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Abstract—In this paper, a new communication-efficient fed-
erated learning (FL) framework is proposed, inspired by vec-
tor quantized compressed sensing. The basic strategy of the
proposed framework is to compress the local model update at
each device by applying dimensionality reduction followed by
vector quantization. Subsequently, the global model update is
reconstructed at a parameter server by applying a sparse signal
recovery algorithm to the aggregation of the compressed local
model updates. By harnessing the benefits of both dimensionality
reduction and vector quantization, the proposed framework
effectively reduces the communication overhead of local update
transmissions. Both the design of the vector quantizer and the
key parameters for the compression are optimized so as to
minimize the reconstruction error of the global model update
under the constraint of wireless link capacity. By considering
the reconstruction error, the convergence rate of the proposed
framework is also analyzed for a non-convex loss function.
Simulation results on the MNIST and FEMNIST datasets demon-
strate that the proposed framework provides more than a 2.4%
increase in classification accuracy compared to state-of-the-art
FL frameworks when the communication overhead of the local
model update transmission is 0.1 bit per local model entry.

Index Terms—Federated learning, distributed learning, quan-
tized compressed sensing, vector quantization, dimensionality
reduction

I. INTRODUCTION

Federated learning (FL) is a distributed machine learning
technique which aims at training a global model on a pa-
rameter server (PS) by collaborating with distributed wireless
devices, each with its own local training dataset [1], [2]. In a
typical FL framework, each device updates its local model
based on the local training dataset and then sends a local
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model update to the PS [2]. After the transmission from the
devices, the PS updates its global model by aggregating the
local model updates sent by the devices and then distributes
the updated global model to the devices. This two-step training
process continues until the global model at the PS converges.
The above FL framework can help preserve the privacy of
the data generated by the devices. Hence, it has drawn great
attention as a privacy-preserving alternative to centralized
machine learning [3]–[7]. While FL offers an important benefit
in terms of data privacy, bringing this technique into real-world
applications also faces several challenges. One major such
challenge is the significant communication overhead required
for transmitting the local model updates from the wireless
devices to the PS because the wireless links connecting them
may have limited capacity in practical communication sys-
tems. This challenge becomes critical when the dimensionality
of the local model updates is much larger than the capacity
of the wireless links. For example, when the wireless link
capacity is 20 Mbps and the global model is ResNet-18 in
[8] with 1.1× 107 trainable parameters, transmitting the local
model update for 100 times with 10 devices takes about
1.8×104 seconds. Such long communication times may not be
acceptable for low-power devices and practical FL applications
that often must operate at much lower latency.

A. Prior Works

To address the above challenge, communication-efficient FL
via local model update compression was extensively stud-
ied. The basic idea in these prior works is to apply lossy
compression to the local model updates, in order to reduce
the communication overhead required for transmitting these
updates. A representative approach in this direction is the
scalar quantization approach studied in [9]–[12], in which the
entries of the local model update are independently quantized
by a scalar quantizer. By extending this approach, a vector
quantization approach for communication-efficient FL was
also studied in [13]–[15]. In this approach, a partition of
each local model update is quantized by a vector quantizer.
The common limitation of the quantization-only approach,
however, is that significant quantization error is inevitable
when the communication overhead of the local model update
transmission must be less than one bit per local model entry.

Recently, to overcome the limitation of the quantization-
only approach, communication-efficient FL via quantized
compressed sensing (QCS) has been explored in [16]–[18].
A key motivation in this approach is the sparsity of the local
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model update, obtained either naturally or by applying sparsi-
fication [19]–[24]. To exploit this sparsity, the basic premise of
the QCS approach is to project the local model updates onto a
lower dimensional space as in compressed sensing (CS) before
they are quantized. Because of the ensuing dimensionality
reduction, this approach can further reduce the communication
overhead of the local update transmissions when compared
with the quantization-only approach. A QCS-based compres-
sion method with one-bit quantization was studied in [16]
and [17], in which the entries of the local model update after
dimensionality reduction were independently quantized by a
one-bit scalar quantizer. This method was extended to the
compression with multi-bit quantization in [18] which allows
greater flexibility regarding the number of scalar quantization
bits. The work in [18] demonstrated that the use of multi-bit
quantization provides a better tradeoff between communication
efficiency and FL performance when compared with the one-
bit quantization [18]. The existing QCS-based compression
methods, however, only consider scalar quantization which is
generally inferior to vector quantization in terms of quantiza-
tion error [25]; thereby, the compression error of these methods
becomes problematic as the level of the compression increases.
To our best knowledge, local model update compression that
harnesses the benefits of both vector quantization and di-
mensionality reduction has never been studied before, despite
its potential for improving the communication efficiency of
FL and mitigating the compression error of the local model
updates.

B. Contributions
The main contribution of this paper is a novel

communication-efficient FL framework that leverages, for
the first time, both vector quantization and CS-based di-
mensionality reduction to compress local model updates at
the wireless devices. We also propose a promising strategy
for reconstructing the global model update at the PS from
the compressed local model updates. More importantly, we
minimize the reconstruction error at the PS by optimizing both
the design of the vector quantizer and the key parameters for
the compression and, then, we analyze the convergence rate of
our framework with consideration of the reconstruction error.
In summary, our major contributions include the following:

• We present a communication-efficient FL framework via
vector quantized compressed sensing (VQCS), dubbed
FedVQCS. In this framework, we compress each local
model update by reducing its dimensionality based on
CS and, then, quantizing a low-dimensional local model
update by using a vector quantizer. For accurate but
efficient reconstruction of the global model update at
the PS, we aggregate a group of the compressed local
model updates and, then, estimate the aggregated model
update by applying a sparse signal recovery algorithm. By
harnessing the benefits of both dimensionality reduction
and vector quantization, FedVQCS significantly reduces
the communication overhead required for transmitting the
local model updates at the wireless devices.

• We optimize the design of the vector quantizer used for
the local update compression strategy of FedVQCS. A

key feature of our compression strategy is that the local
model update after the CS-based dimensionality reduc-
tion can be modeled as an independent and identically
distributed (IID) Gaussian random vector by the central
limit theorem. By utilizing this feature, we derive the
optimal shape and gain quantizers for an IID Gaussian
random vector based on the Lloyd–Max algorithm [26]
and Grassmanian codebook [27], respectively. We also
derive the optimal bit allocation between the shape and
gain quantizers by characterizing the mean-squared-error
(MSE) performance of these quantizers.

• We optimize the key design parameters of the local update
compression strategy of FedVQCS, that include: (i) the
number of quantization bits, (ii) sparsity level, and (iii)
dimensionality reduction ratio. Unlike previous works
where these parameters were heuristically determined as
hyper-parameters, we analytically determine the best set
of parameters for minimizing the reconstruction error of
the global model update at the PS under a capacity con-
straint. A prominent feature of our parameter optimization
is that it can be performed locally at each device without
information exchange among the devices.

• We analyze the convergence rate of FedVQCS, taking
into account all errors that should be considered in
the QCS-based FL framework, including sparsification
errors of the local model update at the devices and
reconstruction errors of the global model update at the PS.
Our analysis demonstrates that FedVQCS is guaranteed to
converge to a stationary point of a smooth loss function
at the rate of O

(
1√
T

)
, where T is the number of total

iterations of the stochastic gradient descent (SGD) algo-
rithm. Our analysis also shows that the upper bound of
the convergence rate decreases as the MSE of the global
model update reconstructed at the PS reduces, implying
that our parameter optimization contributes to improving
the convergence rate of FL.

• Using simulations, we demonstrate the superiority of
FedVQCS over state-of-the-art FL frameworks for an
image classification task using the MNIST dataset [28]
and the FEMNIST dataset [29]. Our simulation results
demonstrate that FedVQCS provides more than a 2.4%
increase in classification accuracy compared to the state-
of-the-art FL frameworks when the communication over-
head of the local model update transmission is 0.1 bit
per local model entry. Meanwhile, the results on the
MNIST dataset demonstrate that FedVQCS with a 0.1-
bit overhead per local model entry yields only a 2%
decrease in classification accuracy when compared with
the case that performs no local update compression. The
effectiveness of the parameter optimization of FedVQCS
is also verified in terms of classification accuracy.

In our preliminary work [30], we introduced a
communication-efficient FL framework based on VQCS
including the optimal design of the vector quantizer. We
extend this preliminary work by making important progress
on improving and analyzing the VQCS-based FL framework.
First of all, we newly provide the parameter optimization
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for the local model update compression, which is critical for
minimizing the reconstruction error of the global model update
at the PS, as will be demonstrated in Sec. V. Furthermore,
we present the convergence analysis of the VQCS-based FL
framework to theoretically justify the effectiveness of this
framework, which was not explored in [30].

The remainder of the paper is organized as follows. In
Sec. II, we first introduce a wireless FL system considered
in the paper. We then present a typical FL framework and
its challenge. In Sec. III, we present the proposed FedVQCS
framework, which addresses the above challenge by leveraging
the idea of VQCS. In Sec. IV, we optimize a quantizer design
and key parameters of FedVQCS and analyze its convergence
rate. In Sec. V, we provide simulation results to verify the
superiority of the proposed framework. Finally, in Sec. VI,
we present our conclusions and future research directions.

II. SYSTEM MODEL

Consider a wireless FL system in which a PS trains a global
model by collaborating with a set K of K wireless devices
over wireless links with limited capacity. The data samples for
training the global model are assumed to be distributed over
the wireless devices only, while the PS does not have direct
access to them. Let Dk be the local training dataset available
at device k ∈ K. The global model at the PS is assumed to
be represented by a parameter vector w ∈ RN̄ , where N̄ is
the number of global model parameters. The goal of FL is to
find the best parameter vector that minimizes the global loss
function, defined as

F (w) =
1

|D|
∑
u∈D

f(w;u), (1)

where f(w;u) is a loss function that measures how well the
global model with the parameter vector w fits one particular
data sample u ∈ Dk, and D = ∪kDk. The global loss function
in (1) can be rewritten as

F (w) =
1∑K

j=1 |Dj |

K∑
k=1

|Dk|Fk(w), (2)

where Fk(w) = 1
|Dk|

∑
u∈Dk

f(w;u) is a local loss function
at device k. Key symbols and their definitions considered in
the paper are summarized in Table I.

A. A Typical FL Framework

A typical FL approach for minimizing the global loss func-
tion in (2) involves alternating between local model update at
wireless devices and global model update at the PS in each
communication round, as explained in [2].

1) Local model update at wireless devices: In the local
model update process, each wireless device updates a local
parameter vector based on its own local training dataset. Then
each device sends a local model update (i.e., the difference
between the parameter vectors before and after the local up-
date) to the PS. Let w(t) ∈ RN̄ be the parameter vector shared
by the devices at communication round t ∈ {1, . . . , T}, where
T is the total number of communication rounds. Assume that

TABLE I
KEY SYMBOLS AND THEIR DEFINITIONS

Symbol Definition

K The number of devices
G The number of groups
B The number of blocks
N Dimension of local block update
Rk Dimensionality reduction ratio
Qk The number of quantization bits
Sk Sparsity level
Mk Dimension of a compressed local block update
g
(t)
k Local model update

g
(t,b)
k Local block update

g̃
(t,b)
k Local block update after the sparsification

∆
(t,b)
k Residual vector
g
(t)
K Global model update

g
(t,b)
K Global block update

ARk Projection matrix
α
(t,b)
k Scaling factor

x
(t,b)
k Compressed local block update

x̂
(t,b)
k Quantized local block update

v
(t,b)
k,p Sub-vector of a compressed local block update

v̂
(t,b)
k,p

Quantized sub-vector of
a compressed local block update

Kg Index set of the devices in the g-th group

y
(t,b)
Kg

Aggregation of the quantized
local block updates for the group g

g̃
(t,b)
Kg

Aggregation of the local
block updates for the g-th group

ĝ
(t,b)
Kg

Estimate of g̃(t,b)
Kg

ĝ
(t,b)
K Estimate of g(t,b)

K

ĝ
(t)
K Estimate of g(t)

K

every device employs a mini-batch SGD algorithm with E ≥ 1
local iterations for updating the parameter vector w(t). Then
the updated parameter vector at device k after E ≥ 1 local
iterations is given by

w
(t,e+1)
k = w

(t,e)
k − η(t)∇F

(t,e)
k

(
w

(t,e)
k

)
, (3)

for all e ∈ {1, . . . , E}, where w
(t,1)
k = w(t), η(t) is a local

learning rate,

∇F
(t,e)
k

(
w

(t,e)
k

)
=

1

|D(t,e)
k |

∑
u∈D(t,e)

k

∇f(w
(t,e)
k ;u), (4)

and D(t,e)
k is a mini-batch randomly drawn from Dk at the

e-th local iteration of round t. As a result, the local model
update sent by device k in round t is determined as

g
(t)
k =

1

η(t)E
(w(t) −w

(t,E+1)
k ) ∈ RN̄ . (5)

2) Global model update at the PS: In the global model
update process, the PS updates a global parameter vector
by aggregating the local model updates sent by K devices.
Then the PS broadcasts the updated parameter vector to these
devices. Under the assumption of perfect reception of K
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Fig. 1. An illustration of a single communication round t within the proposed FL framework when deployed over a wireless network.

local model updates, the PS can reconstruct the global model
update, defined as

g
(t)
K =

K∑
k=1

ρkg
(t)
k , (6)

where ρk ≜
∑E

e=1 |D(t,e)
k |∑K

j=1

∑E
e=1 |D(t,e)

j |
is invariant in each communica-

tion round. If the PS employs the SGD algorithm for updating
the parameter vector w(t), then the updated parameter vector
in round t will be given by

w(t+1) = w(t) − γ(t)g
(t)
K , (7)

where γ(t) is a global learning rate. Then the PS broadcasts
w(t+1) to the wireless devices, which triggers the start of the
local model update process in round t+ 1.

B. Key Challenge in Wireless FL
A major challenge in realizing the FL framework in

Sec. II-A is the significant communication overhead required
for transmitting the local model updates from the wireless
devices to the PS because the wireless links connecting
them may have limited capacity in practical communication
systems. This challenge can be mitigated by applying lossy
compression to the local model updates, but such a com-
pression approach leads to an inevitable error in the global
model update reconstructed at the PS. Moreover, in general,
the higher the level of compression at the wireless devices,
the larger the reconstruction error at the PS. Therefore, it
is essential to develop a rigorous compression strategy for
local model updates that provides a considerable reduction
in the communication overhead while also minimizing the
reconstruction error at the PS.

III. PROPOSED FEDVQCS FRAMEWORK

In this section, we present a communication-efficient FL
framework, called FedVQCS, that can reduce the communi-
cation overhead for transmitting local model updates at the

wireless devices while also enabling an accurate reconstruction
of the global model update at the PS.

A. Overview of FedVQCS

The basic strategy of FedVQCS is to compress the local
model updates at the wireless devices by leveraging both
vector quantization and CS-based dimensionality reduction
while reconstructing the global model update at the PS via
sparse signal recovery. The high-level procedure of FedVQCS
is illustrated in Fig. 1 and described below.

1) Compression of the local model updates: In each com-
munication round, each device divides its local model update
into B1 blocks, each of which has a length of N = N̄

B
2. Let

g
(t,b)
k ∈ RN be the b-th block of g

(t)
k , and we refer to this

vector as the b-th local block update of device k in round t.
Each device compresses these B local block updates in parallel
by applying a local block compression process denoted by a
function BlkComp(·). The motivation behind this block-wise
compression is to reduce the computational complexity for
reconstructing the global model update at the PS, as considered
in [18]. The compressed local block updates are encoded into
digital bits and then transmitted to the PS through wireless
links.

2) Reconstruction of the global model update: In each
communication round, the PS reconstructs a global model
update from the compressed local model updates sent by
the wireless devices. Let g

(t,b)
K =

∑K
k=1 ρkg

(t,b)
k be the b-

th global block update in round t which is the aggregation
of the local block updates sent by K devices. The PS first
reconstructs g(t,b)

K for every block b ∈ {1, . . . , B}, by applying
a global block reconstruction process denoted by a function

1The number of blocks B is pre-determined at the PS before the beginning
of the training process according to the computational power of the PS.

2In practice, this process can be realized by randomly shuffling local model
update entries and then dividing blocks in order. The information about
random shuffle can be expressed as a random seed number that can be shared
between the PS and devices before the beginning of the training process.
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Procedure 1 Federated Learning via Vector Quantized Com-

pressed Sensing (FedVQCS)
Input: w(1), {Kg}Gg=1, {Ck}Kk=1

Output: w(T )

1: for t = 1 to T do
2: At the wireless devices:

3: for Each device k ∈ K do in parallel
4: g

(t)
k = LocalUpdate(w(t),Dk)

5: for Each block b ∈ B do in parallel
6:

{
Ω

(t,b)
k ,∆

(t,b)
k

}
= BlkComp

(
g
(t,b)
k ,∆

(t−1,b)
k

)
7: end
8: Transmit {Ω(t,b)

k }Bb=1 to the PS.

9: end
10: At the parameter server:

11: for Each block b ∈ B do in parallel
12: ĝ

(t,b)
K = BlkReconst

(
{Ω(t,b)

k }Kk=1

)
13: end
14: ĝ

(t)
K = Concatenate

(
{ĝ(t,b)

K }Bb=1

)
15: w(t+1) = w(t) − γ(t)ĝ

(t)
K

16: Broadcast w(t+1) to the wireless devices.

17: end

Fig. 2. Dimensionality reduction step of the proposed FedVQCS framework.

BlkReconst(·). The PS then concatenates the reconstructed
block updates to construct the global model update. This
process is expressed as ĝ

(t)
K = Concatenate({ĝ(t,b)

K }Bb=1),
where ĝ

(t,b)
K is the reconstruction of g

(t,b)
K determined by the

global block reconstruction process.
3) Summary: The overall procedures of FedVQCS are sum-

marized in Procedure 1, while the local block compression
and global block reconstruction processes are summarized in
Procedure 2 and Procedure 3, respectively. In the remain-
der of this section, we elaborate more on the local block
compression process (see Sec. III-B) and the global block
reconstruction process (see Sec. III-C). Note that FedVQCS
can also be combined with other FL frameworks such as [31]–
[33] for further performance improvement.

B. Compression of Local Block Update

The local block compression process of FedVQCS consists
of three steps: (i) sparsification, (ii) dimensionality reduction,
and (iii) vector quantization, as summarized in Procedure 2.

Procedure 2 Compression of Local Block Update

function BlkComp
(
g
(t,b)
k ,∆

(t−1,b)
k

)
1: ḡ

(t,b)
k = g

(t,b)
k +∆

(t−1,b)
k

2: g̃
(t,b)
k = Sparse(ḡ

(t,b)
k )

3: ∆
(t,b)
k = ḡ

(t,b)
k − Sparse(ḡ

(t,b)
k )

4: x
(t,b)
k = α

(t,b)
k ARk g̃

(t,b)
k , where α

(t,b)
k = 1/∥g̃(t,b)

k ∥
5: x

(t,b)
k =

[
(v

(t,b)
k,1 )T, . . . , (v

(t,b)
k,Pk

)T
]T

6: v̂
(t,b)
k,p = VQ(v

(t,b)
k,p ), ∀p

7: Ω
(t,b)
k = Encode

(
{v̂(t,b)

k,p }Pk
p=1, α

(t,b)
k

)
8: return Ω

(t,b)
k and ∆

(t,b)
k

end function

Procedure 3 Reconstruction of Global Block Update

function BlkReconst
(
{Ω(t,b)

k }Kk=1

)
1:

(
{v̂(t,b)

k,p }Pk
p=1, α

(t,b)
k

)
= Decode

(
Ω

(t,b)
k

)
, ∀k

2: x̂
(t,b)
k =

[
(v̂

(t,b)
k,1 )T, . . . , (v̂

(t,b)
k,Pk

)T
]T, ∀k

3: y
(t,b)
Kg

=
∑

k∈Kg

(
ρk/α

(t,b)
k

)
x̂

(t,b)
k , ∀g

4: ĝ
(t,b)
Kg

= SparseRecovery
(
ARg ,y

(t,b)
Kg

)
, ∀g

5: ĝ
(t,b)
K =

∑G
g=1 ĝ

(t,b)
Kg

6: return ĝ
(t,b)
K

end function

The details of each step performed by device k for block b in
round t are elaborated below.

1) Sparsification: In the sparsification step, each local
block update is sparsified by nullifying all but the most signif-
icant Sk entries in terms of their magnitudes, where Sk < N
is a sparsity level chosen by device k. To compensate for the
information loss during the sparsification, the nullified entries
are added to the local block update in the next communication
round, as done in [22] and [23]. With this compensation
strategy, the local block update that needs to be sparsified at
device k is expressed as

ḡ
(t,b)
k = g

(t,b)
k +∆

(t−1,b)
k , (8)

where ∆
(t,b)
k ∈ RN is a residual vector stored by device k for

block b in round t. As a result, the local block update after the
sparsification is denoted by g̃

(t,b)
k = Sparse(ḡ

(t,b)
k ) which has

only Sk nonzero entries. Then, the residual vector is updated
as

∆
(t,b)
k = ḡ

(t,b)
k − Sparse(ḡ

(t,b)
k ). (9)

Our sparsification step is summarized in Steps 1–3 of Proce-
dure 2.

2) Dimensionality reduction: In the dimensionality reduc-
tion step, each local block update after the sparsification is
projected onto a low-dimensional space as in CS [34]. In other
words, the dimension of the sparsified local block update g̃

(t,b)
k

is reduced based on the CS theory, as illustrated in Fig. 2. Let
Rk = N

Mk
≥ 1 be a dimensionality reduction ratio chosen by

device k, where Mk ≤ N is the dimension after projection.
Then, the compressed local block update x

(t,b)
k ∈ RMk is
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obtained as

x
(t,b)
k = α

(t,b)
k ARk

g̃
(t,b)
k , (10)

where α
(t,b)
k ∈ R is a scaling factor, and ARk

∈ RMk×N

is a projection matrix. We set the scaling factor as α
(t,b)
k =

1/∥g̃(t,b)
k ∥ and the projection matrix as an IID Gaussian

random matrix3 with zero mean and unit variance, i.e.,
(ARk

)m,n ∼ N (0, 1), ∀m,n. Under these settings, the design
of vector quantizer as well as the optimization of Sk and
Rk will be elucidated in Sec. IV. We assume4 that the
devices with the same dimensionality reduction ratio adopt
the same projection matrix. Our dimensionality reduction step
is summarized in Step 4 of Procedure 2.

3) Vector quantization: In the vector quantization step, each
compressed local block update is quantized using a QkMk-
bit vector quantizer, where Qk is the number of quantization
bits per entry chosen by device k. To avoid the computa-
tional complexity for quantizing a high-dimensional vector,
the compressed local block update x

(t,b)
k is first partitioned

into Pk subvectors of dimension L = Mk

Pk
, i.e., x

(t,b)
k =[

(v
(t,b)
k,1 )T, . . . , (v

(t,b)
k,Pk

)T
]T

, as in [15]. Then, these subvectors
are quantized in parallel using a QkL-bit vector quantizer. The
resulting quantized subvector is given by

v̂
(t,b)
k,p = QC(v

(t,b)
k,p ), p ∈ {1, . . . , Pk}, (11)

where QC : RL → C is a vector quantizer with a codebook
C such that |C| ≤ 2QkL. The optimal design of the vector
quantizer will be discussed in Sec. IV-A. Our vector quanti-
zation step is summarized in Steps 5–6 of Procedure 2. After
vector quantization, the quantized subvectors {v̂(t,b)

k,p }Pk
p=1 and

the scaling factor α(t,b)
k are encoded into digital bits, denoted

by Ω
(t)
k,b, for digital communications.

C. Reconstruction of Global Block Update

The global block reconstruction process of FedVQCS con-
sists of two steps: (i) group-wise aggregation, and (ii) sparse
signal recovery, as summarized in Procedure 3. The details
of each step performed by the PS for block b in round t are
elaborated below.

1) Group-wise aggregation: In the group-wise aggregation
step, the PS groups the compressed local block updates with
the same dimension and, then, aggregates only the compressed
updates in the same group. Meanwhile, to facilitate an accurate
reconstruction of the aggregated block update, the PS limits
the number of the compressed updates in each group to be less
than or equal to K ′. By adjusting K ′, the PS can control the
tradeoff between the complexity and accuracy of the global
block reconstruction, as will be justified later.

3The design of the projection matrix can be optimized for further reducing
the compression error. Other types of random matrices are also applicable in
(10).

4In practice, this assumption can be realized by sharing the same N ×N
random projection matrix between the PS and the devices before the beginning
of the training process. Then, in each local block update compression, device
k can determine its projection matrix by selecting the first Mk rows of the
shared projection matrix.

Let Kg be the indices of the compressed local block updates
in group g ∈ {1, . . . , G}, where G is the number of groups,
and K1, . . . ,KG are mutually exclusive subsets of K such
that K =

⋃G
g=1 Kg . For ease of exposition, we assume that

|Kg| = K ′, ∀g. Under error-free reception of the transmitted
data {Ω(t,b)

k }k∈K, the PS obtains the quantized subvectors
{v̂(t,b)

k,p }Pk
p=1 and the scaling factor α

(t,b)
k by decoding Ω

(t,b)
k .

Let d(t,b)
k,p ≜ v̂

(t,b)
k,p −v

(t,b)
k,p be a quantization error vector. Then,

from v̂
(t,b)
k,p = v

(t,b)
k,p +d

(t,b)
k,p , the compressed local block update

x̂
(t,b)
k is expressed as

x̂
(t,b)
k =

[
(v̂

(t,b)
k,1 )T, . . . , (v̂

(t,b)
k,P )T

]T
= x

(t,b)
k + d

(t,b)
k

= α
(t,b)
k ARk

g̃
(t,b)
k + d

(t,b)
k , (12)

where d
(t,b)
k =

[
(d

(t,b)
k,1 )T, . . . , (d

(t,b)
k,P )T

]T
. Because Rk = Rg ,

∀k ∈ Kg , the PS can aggregate the compressed local block
updates in group g as

y
(t,b)
Kg

=
∑
k∈Kg

ρk

α
(t,b)
k

x̂
(t,b)
k = ARg

g̃
(t,b)
Kg

+ d
(t,b)
Kg

, (13)

where g̃
(t,b)
Kg

=
∑

k∈Kg
ρkg̃

(t,b)
k is the aggregated block

update of group g for block b in round t and d
(t,b)
Kg

=∑
k∈Kg

(ρk/α
(t,b)
k )d

(t,b)
k .

2) Sparse signal recovery: In the sparse signal recovery
step, the PS estimates the aggregated block update g̃

(t,b)
Kg

from

its noisy linear observation y
(t,b)
Kg

in (13) for every group g.

As can be seen in (13), the estimation of g̃(t,b)
Kg

from y
(t,b)
Kg

is
a well-known sparse signal recovery problem [34]. Motivated
by this fact, the PS employs a sparse signal recovery algorithm
(e.g., [35], [36]) to estimate g̃

(t,b)
Kg

from y
(t,b)
Kg

for every group
g. The sparse signal recovery algorithm considered in our work
will be elucidated in Sec. V. If the sparsity level of g̃

(t,b)
Kg

is

sufficiently smaller than the dimension of y
(t,b)
Kg

, which will
be justified in Sec. IV-B, the PS is able to attain an accurate
estimate of g̃(t,b)

Kg
. After the recovery of the aggregated block

updates for all groups, the PS reconstructs the global block
update as ĝ

(t,b)
K =

∑G
g=1 ĝ

(t,b)
Kg

. Finally, the PS obtains the

global model update ĝ
(t)
K by concatenating all the global block

updates {ĝ(t,b)
K }Bb=1 (see Step 14 of Procedure 1).

Remark 1 (Communication overhead of FedVQCS): In
FedVQCS, each device k transmits the digital bits representing
the quantized subvectors {v̂(t,b)

k,p }Pk
p=1 and the scaling factor

α
(t,b)
k for every block b ∈ {1, . . . , B} in round t. Because

every quantized subvector is represented by QkL bits, the
total number of digital bits required for transmitting the local
model update at each device is given by (QkLPk + 32)B =
(QkMk + 32)B for every round. If QkMk ≫ 32, the
communication overhead for device k is QkMkB

NB = Qk

Rk
bits

per local model entry. Owing to this feature, FedVQCS allows
each device to not only reduce the communication overhead
for transmitting its local model update but also control this
overhead by adjusting the values of Qk and Rk based on
the capacity of the wireless link. Therefore, FedVQCS is a
powerful framework for enabling wireless FL with limited
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link capacity. The optimization of Qk and Rk for a given
link capacity will be elucidated in Sec. IV-B. It should also
be noted that in FedVQCS, the PS and devices need to share
some information such as C, ARk

, and B before the beginning
of training process. Fortunately, the communication overhead
required for sharing this information is marginal compared
to that required for transmitting local model updates during
the training process. Hence, in this work, we consider only
the significant communication overhead that occurs during the
local model update transmission in FL.

Remark 2 (Comparison with existing FL frameworks):
The existing FL frameworks in [13]–[15] consider vector
quantization for compressing the local model updates, but
without applying any dimensionality reduction technique.
Unlike these frameworks, FedVQCS applies the CS-based
dimensionality reduction before the vector quantization, which
reduces the dimension of the local model update by allowing
the transmission of its most significant entries only. In [19]–
[23], it has been reported that the accuracy of FL does
not severely degrade when sending a sufficient number of
the significant entries. Therefore, FedVQCS achieves further
compression of the local model updates compared with the
frameworks in [13]–[15], without significantly sacrificing the
learning accuracy. The existing FL frameworks in [16]–[18]
employ CS-based dimensionality reduction but rely solely on
scalar quantization. In contrast, FedVQCS empolys vector
quantization, which generally outperforms scalar quantization
in terms of quantization error. Furthermore, FedVQCS op-
timizes key parameters such as the number of quantization
bits per entry Q, a sparsity level S, and a dimensionality
reduction ratio R to minimize the reconstruction error at the
PS (see Sec. IV-B). This optimization approach has not been
thoroughly explored in the FL literature. Therefore, FedVQCS
enables a more accurate reconstruction of the global model
update compared to the QCS-based FL frameworks in [16]–
[18].

IV. OPTIMIZATION AND CONVERGENCE ANALYSIS OF
FEDVQCS

Here, we first optimize the design of a vector quantizer
for the local block compression process of FedVQCS and
then optimize the key design parameters of this compression
process for minimizing the reconstruction error of the global
model update at the PS. We also characterize the convergence
rate of FedVQCS, while considering the reconstruction error
at the PS.

A. Optimal Design of Vector Quantizer

In FedVQCS, a proper design of the vector quantizer in
(11) is critical for reducing the reconstruction error of the
global model update at the PS. The underlying challenge of
the vector quantizer design is that the exact distribution of the
quantizer input depends on many factors such as the global
model choice, the local training data distribution, and the loss
function type. Moreover, the optimal vector quantizer may
differ across partitions, blocks, devices, and communication
rounds, which can lead to additional communication overhead

for transmitting the information of the quantizer between the
PS and the devices.

Fortunately, the above challenges can be readily addressed
in FedVQCS. First of all, it is reported in [18] that a sparsified
local block update g̃

(t,b)
k can be modeled as an IID random

vector whose entry follows a Bernoulli Gaussian-mixture
distribution. Hence, for a large N , the projected local model
update x

(t,b)
k = α

(t,b)
k ARk

g̃
(t,b)
k can be modeled as an Mk-

dimensional IID Gaussian random vector with zero mean and
unit variance by the central limit theorem, provided that ARk

is an IID Gaussian random matrix with α
(t,b)
k = 1/∥g̃(t,b)

k ∥.
This implies that every subvector of x(t,b)

k can also be modeled
as an L-dimensional IID Gaussian random vector whose
distribution is same for all partitions, blocks, devices, and
communication rounds, i.e., v

(t,b)
k,p ∼ N (0L, IL), ∀k, p, t, b.

Motivated by this observation, in FedVQCS, we use the vector
quantizer optimized for the distribution of v ∼ N (0L, IL) for
a given number of quantization bits. Owing to this feature,
both the PS and devices in FedVQCS can utilize the same
optimal quantizer by sharing the number of quantization bits.

1) Quantizer design problem: To determine the optimal
vector quantizer for the distribution of v ∼ N (0L, IL), we
consider a shape-gain quantizer, which is effective in quantiz-
ing an IID Gaussian random vector while enabling the efficient
construction of the optimal codebook [25]. When employing
this quantizer, the shape of v, defined as s = v/∥v∥, and
its gain defined as h = ∥v∥ are independently quantized. Let
QCs

(s) = argmin
ŝ∈Cs

∥s− ŝ∥2 and QCh
(h) = argmin

ĥ∈Ch

|h− ĥ|2 be

the shape and gain quantizers using the minimum Euclidean
distance criterion, respectively. Then, the output of the shape-
gain quantizer will be v̂ = ĥŝ, where ŝ = QCs

(s) and
ĥ = QCh

(h). As such, the MSE of the shape-gain quantizer
can be approximated by [25]

E
[
∥v − ĥŝ∥2

]
≈ LE

[
∥s− ŝ∥2

]
+ E

[
|h− ĥ|2

]
= L ·MSE(s; Cs) +MSE(h; Ch), (14)

where MSE(h; Ch) = E
[
|h − QCh

(h)|2
]

and MSE(s; Cs) =
E
[
∥s − QCs(s)∥2

]
. By utilizing this approximation, we for-

mulate the shape-gain quantizer design problem for a given
number of quantization bits QL as follows:

argmin
Cs,Ch

L ·MSE(v/∥v∥; Cs) +MSE(∥v∥; Ch),

s.t. v ∼ N (0L, IL), |Cs| ≤ 2Qs , |Ch| ≤ 2Qh ,

Qs +Qh ≤ QL. (15)

This problem is solved using the following strategy: First,
we separately determine the MSE-optimal shape and gain
quantizers for a fixed bit allocation (Qs, Qh) and, then, we
derive the optimal bit allocation (Q⋆

s , Q
⋆
h) for the optimal

shape and gain quantizers.

2) Design of shape quantizer: When the number of shape
quantization bits is given by Qs, the MSE-optimal shape
quantizer is obtained by solving the following problem:

C⋆
s = argmin

|Cs|≤2Qs

MSE(s; Cs), (16)
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where s = v/∥v∥ with v ∼ N (0L, IL). Unfortunately, it
is hard to characterize the exact solution of this problem;
thus, as an alternative, we consider an approximate solution
by replacing the Euclidean distance with the squared chordal
distance, as in [15]. Then the approximate solution of (16) is
obtained as an even Grassmannian codebook C⋆

s that can be
constructed as follows [15]:

• Solve the Grassmannian line packing problem formulated
as [27]:

max
C+
s

min
ŝ̸=ŝ′,ŝ,ŝ′∈C+

s

d(ŝ, ŝ′), s.t. |C+
s | = 2Qs−1, (17)

where d(ŝ, ŝ′) =

√
1− |ŝTŝ′|2.

• Construct the even Grassmannian codebook as C⋆
s =

C+
s

⋃
C−
s where C−

s = {s : −s ∈ C+
s }.

We determine the optimal shape quantizer by using the even
Grassmannian codebook C⋆

s constructed above. The MSE of
the above shape quantizer is characterized, as given in the
following lemma:

Lemma 1: For large L, the MSE of the even Grassmannian
codebook C⋆

s with size 2Qs is bounded as

2− 2

√
1− L− 1

L+ 1
2−

2(Qs−1)
L−1 ≤ MSE(s; C⋆

s ) ≤ 2−
2(Qs−1)

L−1 +1.

(18)

Proof: See Appendix A.

3) Design of gain quantizer: When the number of gain
quantization bits is given by Qh, the MSE-optimal gain
quantizer is obtained by solving the following problem:

C⋆
h = argmin

|Ch|≤2Qh

MSE(h; Ch), (19)

where h = ∥v∥. From v ∼ N (0L, IL), the probability density
function of the gain h = ∥v∥ is given by

fh(z) =
2zL−1 exp (−z2

2 )

Γ(L/2)2L/2
, (20)

where Γ(r) =
∫∞
0

tr−1e−tdt. Because this distribution is
strictly log-concave, the Lloyd–Max algorithm in [26] con-
verges to a globally optimal quantizer in terms of minimizing
the MSE [37]. Hence, when Qh > 0, we determine the
optimal gain quantizerby applying the Lloyd–Max algorithm
for the distribution in (20). When Qh = 0, our strategy
is to approximate the gain h = ∥v∥ as its expected value
E[h] =

√
2Γ((L+1)/2)

Γ(L/2) based on its distribution. Considering
these two cases, the MSE of the above gain quantizer is
characterized, as given in the following lemma:

Lemma 2: The MSE of the optimal gain quantizer is
approximated by

MSE(h; C⋆
h) ≈

{
χL2

−2(Qh+1), Qh > 0,

L− 2π

β2(L
2 , 12 )

, Qh = 0,
(21)

where χL =
3

L
2 Γ3(L+2

6 )

2Γ(L
2 )

.

Proof: The MSE of the Lloyd–Max codebook with size

Qh ≫ 1, namely C⋆
h , is approximated by [38]

MSE(h; C⋆
h) ≈

1

12

(∫ ∞

0

fh(z)dz

)3

2−2Qh

=
3

L
2 Γ3

(
L+2
6

)
8Γ

(
L
2

) 2−2Qh . (22)

We use the above expression for approximating the MSE of
the Lloyd–Max quantizer for Qh > 0. The MSE of ĥ = E[h]
is computed as

E[(h− E[h])2] = E[h2]− (E[h])2 = L− 2π

β2(L2 ,
1
2 )

, (23)

where β(r, s) =
∫ 1

0
tr−1(1 − t)s−1dt. This expression gives

the MSE of the optimal gain quantizer for Qh = 0.
4) Optimal bit allocation: Now, we derive the optimal bit

allocation for the optimal shape and gain quantizers based on
the MSE characterizations in (18) and (21). This result is given
in the following theorem:

Theorem 1: If both the upper bound in (18) and the
approximation in (21) hold with equality, the optimal bit
allocation

(
Q⋆

s , Q
⋆
h

)
in (15) is given by

(
Q⋆

s , Q
⋆
h

)
=

{(
QL−HL,Q, HL,Q

)
, if FL,Q ≤ 0,(

QL, 0
)
, if FL,Q > 0,

(24)

where HL,Q = L−1
2L log2

(
L−1
2L χL

)
+Q− 1 and

FL,Q = L2−
2(QL−1)

L−1 +1
(
2

2HL,Q
L−1 +1 − 1

)
+ χL2

−2(HL,Q+1) − L+
2π

β2
(
L
2 ,

1
2

) . (25)

Proof: From Lemma 1 and Lemma 2, the bit allocation
problem with Qh > 0 is

(P1) argmin
Qs,Qh

L2−
2(Qs−1)

L−1 +1 + χL2
−2(Qh+1),

s.t. Qs +Qh ≤ QL, Qh > 0. (26)

Because (P1) is convex [15], the optimal solution is readily
derived by leveraging Karush-Kuhn-Tucker (KKT) conditions:

λ⋆ +
∂FL,1(Qs, Qh)

∂Qs
= 0, λ⋆ +

∂FL,1(Qs, Qh)

∂Qh
= 0, (27)

where FL,1(Qs, Qh) is the objective function of (P1), and
λ⋆ is a Lagrange multiplier. From the KKT conditions, the
solution of (P1) is given by

(
Qs, Qh

)
= (QL−HL,Q, HL,Q),

where

HL,Q =
L− 1

2L
log2

(
L− 1

2L
χL

)
+Q− 1. (28)

From Lemma 1 and Lemma 2, the bit allocation problem with
Qh = 0 is formulated as

(P2) argmin
Qs≤QL

L2−
2(Qs−1)

L−1 +1 + L− 2π

β2
(
L
2 ,

1
2

) . (29)

Because the objective function of (P2) is a decreasing function
of Qs, the solution is given by Qs = QL. The optimal bit
allocation in (24) can be obtained by comparing FL,1(QL −
HL,Q, HL,Q) and FL,2(QL, 0). This completes the proof.
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From Theorem 1, the MSE of the optimal shape-gain
quantizer adopted in FedVQCS is approximated by

σ2
L,Q ≈

L2−
2(QL−HL,Q−1)

L−1 +1 + χL2
−2(HL,Q+1), FL,Q ≤ 0,

L2−
2(QL−1)

L−1 +1 + L− 2π

β2(L
2 , 12 )

, FL,Q > 0.

(30)

The MSE in (30) clearly demonstrates that the increase in the
number of quantization bits reduces the vector quantization
error during the local block compression. Therefore, any in-
crease in the capacity of wireless links will lead to a reduction
in the reconstruction error of the global block update at the
PS in FedVQCS.

B. Parameter Optimization for Local Block Compression

The local block compression process of FedVQCS has three
design parameters: (i) the number of quantization bits per
entry, Q, (ii) a sparsity level, S, and (iii) a dimensionality
reduction ratio, R. These parameters are closely related to
the wireless link capacity as well as the reconstruction error
of the global model update at the PS. Motivated by this
fact, we optimize the above parameters for minimizing the
reconstruction error at the PS under the constraint of the
wireless link capacity. In this optimization, we assume that
the maximum number of digital bits that can be reliably
transmitted from device k to the PS in each communication
round is given by CkN̄ > 0. Here, Ck is determined solely
by the wireless link capacity, which can be interpreted as a
target compression ratio. For example, if Ck is given by 0.5
bits per entry according to the wireless link capacity, the N̄ -
dimensional local model update needs to be compressed, so
that it can be transmitted using only N̄/2 bits in each iteration.
We also assume that Ck is known at both the PS and device
k. Our strategy for parameter optimization is as follows: We
first characterize the best choice of Q⋆

k(Rk) and S⋆
k(Rk) as

a function of Rk. We then determine the best dimensionality
reduction ratio R⋆

k when Qk = Q⋆
k(Rk) and Sk = S⋆

k(Rk). In
the remainder of this subsection, we omit the indices t and b
for ease of exposition.

1) Characterization of Q⋆
k(Rk) and S⋆

k(Rk): As discussed
in Remark 1, the communication overhead of FedVQCS for
device k is Qk

Rk
N̄ bits. This overhead needs to be less than or

equal to CkN̄ for error-free transmission of the compressed
local block updates from device k to the PS. Therefore,
the optimal number of quantization bits to minimize the
quantization error for a fixed Rk is

Q⋆
k(Rk) = CkRk. (31)

To determine the proper sparsity level, we consider the
fact that the PS estimates the aggregated block update
g̃Kg

=
∑

k∈Kg
ρkg̃k from its noisy linear observation yKg

=
ARg g̃Kg

+dKg during the global block reconstruction, where
(ARg )m,n ∼ N (0, 1). Let S̃g be the sparsity level of the
aggregated block update g̃Kg

. According to the CS theory [34],
a well-established sparse signal recovery algorithm can find a

unique solution of the above sparse signal recovery problem
with high probability, if

Rk <
N

2S̃g log(N/S̃g)
, (32)

for a large N , moderately large S̃g , and large N/S̃g . Inspired
by this result, we shall use the inequality (32) to check the
feasibility of the accurate reconstruction of g̃Kg

from yKg
.

Recall that during the global block reconstruction process of
FedVQCS, the PS groups the local model updates with the
same dimensionality reduction ratio (i.e., Rk = Rg , ∀k ∈ Kg),
as explained in Sec. III-C. Hence, the local block updates that
belong to the same group have the same sparsity level (i.e.,
S⋆
k(Rk) = S⋆

g , ∀k ∈ Kg). From this fact, one can easily show
that the condition in (32) always holds for all possible g̃Kg

if
Rk < N

2K′Sk log(N/(K′Sk))
. Therefore, we determine the best

sparsity level for a fixed Rk as

S⋆
k(Rk) = argmax

S
S, s.t. Rk < N

2K′S log(N/(K′S)) . (33)

2) Optimization of Rk: To facilitate the group-wise ag-
gregation strategy explained in Sec. III-C, the dimensionality
reduction ratio is assumed to be chosen among a candidate set
Rc = {Rc

1, . . . , R
c
C : Rc

i ≥ 1, ∀i}, shared by all the devices.
Under this assumption, we aim to find the optimal choice of
Rk ∈ Rc that can minimize the MSE of the global block
reconstruction at the PS. This optimization problem can be
formulated as

R⋆
k = argmin

Rk∈Rc

E
[
∥ḡKg

− ĝKg
∥2
]
, (34)

where ḡKg
=

∑
k∈Kg

ρkḡk, and the expectation is taken with
respect to vector quantization error. It is generally challenging
for the devices to locally solve the problem in (34) because
of a lack of knowledge of the local block updates sent by
other devices in the same group. In addition, the estimate
of the aggregated block update, ĝKg

, depends on the sparse
signal recovery algorithm chosen at the PS. To overcome these
challenges, we consider the ideal scenario in which the PS per-
fectly finds the support set5 of g̃Kg

by employing a powerful
CS recovery algorithm, and, then, it minimizes the squared
error ∥g̃Kg

− ĝKg
∥2 by solving the sparse signal recovery

problem in (13). Under this consideration, we characterize the
upper bound of the objective function in (34), as given in the
following theorem:

Theorem 2: Let ĝKg
be the least squares solution of the

sparse recovery problem in (13) obtained with the knowledge
of the support set of g̃Kg

. If E[∥dk∥2] = σ2
L,Qk

, ∀k ∈ Kg ,
for a large N

Rk
≫ 1 and S̃g ≫ 1, the MSE of ĝKg

is upper
bounded as follows:

E[∥ḡKg
− ĝKg

∥2]

≤ K ′
∑
k∈Kg

ρ2k

{
∥ḡk − g̃k∥2 +

K ′SkRk

NLα2
k

σ2
L,Qk︸ ︷︷ ︸

=Ek(Rk)

}
. (35)

5The support set of a vector A is defined as T (A) = {i : ai ̸= 0}, which
is the index set of the nonzero entries in A.
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Proof: See Appendix B.

Theorem 2 shows that the upper bound of the global block
reconstruction error at the PS can be minimized even if device
k ∈ Kg locally minimizes Ek(Rk). Based on this result,
instead of solving (34), we formulate a local optimization
problem for device k ∈ Kg as

R⋆
k = argmin

Rk∈Rc

∥ḡk − Sparse(ḡk)∥2 +
K ′SkRk

NLα2
k

σ2
L,Qk

. (36)

Because device k knows the input local block update ḡk

defined in (8), the objective function of (36) can be computed
for every Rk ∈ Rc under the assumptions of Qk = Q⋆

k(Rk)
and Sk = S⋆

k(Rk). Then, by comparing the objective values,
device k can determine its best dimensionality reduction ratio
R⋆

k.
There exists a tradeoff between the first and second terms

of the objective function in (36) which can be interpreted
as sparsification and reconstruction errors, respectively. The
reconstruction error decreases with Rk because the number of
vector quantization bits Q⋆

k(Rk) is an increasing function of
Rk, as can be seen in (31). In contrast, the sparsification error
increases with Rk because the sparsity level S⋆

k(Rk) is a de-
creasing function of Rk, as can be seen in (33). Therefore, the
optimization problem in (36) allows each device to determine
the best parameters for optimizing the tradeoff between the
sparsification and reconstruction errors in FedVQCS.

C. Convergence Rate Analysis

In this analysis, we characterize the convergence rate of
FedVQCS when the SGD algorithm with E = 1 is employed
for updating the parameter vector at the PS. In our analysis,
we make the following assumptions not only for mathematical
tractability but also for connecting our analysis with the
parameter optimization in Sec. IV-B.

Assumption 1: The loss function F (w) is β-smooth and
is lower bounded by a constant F (w⋆), i.e., F (w) ≥ F (w⋆),
∀w ∈ RN̄ .

Assumption 2: For every w, the stochastic gradient is
unbiased, i.e., E

[
∇F

(t)
k (w)

]
= ∇Fk(w), ∀k, t. Also, the

variance of the stochastic gradient is bounded by a constant
ϵ ≥ 0, i.e., E

[∥∥∇F
(t)
k (w)−∇Fk(w)

∥∥2] ≤ ϵ, ∀k, t.
Assumption 3: The squared sparsification error at the

device k is upper bounded by a constant ζb
B ≥ 0, i.e.,

E[∥ḡ(t,b)
k − g̃

(t,b)
k ∥2] ≤ ζb

B , ∀t, b. Also, the squared recon-
struction error at the PS is upper bounded by the squared
norm of the true block gradient with some constant δb < 1,
i.e., E[∥g̃(t,b)

K − ĝ
(t,b)
K ∥2] ≤ δb∥∇F (b)(w(t))∥2, ∀t, b, where

∇F (b)(w(t)) ∈ RN is the b-th block of ∇F (w(t)).

Assumption 3 is particularly relevant to FedVQCS because
the parameter optimization of FedVQCS aims at reducing the
MSE of the global block update by opportunistically determin-
ing the parameters (Q,S,R) of the local block compression
under the constraint of the wireless link capacity. Note that
Assumptions 1 and 2 are commonly adopted for analyzing
the convergence rate of FL operating with a family of gradient
descent algorithms, as in [13] and [39].

Under Assumptions 1–3, we characterize the convergence
rate of FedVQCS with the SGD algorithm. This result is given
in the following theorem:

Theorem 3: Under Assumptions 1–3 with E = 1, ρk = 1
K ,

and γ(t) = η(t) = 1−maxb δb
6β(1+maxb δb)

√
T

, FedVQCS with the SGD
algorithm satisfies the following bound:

E

[
1

T

T∑
t=1

∥∇F (w(t))∥2
]

≤ 1√
T

[
24β(1+maxb δb)
(1−maxb δb)2

{F (w(1))− F (w⋆)}+ ϵ
]
+

maxb ζb
18T

.

(37)

Proof: See Appendix C.
Theorem 3 demonstrates that FedVQCS converges to a

stationary point of the loss function if Assumptions 1–3 hold.
This theorem also shows that the convergence rate of Fed-
VQCS has the order of O

(
1√
T

)
, which is the same as that of

a classical FL framework for a non-convex loss function [39].
Furthermore, the convergence speed of FedVQCS is shown to
improve as both δb and ζb decrease. This result implies that our
parameter optimization in Sec. IV-B is effective for improving
the convergence speed.

V. SIMULATION RESULTS AND ANALYSIS

In this section, we demonstrate the superiority of FedVQCS
over existing FL frameworks, using simulations. We assume
that the communication overhead allowed for transmitting the
local model update at device k is given by Ck bits per local
model entry. Under this assumption, we consider two commu-
nication scenarios: (i) homogeneous and (ii) heterogeneous.
In the homogeneous scenario, we set Ck = C̄, ∀k ∈ K, to
model the wireless links with the same capacity; whereas, in
the heterogeneous scenario, we uniformly draw Ck from a
pre-defined set C to model the wireless links with different
capacities.

In this simulation, we consider FL for an image classi-
fication task using the publicly accessible MNIST [28] and
FEMNIST [29] datasets. Details of the learning scenarios for
each dataset are described below.

• MNIST: The global model is set to be a fully-connected
neural network that consists of 784 input nodes, a single
hidden layer with 20 hidden nodes, and 10 output nodes.
The activation functions of the hidden layer and the
output layer are set to the rectified linear unit (ReLU) and
the softmax function, respectively. For the global model
training at the PS, the ADAM optimizer in [40] with an
initial learning rate 0.01 is adopted. Each local training
dataset is determined by randomly selecting 500 training
data samples from two classes. For the local model
training at each device, the mini-batch SGD algorithm
with a learning rate 0.01 is adopted with |D(t,e)

k | = 10 and
E = 3. For both the ADAM optimizer and the mini-batch
SGD algorithm, the cross-entropy loss function is used.
For the MNIST dataset, we set the number of wireless
devices to K = 75 and the number of communication
rounds to T = 50.
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• FEMNIST: The global model is set to be a variant
ResNet-18, which has about 1.1 × 107 trainable param-
eters. For the original ResNet-18 in [8], we modify the
input, the first convolution, and output layers to match
the dimensions of FEMNIST dataset. We also replace
the batch normalization layers to the layer normalization
layers to improve the performance of the global model
[41]. For the global model training at the PS, the ADAM
optimizer in [40] with an initial learning rate 5 × 10−5

is adopted. For the local model training at each device,
the mini-batch SGD algorithm with a learning rate 10−7

is adopted with |D(t,e)
k | = 500 and E = 5. Each local

training dataset is determined by randomly grouping 20
writers in FEMNIST dataset, and thus turn 200 writers
into 10 devices [42], [43]. For both the ADAM optimizer
and the mini-batch SGD algorithm, the cross-entropy loss
function is used. For the FEMNIST dataset, we set the
number of wireless devices to K = 10 and the number
of communication rounds to T = 50.

For performance comparisons, we consider the following FL
baselines:

• Perfect reconstruction: This framework assumes lossless
transmission of the local model updates from the wireless
devices to the PS without compression, as described in
Sec. II-A.

• FedVQCS: FedVQCS is the proposed FL framework sum-
marized in Procedure 1. In this framework, the vector
quantizer in Sec. IV-A is adopted. The parameters of Fed-
VQCS are optimized as described in Sec. IV-B when the
candidate set is Rc =

{
1.5 + 0.25r : r ∈ {0, 1, . . . , 6}

}
.

To be specific, the optimal dimensionality reduction ratio
R⋆

k is chosen among Rc according to the criterion in
(36), while the optimal quantization bit Q⋆

k and the
optimal sparsity level S⋆

k are determined from (31) and
(33), respectively. The EM-GAMP algorithm in [18] is
employed as a sparse signal recovery algorithm during
the global block update reconstruction. The dimension of
a subvector for vector quantization is set to be the largest
integer, L, such that L2Q

⋆
s ≤ 215, where Q⋆

s is the optimal
number of shape quantization bits.

• ScalarQCS: ScalarQCS is the communication-efficient
FL framework developed in [18] when Qk = 2, Rk =
2/Ck, and Sk = max

(
1, S⋆

k(Rk)
)
. The aggregate-and-

estimate strategy in [18] is adopted for the global block
update reconstruction.

• HighVQ: HighVQ is the communication-efficient FL
framework developed in [15] when Qk = Ck. The
dimension of each partition for vector quantization is set
to be the largest integer, L, such that L2CkL ≤ 215 for
device k.

• D-DSGD: D-DSGD is the communication-efficient FL
framework developed in [22]. The number of the nonzero
entries for device k is set to be Sk such that CkN̄ =
log2

(
N̄
Sk

)
+ 33.

For FedVQCS and ScalarQCS, we set (G,B) = (25, 10) for
the MNIST dataset and (G,B) = (5, 9152) for the FEMNIST
dataset. Note that under this setting, the number of the devices

(a) MNIST

(b) FEMNIST

Fig. 3. Classification accuracy vs. communication overhead for different FL
frameworks in the homogeneous scenario.

in group is not larger than 3, while N is not larger than 2000.
For D-DSGD, we adjust the input data values of the MNIST
training and test data samples so that these values are between
0 and 1. Except for this, we normalize the input data values of
the training and test data samples using the mean and standard
deviation of each dataset [44].

In Fig. 3, we compare the classification accuracy of different
FL frameworks in the homogeneous scenario. Fig. 3 shows
that for both the MNIST and FEMNIST datasets, FedVQCS
provides more than a 2.4% increase in classification accu-
racy compared to the existing communication-efficient FL
frameworks when the communication overhead of the local
model update transmission is 0.1 bit per local model entry.
Meanwhile, the results on the MNIST dataset demonstrate that
FedVQCS with a 0.1-bit overhead per local model entry yields
only a 2% decrease in classification accuracy compared to the
perfect reconstruction which requires a 32-bit overhead per
local model entry for perfect transmission of the local model
updates. This result demonstrates that FedVQCS enables an
accurate reconstruction of the global model update at the PS,
while significantly reducing the communication overhead of
FL. Fig. 3 also shows that FedVQCS is more robust against
the decrease in the communication overhead allowed for the
devices, when compared with the existing FL frameworks.
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(a) MNIST

(b) FEMNIST

Fig. 4. Classification accuracy of different FL frameworks in the heteroge-
neous scenario with various average communication overheads.

In Fig. 4, we compare the classification accuracy of dif-
ferent FL frameworks in the heterogeneous scenario with
various average communication overheads. In this simula-
tion, we set C = {0.05, 0.1, 0.2, 0.25} for E[Ck] = 0.15,
C = {0.05, 0.15, 0.35, 0.45} for E[Ck] = 0.25, and C =
{0.2, 0.3, 0.4, 0.5} for E[Ck] = 0.35. Fig. 4 shows that Fed-
VQCS converges to the highest classification accuracy among
the communication-efficient FL frameworks, irrespective of
the average communication overhead allowed for the devices.
These results imply that FedVQCS effectively adjusts the local
model update compression at each device based on its link
capacity, while reducing the reconstruction error at the PS.

In Fig. 5, we compare the classification accuracies of
FedVQCS with and without the parameter optimization in
Sec. IV-B for the MNIST dataset in the homogeneous scenario
with Ck = 0.07. Without parameter optimization, we set
Rk = R, Qk = Q⋆

k(R), and Sk = S⋆
k(R), ∀k ∈ K. Fig. 5

shows that FedVQCS with the optimized parameters provides
a 1.8% increase in classification accuracy compared to Fed-
VQCS with the worst-case parameters (i.e., R = 3 case). This
result demonstrates that our parameter optimization effectively
improves the accuracy of global model reconstruction at the
PS in FedVQCS. This result is also consistent with the
convergence rate analysis in Theorem 3 which demonstrated
that the convergence rate improves as the reconstruction error

Fig. 5. Classification accuracy of FedVQCS with and without the parameter
optimization for the MNIST dataset in the homogeneous scenario with Ck =
0.07.

Fig. 6. Classification accuracy vs. number of groups for QCS-based FL frame-
works for the MNIST dataset in the homogeneous scenario with Ck = 0.1.

of the global model update at the PS decreases.
In Fig. 6, we compare the classification accuracy of Fed-

VQCS with that of ScalarQCS for different numbers of groups
for the MNIST dataset in the homogeneous scenario with
Ck = 0.1. Fig. 6 shows that FedVQCS outperforms Scalar-
QCS regardless of the number of the groups. Because these
two frameworks have a similar global model reconstruction
process, the performance gain of FedVQCS over ScalarQCS
is attributed to the use of vector quantization instead of
scalar quantization. From Fig. 6, we can also observe that
the classification accuracies of both frameworks decrease as
G decreases. Because the computational complexity of the
global model reconstruction process also decreases with G,
the result in Fig. 6 shows that the performance-complexity
tradeoff associated with these frameworks can be controlled
by adjusting the number of groups.

VI. CONCLUSION

In this paper, we have presented a novel framework for
communication-efficient wireless FL. We have shown that our
framework significantly reduces the communication overhead
of FL by leveraging both vector quantization and CS-based
dimensionality reduction for compressing the local model
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updates at the wireless devices. Another key feature of our
framework is that the devices can locally optimize the com-
pression parameters in order to minimize the reconstruction
error of a global model update at the PS under the constraint
of the wireless link capacity. We have also demonstrated both
analytically and numerically that our compression parameter
optimization improves the convergence rate of FL. An impor-
tant direction of future research is to optimize the learning
rate of a training algorithm employed at the PS by taking into
account the reconstruction error at the PS. Another promising
research direction is to develop dynamic device scheduling
and resource allocation strategies for the presented framework
by considering the real-world radio resources available in a
wireless network.

APPENDIX A
PROOF OF LEMMA 1

For any even codebook, the following equality holds

∥s− ŝ∥2 = 2− 2
√
1− d2(s, ŝ). (38)

In particular, for an even Grassmannian codebook C+
s of size

2Qs−1, the average chordal distance is bounded as

L− 1

L+ 1
2−

2(Qs−1)
L−1 + o(1) ≤ E

[
d2(s, ŝ+)

]
≤ 2−

2(Qs−1)
L−1 + o(1),

(39)

where o(1) is a vanishing function of L as L → ∞ [45]. The
bounds of the MSE in (39) is also valid for E

[
d2(s, ŝ−)

]
,

when d2(s, ŝ+) = d2(s, ŝ−). Because (38) is a convex
function of d2(s, ŝ), taking the expectation of (38) with respect
to d2(s, ŝ) and then applying Jensen’s inequality with (39)
yields

2− 2

√
1− L− 1

L+ 1
2−

2(Qs−1)
L−1 − o(1) ≤ E

[
∥s− ŝ∥2

]
. (40)

Based on the definition of the chordal distance, we have ∥s−
ŝ∥2 = 2 − 2

√
1− d2(s, ŝ) = 2(1 − |sTŝ|) and 2d2(s, ŝ) =

2(1 + |sTŝ|)(1 − |sTŝ|). Because 1 + |sTŝ| ≥ 1, we have
∥s−ŝ∥2 ≤ 2d2(s, ŝ). Taking the expectation of this inequality
and then applying the upper bound in (39) yields

E
[
∥s− ŝ∥2

]
≤ 2−

2(Qs−1)
L−1 +1 + 2o(1). (41)

Combining the inequalities in (40) and (41) for a large L yields
the bounds in (18).

APPENDIX B
PROOF OF THEOREM 2

In this proof, we assume that Kg = {1, . . . ,K ′} without
loss of generality. Let T = {i : (g̃Kg

)i ̸= 0} be the support set
of g̃Kg

. Also, let Rg be the dimensionality reduction ratio of
the devices in group g. With the knowledge of T , the objective
function in (34) can be rewritten as

E[∥ḡKg
− ĝKg

∥2] = ∥ḡKg
− g̃Kg

∥2 + E[∥g̃Kg
− ĝKg

∥2].
(42)

The first term of the right-hand-side (RHS) of (42) is rewritten
as

∥ḡKg
− g̃Kg

∥2 =

∥∥∥∥ ∑
k∈Kg

ρ2k{ḡk − g̃k}
∥∥∥∥2

(a)

≤ K ′
∑
k∈Kg

ρ2k∥ḡk − g̃k∥2, (43)

where (a) follows from the Cauchy–Schwarz inequality. Let
g̃T be a subvector of g̃Kg

, which consists of the entries of g̃Kg

whose indices belong to T . Similarly, let AT be a submatrix
of ARg

, which consists of the columns of ARg
whose column

indices belong to T . Then, with the knowledge of T , the sparse
signal recovery problem in (13) reduces to the estimation of
g̃T from its linear observation yKg

= ARg g̃Kg
+ dKg =

AT g̃T + dKg . The least squares solution of this problem is
given by

ĝT = g̃T +
(
AT

T AT
)−1

AT
T dKg

. (44)

Therefore, the second term of the RHS of (42) is computed
as

E[∥g̃Kg
− ĝKg

∥2] = E[∥g̃T − ĝT ∥2]

= E
[∥∥(AT

T AT
)−1

AT
T dKg

∥∥2]
= Tr

((
AT

T AT
)−1

AT
T E[dKgd

T
Kg

]AT
(
AT

T AT
)−1)

(a)
=

S̃g

M2
k

E[∥dKg
∥2]

(b)

≤ K ′Sk

M2
k

E[∥dKg
∥2], (45)

where (a) holds when N
Rk

= Mk ≫ 1 and S̃g ≫ 1 because
AT

T AT → MkI S̃g
as Mk → ∞ and AT A

T
T → S̃gIMk

as
S̃g → ∞ by the law of large numbers, and (b) holds because
S̃g ≤ K ′Sk from our discussion on (33). The quantization
error E[∥dKg

∥2] in (45) is upper bounded as

E[∥dKg
∥2]

(a)

≤ K ′
∑
k∈Kg

ρ2k
α2
k

E[∥dk∥2]

(b)
= K ′Mk

L

∑
k∈Kg

ρ2k
α2
k

σ2
L,Qk

, (46)

where (a) follows from the Cauchy–Schwarz inequality, and
(b) follows from (30). Applying (43)–(46) into (42) yields the
result in (35).

APPENDIX C
PROOF OF THEOREM 3

In this proof, we consider a virtual sequence of parameter
vectors, defined as w̃(t+1) = w̃(t) − η{∇F (t)(w(t)) − e(t)},
where ∇F (t)(w(t)) = 1

K

∑
k ∇F

(t)
k

(
w(t)

)
, e(t) = g̃

(t)
K − ĝ

(t)
K

and w̃(1) = w(1). Then, by the definition in (8), we have
w̃(t) = w(t) − η

K

∑
k ∆

(t−1)
k , ∀t > 1. Under Assumption 1,

the improvement of the loss function in round t satisfies

E[F (w̃(t+1))− F (w̃(t))]

≤ E[∇F (w̃(t))T(w̃(t+1) − w̃(t))] +
β

2
E[∥w̃(t+1) − w̃(t)∥2]

(a)
= −ηE[∇F (w̃(t))T∇F (w(t))] + ηE[∇F (w̃(t))Te(t)]
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+
η2β

2
E[∥∇F (t)(w(t))− e(t)∥2], (47)

where the expectation is taken over the randomness in
the trajectory, and (a) follows from the definition of w̃(t)

with Assumption 2. Note that 2∇F (w̃(t))T∇F (w(t)) =
∥∇F (w̃(t))∥2 + ∥∇F (w(t))∥2 − ∥∇F (w̃(t))−∇F (w(t))∥2.
In addition, under Assumptions 2 and 3, we have

E[∇F (w̃(t))Te(t)] ≤ E[∥∇F (w̃(t))∥2 + ∥e(t)∥2]
2

≤ E[∥∇F (w̃(t))∥2]
2

+
maxb δb

2
E[∥∇F (w(t))∥2],

E[∥∇F (t)(w(t))− e(t)∥2]
= E[∥∇F (t)(w(t))−∇F (w(t)) +∇F (w(t))− e(t)∥2]

≤ 3E
[
1

K

K∑
k=1

∥∇F
(t)
k (w(t))−∇Fk(w

(t))∥2

+ ∥∇F (w(t))∥2 + ∥e(t)∥2
]

≤ 3[ϵ+ (1 +max
b

δb)E[∥∇F (w(t))∥2]]. (48)

Applying the above inequalities into (47) yields

E[F (w̃(t+1))− F (w̃(t))]

≤ −ηδ̄

2
E[∥∇F (w(t))∥2] + η

2
E[∥∇F (w̃(t))−∇F (w(t))∥2]

+
3η2βϵ

2
(a)

≤ −ηδ̄

2
E[∥∇F (w(t))∥2] + ηβ2

2
E[∥w̃(t) −w(t)∥2] + 3η2βϵ

2
,

(49)

where δ̄ = 1 − maxb δb − 3ηβ(1 + maxb δb), and (a)
follows from Assumption 1 implying that ∥∇F (w̃(t)) −
∇F (w(t))∥2 ≤ β2∥w̃(t) − w(t)∥2. Under Assumption 2, we
also have E[∥w̃(t) −w(t)∥2] ≤ η2

K

∑
k

∑
b E[∥∆

(t−1,b)
k ∥2] ≤

η2 maxb ζb. Applying the above inequality into (49) with
η = 1−maxb δb

6β(1+maxb δb)
√
T

yields

E[F (w̃(t+1))− F (w̃(t))]

≤ − (1−maxb δb)
2

12β(1 + maxb δb)
√
T

(
1− 1

2
√
T

)
E[∥∇F (w(t))∥2]

+
(1−maxb δb)

3 maxb ζb

432β(1 + maxb δb)3T
√
T

+
(1−maxb δb)

2ϵ

24β(1 + maxb δb)2T

(a)

≤ − (1−maxb δb)
2

24β(1 + maxb δb)

[
1√
T
E[∥∇F (w(t))∥2]

− maxb ζb

18T
√
T

− ϵ

T

]
, (50)

where (a) follows from 1
2
√
T

≤ 1
2 , (1−maxb δb)

3

(1+maxb δb)3
≤

(1−maxb δb)
2

1+maxb δb
, and (1−maxb δb)

2

(1+maxb δb)2
≤ (1−maxb δb)

2

1+maxb δb
for 0 ≤ δb < 1,

∀b. By considering the telescoping sum over the iterations, a
lower bound of the initial loss with w(1) is expressed as

F (w(1))− F (w⋆) ≥ F (w(1))− E[F (w̃T+1)]

=
T∑

t=1

E[F (w̃(t))− F (w̃(t+1))]

≥ (1−maxb δb)
2

24β(1 + maxb δb)

[
1√
T

T∑
t=1

E[∥∇F (w(t))∥2]

− maxb ζb

18
√
T

− ϵ

]
. (51)

The inequality in (51) can be rewritten as in (37), which
completes the proof.
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[35] J. P. Vila and P. Schniter, “Expectation-maximization Gaussian-mixture
approximate message passing,” IEEE Trans. Signal Process., vol. 61, no.
19, pp. 4658–4672, Oct. 2013.

[36] T. Blumensath and M. E. Davies, “Iterative hard thresholding for
compressed sensing,” Appl. Comput. Harmon. Anal., vol. 27, no. 3, pp.
265–274, Nov. 2009.

[37] J. Kieffer, “Uniqueness of locally optimal quantizer for log-concave
density and convex error weighting function,” IEEE Trans. Inf. Theory,
vol. 29, no. 1, pp. 42–47, Jan. 1983.

[38] P. F. Panter and W. Dite, “Quantization distortion in pulse-count modu-
lation with nonuniform spacing of levels,” Proc. IRE, vol. 39, no. 1, pp.
44–48, Jan. 1951.

[39] H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD with faster
convergence and less communication: Demystifying why model averaging
works for deep learning,” AAAI, vol. 33, no. 01, pp. 5693–5700, Jul. 2019.

[40] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA, May
2015, pp. 1–13.

[41] Z. Du, J. Sun, A. Li, P.-Y Chen, J. Zhang, H. Li, and Y. Chen,
“Rethinking normalization methods in federated learning,” in Proc. Int.
Workshop Dirtib. Mach. Learn., Rome, Italy, Dec. 2022, pp. 16–22.

[42] L. Wang, S. Xu, X. Wang, and Q. Zhu, “Addressing class imbalance in
federated learning,” AAAI, vol. 35, no. 11, pp. 10165–10173, May 2021.

[43] L. Yang, C. Beliard, and D. Rossi, “Heterogeneous data-aware feder-
ated learning,” in Proc. Int. Joint Conf. Artif. Intell. (IJCAI) Workshop
Federated Learn. User Privacy Data Confidentiality, Yokohama, Japan,
Jan. 2021, pp. 1–7.

[44] S. Foucart and H. Rauhut, Deep learning with PyTorch: A practical
approach to building neural network models using PyTorch, Birmingham,
U.K.: Packt Publishing, 2018.

[45] W. Dai, Y. Liu, and B. Rider, “Quantization bounds on Grassmann
manifolds and applications to MIMO communications,” IEEE Trans. Inf.
Theory, vol. 54, no. 3, pp. 1108–1123, Mar. 2008.

Yongjeong Oh (Student Member, IEEE) received
the B.S. degree in the Department of Electronics
Engineering from Pusan National University (PNU),
Busan, South Korea, in 2021. He also received the
M.S. degree in the Department of Electrical Engi-
neering, Pohang University of Science and Technol-
ogy (POSTECH) in 2023. He is currently pursuing
the Ph.D. degree with the Department of Electrical
Engineering, POSTECH. His main research interests
include the areas of wireless communications, ma-
chine learning, and signal processing.

Yo-Seb Jeon (Member, IEEE) received the B.S.
(Top Hons.) and Ph.D. degrees in the Department
of Electrical Engineering from Pohang University
of Science and Technology (POSTECH), Pohang,
South Korea, in 2012 and 2016, respectively. From
September 2016 to August 2018, he was a Post-
doctoral Research Associate at POSTECH. From
September 2018 to January 2020, he was a Postdoc-
toral Research Fellow in the Department of Electri-
cal Engineering at Princeton University. Since 2020,
he has been on the faculty at POSTECH, where he is

currently an Assistant Professor in the Department of Electrical Engineering.
His research interests include the areas of wireless communications, machine
learning, and signal processing. He was a recipient of the TJ PARK Graduate
Fellowship from POSTECH (2012–2014). He was recognized as an Exem-
plary Reviewer of IEEE Transactions on Communications in 2021–2022.

Mingzhe Chen (Member, IEEE) is currently an
Assistant Professor with the Department of Electri-
cal and Computer Engineering and Institute of Data
Science and Computing at University of Miami. His
research interests include federated learning, rein-
forcement learning, virtual reality, unmanned aerial
vehicles, and Internet of Things. He has received
from the IEEE Communication Society four journal
paper awards including the IEEE Marconi Prize
Paper Award in Wireless Communications in 2023,
the Young Author Best Paper Award in 2021 and

2023, and the Fred W. Ellersick Prize Award in 2022, and three conference
best paper awards at IEEE ICC in 2020, IEEE GLOBECOM in 2020, and
IEEE WCNC in 2021. He currently serves as an Associate Editor of IEEE
Transactions on Mobile Computing, IEEE Wireless Communications Letters,
IEEE Transactions on Green Communications and Networking, and IEEE
Transactions on Machine Learning in Communications and Networking.



16

Walid Saad (Fellow, IEEE) received his Ph.D de-
gree from the University of Oslo, Norway in 2010.
He is currently a Professor at the Department of
Electrical and Computer Engineering at Virginia
Tech, where he leads the Network sciEnce, Wireless,
and Security (NEWS) laboratory. He is also the
Next-G Wireless Faculty Lead at Virginia Tech’s
Innovation Campus. His research interests include
wireless networks (5G/6G/beyond), machine learn-
ing, game theory, security, UAVs, semantic com-
munications, cyber-physical systems, and network

science. Dr. Saad is a Fellow of the IEEE. He is also the recipient of the
NSF CAREER award in 2013, the AFOSR summer faculty fellowship in
2014, and the Young Investigator Award from the Office of Naval Research
(ONR) in 2015. He was the (co-)author of eleven conference best paper
awards at IEEE WiOpt in 2009, ICIMP in 2010, IEEE WCNC in 2012, IEEE
PIMRC in 2015, IEEE SmartGridComm in 2015, EuCNC in 2017, IEEE
GLOBECOM (2018 and 2020), IFIP NTMS in 2019, IEEE ICC (2020 and
2022). He is the recipient of the 2015 and 2022 Fred W. Ellersick Prize from
the IEEE Communications Society, and of the IEEE Communications Society
Marconi Prize Award in 2023. He was also a co-author of the papers that
received the IEEE Communications Society Young Author Best Paper award
in 2019, 2021, and 2023. Other recognitions include the 2017 IEEE ComSoc
Best Young Professional in Academia award, the 2018 IEEE ComSoc Radio
Communications Committee Early Achievement Award, and the 2019 IEEE
ComSoc Communication Theory Technical Committee Early Achievement
Award. From 2015-2017, Dr. Saad was named the Stephen O. Lane Junior
Faculty Fellow at Virginia Tech and, in 2017, he was named College of
Engineering Faculty Fellow. He received the Dean’s award for Research
Excellence from Virginia Tech in 2019. He was also an IEEE Distinguished
Lecturer in 2019-2020. He has been annually listed in the Clarivate Web of
Science Highly Cited Researcher List since 2019. He currently serves as an
Area Editor for the IEEE Transactions on Network Science and Engineering
and the IEEE Transactions on Communications. He is the Editor-in-Chief
for the IEEE Transactions on Machine Learning in Communications and
Networking.


