Performance Optimization for Variable Bitwidth
Federated Learning in Wireless Networks

Sihua Wang, Student Member, IEEE, Mingzhe Chen, Member, IEEE,
Christopher G. Brinton, Senior Member, IEEE, Changchuan Yin, Senior Member, IEEE,
Walid Saad, Fellow, IEEE, and Shuguang Cui, Fellow, IEEE

Abstract—This paper considers improving wireless commu-
nication and computation efficiency in federated learning (FL)
via model quantization. In the proposed bitwidth FL scheme,
edge devices train and transmit quantized versions of their local
FL model parameters to a coordinating server, which, in turn,
aggregates them into a quantized global model and synchronizes
the devices. The goal is to jointly determine the bitwidths
employed for local FL. model quantization and the set of devices
participating in FL training at each iteration. We pose this as an
optimization problem that aims to minimize the training loss of
quantized FL under a per-iteration device sampling budget and
delay requirement. However, the formulated problem is difficult
to solve without (i) a concrete understanding of how quantization
impacts global ML performance and (ii) the ability of the server
to construct estimates of this process efficiently. To address the
first challenge, we analytically characterize how limited wireless
resources and induced quantization errors affect the performance
of the proposed FL method. Our results quantify how the im-
provement of FL training loss between two consecutive iterations
depends on the device selection and quantization scheme as well
as on several parameters inherent to the model being learned.
Then, to address the second challenge, we show that the FL
training process can be described as a Markov decision process
(MDP) and propose a model-based reinforcement learning (RL)
method to optimize action selection over iterations. Compared
to model-free RL, this model-based RL approach leverages the
derived mathematical characterization of the FL training process
to discover an effective device selection and quantization scheme
without imposing additional device communication overhead.
Simulation results show that the proposed FL algorithm can
reduce the convergence time by 29% and 63% compared to a
model free RL method and the standard FL method, respectively.

I. INTRODUCTION

Federated learning (FL) is an emerging edge computing
technology that enables a collection of devices to collabora-
tively train a shared machine learning model without sharing

S. Wang and C. Yin are with the Beijing Laboratory of Advanced Information Net-
work, and the Beijing Key Laboratory of Network System Architecture and Convergence,
Beijing University of Posts and Telecommunications, Beijing 100876, China. Emails:
sihuawang @bupt.edu.cn; ccyin@ieee.org.

M. Chen is with the Department of Electrical and Computer Engineering and Institute
for Data Science and Computing, University of Miami, Coral Gables, FL, 33146 USA
(Email: mingzhe.chen@miami.edu).

C. G. Brinton is with with the School of Electrical and Computer Engineering, Purdue
University, West Lafayette, IN, USA, Email: cgb@purdue.edu.

W. Saad is with the Wireless@VT, Bradley Department of Electrical and Computer
Engineering, Virginia Tech, Blacksburg, VA, 24060, USA, Email: walids@vt.edu.

S. Cui is currently with the School of Science and Engineering (SSE), the Future
Network of Intelligence Institute (FNii), and the Guangdong Provincial Key Laboratory
of Future Networks of Intelligence, the Chinese University of Hong Kong, and Shenzhen
Research Institute of Big Data, Shenzhen, China, 518172; he is also affiliated with Peng
Cheng Laboratory, Shenzhen, China, 518066, Email: shuguangcui@cuhk.edu.cn.

A preliminary version of this work [1] appears in the Proceedings of the 2022 IEEE
Global Communications Conference (GLOBECOM).

This work was supported by the National Science Foundation under Grant
CNS-2114267

their collected data [2]-[6]. During the FL training process,
model parameters are trained locally on the device side and
transmitted to a central center (e.g., at a base station (BS)
coordinating the process across cellular devices) for global
model aggregations. This procedure is repeated across several
rounds until achieving an acceptable accuracy of the trained
model [7]-[11].

The local training and device-server communication pro-
cesses can each have a significant impact on the performance
of FL. These considerations are particularly important in
resource-constrained edge settings in which devices exhibit
heterogeneity in their communication and computation re-
sources (e.g., a low-cost sensor vs. a high powered drone
collecting measurements) [12], [13]. To minimize the resulting
delays due to local training and parameter transmission, one
promising method that has been recently proposed is the
consideration of machine learning quantization at each device
[14]-[17]. In such schemes, the training and communication
processes operate directly on quantized versions of the learn-
ing models, reducing the burden on device resources. However,
efficient deployment of quantized FL over wireless networks
poses several research challenges, related to the integration
of quantization bitwidth considerations with the resulting FL
training performance, which we study here.

A. Related Works

Recent works such as [18]-[29] have studied several impor-
tant problems related to the implementation of quantized FL
over wireless networks. The authors in [18] designed a uni-
versal vector quantization scheme for FL. model transmission
to minimize the quantization error. In [19], a heterogeneous
quantization framework was proposed for the FL. model up-
loading process to speed up the convergence rate. A robust FL
scheme was developed in [20] to minimize the quantization
errors and transmission outage probabilities under constraints
on the training latency and device transmission powers. The
authors in [21] proposed a hierarchical gradient quantization
scheme for the FL framework to reduce the communication
overhead while achieving similar learning performance. In
[22], the authors investigated a communication-efficient FL ap-
proach based on gradient quantization to alleviate the required
communication bits and training rounds. [23] further explored
the impact of quantized communications on the performance
of decentralized learning framework. The authors in [24] con-
sidered the extreme case of one-bit quantized local gradients
for training the global FL model to reduce communication
overhead. In [25], the energy efficiency of a quantized FL

scheme deployed over wireless networks is studied and the
trade off between energy efficiency and accuracy is assessed.
The authors in [26] proposed an adaptive quantized gradient
method to optimize the number of communication bits em-
ployed during the FL iterations so as to reduce communication
energy. In [27], an optimal vector quantizer was derived for
minimizing the compression error of the local FL. model
update. In [28], the authors proposed a quantized FL algorithm
for a device-to-device based wireless system to reduce the
data transmission volume of FL models between devices. The
authors in [29] developed a methodology for jointly optimizing
the loss function, cost for transmitting quantized FL models,
and available wireless resources to reduce communication cost
and training time.

These prior works on quantized FL have each assumed that
certain key parameters of the model being learned — such
as smoothness and gradient diversity constants — are known
in advance of the training process. Under these assumptions,
traditional optimization methods can be used to capture the
relationship between quantization error and FL performance
so as to find the optimal FL training policy. In practice, these
model parameters cannot be obtained by the central server
until the FL training process has completed, and thus, the
solution derived by these traditional optimization methods may
not be appropriate. To address this challenge, one promising
approach is to employ reinforcement learning (RL) approaches
[30] for enabling the server to estimate these parameters over
time through interaction with the devices during the training
process, allowing discovery of a more effective FL policy.

Recently, a number of works [31]-[38] used RL algorithms
to configure system parameters for FL performance optimiza-
tion. In [31], the authors proposed a deep multi-agent RL
to accelerate FL. convergence while reducing the energy used
for training. The authors in [32] designed a device selection
scheme based on RL to minimize energy consumption and
training delay, i.e., by searching for the most efficient set of de-
vices to participate in each training iteration. A deep RL-based
framework in [33] was proposed to maximize the long-term
FL performance under energy and bandwidth constraints. In
[34], the authors studied the use of a deep Q-network (DQN)
to minimize wireless communication interruptions experienced
by the FL framework due to device mobility. [35] used deep
RL to jointly optimize training time and energy consumption
via adjusting the CPU-cycle frequency of devices. The authors
in [36] designed a DQN-based quantization allocation mech-
anism to improve the performance of FL. In [37], the authors
employed a multiagent deep RL based quantization method to
reduce the energy used for communication in FL. framework.
The authors in [38] analyzed the relationship between the
global convergence and computational complexity in quantized
a federated RL framework.

These prior works have thus employed RL methods to
capture the relationship between FL performance and the
training policy, in turn leading to improvements in different
aspects of model training. However, with these methods, the
coordinating server must collect numerous observations of
different FL training policies by interacting with the devices
over the environment, resulting in considerable delay for
finding the optimal policy and encumbering FL convergence

speed. To overcome this, we are motivated to develop model-
based RL methods based on mathematical models of the quan-
tized FL training process. Specifically, the coordinating server
will estimate the associated FL model parameters based on
information captured during the training process, minimizing
the time and overhead required to discover the optimal FL
policy.

B. Outline of Methodology and Contributions

The main contribution of this paper is a novel methodology
to optimize quantized FL algorithms over wireless networks
by a model based RL method that can estimate the FL
training parameters and mathematically model the FL training
process without continual interacting with the devices. To
our best knowledge, this is the first work that provides a
systematic analysis of the integration of quantization bitwidth
optimization into the FL framework. Our key contributions
include:

« We propose a novel quantized FL framework in which
distributed wireless devices train and transmit their lo-
cally trained FL models to a coordinating server based
on variable bitwidths. The server selects an appropriate
set of devices to execute the FL algorithm with vari-
able quantized bitwidths in each iteration. To this end,
we formulate the joint device selection and FL model
quantization problem as an optimization problem whose
goal is to minimize training loss while accounting for
communication and computation heterogeneity as well as
non-i.i.d. data distribution across the devices. We quantify
these heterogeneity factors in terms of service delay and
communication bandwidth requirements.

o To solve this problem, we first analytically characterize
the expected training convergence rate of our quantized
FL framework with non-i.i.d. data distribution. Our anal-
ysis shows how the expected improvement of FL training
loss between two adjacent iterations depends on the
device selection scheme, the quantization scheme, and
inherent properties of the model being trained under the
non-i.i.d. setting. To find the tightest bound, we introduce
a linear regression method for estimating these model
properties according to observable training information
at the server. Given these estimates, we show that the FL
training process can be mathematically described as a
Markov decision process (MDP) with consecutive global
model losses constituting state transitions.

e To learn the optimal solution of the formulated MDP,
we construct a model-based RL method that infers the
action (i.e., device selection and quantization scheme)
which maximizes the expected reward (i.e., minimize
global model loss) in each training iteration. Compared
to traditional model-free RL approaches, our proposed
method enables the server to optimize the FL training
process through minimal interaction with each device.
The removal of continual device-server communication
requirements is particularly useful in the bandwidth-
limited wireless edge settings we consider.

Numerical evaluation results on real-world machine learning

task datasets show that our proposed quantized FL. method-
ology can reduce convergence time by up to 29% while

A — (03752 0.6252... 0.453 1] 040605 -
057530828 00281 osos_as p = |
o, o, HE
S S H

g | &
Full-precision weights Quantized weights
Py

Wt Wi

Fig. 1. Depiction of our proposed low bitwidth federated learning methodol-
ogy deployed over multiple devices and one base station in a wireless network.

reducing the training iterations needed for convergence by up
to 20% compared with existing FL baselines. Additionally,
these results show how the number of devices and number
of quantization bits jointly affect the performance of FL over
wireless networks.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a wireless network that consists of a set M of M
devices connected upstream to a coordinating server, which
we will assume is a server without loss of generality. These
devices are aiming to execute an FL algorithm for training a
machine learning model, as shown in Fig. 1. Each device m
has N,, training data samples, and each training data sample
n consists of an input feature vector @, ,, € RV7*! and (in
the case of supervised learning) a corresponding label vector
Ymn € RNox1 The objective of the server and the devices
is to minimize the global loss function over all data samples,
which is given by

1 M N,
F(g) = nglnﬁ Z Zf(gawm,naym,n)a (1

m=1n=1
where g € RY %1 is a vector that captures the global FL model
M
of dimension Y trained across the devices, with N = >~ N,

being the total number of training data samples of allygg\}ices.
f(g,Zm.n,Ym.n) is a loss function (e.g., squared error) that
measures the accuracy of the generated global FL. model g in
building a relationship between the input vector x,, ,, and the
output vector Y., n.

A. Training Process of Low Bitwidth Federated Learning

In FL, devices and the server iteratively exchange their
model parameters to find the optimal global model g that
minimizes the global loss function in (1). However, due to
limited computational and wireless resources, devices may
not be able to train and transmit such large sized model

parameters (e.g., as in the case of deep learning). To reduce
the computation and transmission delays, bitwidth federated
learning was proposed in [39]. Compared to the widely studied
case of federated averaging [40], the FL model parameters
in bitwidth FL are quantized. The overall training process of
bitwidth FL is given as follows:
1) The server quantizes the initialized global learning model
and broadcasts it to each device.

2) Each device calculates the training loss using the quan-
tized global learning model and its collected data samples.

3) Based on the calculated training loss, the quantized learn-
ing model in each device is updated.

4) Each device quantizes its updated learning model.

5) The server selects a subset of devices for local FL. model
transmission.

6) The server aggregates the collected local FL models into
a global FL model that will be transmit to devices.

Steps 2-6 are repeated until the optimal vector g is found.

From the training process, we see that, in bitwidth FL, each
device uses a quantized FL. model to calculate the training loss
and gradient vectors during the training process. Therefore, the
quantization scheme in bitwidth FL will affect the resource
requirements of FL model training and transmission. This is
significantly different from quantization-based FL algorithms
[39] that must recover the quantized FL. model during the
training process, thus introducing additional computational
complexity and reducing training efficiency. Next, we will
introduce the training process mathematically.

1) Calculation of Training Loss of Each Device: We first
introduce the calculation of each device’s training loss for step
2. Without loss of generality, we will assume that a neural
network is being trained; the quantization method can be used
in other machine learning approaches (such as support vector
machines (SVM) [41]) as well.

The weights of each device’s local FL. model are quantized
into ay bits. Through this, the full-precision neural network
is transformed into a quantized neural network (QNN). When
ay = 1, each QNN weight has two possible values, namely
-1/0 or +1. Therefore, a neural network that consists of the
weights with two possible values is called a binary neural
network (BNN) [42]. Given the input vector hfmt and the
weight vector g of the neurons in layer k that is represented
by ay bits, the output of each layer k at iteration ¢ is given
by [43]

o (h’ﬁ’l,,t ng)) if ap = 17
hk-‘rl — oap—loy—1 iy i
m ol X X 2, 087)), if a>1
i=0 j=0 ’
(2)

where o(-) is the activation function and ® represents the
inner product for vectors with bitwise operations. Given the
outputs of all neuron layers hp,; = [h}, ..., h}], the
cross-entropy loss function can be expressed based on the

neurons in an output layer hﬁt as
,f (gh wm,na ym,n) (3)
== ym,nIOg(hg,t) + (1 - ym,n)IOg(l - hrKn,t)’

where g; = [g},...,9F,...,g] is the quantized global FL
model.

2) FL Model Update: A backward propagation (BP) algo-
rithm based on stochastic gradient descent is used to update
the parameters in QNN. The update function is expressed as

8f (97 Tm,n, ym,n)
A by @

Wm t+1 = gr —
nENm,‘t

where) is the learning rate, V,,, ; is the subset of training data
samples (i.e., minibatch) selected from device m’s training

dataset N,,, at iteration t, W, 1+1 1s the updated local FL
model of device m at iteration ¢t+1, and
0 Ofm 0g: Ofm
of = fA ity 99t fA L x Htanh(g,),)
dg 0g: 9g: Og:

where g; represents the full-precision weights. Htanh(z) =
max(—1, min(1,x)) is used to approximate the derivative
of the quantization function that is not differentiable. From
(4) and (5), we can see that the weights are updated with
full-precision values since the changes of the learning model
update at each step are small.

3) FL Model Quantization at Device: As each local FL
model is updated, these full-precision weights must be com-
pletely quantized into «; bits, which is given by [44]

sign(w fft) if ap=1,
B (on) = QUul o) = { BETDmL) iy oy
U}Z{Jt, if Q= VZ
’ (©6)
where V' is the bitwidth of the full-precision and sign(x) = 1
if £ > 0 and sign(z) = —1, otherwise. R(-) is a rounding
function with R(z) = |z] if 2 < 1 and | () = [e],
otherwise. From (6) we see that when ap = 1 (ie, the
binary case) if wmjt > 0, we have 0 Jt = 1 with wmt
and w J. being j-th element in w];” and wf,{jt otherwise
wfnﬂt = 71 For 1 < oy <V, wmt is quantized with

increasing precision between —1 and 1. Flnally, when oy =V,
there is no quantization.

4) FL Model Transmission and Aggregation: Due to limited
wireless bandwidth, the server may need to select a subset of
devices to upload their local FL. models for aggregation into
the global model. Given the quantized local FL. model w,, ¢
of each device m at each iteration ¢, the update of the global
FL model at iteration ¢ is given by

M

U, t N,
! ! Wm,t (at)a (7

M
m=1 Z um,tNm,t

m=1

gt(ut;at) =

Um me ,t
21 Ui, t Nt
Nt bgi_ng the number of data samples used to train W, ;
at device m. g:(u;) is the global FL model at iteration ¢,
and u; = [u1y,...,unr] is the device selection vector, with
U, = 1 indicating that device m will upload its quantized
local FL model w,, ; to the server at iteration ¢, and ,, + = 0
otherwise.

5) FL Model Quantization at the server: As the global FL
model is aggregated based on the collected local FL. models,
the server must quantize it in low bitwidth that can be directly

where is a scaling update weight of W, ¢, with

used to calculate the training loss at each device. This is given
by [45]

sign(gF), if ap=1,
~ ay k
9F =Qgka) = P& Dal) ey oy, ®)
agr, if a;=V.

B. Training Delay of Low Bitwidth Federated Learning

We next study the training delay of bitwidth FL. From
the training steps, we can see that the delay consists of four
components: (a) time used to calculate the training loss, (b)
FL model update delay, (c) FL. model quantization delay, and
(d) FL. model transmission delay. However, the FL model
update delay is unrelated to the number of quantization bits oy,
since the models are updated with full-precision values. Thus,
component (b) is constant with respect to our methodology
and can be ignored. Then, the training delay is specified as
follows:

1) Time Used to Calculate the Training Loss: The time
used to calculate the training loss depends on the number of
multiplication operations in (2) and (3). From (2), we can
see that the computational complexity of each multiplication
operation is related to the number of bits a; used to represent
each element in FL model vector. Specifically, given o, the
time used to calculate the training loss is given by

a?N€
malae) = p=57— ©

where p is the time consumption coefficient depending on the
chip of each device and N© is the number of multiplication
operations in the neural network. f and ¢ represent the
frequency of the central processing unit (CPU) and the number
of bits that can be processed by the CPU in one clock cycle,
respectively.

2) FL Model Quantization Delay: Since the updated local
FL model is in full-precision, each device must quantize its
updated local FL. model using (6) to reduce transmission delay.
Given a4, the quantization delay can be represented as [46]

Baen={ %
9f
where D is the number of neurons in the neural network. In
(10), when ay =1 or o, =V, the quantization delay will be
0. When oy =1, the value of quantized weight w,, ; can be
directly decided by the sign bit. When a; =V, no quantization
takes place since we are dealing with full precision weights,
i.e., Wyt =Wnm. When 1 < oy <V, the quantization delay
incurred will increase based on the number of neurons in the
neural network. For each neuron, the server will arithmetically
perform the rounding, multiplication, and division operations
according to (8).

3) FL Model Transmission Delay: To generate the global
FL model that is aggregated by each quantized local FL model,
each device must transmit w,, : to the server. To this end,
we adopt an orthogonal frequency division multiple access
(OFDMA) transmission scheme for quantized local FL. model
transmission. In particular, the server can allocate a set U of
U uplink orthogonal resource blocks (RBs) to the devices for
quantized weight transmission. Let W be the bandwidth of

ifap=1ora; =V,

if 1<ar<V, (10)

each RB and P be the transmit power of each device. The

uplink channel capacity between device m and the server
over each RB i is ¢yt (Umi) = umWlog, (1+%)
where u,,; € {0,1} is the user association index, hm,}z is
the channel gain between device m and the server, and o3
represents the variance of additive white Gaussian noise. Then,
the uplink transmission delay between device m and the server
is l?mt (U1, 08) = % where Do, is the data size of
the quantized FL parameters W, ¢.

Since the server has enough computational resources and
sufficient transmit power, we do not consider the delay used
for global FL. model quantization and transmission. Thus, the
time that the devices and the server require to jointly complete
the update of their respective local and global FL. models at

iteration ¢ is given by

li(ut,on) = Iax tm,¢ (lg,t(at)—’_ I (o) + lﬁ,t(“mtﬂt)) .

(11)
Here, u,,; = 0 implies that device m will not send its
quantized local FL. model to the server, and thus not cause
any delay.

C. Problem Formulation

The goal is to minimize the FL training loss while meeting
a delay requirement on FL completion per iteration. This
minimization problem involves jointly optimizing the device
selection scheme and the quantization scheme, which is for-
mulated as follows:

min F(g(ur, a)), (12)
st um€{0,1},a€[0,V]and a € Nt ,Yme M,Vt € T,

(12a)
M

> tme <U, VmeMNVtET, (12b)
m=1

Iy (ut,a)SF,VmEM,VtGT, (12¢)

where U = [uq,...,us,...,ur| is a device selection matrix
over all iterations with w; = [u14,...,up] being a user
association vector at iteration ¢, & = [aq,...,04,...,a7] is
a quantization precision vector of all devices for all iterations,
and 7 = {1,...,T} is the training period. I" is the delay
constraint for completing FL training per iteration, and 7" is a
large constant to ensure the convergence of FL. In other words,
the number of iterations that FL needs to converge will be less
than 7'. (12a) indicates that each device can quantize its local
FL model and can only occupy at most one RB for FLL model
transmission. (12b) ensures that the server can only select at
most U devices for FL model transmission per iteration. (12c)
is a constraint on the FL training delay per iteration.

The problem in (12) is challenging to solve by conventional
optimization algorithms due to the following reasons. First, as
the central controller, the server must select a subset of devices
to collect their quantized local FL models for aggregating
the global FL. model. However, each local FL. model that is
generated by each device depends on the characteristics of the
local dataset. Without such information related to the datasets,
the server cannot determine the optimal device selection and

quantization scheme for minimizing the FL training loss.
Second, as the stochastic gradient decent method is adopted
to generate each local FL. model, the relationship between
the training loss and device selection as well as quantization
scheme cannot captured by the server via conventional opti-
mization algorithms. This is because the stochastic gradient
decent method enables each device to randomly select a
subset of data samples in its local dataset for local FL model
training, and hence, the server cannot directly optimize the
training loss of each device. To tackle these challenges, we
propose a model based RL algorithm that enables the server
to capture the relationship between the FL training loss and
the chosen device selection and quantization scheme. Based
on this relationship, the server can proactively determine u,
and a; so as to minimize the FL training loss.

III. OPTIMIZATION METHODOLOGY

In this section, a model based RL approach for optimizing
the device selection scheme U and the quantization scheme
o in (12) is proposed. Compared to traditional model free RL
approaches that continuously interacts with edge devices to
learn the device selection and quantization schemes, model
based RL approaches enable the server to mathematically
model the FL training process thus finding the optimal device
selection and quantization scheme based on the learned state
transition probability matrix. Next, we first introduce the
components of the proposed model based RL method. Here,
a linear regression method is used to learn the dynamic
environment model in RL approach. Then, we explain the
process of using the proposed model based RL method to
find the global optimal U and «. Finally, the convergence
and complexity of the proposed RL method is analyzed.

A. Components of Model Based RL Method

The proposed model based RL method consists of six
components: a) agent, b) action, c) states, d) state transition
probability, e) reward, and f) policy, which are specified as
follows:

o Agent: The agent that performs the proposed model based
RL algorithm is the server. In particular, at each iteration,
the server must select a suitable subset of devices to
transmit their local FL. models and determine the number
of bits used to represent each element in FL model matrix.

o Action: An action of the server is a; = [us,] € A
that consists of the device selection scheme u; and the
quantization scheme «; of all device at iteration ¢ with
A being the discrete sets of available actions.

o States: The state is s; = F(g:) € S that measures
the performance of global FL model at iteration ¢ with
F(g:) being the FL training loss and S being the sets of
available states.

« State Transition Probability: The state transition proba-
bility P (s¢11]|st, a:) denotes the probability of transiting
from state s; to state s; when action a; is taken, which
is given by

13)

Here, we need to note that in model free RL algorithms,
the server does not know the values of a state transition

P(3t+1|st,at) = Pr{5t+1 = s;|st,at}.

probability matrix. However, in our work, we analyze
the convergence of FL and estimate the FL training
parameters in the FL convergence analytical results so
as to calculate the state transition probabilities. Using
the state transition probability matrix can reduce the
interactions between the server and edge devices thus
improving the convergence speed of RL.

o Reward: Based on the current state s; and the selected
action a, the reward function of the server is given by

r (st,at) = _F(g(Ut,Oét)), (14)

where F(g(u¢,aq)) is the training loss at iteration t.
Note that, r (8¢, a;) increases as F'(g(u¢, o)) decreases,
which implies that maximizing the reward of the server
can minimize the FL training loss.

« Policy: The policy is the probability of the agent choos-
ing each action at a given state. The model based RL
algorithm uses a deep neural network parameterized by
0 to map the input state to the output action. Then, the
policy can be expressed as g (s¢, ar) = P(a¢|s:).

B. Calculation of State Transition Probability

In this section, we introduce the process of calculating the
state transition probability that is used to reduce the inter-
actions between the server and edge devices thus improving
the convergence speed of RL. To this end, we must analyze
the relationship between s;1 and (s;, a;). First, we make the
following assumptions, as done in [47]:

o Assumption 1: The loss function F'(x) is L—smooth with
the Lipschitz constant L > 0, such that

IVF(z)=VF(y)|| <L||z - yl|. (15)

o Assumption 2: The loss function F'(z) is strongly convex
with positive parameter p, such that

F(gi11) > F(g¢) + (gi+1—9:)" VF(ge) + 5
(16)
o Assumption 3: The loss function F'(x) is twice-

continuously differentiable. Based on (15) and (16), we

have
,Uijv2F(gt7mmn7 ymn) <LI. a7
« We also assume that
IV £(gts T)P QL4 [V E(g)*, (18)

where F(g;)= Z Zf(ghwm n> Ymyn)-

m In=1
These assumptions can be satisfied by several widely used

loss functions such as mean squared error, logistic regression,
and cross entropy [48]. These popular loss functions can be
used to capture the performance of implementing practical
FL algorithms for identification, prediction, and classification.
Based on these assumptions, next, we first derive the upper
bound of the improvement of the FL training loss at one FL
training step under the non-i.i.d. setting. Then, we further ana-
lyze the relationship between the FL training loss improvement
and the selected action (i.e., the relationship between s;y;
and s; when a; is given). Based on the analytical result, we
can calculate the state transition probability P (s;y1|s¢, at). To

W
=lge+1—g¢|-

obtain the upper bound of the FL training loss improvement
at one FL training step under the non-i.i.d. setting, we first
define the degree of the non-i.i.d. data distribution.

Definition 1: The degree of non-i.i.d. in the global data
distribution can be characterized by [49]:

M Npm

um fem

=) > G (19)
m=1n=1 Z Nm,t
m=1

where €,, = VF(g;) — VFn(g;) is the difference between
the data distribution of device m and the global data dlStI'l-
bution. We also assume that ||V £ (i, Eons Ymn) + eml|” <
C1 +C2 HVF(gt)H + Be? for some positive B with F(g;) =

Z Z f(gtvwm ny Ym, n)

m In=1

Using Definition 1, we derive the upper bound of the FL
training loss improvement at one FL training step under the
non-i.i.d. setting.

Lemma 1. The FL training loss improvement over one iter-
ation (i.e., the gap between E (F'(g¢+1)) and E (F(g;))) with
a non-i.i.d. data distribution can be upper bounded as
E(F(gi+1)) —E(F(g:)) < E((ge1 — g¢) (VF(g) —€))
L . L N
+ §E (I1ge+1 — gel?) + §E ([19t+1 — geall?)
(20)

where g; and g; are short for g;(us, o) and g (ws, ay), re-
spectively. E(+) is the expectation with respect to the Rayleigh
fading channel gain h,, ; and quantization error.

Proof: See Appendix A. []
From Lemma 1, we can see that, the upper bound of
the FL training loss improvement at one iteration depends
on gyy1(wir1, 1) — ge(uy,) that is determined by the
device selection vector u; and quantization scheme ;. To
investigate how an action a; = [u,] affects the state
transition in the considered bitwidth FL algorithm with non-
i.i.d. data distribution, we derive the following theorem:

Theorem 1. Given the user selection vector u; and quantiza-
tion scheme ay, the upper bound of E (F(g:+1)) — E (F(g¢))
in non-i.i.d. data distribution can be given by

E (F(gi+1)) —E(F (g1))
1 4(N = A2 (E||A (ay)]|+1
§2L<—1+ V= A" @14 @l ¢

E||A(a)| +1 (4(N=A)* (¢ +Be?)
2L N2

) IVE(g0)l[”

+L’E A (at)||>

+E (A (at)Q),
21

M
where A = >y, 1Ny, represents the sum of all selected

devices’ data gzimples that are used to train their local mod-
els, A(ay) = gi(ay) — g4 is the quantization error of the
global FL. model that depends on the quantization scheme c,
E||A(as)|| = M2~ is the unbiased quantization function
defined in (6).

Proof: See Appendix B.]
From Theorem 1, we can see that, the relationship between
E (F(gt+1)) and E (F(g:)) (i.e., s¢+1 and s;) depends on the
selected action a; as well as the constants 1/L, (1, (2, and
Be2. However, we do not know the values of 1/L, ¢1, (o,
and Be? since they are predefined in assumptions (15)—(19).
To find the tightest bound in (21), we must find the values of
1/L, ¢1, (2, and Be? 50 as to build the relationship between
s¢+1 and s; and calculate the state transition probability
P (s¢11]8¢,a¢). To this end, a linear regression method [50]
is used to determine the values of L, (1, (2, and Be? since
the relationship between E (F(g:+1)) — E (F(g:)) and these
constants are linear. The regression loss function defined as

j(Lv gla CQa Bez)
I
LS (5 (i) -5 ()

- K (L.G.6. BE (g0 af” Flann)®))

where [is the number of real interactions between the server
and edge devices used to estimate 1/L, (y, (5, and Beé?.
K(L7 (1, Co, 362|F(gt)(i),ail),F(gtH)(i)) is the upper bound
of the FL training loss at one FL training step obtained in
31). b = (F(g)D.al) F(g,11)®) is the set of recorded
pairs consisted of FL training loss and the selected action
observed by the server and devices. b(* will be used to
estimate the values of 1 / L, (1, (2, and Beé2. Speciﬁcally, given
B = {b 0.0, I)} L, (1, (o, and Be? are updated
using a standard gradlent descent method

aj(L7 Clv CQa B/)

(22)

aj(La<15C27B/)

L=1L—- - (—
L oL s Cl Cl Ly 8(1)
8J(L7<17C2aBI) / / 6J(L,<1,CQ,B/)
= — _—_— B = B —)y —
C2=Ca1¢, 9, ; LB EYel :
(23)
where B’ = Bé?. g, L¢y» Loy, and vps are learning rates for

parameters L, (1, (2, and B’.

Given the values of L, (1, (2, and Be?, the gap between
E(F(gs)) and E(F(g¢)) can be estimated according to our
upper bound. Based on the definition of the state, the state
transition probability P(s; + 1|s¢, a;) is given by

1,1f St+1 = St + K/,

0, otherwise. (24)

P (st41]s¢,0¢) = {

where K’ = K (L7 (1, Co, BE?|F(ge) ™, agi)»F(gtH)(i))-

C. Optimization of Device Selection and Quantization Scheme

Having the state transition probability P (s;y1|s¢, at), next,
we introduce the optimization of 7g so as to find the optimal
device selection scheme u; and quantization scheme ;. Op-
timizing g for minimizing the FL training loss corresponds
to minimizing

> plen T

(st,ar)ET t=1

!

E<9) St—l,at St\St 17at ZT Staat
t=1

(25)

where 7 = {s¢, ag, . .., ST, ar} is the trajectory replay buffer.

Given (25), the optimization of policy network 6 is
max L£(0). (26)

We update 7 using a standard gradient descent method
0=0+.VeL(0), 27)

where « is the learning rate and the policy gradient is

VoL(0 ZP 50 Hﬂe Si—1,a;)P(s¢|si—1,a¢ Zr S¢,a¢)
(st,at)ET t=1
1z
=7 Zr(st,at) Viogme (s, at).
=1

(28)

D. Proposed Method for FL with Nonconvex Loss Functions

In Sections III. A, B, and C, we proposed a novel model
based RL to optimize the device selection and quantization
scheme so as to minimize FL training loss. Here, we extend the
designed RL for FL with non-convex loss functions. First, we
derive the convergence of FL. with non-convex loss functions.
In particular, we first replace convex Assumptions 2 and 3
with the following conditions:

Condition 1 [51]: The gradient of the non-convex loss
function F(z) is bounded by a nonnegative constant B, i.e.,
IVE(2)|] < C.

Condition 2 [52]: Function F(z) is p-nonconvex such that
all eigenvalues of V2F lie in [—pu, L], for some u € (0, L].

Condition 3 [52]: The Hessian of the loss function F'(x)
is y-Lipschitz continuous, such that

IV2F(z) = V*F(y)]] <

Together with Assumption 1, and Conditions 1 and 3, loss
function F'(x) is L.-smooth for L, = 4L + vC' with ¢+ €
[0,1/L] [Lemma 4.2, [52]]. Based on (29), Lemma 1 can be
rewritten as

Y2 = yll. (29)

E(F (gi+1)) —E(F (9¢) < E (G141 —gt) (VF(ge) —€))
+ %E (||gt+1 - gt||2) +%E (||gt+1 - gt+1||2) .
(30)

Then, the convergence of our FL. methodology with nonconvex
loss functions is shown in the following theorem.

Theorem 2. Given the user selection vector u; and quantiza-
tion scheme <, an upper bound E (F(g;+1)) —E (F(g:)) can
be obtained as

E (F(gi+1))

1
<— (=1
<o (-1

E|A(ow)|| +1 (4
+
2L,
M2T4
2L,

—E(F(g:))
AN = APE (|A(a) | +1) ¢
N2
(N — A)?(¢1 + Be?)
N2

) IV F(g)|P

+ LR ||A<at>||)

+

+ E (A(Oét)Q) 5
3D
M
where A = >y, ¢t Np, represents the sum of all selected

m=1
devices’ data samples, A(ay)=g:(cy)— gy is the quantization

Algorithm 1 Model-based RL for device selection and quan-
tization optimization

Input: The environment state S, the action space .A.
QOutput: The device selection and quantization scheme.
1: Initialize policy 7rg, transition replay buffer B, trajectory replay
buffer 7.
2: for iteration ¢ = 1: I do
3: Randomly selects a subset of devices to generate the global
FL model that are quantized into «; bits.
4: Records F(g¢), F(gi+1), s, and device selection scheme w
in B.
5: end for
6: Estimate 1/L, (1, 2, and Bé? to construct P (St+1|s¢, at) using
(23) based on the real transition in .
7: for iteration ¢ = 1: H do
8: Sample initial state from S, then use policy 7 and learned
P (s¢41]8¢, a¢) to perform T trajectories and update 7.
9: Sample from 7, and update the current policy evaluation by
solving Equation (28).
10: end for

error of the global FL model, and E || A(ay)||= M2~ is the
unbiased quantization function.

Proof: The detailed proof can be found in [53]. [|
Given Theorem 2, the server is able to obtain the state
transition probability P(s;41|s¢,as) via estimating L., 1", (1,
(2, Be2. Given P(s;41]st,at), we can use the proposed model
based RL to find the optimal device selection and quantization
scheme.

E. Implementation and Complexity

Next, we first analyze the training process of the model
based RL algorithm. To train the proposed model based RL,
the server needs to collect the time consumption coefficient
p, the frequency of the CPU f, the number of bits that
can be processed by the CPU in one clock cycle ¥, the
channel gain h,,;, and the transmit power of each device
P. These parameters are constant and can be obtained from
devices. Meanwhile, the server already knows FL. model meta-
parameters such as the number of multiplication operations
N and the number of neurons D, when it initializes the FL
model. Additionally, during the initial / FL training iterations,
the server must first randomly select a subset of devices to
participate in FL, obtaining their training loss values and the
selected actions so as to estimate the values of 1/L, (i, (o,
and Be?, and calculate P (s;41]s¢, at), as shown in (22)-(28).
Then, using P (s;y1|s¢, at), a model based RL algorithm is
used to find the optimal «; and u; without any interactions
between the server and devices. The entire process of training
the proposed model based RL algorithm is shown in Algorithm
1.

The computational complexity of the proposed algorithm
lies in the calculation of the state transition probability
P (s¢11]8¢, a¢) by a standard gradient descent method as well
as optimizing «; and u,,; by the proposed model based RL
algorithm, which is detailed as follows:

a) In terms of computational complexity of calculating
P (s¢11]8¢, a¢), the server needs to find the values of 1/L, (3,
(2, and Be? using a linear regression method. The regression
loss function in (22) is strongly convex and smooth. Hence,

TABLE I
SIMULATION PARAMETERS

Parameters| Values | Parameters| Values |Parameters| Values
M 15 U 6 N, 200
w 15 kHz P 05 W 0% -174 dBm
K 8 1 20 I 1s
T 1000 f 3.3 GHz B 64
D 217728 p 2.8 x 10° P 0.02
LL 0.02 Ly 0.02 Ley 0.02

the fixed step-size gradient descent method at least updates
O(HLO—L*HE + HClO—Cl*H%_i_ [¢2%¢2"l5 + [I1B"~B"|3

eLr 3 EL¢ ELps
for reaching the optimal L*, (1", ZCQ*, B’* from initialized L°,
¢iY, 60, B0 with ¢ error [54].

b) The computational complexity of the proposed RL algo-
rithm depends on the number of the parameters in the policy
network @ which depends on the size of action space A and the
size of state space S. In particular, the possible combinations
of each a; in action space A is to choose i devices (i < U)
from all M devices to participate in quantized FL. Thus, the

u U
size of the possible device selections is > Cf; = Y- s

and the number of quantization actionslfs1 Y. The state space
S consists of the continuous values of loss function F'(g;). To
ensure a finite state space, the continuous loss function values
is divided into |S| levels. Then, the size of state space S is
|S|. Therefore, the computational complexity of the proposed

U K—1
RL algorithm is O {YS| S M Hy, », where Hy,
i=1

iterations

(M —7)!
= k=2
is the number of the neurons in layer k of the policy network
0.

IV. NUMERICAL EVALUATION

For our simulations, we consider a circular network area
having a radius » = 1500 m with one server at its center
serving M = 15 uniformly distributed devices. The other
parameters used in simulations are listed in Table I, unless
otherwise stated. For comparison purposes, we use three
baselines:

¢ a) The binary FL scheme from [55] that enables the server
to randomly select a subset of devices to cooperatively
train the FL. model at each iteration. Each parameter in
the trained FL model is quantized into one bit.

e b) An FL algorithm that enables the server to randomly
select a subset of devices to cooperatively train the FL
model in full-precision (i.e., without quantization), which
can be seen as a standard FL [11].

e ¢) An FL algorithm that optimizes the device selection
and quantization schemes using a model free RL method
[32]. For c), a policy gradient-based RL update is em-
ployed to learn the state transition probabilities.

A. Datasets and ML Models

We consider two popular ML tasks: handwritten digit iden-
tification on the MNIST dataset [56], and image classification
on the CIFAR-10 dataset [57]. The quantized FL algorithm
that is used for handwritten digit identification consists of three
full-connection layers. The total number of model parameters
in the used fully-connected neural network (FNN) is 217728
(= 28 x 28 x 2564256 x 64464 x 10). To verify the feasibility

%1078
=&— Actual calculation time
=== Theoretical calculation time based on (9)

Time used to calculate training loss (s)

2 4 8 16 32
Value of «;

Fig. 2. Calculation time of low bitwidth federated learning vs. the quantization
precision.

of the proposed calculation time model in (9), we first simulate
the actual calculation time using the clock module in GEneral
Matrix Multiply (GEMM) [58], as shown in Fig. 2. Fig. 2
shows that the actual calculation time is almost the same as
the theoretical calculation time in (9).

The quantized FL algorithm that is used for image classi-
fication consists of three convolutional layers and two full-
connection layers. In the used convolutional neural network
(CNN), the size of the convolutional kernel is 5 x 5 and
the total number of model parameters in CNN is 116704
(=5x5x(3x32+32x324+32x64)+576 x 64 x 64 + 10).

For both datasets, we will consider two cases of data
distributions across clients: (i) non-i.i.d., where each client is
allocated samples from only 3 of 10 labels; and (ii) i.i.d.,
where each client is allocated samples from all labels. All FL
algorithms are considered to be converged when the value of
the FL loss variance calculated over 20 consecutive iterations
is less than 0.001.

B. Convergence Performance Analysis

Fig. 3 shows how the FL training loss changes as the
number of iterations varies for MNIST. From Fig. 3, we
can see that, the proposed model based RL algorithm can
reduce the numb