize (I, K, m,n) and set K = N

2 while \/(I —I')2+ (m —m/)2 + (n — /)2 > €4, do

3 Update (I,m,n) as (I',m’,n’)

4 Obtain I’ from (32)

5 Obtain m/' for fixed I’ from (35)

6 Obtain n’ for fixed I’ and m’ using a line search
7 To find g3, calculate I” from Lemma 4 and set

(K, m, TL) = (N, TMmax, nmax)
while ¢; <1 do

o

9 Initialize @, which denotes a vector (I, K,m,n)
repeat

10 Update x as o’

1 Obtain =’ from problem (43a)

12 Increase A

13 | until \/||z — 2'||? < eopurs

14 Round (I, K,m,n) and increase (1

where guen = 9, (91(x), g2(x)) is the achievable set of

(g1(x), g2(x)), Gach represents the convex hull of g, and
D is the outcome when the players fail to cooperate. Since
the NBS always lies on the Pareto boundary, we perform
the bargaining process on the obtained boundary from Al-
gorithm 2. Then, we can find the NBS graphically by find-
ing a tangential point where the boundary and a parabola
(91(D)—g1(x))(g2(D) — g2(x) = A intersects with constant
A.

IV. SIMULATION RESULTS AND ANALYSIS

For our simulations, unless stated otherwise, we uniformly
deploy N = 50 devices over a square area of size 500 m
x 500 m serviced by one BS at the center, and we assume
a Rayleigh fading channel with a path loss exponent of 4.
We assume that the FL algorithm is used for a classification
task with MNIST dataset. We distribute the training dataset
over devices in a non-iid fashion by allocating labels from a
Dirichlet distribution with parameter 0.1. A softmax classifier
is used to measure our FL performance. We also use P* = 100
mW, B =10 MHz, Ny = —173 dBm, S = 2 MB, z;, = 786,
Mmax = 32 bits, Nmax = 32 bits, Imin = 1, Imax = 30,
Knin =1,¢e =01, p =100, and vy =1, Vk = 1,...,N.
For L, we used the reported value L = 0.097 with the same
dataset and the loss function [32]. However, estimating p is
more challenging than the estimation of L. Since the value of
w is widely assumed to be a small value between [0.001, 1]
[33] [34], we used i = 0.05 as done in [34] with the same
dataset. We assume that each device trains a QNN structure
with five convolutional layers and three fully-connected layers.
Specifically, the convolutional layers consist of 128 kernels
of size 3 x 3, two of 64 kernels of size 3x3, and two of
32 kernels of size 3x3. The first layer is followed by 3x3
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Fig. 3: Pareto Boundary from Algorithm 2 and feasible area

from exhaustive search

pooling and the second and the fifth layer are followed by
3x3 max pooling with a stride of two. Then, we have one
dense layer of 2000 neurons, one fully-connected layer of
100 neurons, and the output layer. In this setting, we have
N, = 0.0405 x 10°,d = 0.41 x 105, and Os = 4990.
To estimate G and oy, we measure every device’s average
maximum norm of stochastic gradients G, for the initial 20
local iterations and set G = maxy Gy, Yk = {1,...,N}.
We used the same gradients information to estimate o while
measuring G. Since the norm of the stochastic gradient gen-
erally decreases with training epochs, we use the initial values
of G, to estimate GG as in [35]. Similarly, since loss functions
are in general decreasing with training epoch, we can bound
Pas I' = S0 pe(Fr(w®) = Ff) < S0 prFi(w?) <
Zszlkak(w’), where w’ can be a global model in early
stage. From the above setting, we estimated G = 0.25. We
then used the global model, which was used to measure G, to
estimate I' = 0.6. For the computing model, we use a 28 nm
technology processing chip and set A = 3.7 pJ, Az = 150, and
a = 1.25 as done in [20]. For the disagreement point D, we
use (Imax, 1,1, min) as this setting is neither biased towards
minimizing the energy consumption nor towards the number
of communication rounds. We assume that each device has the
same architecture of the processing chip. All statistical results
are averaged over a number of independent runs.

Figure 3 shows the Pareto boundary from Algorithm 2
as well as the feasible area obtained from the exhaustive
search for N = 50. We can see that our boundary and the
actual Pareto boundary match well. Although we cannot find
the global Pareto optimal points due to the non-convexity of
problem (27a), it is clear that our analysis can still cover most
of the important points that can effectively show the tradeoff
in the feasible region.

Figure 4 and Table Ila show the Pareto boundaries obtained
from the Algorithm 2 and the solutions of four possible
operating points, respectively, for varying N. Each solution
represents (I, K, m,n), where I is the number of local it-

N =10 N =50 N =200

NBS | (2,2,12,19) | (1,5,12,19) | (1,23,12,19)
SUM | (3,3,12,20) | (1,7,12,20) (1,35.12.19)
Emn | (1,1,10,15) | (1,1,11,15) (1,1,12,15)
Tmin | (3,10,32,32) | (1,50,32,32) | (1,200, 32,32)

(a) Solutions for varying N

CNN1 CNN2 CNN3
NBS | (1,3,11,19) | (1,5,12,19) | (1,8, 14,20)
SUM | (1,4,11,20) | (1,7,12,20) | (1,2,14,20)
Emn | (1,1,10,15) | (1,1,11,15) | (1,1,14,16)
Toin | (2,50,32,32) | (1,50,32,32) | (1,50,32,32)

10

(b) Solutions for varying model size

TABLE 1II: Solutions of NBS, SUM, Enin, and Ty, for varying
N and the model size.

erations, K is the number of sampled devices, m is the
precision level for transmission, and n is the precision level
for local training. SUM represents the point that minimizes
the sum of the two objectives. We can obtain the SUM by
finding a tangential point between the Pareto boundary and
the line g1 (I, K,m,n) + go(I, K,m,n) = A with A € R
using a bisection algorithm. Ey,, and T, are the solutions
that separately optimize ¢;(I, K,m,n) and go(I, K,m,n),
respectively. From Fig. 4, we can see that the energy consump-
tion increases while the number of communication rounds
decreases to achieve the target accuracy for increasing N. The
FL system can choose more devices at each communication
round as N increases. Hence, the impact of SG variance
decreases as shown in Theorem 1. Since involving more
devices in the averaging process implies an increase in the
size of the batch, the convergence rate increases by using more
energy [36].

From Table Ila and Fig. 4, we can see that NBS points are
more biased toward reducing the energy consumption while
the SUM points focus on minimizing communication rounds.
We can also see that, as N becomes larger, the optimal [
decreases while K increases. This is because [ is a decreasing
function with respect to G as shown in Lemmas 2 and 4.
Hence, the FL system decreases I to avoid model discrepancy
over devices since the estimated value of GG becomes larger for
increasing IN. However, a small I will slow down the process
to reach optimal weights in the local training. To mitigate
this, the FL system then increases K so that it can obtain
more information in the averaging process by selecting more
devices.

Figure 5 and Table IIb present the Pareto boundaries from
the Algorithm 2 and the corresponding solutions when in-
creasing the size of the neural networks. We keep the same
structure of our default CNN, but we now increase the number
of neurons in the convolutional and fully-connected layers.
For each CNN model, the number of parameters will be
0.27 x 10%,0.41 x 105, and 1.61 x 10°, respectively. Fig.
5 and Table IIb show that the energy consumption and the
number of communication rounds until convergence increase
with the model size. For CNN3, the energy cost increased
significantly since its large model size cannot be fit into the
SRAM even after quantization. From Table IIb, we can see that
the FL system requires higher precision levels for larger neural
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networks. This is because the quantization error increases
for larger neural networks, as per Lemma 1. Hence, the FL
system allocates more bits for both the computation and the
transmission so as to mitigate the quantization error. This, in
turn, means that the use of larger neural networks will naturally
require more energy, even if the neural network is quantized.

Figure 6a presents the impact of target accuracy € on the
optimal precision level n and the performance. We can see
that as target accuracy e increases, the optimal precision level
n also increases to achieve the convergence. This is because
quantization in local training yields the unavoidable term
as shown in Theorem 1. Hence, to achieve a higher target
accuracy €, we need to allocate more precision level n for local
training to achieve the convergence. However, this can increase
the number of DRAM accesses to fetch model parameters due
to the increased memory size. Since the DRAM access energy
is much larger than the MAC operation energy, the energy
consumption may increase significantly. In Fig. 6b, we can see
that we need much more energy and communication rounds
to achieve a higher target accuracy e.

In Fig. 7, we show the performance of the NBS and
the SUM points with increasing K. We can see that the
required communication rounds decrease as K increases for
both schemes. Hence, we can improve the convergence rate by
increasing K at the expense of more energy. This corroborates
the analysis in Section III-A, which shows the total energy
consumption is linear with respect to K. Similarly, it also

corroborates the fact that the required number of communi-
cation rounds to achieve a certain € is a decreasing function
of K,i.e., O(%), in Section III-B. However, we can see that
this improvement is not much beneficial [23] as it linearly
increases the energy consumption.

Figure 8 shows the required energy and communication
rounds to achieve e using the NBS points. For FedAvg [4],
we use (2,5,32,32). FedPaq algorithm [37] uses periodic
averaging, partial client participation, and quantization in
transmission. Hence, we only optimize m and use the same
setting as FedAvg. iFedAvg scheme is proposed in [10], and
it optimizes (I, K') while data is represented in full-precision.
UnifiedQ is a baseline introduced in the work in [15], and
it optimizes (I,n). We use m = 16 as done in [15]. Here,
we set K = 5 for a fair comparison while the original version
sampled whole devices at each round. For mnFedAvg, we only
optimize (m,n) with (I, K) = (2,5). All optimal parameters
of the baselines are obtained from solving (18a). From Figs.
8a and 8b, we can see that our algorithm is the most efficient
because it consumes the least energy and converges faster than
other baselines to achieve €. This is because we optimize all
system parameters (I, K, m,n) simultaneously. From Baseline
1 and 2, we observe that quantization during transmission is
beneficial to save the energy, and it does not significantly affect
the convergence rate. In particular, we can achieve around 70%
of energy savings compared to FedAvg and around 16% of
energy savings compared to UnifiedQ.
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Fig. 7: Performance of NBS and SUM points for increasing K.

V. CONCLUSION

In this paper, we have studied the problem of energy-
efficient quantized FL over wireless networks. We have pre-
sented the energy model for our FL based on the physical
structure of a processing chip considering the quantization.
Then, we have formulated a multi-objective optimization prob-
lem to minimize the energy consumption and the number of
communication rounds simultaneously under a target accuracy
by controlling the number of local iterations, the number of
selected users, the precision levels for the transmission, and
the training. To solve this problem, we first have derived
the convergence rate of our quantized FL. Based on it, we
have used the NBI method to obtain the Pareto boundary. We
also have derived analytical solutions that can optimize each
objective function separately. Simulation results have validated
our theoretical analysis and provided design insights with two
practical operating points. We have also shown that our model
requires much less energy than a standard FL model and the
baselines to achieve the convergence. In essence, this work
provides the first systematic study on how to optimally design
quantized FL balancing the tradeoff between energy efficiency

and convergence rate, and the target accuracy over wireless
networks.

APPENDIX
A. Additional Notations

As done in [23], we define ¢ as the round of the local
iteration with a slight abuse of notation. Then, w’ becomes
the model parameter at local iteration ¢ of device k. If t € Z,
where Z = {jI | j = 1,2,...}, each device transmits model
update dtQ’k to the BS. We introduce an auxiliary variable
vf 1 to represent the result of one step of local training from
wP. At each local training, device k updates its local model
using SGD as below

vf, = wf — V(w2 ¢f). (48)

The result of the (¢+1)th local training will be w¥, | = v}, ; if
t+1 ¢ 7 because device k does not send a model update to the
BS. If t+1 € Z, each device calculates and transmits its model
update, and then the global model is generated as w;4+; =

1 Q,k Qk _ k
Wi141 + I Dogen,,, diy1- Note that dyy = Q(viy, —
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wy_ry1) and w;_y41 is the most recent global model received
from the BS. We provide the aforementioned cases below:

wh,| = vh o if t+1¢7,
+ wt—1+1+%zk€./\ft+1dt-iil if t+1eZ.
(49)

Now, we define two more auxiliary variables: v; =
N _ N .
iy prvy and W, = Y, prwy. Similarly, we denote §; =

Sy PEVE (w2 &) and 6, = YL, prVE(wPh),
From (48), we can see that ©;11 = Wy — 7;0;.

B. The result of one local iteration

We present a preliminary lemma to prove Theorem 1. We
first present the result of one iteration of local training in the
following lemma.

Lemma 5. Under Assumption 1, we have

E [|[og11 —w*||?] <(1 = pne)E [[|w; — w*[]] + 92d

N
+n7 <Zpia,3 +4(1 - 1)2G2+4Lr> :

k=1
(50)

Proof. From v,y = wy — n¢d;, we have

D11 — w*||* = [[@; — 00 — w* — 0eby + mebe]|?

Ay

+ 2my (Wi —w* — 1y, 6, — 8)+n7 |6 — 6% -

A2 A'i

(51

Since E[§;] = 0;, we know that A, becomes zero after taking
expectation. We also split Ay into the three terms as follows:

Ay = [|lw; — w* — 6y ?
= |[w, — w*|]* —2n(we — w*, &) + 07| |6 [* . (52)
——
B4 B

ned(p — 1)

We now derive an upper bound of B;. From the definition of
w; and J;, we express B; as

N
By = =2, —w",6;) = =20y pi (w1 —w*, VE (w"))
k=1

N
= -2 Zpk (w; — wP* VF, (w"))
k=1

N
=2 ) pr(w?’ — w*, VE(wi")). (53)
k=1

We first derive an upper bound of —(w; —w®", VFj, (w*))
using the Cauchy-Schwarz inequality as well as arithmetic
mean and geometric mean inequalities as follows:

— <’lIJt—th’k,VFk(th’k)>
1
Q.k_ = Q.k
< —|w;""—w VF,(w
_\/mll ¢ el lV/nel |V Fi (w0 7) |

1
<

54
<5 (54)

k= Nt k
Jwf? —wt||2+5IIVFk(th I

We use the assumption of u-convexitZ of the loss function
to derive an upper bound of —(th’ — w*,VFk(thvk».
From the fact that Fj(w*) > Fp(w®*) + (w* —
’th"k, VFk(’th’k» + %Hw* — ’th’k||2, we have

—(wP* — w* VF (w?")) < —{Fp(w?") — F(w*)}

= Sllw — w2 (55)

For B>, we use L-smoothness of the loss function to obtain
the upper bound as below

N
_ )k
By = (|81 < mf Y oIV Fi (w2
k=1

N
<20 Y pr(Fr(w?®) — F). (56)
k=1



Then, we obtain an upper bound of A; using (54), (55), and
(56) as follows

N
_ k
Ay =[|w; — w*|[* = e > prllwP" — w*[|?
k=1

N N
k- k
+ > pellwe® — @+ 07 Y pul[VE(w )|
k=1 k=1

N
— 2y pi {Fk(w?’k) - Fk(“’*)}
k=1
N

+ 2002 3 { Fe(w?®) - )
k=1

N
_ k
<||ws — w*||* = e > pil|[w* — w2
k=1

N N

k- k *

+om Y pillwd = w|F+4Ln?> " i {Fi(wi*) - Fi
k=1 k=1

c

=21 ipk {Fk(w?’k) - Fk(“’*)},

k=1

(57)

c

where the last inequality follows from the L-smoothness of the
loss function using ||V Fx (w2 < 2L(FL(w®*) — Fy)
and pn; > 1 with p > 1. Note that ' is the minimum value
of Fj,. For ny < %, we can derive the upper bound of C as
follows

N
C <AL} ps {Fk(w?’k) — F} = Fo(w?*) + Fk(“’*)}
k=1

(58)
Then, A; can be upper bounded as below

N
_ k
Ay < lwy — w|* = pme Y prllwi* — w2
k=1
N

ko
+pme Y pellwi* — @y |* + 457 LT
k=1

(59)

Next, we derive ||w®"* — w*||2 in A; as follows

Jwi?* — w*|? = [[w?* — wf +wf —w*|]?
&
= |[wi* — wf||* + [Jwf — w*|]?

k k

+ 2(w@F —wk wk —w*).  (60)

Note that (w®* — wk wk — w*) becomes zero after taking
expectation due to Lemma 1. Then, we can bound A; as
follows

N
_ y
Ar < (1= pe)|[wy — w*||* = e Y prlfw?” — wi|?
k=1
N
k=

+PntZPk||wt — wy|* + 4Ln;T

k=1

(61)
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Now we obtain the expectation of (51) using (61) as follows
E [[[9441 — w*||?]
< (1= pm)E [||l@; — w*[]*] + niE [[|6; — 04[]

N
k
— e Y prE [Ilwf2 —Wf||2}
k=1

N
+ oy piE [[[@; —w P +4Lr ()
k=1

To further bound (62), we express E [||6; — &,]|] as

N 2
E[[[6:—8:|]*] = piE HVFk(wt‘Q’k, &8 — VE (w@F) ]
k=1
N
<> piot, (63)
k=1

where (63) is from E[V Fy(w®*, ¢F)] = VF(w2*) and the
last inequalitfr is from Assumption 1. We also derive the upper
|

bound of E |||w; — thkHQ} as below

E (Il — wf*|12] = B [|lwf - w| + 1w, - wh|?
+2(wh — w?’k,ﬂ;t — wf)}

< E[llwf - w*|[2] + an2(1 - 1262,

(64)
where the last inequality is from Lemma 1 and the result of
[23] for n; < 27441 using

N
> B [[lw, —wf|’] < 4nf(T-1)%G%. (65)
k=1

Then, we can obtain Lemma 5 by using (5) in Lemma 1. [

C. Proof of Theorem 1

Since we use quantization in both local training and trans-
mission, we cannot directly use the result of [23] to derive
the convergence rate due to the quantization errors. We first
define an additional auxiliary variable as done in [19] to prove
Theorem 1 as below

i {@ql if t+1¢17,
Uiy =

. (66)
% z:ke/\/t+1 ’Uic+1 if t+1eZ.

We also define u; = Zivzl pruf for convenience. Since we
are interested in the result of global iterations, we focus on
t+ 1 € Z. Then, we have

[@e1 — | = || @1 = e | + [T — w7

D1 D2

+ 2(Wip1 — Uig1, Uy —w*) . (67)

D3
To simplify (67), we adopt the result of wy4; and w4 from
[19] as follows:

E[lwii1] = @y, (68)



4dn?1G?
K22m

Then, we can know that D3 becomes zero after taking the
expectation from (68) and D; can be bounded by (69). We
further obtain the upper bound Dy as below

E [[[@i41 — e ]]?] < (69)

Dy = ||[ttgy1 — Vepa|)? + ||O131 — w*|]?

Ey
+ 2(Up 1 — Vyq1, Vg1 — W)

E>
(70)

E3

We leverage the result of the random scheduling from [19] to

simplify (70) as follows
Eltts 1] = 0¢ 41 (71)
_ _ 4
E['Ut-i-l — Ut+1||2] < ?7’],52]26'2. (72)

We can see that F'3 will vanish due to (71). £; and E> can be
upper bounded by (72) and Lemma 5, respectively. Therefore,
4n?G?

we have
dl 9

< (L= ) E[| [0~ [2] 407002+ et
(73)

E (@1 —w*||)* < E[[[oe —w"||] +

where

" d(p — p)

22n ’

eles
—— 1 4LT.
e

4dIG?

Y = Toom

N
> phor +4(I-1)°G* +
k=1

(74)

Since E [||w; — w*||] < (ﬂuf?féﬂ) + ﬂi‘z’_ll satisfies (74) for

N = % as shown in [23]. Then, we can obtain Theorem 1
from L - smoothness of the loss function using E[F (w;41) —
F(w*)] < LE[||@¢1 — w*|[]*. Finally, we change the time
scale to local iteration.
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