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Abstract
Ordering polytopes have been instrumental to the study of combinatorial optimization
problems arising in a variety of fields including comparative probability, computa-
tional social choice, and group decision-making. The weak order polytope is defined
as the convex hull of the characteristic vectors of all binary orders on n alternatives that
are reflexive, transitive, and total. By and large, facet defining inequalities (FDIs) of
this polytope have been obtained through simple enumeration and through connections
with other combinatorial polytopes. This paper derives five new large classes of FDIs
by utilizing the equivalent representations of aweak order as a ranking of n alternatives
that allows ties; this connection simplifies the construction of valid inequalities, and
it enables groupings of characteristic vectors into useful structures. We demonstrate
that a number of FDIs previously obtained through enumeration are actually special
cases of the large classes. This work also introduces novel construction procedures for
generating affinely independent members of the identified ranking structures. Addi-
tionally, it states two conjectures on how to derive many more large classes of FDIs
using the featured techniques.
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1 Introduction

Ordering polytopes have been instrumental to the study of problems from a variety
of fields including comparative probability (Anscombe et al. 1963; Chevyrev et al.
2013), computational social choice (Barthelemy and Monjardet 1981; Marley and
Regenwetter 2016) and group decision-making (Marti and Reinelt 2011; Yoo and
Escobedo 2021; Yoo et al. 2020). The derivation of facet defining inequalities (FDIs)
for these polytopes is a focal point owing primarily to their usefulness in tackling
challenging combinatorial optimization problems. For example, their implementation
via branch-and-cut approaches has been cited as an effective solution methodology
(e.g., see Coll et al. 2002; Grötschel and Wakabayashi 1990; Marti and Reinelt 2011).
Such polyhedral studies have historically centered on the linear ordering polytope (e.g.,
see Bolotashvili et al. 1999; Fishburn 1992; Grötschel et al. 1985). In recent years,
different classes of FDIs have been introduced for various other ordering polytopes
(e.g., see Doignon and Fiorini 2001; Doignon and Rexhep 2016; Müller 1996; Oswald
and Reinelt 2003), driven by a fundamental need to consider a broader range of ordinal
relationships. For example, the incorporation of non-strict orderings (i.e., possibly
containing ties) is regarded as a fundamental form of preference expression in various
group decision-making applications (Yoo and Escobedo 2021).

There are many situations in which it is necessary to determine an ordering of all
alternatives of a set N := {1, . . . , n} or, equivalently a complete ranking of n alterna-
tives that best achieves a given objective. For instance, the objective of the consensus
ranking problem is to find a ranking r ∈ Nn that minimizes the cumulative distance
to a set of input rankings {ak}mk=1, the latter of which typically represents a collection
of evaluations of the alternatives provided bym sources. It is often prudent, if not nec-
essary, to allow the consensus ranking (as well as the input rankings (Kendall 1945))
to contain ties for a myriad of reasons—e.g., contradictory information in the given
evaluations, high cost of obtaining a strict linear ordering when more than a handful of
alternatives are involved, etc. However, the universe of complete non-strict rankings is
exceedingly large. This underscores the ongoing need to better characterize the weak
order polytope, Pn

WO, whose vertices are equivalent to the individual members of this
set. Specifically, a weak order on N is defined as a binary relation that is reflexive,
transitive, and total.

For the most part, FDIs of Pn
WO have been either obtained through enumeration

approaches with specialized software or derived from known FDIs of other existing
polytopes. The complete sets of FDIs for P4

WO and P5
WO listed in Fiorini and Fishburn

(2004) and Regenwetter and Davis-Stober (2012) respectively, were generated using
thePorta program (Christof et al. 1997). Furthermore, inDoignon and Fiorini (2001)
certain members of the classes of 2-partition, 2-chorded cycle, 2-chorded path, and
2-chorded wheel FDIs (Grötschel andWakabayashi 1990) of the partial order polytope
Pn
PA (also known as the clique partitioning polytope) were lifted into FDIs of Pn

WO.
This work introduces a new approach for deriving large classes of FDIs for Pn

WO from
structural insights that are rooted in the connection between weak orders and complete
non-strict rankings.

The main contributions of this work are as follows. We derive six large classes of
valid inequalities (VIs) of Pn

WO, for n ≥ 4. Each VI class is obtained by considering a
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relatively small number of ordinal relationship combinations, specifically the orderings
of only up to two alternatives with one another and with an unspecified number of
other alternatives, which are treated as a group. We prove that five of the six new
large classes of VIs are FDIs. This is done by characterizing the weak orders that
satisfy a VI at equality into a small number of ranking structures and then devising
construction procedures that generate expedient sequences of affinely independent
points from them. It is important to remark that each fixed value of n provides a VI
expression that is not applicable in a dimension lower than n; in other words, the
statement about the applicability of these FDI classes to any n ≥ 4 is not due to the
Lifting Lemma (Fiorini and Fishburn 2004). In fact, we show that a number of FDIs
previously obtained through enumeration are special cases of these large classes of
FDIs. Lastly, we conjecture how the above contributions may be extended to derive
numerous other large classes of VIs, many of which we expect to be FDIs.

The rest of this paper is organized as follows: Sect 2 introduces basic notation
and definitions used throughout this work. Section 3 introduces six classes of valid
inequalities of the weak order polytope, along with a description of the ranking struc-
tures whose members satisfy each inequality at equality. Section 4 introduces novel
characteristic vector construction procedures, which are then utilized to demonstrate
that five of the six aforementioned large classes of valid inequalities are facet defining
for any n ≥ 4. Section 5 concludes with additional insights and two conjectures on
how the fundamental insights herein presented may induce additional large classes of
FDIs.

2 Notation, definitions, and other background concepts

Let N := [n] be a set of alternatives or objects, where [n] is shorthand for the set
{1, . . . , n}, and let AN := {(i, j) : i, j ∈ N , i �= j} be the set of all possible ordered
pairings on N . LetW be the family of all weak orders on N . In certain related works,
the elements of a weak order W ∈ W are expressed as i � j (i is not preferred over
j). Without loss of generality, we describe the elements of W as i � j (alternative
i is preferred over or tied with j) and express this preference relation succinctly as
the ordered pair (i, j). We do this primarily to help make the description of ranking
structures more intuitive. Next, we introduce three different representations of W to
be used throughout this paper.

Definition 1 The characteristic vector representation ofW ∈ W is typified by a vector
xW ∈ {0, 1}AN

whose entry (i, j) ∈ AN is given by:

xW(i, j) =
{
1 if (i, j) ∈ W

0 otherwise.

Definition 2 The (unique) ranking representation of W ∈ W is typified by a vector
rW ∈ Nn whose entry i ∈ N is given by:
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rWi = n −
∑

j∈N\{i}
I (i � j ∈ W ) = n −

∑
(i, j)∈AN

xW(i, j).

Definition 3 The alternative-ordering representation of W ∈ W can be typified by a
collection of nonempty subsets SW1 , . . . , SWp ⊆ N which forms a preference partition

of N of size p, written as {{SWk }pk=1}�, if:
(a) SWk ∩ SWk′ = ∅ for k �= k′;
(b) SW1 ∪ SW2 ∪ · · · ∪ SWp = N ;

(c) i ≈ j ∀i, j ∈ SWk ; i � j for i ∈ SWk , j ∈ SWk′ where 1 ≤ k < k′ ≤ p;

where, for a pair of elements i, j ∈ N , the expression “i ≈ j ′′ indicates that alternative
i is tied with alternative j and “i � j ′′ indicates that i is strictly preferred over j .
Here, the kth subset of the partition (SWk ), contains all alternatives in the kth bucket or
equivalence class of W .

Stated otherwise, {{SWk }pk=1}� is an ordered set of sets. Its kth element, SWk , con-
tains alternatives that are all tied amongst themselves. An example application of the
presented terminology is as follows.

Example 1 Let W = {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (4, 3)}. The corre-
sponding ranking is rW = (1, 1, 4, 3); the rank of alternative 3 is rW3 = 4. The
corresponding alternative-ordering is {{SWk }3k=1}� = {{1, 2}, {4}, {3}}; and the con-
tents of bucket 2 are SW2 = {4}.

For notational convenience, when working with a collection of m weak orders,
each Ww ∈ W may be represented in abbreviated fashion as xw, rw, or {Sw} for
w = 1, . . . ,m, when there is no ambiguity; the number of buckets is evident from
the given context or is written as |{Sw}|. Additionally, individual elements in the first
two representations may be written as xw

(i, j) and rw
i , respectively, for i, j ∈ N , and

individual subsets in the third may be written as Sw
k for k ≤ |{Sw}|.

Next, we state a few relevant polyhedral theory concepts.

Definition 4 A polyhedron P is a subset of R
n that can be described by a finite set of

linear constraints as P = {x : πx ≤ π0} ⊆ R
n .

Definition 5 The ordered pair (π , π0) is a valid inequality (VI) for a polyhedron P if
πx ≤ π0 holds ∀x ∈ P or, equivalently, max{πx : x ∈ P} ≤ π0.

Definition 6 The valid inequality (π , π0) defines a facet of a polyhedron P if ∅ �=
P ∩ {x : πx = π0} �= P and if there exists dim(P) affinely independent points in
P ∩ {x : πx = π0}, i.e., the dimension of the VI is dim(P)− 1.

Since Pn
WO has dimension n(n − 1) (i.e., the polyhedron is full-dimensional), its

facets have dimension n(n − 1)− 1 (Gurgel 1992). The FDIs of Pn
WO for n ≥ 3 that

follow directly from the characteristic vector representation and the completeness and
transitivity properties of a weak order are (Fiorini and Fishburn 2004):

xi j ≤ 1 i, j = 1, . . . , n; i �= j (1a)

123



Journal of Combinatorial Optimization            (2023) 46:19 Page 5 of 45    19 

xi j + x ji ≥ 1 i, j = 1, . . . , n; i �= j (1b)

xi j − xik − xk j ≥ −1 i, j, k = 1, . . . , n; i �= j �= k �= i (1c)

where xi j is used in place of xW(i, j) for visual simplification.

Later in this work, we refer to the FDIs of P4
WO, as categorized into nine classes

WO1–WO9 (Regenwetter and Davis-Stober 2008) in Table1. For visual clarity, only
nonzero coefficients of WOi are displayed and the coordinates ( jk, jk′) of each VI
coefficient-vector π ∈ R

4×3 are abbreviated as jk jk′ , for (k, k′) ∈ A4.
The cardinality of WOi in P4

WO, written in the rightmost table column as |WO4
i |,

is obtained by counting the number of ways that the labels j1, j2, j3, j4 ∈ [4] can be
permuted within each expression. We remark that WO1–WO9 can be reduced into
just seven classes (Fiorini 2001; Fiorini and Fishburn 2004) by leveraging symmetries
betweenWO6 andWO7 and betweenWO8 andWO9. In the list,WO1–WO3 match
Inequalities (1a)–(1c) and are known as the axiomatic inequalities, which comprise
the full set of FDIs for P3

WO. They are also FDIs for n ≥ 4 due to the Lifting Lemma
of Fiorini and Fishburn (2004) restated below for future reference.

Lemma 1 (Lifting Lemma (Fiorini and Fishburn 2004)) Let (π , π0) be an FDI of Pn
WO,

and let π̄ ∈ R
(n+1)×n be defined by:

π̄ j j ′ =
{

π j j ′ if j, j ′ ∈ [n] : j �= j ′,
0 if ( j = n + 1, j ′ ∈ [n]) or ( j ∈ [n], j ′ = n + 1).

Then, (π̄ , π0) is an FDI of P
n+1
WO .

From the Lifting Lemma, WO4–WO9 are FDIs for any n ≥ 4. Note that the total
number of FDIs that can be generated fromWO4–WO9 in higher dimensions is greater
than in P4

WO. Expressly, the number of these FDIs that can be generated in Pn
WO is

given by:

∣∣WOn
i

∣∣ =
(
n

4

)
|WO4

i | = n(n − 1)(n − 2)(n − 3)

24

∣∣WO4
i

∣∣, (2)

where 4≤ i ≤ 9 and n ≥ 4. Stated otherwise, |WO4
i | distinct FDIs from class WO4

i
can be generated for every combination of distinct indices j1, j2, j3, j4 ∈ [n], each of
which can be lifted into any higher dimension.

3 Constructing valid inequalities

This section introduces six new classes of VIs. For fixed dimension n̂ ≥ 4, each class
defines a set of VIs specific to Pn̂

WO, that is, no individual member of the specific VIs
for dimension n̂ is applicable in dimension n < n̂. While the VIs defined for n̂ are
also valid for n > n̂ owing to the Lifting Lemma, the applicability of the classes to
any dimension n ≥ 4 is independent of lifting. Hence, the cardinality of each VI class
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is much larger than those of VIs WO4–WO9, which will be elaborated in Sect. 5;
therein, it will also be explained that the latter existing FDIs are in fact special cases
of the featured VI classes.

Surprisingly, each of the featured large classes of VIs can be derived by considering
only a small number of ordinal relationship combinations. Fig. 1 helps illustrate this
insight with digraphs G = (N ,A) that represent the left-hand side coefficients π

of each of the six classes of VIs, where A ⊆ AN . Each node j ∈ N represents an
alternative and the format of the arc between nodes j, j ′ represents the coefficient
of x j j ′ ; expressly, π j j ′ = 0, 1, or − 1 if there is no arc, a solid arc, or a dashed arc,
respectively, from j to j ′.Whenπ j j ′ = π j ′ j �= 0, a bidirectional arc of the appropriate
kind is drawn between j and j ′ to represent arcs ( j, j ′) and ( j ′, j). Furthermore, a light
gray node represents a “fixed” alternative i1 ∈ N ; a dark gray node represents a second
fixed alternative i2 ∈ N (when applicable), with i2 �= i1, and blank nodes represent
the remaining “unfixed” alternatives N\{i1} or N\{i1, i2}, as applicable. Using this
characterization, we categorize the featured VI classes as being of Type 1 or Type 2
(T1 or T2 for short) indicating the number of fixed alternatives in each expression;
multiple classes of the same type are differentiated accordingly. Henceforth, the fixed
alternative set is denoted as N̂ , and the unfixed alternative set as N̂ c := N\N̂ (the
complement of N̂ in N ). Additionally, i-indices are reserved for elements in N̂ while
j-indices are used for elements of either N̂ c or N , depending on the context. As an
important note, although the shaded nodes in each digraph represent the actual number
(one or two) of fixed alternatives, the six blank nodes represent a variable number of
unfixed alternatives that grows with n—more specifically equal to n− |N̂ |, for n ≥ 4.

Within each digraph depicted in Fig. 1, all arcs belonging to one of the following
three sets have a uniform format (all are solid or all are dashed) and a uniform orienta-
tion (all point in the same direction or all are bidirectional):A{i1, j} := {(i1, j), ( j, i1) :
j ∈ N̂ c},A{i2, j}:={(i2, j), ( j, i2) : j ∈ N̂ c}, and A{ j, j ′}:={( j, j ′) : j ∈ N̂ c, j �=
j ′}. In fact, the characteristics of the arcs belonging to the third set are the same across
the six digraphs. In other words, even though each of the digraphs (i.e., VI classes)
induces a distinctive mathematical expression for any n ≥ 4, their general forms are
obtained from a small number of possible uniform-format and uniform-orientation
options for A{i1, j} and A{i2, j}, combined with the different arc choices between i1
and i2. For example, in Fig. 1c all arcs in A{i1, j} are solid and bidirectional, all arcs
in A{i2, j} are dashed and directed from j ∈ N̂ c to i2, and arc (i1, i2) is solid (with no
arc from i2 to i1).

Themathematical expressions and derivations of the T1 and T2VI classes are given
in the ensuing paragraphs. In each VI, all non-zero variable coefficients π j j ′ are equal
to either 1 or − 1. Hence, the left-hand side of the VI is reexpressed as the difference
between the selected positive arcs and the selected negative arcs from G, that is:

∥∥xW+ ∥∥ − ∥∥xW− ∥∥ :=
∑

( j, j ′)∈A+
x j j ′ −

∑
( j, j ′)∈A−

x j j ′ ,

where A+ := {( j, j ′) ∈ A : π j j ′ = 1}, A− := {( j, j ′) ∈ A : π j j ′ = −1}, xW+ ∈
{0, 1}|A+|, xW− ∈ {0, 1}|A−|, and || · || is the L1-norm. The derivation of each VI
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Fig. 1 Digraphs representing coefficients π of the six featured classes of valid inequalities
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centers on determining the value of max{‖xW+ ‖−‖xW− ‖} in the left-hand side of the
given expression, where xW+ and xW− together must induce a weak ordering on N .
The weak orders that achieve this maximum value are described and conveniently
grouped into (non-strict) ranking structures. For completeness and clarity, the ranking
structures are first described in mathematical notation in tables and then in words
within the proof narratives. Each proof begins with an arbitrary weak order W , where
the fixed alternatives (i1 in Theorem 1, and i1 and i2 in Theorems 2–6) are tied with
a fixed number, t ≥ 0, of unfixed alternatives. For each possible value of t , the proof
describes modifications to W that lead to one or more of ranking structures listed in
the respective ranking structure table. Each set of modifications leads to some weak
order W ′, i.e., corresponding to the enumerated ranking structures. The proofs then
present constructive arguments as to why the value of ‖xW ′

+ ‖−‖xW ′
− ‖ is higher than

that achieved by any other weak order. To facilitate understanding, readers are advised
to refer to the corresponding digraphs in Fig. 1 while following the proofs.

Due to space limitations, someproofs are located in the “Appendix”.Accompanying
examples of the weak order constructions described in the VI proofs are given in the
Supplementary Materials.

Theorem 1 (T1VI) Let N̂ = {i1} be the fixed index set, where i1 ∈ N, and let N̂ c =
N\N̂ . The following is a valid inequality for Pn

WO, for any n ≥ 4:

∑
j∈N̂ c

(
xi1 j + x ji1

) −
∑

j, j ′∈N̂ c: j �= j ′
x j j ′ ≤ 2 − (n − 2)(n − 3)

2
. (3)

Proof The VI is satisfied at equality by the ranking structures listed in Table2, which
are justified as follows. The arc sets A+ and A− are given by:

A+ = {(i1, j) : j ∈ N̂ c} ∪ {( j, i1) : j ∈ N̂ c},
A− = {( j, j ′) : j, j ′ ∈ N̂ c, j �= j ′}.

Let W be an arbitrary weak order defined over the set of alternatives N , where alter-
native i1 is tied with exactly t ≥ 0 unfixed alternatives, [ j1, jt ] ⊆ N̂ c, where [ j1, jt ]
is used as shorthand for the index set { j1, j2, . . . , jt }. The structure of the weak orders
generated by different values of t can be encapsulated by the following four cases:
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Case 1 (t = 1) There are precisely n selected positive arcs, ‖xW+ ‖ (i.e., from A+): 2
from the tie of i1 with an unfixed alternative, say j1, and (n − 2) from the strict ordering
of i1 with each j ∈ N̂ c\{ j1}. Now, break the ties (if any) between j, j ′ ∈ N̂ c\{ j1},
where j �= j ′, by removing either negative arc ( j, j ′) or negative arc ( j ′, j) from W;
denote the generated weak order as W ′. This gives a total of (n − 1)(n − 2)/2 selected
negative arcs (i.e., fromA−). Since this removal does not increase the value of ‖xW− ‖
and keeps the value of ‖xW+ ‖ unchanged, we have that ‖xW+ ‖−‖xW− ‖ ≤ ‖xW ′

+ ‖−‖xW ′
− ‖.

For any such weak order, equivalently characterized by ranking structure #1, the value
of ‖xW ′

+ ‖−‖xW ′
− ‖ equals the right-hand side of inequality (3). Note that, since there

must be at least one arc between every pair of alternatives to induce a total order,
further reduction in negative arcs is not possible.

Case 2 (t = 2) This case is addressed using the same arguments as in Case 1 by
replacing N̂ c\{ j1} with N̂ c\{ j1, j2}; the generated weak order is defined by ranking
structure #2.

Case 3 (t ≥ 3) First, break the tie between ĵ and jt by removing either arc ( ĵ, jt ) or
arc ( jt , ĵ) from W, for each ĵ ∈ [ j1, jt − 1] ∪ {i1}; denote the generated weak order
as Wt − 1. Since this removal decreases the value of ‖xW− ‖ and ‖xW+ ‖ by (t − 1) ≥ 2

and 1, respectively, we have that ‖xW+ ‖−‖xW− ‖ < ‖xWt−1+ ‖−‖xWt−1− ‖. Next, break the
ties between each of ĵ ∈ [ j1, jt − 2] ∪ {i1} with jt − 1 in Wt − 1 in a similar fashion to
obtain a modified weak order, denoted as Wt − 2. Repeat this process until arriving at
a weak order, denoted as W2, in which i1 is tied with exactly two unfixed alternatives
j1 and j2. At this point, apply the results of Case 2 by setting W :=W2.

Case 4 (t = 0) Suppose that the rank of alternative i1 is fixed as ri1 = k > 0. Let
[ j1, jl ] ⊆ N̂ c denote those alternatives with rank r equal to k − 1 when k ≥ 2, or
with rank r equal to k + 1 = 2 when k = 1. Add to W arc (i1, ĵ) in the former, and
add to W arcs ( ĵ, i1) in the latter, for each ĵ ∈ [ j1, jl ]; denote the generated weak
order in either case as W ′. Since these additions keep the value of ‖xW− ‖ unchanged

and increase the value of ‖xW+ ‖, we have that ‖xW+ ‖−‖xW− ‖ < ‖xW ′
+ ‖−‖xW ′

− ‖. At
this point, apply the results of Cases 1–3 by setting W :=W ′. ��

Table 2 List of ranking structures that satisfy T1 VI at equality

Ranking structure description
∥∥xW ′

+
∥∥ ∥∥xW ′

−
∥∥

#1 ri1 = r j1 = k, where k ∈ [n], j1 ∈ N̂ c; n (n − 1)(n − 2)
2

r j , r j ′ ∈ [n]\{k, k + 1}, r j �= r j ′ , for j, j ′ ∈ N̂ c\{ j1}
#2 ri1 = r j1 = r j2 = k, where k ∈ [n], j1, j2 ∈ N̂ c : j1 �= j2; n + 1 (n − 1)(n − 2)

2 + 1

r j , r j ′ ∈ [n]\{k, k + 1, k + 2}, r j �= r j ′ , for j, j ′ ∈ N̂ c\{ j1, j2}
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Table 3 List of ranking structures that satisfy T2-0 VI at equality

Ranking structure description
∥∥xW ′

+
∥∥ ∥∥xW ′

−
∥∥

#1 ri1 = 1, ri2 = n; 2(n − 2) (n − 2)(n − 3)
2 + 1

r j , r j ′ ∈ [n]\{1, n}, r j �= r j ′ , for j, j ′ ∈ N̂ c

#2 ri1 = r j1 = 1, ri2 = n, where j1 ∈ N̂ c; 2(n − 2) (n − 2)(n − 3)
2 + 1

r j , r j ′ ∈ [n]\{1, 2, n}, r j �= r j ′ , for j, j ′ ∈ N̂ c\{ j1}
#3 ri1 = 1, ri2 = r j2 = n − 1, where j2 ∈ N̂ c; 2(n − 2) (n − 2)(n − 3)

2 + 1

r j , r j ′ ∈ [n]\{1, n − 1, n}, r j �= r j ′ , for j, j ′ ∈ N̂ c\{ j2}
#4 ri1 = r j1 = 1, ri2 = r j2 = n − 1, where j1, j2 ∈ N̂ c : j1 �= j2; 2(n − 2) (n − 2)(n − 3)

2 + 1

r j , r j ′ ∈ [n]\{1, 2, n − 1, n}, r j �= r j ′ , for j, j ′ ∈ N̂ c\{ j1, j2}

Theorem 2 (T2-0VI) Let N̂ = {i1, i2} be the fixed index set, where i1, i2 ∈ N s.t.
i1 �= i2, and let N̂ c = N\N̂ . The following is a valid inequality of Pn

WO, for any
n ≥ 4:

xi2i1 +
∑
j∈N̂ c

(
xi1 j + x ji2

) − xi1i2 −
∑

j, j ′∈N̂ c: j �= j ′
x j j ′ ≤ 2 − (n − 4)(n − 5)

2
. (4)

Proof TheVI is satisfied at equality by the ranking structures listed in Table3. Because
the VI is only an FDI for n = 4 (see Sect. 5), the remainder of the proof is relegated
to “Appendix A.1”. ��
Theorem 3 (T2-1VI) Let N̂ = {i1, i2} be the fixed index set, where i1, i2 ∈ N s.t.
i1 �= i2, and let N̂ c = N\N̂ . The following is a valid inequality of Pn

WO, for any
n ≥ 4:

xi1i2 +
∑
j∈N̂ c

(
xi1 j + x ji1

) −
∑

j, j ′∈N̂ c: j �= j ′

(
x j j ′ + x ji2

) ≤ 2 − (n − 3)(n − 4)

2
. (5)

Proof The VI is satisfied at equality by the ranking structures listed in Table4, which
are justified as follows. The arc sets A+ and A− are given by:

A+ = {(i1, i2)} ∪ {(i1, j) : j ∈ N̂ c} ∪ {( j, i1) : j ∈ N̂ c},
A− = {( j, i2) : j ∈ N̂ c} ∪ {( j, j ′) : j, j ′ ∈ N̂ c, j �= j ′}.

Let W be an arbitrary weak order defined over the set of alternatives N , where the
fixed alternatives i1 and i2 are tied with exactly t1 ≥ 0 and t2 ≥ 0 unfixed alternatives,
respectively, such that t1+t2 ≤ n − 2. Now suppose that the ranks of these alternatives
are fixed as ri1 = k1 > 0 and ri2 = k2 > 0. Additionally, let N̂ c

<k1
⊆ N̂ c denote

the set of unfixed alternatives with rank r < ri1 , and N̂ c
<k2

⊆ N̂ c denote the set of
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unfixed alternatives with rank r ′ < ri2 . Note that, N̂
c
<k1

∩ N̂ c
<k2

= ∅ only when either

N̂ c
<k1

= ∅ or N̂ c
<k2

= ∅ or both. The structure of the weak orders generated by the
different values of t1 and t2 can be encapsulated by the following cases:

Case 1 (t1 = 0, t2 = 0) For each ĵ ∈ N̂ c
<k1

, replace positive arc ( ĵ, i1) with positive

arc (i1, ĵ) and for each ĵ ′ ∈ N̂ c
<k2

, replace negative arc ( ĵ ′, i2) with zero arc (i2, ĵ ′)
to obtain a weak order where alternatives i1 and i2 are placed in front of all j ∈ N̂ c.
Additionally, if k1 > k2, replace zero arc (i2, i1) with positive arc (i1, i2) to place
alternative i1 in front of i2. This gives precisely n − 1 selected positive arcs: 1 from
the relative position of i1 with i2 and n − 2 from the strict ordering of i1 with each
unfixed alternative. Next, break the ties (if any) between j, j ′ ∈ N̂ c, where j �= j ′,
by removing either negative arc ( j, j ′) or negative arc ( j ′, j) from W ; denote the
generated weak order as W ′. This gives a total of (n − 3)(n − 2)/2 selected negative
arcs. Since all preceding operations neither increase the value of ‖xW− ‖ nor decrease

the value of ‖xW+ ‖, we have that ‖xW+ ‖−‖xW− ‖ ≤ ‖xW ′
+ ‖−‖xW ′

− ‖. For any such weak
order, equivalently characterized by either ranking structure #1, if k1 �= k2, or ranking
structure #2, if k1 = k2, the value of ‖xW ′

+ ‖−‖xW ′
− ‖ equals the right-hand side of

inequality (5).

Case 2 (t1 = 1, t2 = 0) Let j1 ∈ N̂ c denote the unfixed alternative tied with i1 in rank
position k1. Based on the relative values of k1 and k2, the generated weak order can
be further divided into the following two sub-cases:

Case 2a (k1 > k2) For each ĵ ′ ∈ N̂ c
<k2

, replace negative arc ( ĵ ′, i2) with zero arc

(i2, ĵ ′) to obtain a weak order where alternative i2 is uniquely in first place. Next,
break the ties (if any) between j, j ′ ∈ N̂ c\{ j1}, where j �= j ′, by removing either
negative arc ( j, j ′) or negative arc ( j ′, j) from W ; denote the generated weak
order asW ′. Since these removals do not increase the value of ‖xW− ‖ and keep the

value of ‖xW+ ‖ unchanged, we have that ‖xW+ ‖−‖xW− ‖ ≤ ‖xW ′
+ ‖−‖xW ′

− ‖. Here,
W ′ is a member of ranking structure #5.
Case 2b (k1 ≤ k2) For each ĵ ∈ N̂ c

<k1
, replace positive arc ( ĵ, i1)with positive arc

(i1, ĵ) and negative arc ( ĵ , j1)with negative arc ( j1, ĵ) inW . Additionally, for each
ĵ ′ ∈ N̂ c

<k2
\{ j1}, replace negative arc ( ĵ ′, i2)with zero arc (i2, ĵ ′) to obtain a weak

orderwhere alternatives i1, j1, and i2 are placed in front of each j ∈ N̂ c\{ j1}. Next,
break the ties (if any) between j, j ′ ∈ N̂ c\{ j1}, where j �= j ′, by removing either
negative arc ( j, j ′) or negative arc ( j ′, j) from W ; denote the generated weak
order asW ′. Since all preceding operations neither increase the value of ‖xW− ‖ nor
decrease the value of ‖xW+ ‖, we have that ‖xW+ ‖−‖xW− ‖ ≤ ‖xW ′

+ ‖−‖xW ′
− ‖. Here,

W ′ is a member of ranking structure #3, if k1 < k2, or #4, if k1 = k2.

Case 3 (t1 ≥ 2, t2 = 0) Let [ j1, jt1 ] ⊆ N̂ c denote the set of unfixed alternatives tied
with i1 in rank position k1. First, break the tie between ĵ and jt1 by removing arc
( jt1, ĵ) fromW , for each ĵ ∈ {i1} ∪ [ j1, jt1 − 1] (if k1 = k2, ĵ ∈ {i1, i2} ∪ [ j1, jt1 − 1]);
denote the generated weak order as Wt1 − 1,0. Since this removal decreases the value
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Table 4 List of ranking structures that satisfy T2-1 VI at equality

Ranking structure description
∥∥xW ′

+
∥∥ ∥∥xW ′

−
∥∥

#1 ri1 = 1, ri2 = 2; n − 1 (n − 2)(n − 3)
2

r j , r j ′ ∈ [n]\{1, 2}, r j �= r j ′ , for j, j ′ ∈ N̂ c

#2 ri1 = ri2 = 1; n − 1 (n − 2)(n − 3)
2

r j , r j ′ ∈ [n]\{1, 2}, r j �= r j ′ , for j, j ′ ∈ N̂ c

#3 ri1 = r j1 = 1, ri2 = 3, where j1 ∈ N̂ c; n (n − 2)(n − 3)
2 + 1

r j , r j ′ ∈ [n]\{1, 2, 3}, r j �= r j ′ , for j, j ′ ∈ N̂ c\{ j1}
#4 ri1 = ri2 = r j1 = 1, where j1 ∈ N̂ c; n (n − 2)(n − 3)

2 + 1

r j , r j ′ ∈ [n]\{1, 2, 3}, r j �= r j ′ , for j, j ′ ∈ N̂ c\{ j1}
#5 ri2 = 1; ri1 = r j1 = k, where k ∈ [n]\{1} and j1 ∈ N̂ c; n − 1 (n − 2)(n − 3)

2

r j , r j ′ ∈ [n]\{1, k, k + 1}, r j �= r j ′ , for j, j ′ ∈ N̂ c\{ j1}
#6 ri2 = 1, ri1 = r j1 = r j2 = k, where k ∈ [n]\{1}, j1, j2 ∈ N̂ c : j1 �= j2; n (n − 2)(n − 3)

2 + 1

r j , r j ′ ∈ [n]\{1, k, k + 1, k + 2}, r j �= r j ′ , for j, j ′ ∈ N̂ c\{ j1, j2}

of ‖xW− ‖ and ‖xW+ ‖ by at least (t1 − 1) ≥ 1 and at most 1, respectively, we have

that ‖xW+ ‖−‖xW− ‖ ≤ ‖xWt1 − 1,0
+ ‖−‖xWt1 − 1,0

− ‖. Next, break the ties between each of
ĵ ∈ {i1} ∪ [ j1, jt1 − 2] (if k1 = k2, ĵ ∈ {i1, i2} ∪ [ j1, jt1 − 2]) with jt1 − 1 in Wt1 − 1,0
in a similar fashion to obtain a modified weak order, denoted as Wt1 − 2,0. Repeat
this process until arriving at a weak order, denoted as W2,0, in which i1 is tied with
exactly two unfixed alternatives j1 and j2. Afterwards, we consider the following two
sub-cases:

Case 3a (k1 > k2) This case is addressed using the same arguments as in Case 2a
by replacing N̂ c\{ j1} with N̂ c\{ j1, j2}; the generated weak order is a member of
ranking structure #6.
Case 3b (k1 ≤ k2) The ties between each of i1 and j1 (if k1 = k2, between each
of i1, i2, and j1) with j2 in W2,0 are further broken to obtain a modified weak
order, denoted as W1,0, in which i1 is tied with exactly one unfixed alternative j1
(if k1 = k2, i1 and i2 are tied with j1). At this point, apply the results of Case 2b
by setting W :=W1,0.

Case 4 (t2 ≥ 1) Let [ j1, jt2 ] ⊆ N̂ c denote the unfixed alternatives tied with i2 in rank
position k2. This case is addressed using the same arguments as in Case 3 by replacing
{i1} ∪ [ j1, jt ′ − 1] with {i2} ∪ [ j1, jt ′ − 1] in each step, where t ′ = t2, t2 − 1, . . . , 0. In
the generated weak order, denoted asWt1,0, i2 is not tied with any unfixed alternatives.
At this point, apply the results of Cases 1–3 by setting W :=Wt1,0.

��
Theorem 4 (T2-2VI) Let N̂ = {i1, i2} be the fixed index set, where i1, i2 ∈ N s.t.
i1 �= i2, and let N̂ c = N\N̂ . The following is a valid inequality of Pn

WO, for any
n ≥ 4:
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Table 5 List of ranking structures that satisfy T2-3 VI at equality

Ranking structure description
∥∥xW ′

+
∥∥ ∥∥xW ′

−
∥∥

#1 T2-1 #1 2(n − 2) (n − 2)(n − 3)
2

#2 ri1 = 1, ri2 = r j1 = 2, where j1 ∈ N̂ c 2(n − 2) (n − 2)(n − 3)
2

r j , r j ′ ∈ [n]\{1, 2, 3}, r j �= r j ′ , for j, j ′ ∈ N̂ c\{ j1}
#3 T2-1 #3 2(n − 2) (n − 2)(n − 3)

2

#4 ri1 = r j1 = 1; ri2 = r j2 = 3, where j1, j2 ∈ N̂ c : j1 �= j2 2(n − 2) (n − 2)(n − 3)
2

r j , r j ′ ∈ [n]\{1, 2, 3, 4}, r j �= r j ′ , for j, j ′ ∈ N̂ c\{ j1, j2}
#5 T2-1 #4 2(n − 2) + 1 (n − 2)(n − 3)

2 + 1

#6 ri1 = ri2 = r j1 = r j2 = 1, where j1, j2 ∈ N̂ c : j1 �= j2 2(n − 1) (n − 2)(n − 3)
2 + 2

r j , r j ′ ∈ [n]\{1, 2, 3, 4}, r j �= r j ′ , for j, j ′ ∈ N̂ c\{ j1, j2}
#7 T2-1 #5 2(n − 2) + 1 (n − 2)(n − 3)

2 + 1

#8 ri2 = r j2 = 1; ri1 = r j1 = k, 2(n − 2) + 1 (n − 2)(n − 3)
2 + 1

where k ∈ [n]\{1, 2}, j1, j2 ∈ N̂ c : j1 �= j2

r j , r j ′ ∈ [n]\{1, 2, k, k + 1}, r j �= r j ′ , for j, j ′ ∈ N̂ c\{ j1, j2}
#9 T2-1 #6 2(n − 1) (n − 2)(n − 3)

2 + 2

#10 ri2 = r j3 = 1; ri1 = r j1 = r j2 = k, 2(n − 1) (n − 2)(n − 3)
2 + 2

where k ∈ [n]\{1, 2}, j1, j2, j3 ∈ N̂ c : j1 �= j2 �= j3

r j , r j ′ ∈ [n]\{1, 2, k, k + 1, k + 2}, r j �= r j ′ , for j, j ′ ∈ N̂ c\{ j1, j2}

xi2i1 +
∑
j∈N̂ c

(
xi1 j + x ji1

) −
∑

j, j ′∈N̂ c: j �= j ′

(
x j j ′ + xi2 j

) ≤ 2 − (n − 3)(n − 4)

2
. (6)

Proof The above inequality is satisfied at equality by six ranking structures that are
symmetric images of those listed in Table4. That is, those alternatives set to the
best and second-best available ranking positions in the T2-1 structures are set to
the last and second-to-last available positions, respectively, in the T2-2 structures.
Alternatives occupying the remaining inferior positions in the T2-1 structures occupy
the remaining superior positions in the T2-2 structures. Hence, a string of arguments
paralleling the proof of Theorem 3 establishes that these ranking structures achieve
a value of max{‖xW ′

+ ‖−‖xW ′
− ‖} equal to the right-hand side of inequality (6) and all

others achieve a lower value. ��

Theorem 5 (T2-3VI) Let N̂ = {i1, i2} be the fixed index set, where i1, i2 ∈ N s.t.
i1 �= i2, and let N̂ c = N\N̂ . The following is a valid inequality of Pn

WO, for any
n ≥ 4:

∑
j∈N̂ c

(
xi1 j + x ji1 + xi2 j

) − xi2i1 −
∑

j, j ′∈N̂ c: j �= j ′
x j j ′ ≤ 3 − (n − 4)(n − 5)

2
. (7)
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Proof The VI is satisfied at equality by the ranking structures listed in Table5. The
remainder of the proof can be found in “Appendix A.2”. ��
Theorem 6 (T2-4VI) Let N̂ = {i1, i2} be the fixed index set, where i1, i2 ∈ N s.t.
i1 �= i2, and let N̂ c = N\N̂ . The following is a valid inequality of Pn

WO for any
n ≥ 4:

∑
j∈N̂ c

(
xi1 j + x ji1 + x ji2

) − xi1i2 −
∑

j, j ′∈N̂ c: j �= j ′
x j j ′ ≤ 3 − (n − 4)(n − 5)

2
. (8)

Proof The result can be obtained using a nearly identical line of reasoning as the proof
to Theorem 4, with the difference that the T2-4VI ranking structures are the symmetric
images of the T2-3VI ranking structures (see Table5). ��

To conclude this section, it is worth restating that Fig. 1 depicts only a small number
of the possible format and orientation choices forA{i1, j},A{i2, j}, and the arcs that join
the fixed alternatives. Fig. 1a is only 1 of 7 possible digraphs for the case with |N̂ | = 1
and Fig. 1b–e are only 5 of 343 possible digraphs for the case with |N̂ | = 2. While
additional T1 and T2 VIs could be constructed for the omitted combinations using
similar constructive arguments, these would likely be equivalent to or dominated by
one of the featured VIs. Indeed, as Sect. 5 demonstrates, T2-0 is an FDI only for
n = 4, while T1 and T2-1 to T2-4 are FDIs for all n ≥ 4. It remains an open question
whether some of the omitted digraphs represent FDIs for some n > 4 even though they
are not FDIs for n = 4. Moreover, it remains an open question whether expanding
the techniques from this section to cases with |N̂ | ≥ 3 (i.e., T3 VIs, T4 VIs, etc.)
can produce FDIs of Pn

WO for some or all n ≥ 5. These inquiries are formalized into
conjectures in Sect. 5.

4 Constructing facet defining inequalities

To obtain the dimensionality of the faces induced by the T1 and T2 VIs, we first devise
systematic processes for selecting members of their respective ranking structures such
that simple patterns of linearly independent characteristic vectors are formed. The key
idea is to select these so that consecutive pairs of vectors differ minimally, thereby
simplifying the respective proofs.

4.1 Building block procedures

Assume that alternatives i ∈ I belong to bucket k of alternative-ordering {Sw}, that
is, I ⊆ Sw

k , where 1 ≤ k ≤ p = |{Sw}|. Additionally, define a step parameter q ∈ Q,
where − k < q < p− k + 1, q = t/2, and t ∈ Z.

Definition 7 A move of q steps of I in {Sw} is an operation that yields an alternative-
ordering in which all i ∈ I are removed from their current bucket k and either merged
with the alternatives in bucket k + q, when q ∈ Z, or separated into a new bucket
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inserted immediately after (before, resp.) bucket �k + q� (�k + q�, resp.), when q /∈ Z

is positive (negative, resp.). The operation is abbreviated as the triple 〈I , q, {Sw}〉.
Example 2 Consider five different move operations and their outputs:

1. 〈{2}, 1, {{1, 2}, {4}, {3}}〉 = {{1}, {2, 4}, {3}}
2. 〈{2, 4},−1, {{1}, {2, 4}, {3}}〉 = {{1, 2, 4}, {3}}
3. 〈{3},−2, {{1, 2}, {4}, {3}}〉 = {{1, 2, 3}, {4}}
4. 〈{1, 3}, 3

2 , {{1, 2, 3}, {4}}〉= {{2}, {4}, {1, 3}}
5. 〈{3}, −5

2 , {{1, 2}, {4}, {3}}〉= {{3}, {1, 2}, {4}}.
As the example shows, move operations can be used to change not only the contents
of a bucket for a given alternative-ordering, but also the ordering and total number of
buckets. For instance, the secondmove operationmerges the entire contents of buckets
1 and 2. Additionally, the output alternative-ordering in the third move operation has
one fewer bucket than the input alternative-ordering, since the bucket where alternative
3 resides contains only one alternative and q ∈ Z; the reverse holds for the fourthmove
operation since the bucket where alternatives 1 and 3 reside contains three alternatives
and q /∈ Z.

The Merge and Reverse Construction Procedure (M&R), whose pseudocode is
given in Algorithm 1, is at the core of the characteristic vector constructions. It begins
with an alternative-ordering {S0} with p buckets (associated with a weak ordering
W 0 ∈ W), and proceeds to iteratively merge and then reverse adjacent buckets in
{S0}, generating potential characteristic vectors from each related move operation. To
be more precise, the pseudocode displays a shell of the M&R procedure, which can
be customized by incorporating optional steps that allow certain alternatives to move
more freely between buckets.

Algorithm 1Merge and Reverse Construction Procedure (M&R) (Shell)

1: procedure M&R({S0}, I 0, p̂)
2: p = |{S0}| � number of buckets in input alternative-ordering
3: I 1 = ∅ � initiate working alternative subset
4: {S1} = {S0} � initiate working alternative-ordering
5: X = [] � initiate characteristic vector matrix
6: if p̂ ≤ p then
7: for j = 1, . . . , p̂ do
8: I 1 ← S11 � set I 1 to first bucket of {S1}
9: for k = 1, . . . , p− j do

10: {S1} ←
〈
I 1, 1, {S1}

〉
� merge

11: X .append(toBinary({S1}))
12: {S1} ←

〈
I 1, 1

2 , {S1}
〉

� reverse

13: X .append(toBinary({S1}))
14: end for
15: perform optional outer steps (possibly involving I 0)
16: end for
17: end if
18: return (X, {S1})
19: end procedure
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Example 3 Let {S0} = {{1, 2}, {3}, {4}, {5}}, I 0 = {1} and p̂ = 4; here, S01 = {1, 2},
S02 = {3}, S03 = {4}, S04 = {5}, and p = 4. Additionally, define the j th optional outer
step (pseudocode line 15) for the M&R as:

{S1} ←
〈
I 0, j − p, {S1}

〉
(9)

Put simply, the optional outer step moves alternative 1 to the first bucket of {S1}
after each execution of the inner for-loop. Performing M&R({S0}, I 0, p̂) with this
optional outer step produces the following sequence of alternative-orderings:

j k Merge Reverse j th Outer Step
1 1 {{1,2, 3}, {4}, {5}} {{3}{1,2}, {4}, {5}} −
1 2 {{3}{1,2, 4}, {5}} {{3}, {4}, {1,2}, {5}} −
1 3 {{3}, {4}, {1,2, 5}} {{3}, {4}, {5}, {1,2}} {{1, 3}, {4}, {5}, {2}}
2 1 {{1,3, 4}, {5}, {2}} {{4}, {1,3}, {5}, {2}} −
2 2 {{4}, {1,3, 5}, {2}} {{4}, {5}, {1,3}, {2}} {{1, 4}, {5}, {3}, {2}}
3 1 {{1,4, 5}, {3}, {2}} {{5}, {1,4}, {3}, {2}} {{1, 5}, {4}, {3}, {2}}

where the numbers in bold are the members of I 1 at iteration j . Here, M&R directly
returns 12 characteristic vectors for the weak orders under the “Merge” and “Reverse”
columns, which are then appended to matrix X . As a point of emphasis, the optional
outer steps serve primarily an auxiliary purpose of setting up {S1} between iterations;
characteristic vectors may or may not be stored from their respective weak orders.

Theorem 7 Let x1, . . . , x p̂( p̂− 1) ∈ {0, 1}n(n − 1) denote the p̂( p̂− 1) characteristic
vectors generated by the non-optional steps of M&R({S0}, I 0, p̂), where p = |{S0}|
and p̂ ≤ p ≤ n; let x0 ∈ {0, 1}n(n − 1) denote the corresponding characteristic
vector for {S0}; and assume that these vectors occupy rows 1, . . . , p̂( p̂− 1) and
p̂( p̂− 1)+ 1, respectively, of X ∈ {0, 1}m×n(n − 1), with m ≥ p̂( p̂− 1)+ 1. Addi-
tionally, let { jk}pk=1 represent a set of alternative indices, one from each bucket in
{S0}, which are not permitted to move during the optional outer steps of M&R; that is,
jk ∈ S0k with jk /∈ I 0, for k ∈ [p]. Independent of the optional outer steps performed
subject to this restriction, M&R yields at least p̂( p̂− 1)+ 1 affinely independent char-
acteristic vectors.

Proof Assume that p̂ = p in M&R. The proof focuses on the elements ( j, j ′) ∈ AN

such that j, j ′ ∈ { jk}pk=1. Restricted to these elements, each pair of consecutively
generated alternative-orderings differs only in that two alternatives that are in the
same bucket in one ordering are in separate adjacent buckets in the other order-
ing. Stated otherwise, in each successive move operation, (p− 2) of the alternatives
from { jk}pk=1 retain their ordinal relationships. After subtracting xi − 1 from xi , for
i = p(p− 1), . . . , 1, a submatrix X̄M&R ∈ {0, − 1, 1}[p(p− 1) + 1]×p(p− 1) can be
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extracted from X having the following entry pattern:

X̄M&R =

Row\Col ( j1, j2) ( j2, j1) ( j1, j3) ( j3, j1) . . . ( jp− 1, jp) ( jp, jp− 1)

1 0 1 0 0 . . . 0 0
2 − 1 0 0 0 . . . 0 0
3 0 0 0 1 . . . 0 0
4 0 0 − 1 0 . . . 0 0
...

...
...

...
...

. . .
...

...

p(p− 1) − 1 0 0 0 0 . . . 0 1
p(p− 1) 0 0 0 0 . . . − 1 0

0 1 0 1 0 . . . 1 0

; (10)

where the 0-row (corresponding to x0) is placed at the bottom to highlight the con-
venient structure of this submatrix—expressly, the first p(p− 1) rows contain all
the possible elementary vectors of size p(p− 1), times ±1. Next, add the rows with
nonzero even indices to row 0 to yield the all-zeros vector, 0, of size p(p− 1), and
let X̄

′
M&R be the resulting submatrix. Now, since the rows of the augmented matrix

[X̄ ′
M&R 1] are linearly independent, where 1 is the all-ones column vector of size

p(p− 1)+ 1, the characteristic vectors x0, x1 . . . , x p(p− 1) are affinely independent.
Lastly, when p̂ < p, the resulting matrix X̄M&R that is extracted from the char-
acteristic vectors generated by subroutine M&R({S0}, I 0, p̂) is contained within the
larger matrix obtained with subroutine M&R({S0}, I 0, p) and, thus, the p̂( p̂− 1)+ 1
characteristic vectors produced must also be affinely independent. ��

4.2 Facet constructions and proofs

The presented construction procedures iteratively generate individual characteristic
vectors so that they fall into the respective ranking structures of a VI class and differ
minimally from preceding vectors (or from other specific reference vectors). These
procedures are simplified with the incorporation of M&R subroutines, which are used
to generate a large portion of the needed n(n − 1) affinely independent vectors; the
remaining vectors are generated to yield other convenient patterns. The respective
M&R subroutines differ in their definition of the optional outer step of the j th inner
loop; the shorthand statement used to represent a specific M&R variant in the pseu-
docode is:

M&R(S, I , p̂) | j th optional outer step defined by(#)

where (#) denotes a set of algorithmic expressions. The characteristic vectors are
stored in a matrix X ∈ R

n(n − 1)×n(n − 1). Each row of X is obtained by converting
an alternative-ordering {S} into its characteristic vector, which is represented in the
pseudocode by the operation X .append(toBinary({S})).

Each FDI proof begins with a difference matrix X̄ ∈ R
n(n − 1)×n(n − 1) that reflects

the dissimilarities between (mostly) consecutively generated vectors in X ; the precise
entries of each difference matrix are described in the “Appendix”. Row operations
are applied to show that X̄ is non-singular or, equivalently, that the characteristic
vectors are linearly (and affinely) independent. A salient feature of these proofs is
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that, by leveraging the characteristic vector patterns devised within each construction
procedure, proving the non-singularity of X̄ reduces to showing the non-singularity
of a symbolic 4 × 4 matrix. For the reader’s convenience, numerical examples of
the step-by-step matrix operations described within each proof are included in the
Supplementary Materials.

The remainder of this subsection will introduce different construction procedures
and demonstrate that five of the six featured VI classes are FDIs for any n ≥ 4. It
will also explain why the remaining class is an FDI only for n = 4. Only one of the
FDI proofs is shown within the body of the paper. The others are similar in structure
and are located in the “Appendix” due to length considerations. Next, the construction
procedure used to show that T1 VI is an FDI is presented in Algorithm 2; an example
of this procedure is also included.

Example 4 Perform CPT1(5, 1) via Algorithm 2, with j1 = 2, j2 = 3, j3 = 4, j4 = 5
(and i1 = 1). With these values, line 2 of Algorithm 2 initializes {S0} to the starting
weak order from Example 3, and line 4 yields the 12 characteristic vectors for the
weak orders under the “Merge” and “Reverse” columns therein (i.e., these are the
direct outputs of the M&R subroutine). Line 5 yields the weak order from the last
M&R outer step of Example 3—assigned to {S1} in line 4—as the 13th characteristic
vector. Through a sequence of move operations that start from {S1}, Lines 6–9 yield
the next three characteristic vectors and Lines 10–13 three more after that; finally, line
14 yields the initial weak order as the 20th characteristic vector. These last seven weak
orders are as follows:

{{4}, {1, 5}, {3}, {2}},
{{4}, {3}, {1, 5}, {2}},
{{4}, {3}, {2}, {1, 5}},
{{4}, {3}, {1, 2}, {5}},
{{4}, {1, 3}, {2}, {5}},
{{1, 4}, {3}, {2}, {5}},
{{1, 2}, {3}, {4}, {5}}.

Theorem 8 (T1 FDI) T1VI is an FDI of Pn
WO, for any n ≥ 4.

Proof It is straightforward to verify that each row of X output by CPT1 belongs to
the ranking structures listed in Table2.

For ease of exposition, fix i1 = 1 and jk = k + 1, for k = 1, . . . , n − 1 (or
assume a corresponding relabeling of the alternatives is performed a priori). To begin,
set X̄ as the matrix obtained after iteratively subtracting row i − 1 from row i , for
i = n(n − 1)− 1, . . . , 2, and also subtracting row i = n(n − 1) from row 1 of X ;
see “Appendix 2” for a full characterization of X̄ . To proceed with row operations,
define A0 ∈ R

n(n − 1)×n(n − 1) and set this matrix with the elements of X̄ , such that, all
comparisons between j, j ′ ∈ N̂ c = N\{1} appear in the first (n − 1)(n − 2) columns,
and the elements involving the comparison of alternative 1 with j ∈ N̂ c show up in
the last 2(n − 1) columns. The columns of X̄ and A0 are further organized as in Eq.
(10); that is, odd columns follow a lexicographical ordering of the respective arcs and
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Algorithm 2 Construction Procedure for Type 1 VI (CPT1)
1: procedure CPT1(n, i1)
2: {S0} = {{i1, j1}, { j2}, { j3}, . . . , { jn − 1}}, where { jk }n − 1

k=1 = [n]\{i1}
3: p = |{S0}| = n − 1
4: (X, {S1}) ← [ M&R({S0}, i1, p) | j th optional outer step defined by (9) ]
5: X .append(toBinary({S1}))
6: for j = 1, . . . , p− 1 do

7: {S1} ←
〈
S1j ,

3
2 , {S1}

〉
8: X .append(toBinary({S1}))
9: end for
10: for j = 1, . . . , p− 1 do

11: {S1} ←
〈
i1, −1, {S1}

〉
12: X .append(toBinary({S1}))
13: end for
14: X .append(toBinary({S0}))
15: return X
16: end procedure

even columns have the reverse indexing of the preceding odd columns. Next, add the
first (n − 1)(n − 2)/2 even-index rows to row n(n − 1) (i.e., the initial weak order)
and partition the resulting matrix, A1, as follows:

A1 =
[
B1 D1

C1 E1

]
(11)

where B1 ∈ Z
(n − 1)(n − 2)×(n − 1)(n − 2),C1 ∈ Z

(2n − 2)×(n − 1)(n − 2), D1 ∈
Z

(n − 1)(n − 2)×(2n − 2), and E1 ∈ Z
(2n − 2)×(2n − 2). The pertinent entries of the four

submatrices are as follows. First, B1 consists of all but the last row of the X̄M&R

submatrix [Eq. (10) with p = n − 1], which implies that | det(B1)| = 1. C1 is mostly
a zero matrix, with the exception of row i whose values under columns (n − i + 1, n)

and (n, n − i + 1) are 1 and − 1, respectively, for i = 2, . . . , n − 1. Although D1 has
a more intricate structure than B1 and C1, it is only necessary to know the contents
of a subset of rows aligned with those rows in B1 that will be used to turn C1 into
a zero matrix. Expressly, each nonzero row i of C1 is eliminated to yield an all-zero
matrix C2 by adding to it the two consecutive elementary vectors from B1 with the
opposite signs under columns (n − i + 1, n) and (n, n − i + 1); call them k(i) and
k(i)+ 1. Rows k(i) and k(i)+ 1 of D1 have a 1 under column (n, 1) and a − 1 under
column (1, n) respectively with no other nonzero entries, for i = 3, . . . , n − 1. For,
i = 2, row k(i) of D1 has − 1, 1, and 1 under columns (n − 2, 1), (1, n − 1), and
(1, n), respectively, and no other nonzero entries; row k(i)+ 1 of D1 has − 1 under
column (1, n) and no other nonzero entries. Finally, E1 is comprised primarily of a
‘wraparound staircase’ structure of nonzeros, illustrated as follows:
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E1’s rows align with rows (n − 1)(n − 2)+ 1, . . . , n(n − 1) of X̄ , which corre-
spond to the characteristic vectors generated following the M&R subroutine. We
remark that in addition to having a 1 under each of its first two columns, row 2n − 2 of
E1 has a decreasing sequence of consecutive negative integers under columns (1, j),
for j = 4, . . . , n. Based on the above explanations, after eliminating the nonzero
elements of C1 using the aforementioned rows from B1 (and D1), E1 changes into
E2, given by:

Now, since C2 is a zero matrix, | det(A1)| = | det(B1) det(E2)| = | det(E2)|
and, therefore, we can operate exclusively on E2 from this point. First, eliminate
the nonzero entries along row 2n − 2, one by one, from column (1, 2) to column
(n − 2, 1) by adding to row 2n − 2 a multiple of some row i , where 3 ≤ i ≤ 2n − 3.
Specifically, beginning with row i = n, alternate between a row with index i ≤ n
and a row with index i > n to select each succeeding pivot row. Note that in each
such elimination step, there is only one pivot element available from the designated
row-index subset to eliminate the next nonzero entry from row 2n − 2, whose value
may have beenmodified by the previous elimination steps. For 4≤ j <n, the sequence
value under column (1, j) remains intact until the nonzero under column ( j − 1, 1)
(the column immediately to the left of (1, j)) is eliminated; the latter has a value equal
to 1− ∑ j−3

k=1 k, that is, the sum of the preceding negative integers in the sequence,
plus one. Second, subtract row 2n − 3 (the penultimate row) from row 2 and add rows
3 to 2n − 4 to row 2n − 3. Upon completion of these row operations, the resulting
matrix E3 possesses the following form:
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where

α = − n + 3; β = 1 −
n−4∑
k=1

k = −(n − 3)2 + n − 1

2
;

γ = −(n − 3) − 1 −
n − 5∑
l=1

(
1 −

l∑
k=1

k

)
= (n − 4)3 − 13n + 46

6
.

Two further points to remark on the structure of E3 are that columns (1, 2) to (n − 2, 1)
do not have nonzeros along rows 1, 2, 2n − 3, 2n − 2 and that the submatrix comprised
of these 2n − 6 columns together with rows 3 to 2n − 4 forms a basis—indeed, begin-
ning with column (1, n − 1), each column can be iteratively added to the left-adjacent
column to yield unique elementary columns. Therefore, the first 2n − 6 columns
can be used to eliminate the nonzero entries along rows 3 to 2n − 4 of columns
(1, n − 1), (n − 1, 1), (1, n), (n, 1), without impacting the other four rows. Thus, the
task of proving the non-singularity of E3 reduces to proving the non-singularity of the
following 4×4 submatrix induced from its last four columns and first/last two rows:

⎡
⎢⎢⎣

0 − 1 1 0
− 1 1 0 0
1 0 α − α − 1
β 0 γ α − γ + 1

⎤
⎥⎥⎦ .

The symbolic determinant of this matrix is − α2 − αβ − 2α − β − 1, which equals 0
if

α = − 1 ⇔ − n + 3 = − 1 ⇔ n = 4, or when

α = − β − 1 ⇔ − n + 3 = − n2 − 7n + 10

2
− 1 ⇔ n = 5

2
±

√
17

2
/∈ Z.

Hence, for n ≥ 5, the n(n − 1) characteristic vectors produced by CPT1 are linearly
independent, which implies they are also affinely independent. Lastly, it is straight-
forward to verify that setting n = 4 in the T1 VI expression yields WO4, which was
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shown to be facet-defining in Fiorini and Fishburn (2004) using the Porta program
(Christof et al. 1997). Therefore T1VI is an FDI for any n ≥ 4. ��

Next, we describe why T2-0 VI is an FDI for n = 4 but not n ≥ 5. Since Pn
WO is

full dimensional, the rank of the characteristic vectors generated by any construction
procedure must be at least n(n − 1)− 1. Because the maximum number of affinely
independent weak orders on N that do not contain ties is approximately half of this
value, this means that a significant fraction of the generated vectors must contain ties.
It can be seen in Table3, however, that the placement of ties is limited to rankings
with a two-way tie with alternative i1 for first position (#2 & #4) and rankings with
a two way-tie with alternative i2 for last position (#3 & #4). When n = 4, enough
affinely independent vectors can be drawn from the four T2-0 VI ranking structures to
form a facet—in fact, it is straightforward to verify that substituting this value of n in
T2-0VI expression yields WO5. However, as n becomes larger, they do not add up to
a sufficiently large fraction. Through enumeration of the weak orders that satisfy the
given ranking structures, we verified for many n that the rank of the resulting matrix is
far lower than n(n − 1); for example, for n = 6, the rank is 15 (i.e., half the required
number). Therefore, T2-0VI is not an FDI for n ≥ 5.

The construction procedure used to generate characteristic vectors for T2-1VI is
given in Algorithm 3, where the j th optional outer step for the respective M&R
subroutine is defined as:

{S1} ← 〈
i2,

3
2 , {S1}〉 (12a)

{S1} ←
〈
i1, j − p, {S1}

〉
(12b)

X .append(toBinary({S1})). (12c)

Theorem 9 (T2-1FDI) T2-1VI is an FDI of Pn
WO, for any n ≥ 4.

Proof It is straightforward to verify that all points output by CPT2-1 correspond to the
characteristic vectors associated with the six ranking structures that satisfy inequality
(5) at equality. The remainder of the proof can be found in “Appendix B.2”. ��
Theorem 10 (T2-2FDI) T2-2VI is an FDI of Pn

WO, for any n ≥ 4.

Proof It is evident from the proof of Theorem 4 that the applicable characteristic
vectors associated with the ranking structures that satisfy inequality (6) at equality are
symmetric images of those output by CPT2-1. Therefore, an almost identical set of
arguments used in the proof of Theorem 9 establishes that inequality (6) is an FDI for
n ≥ 4. ��

A comparison of Tables4 and 5 reveals that the only ranking structure from Table4
that does not satisfy valid inequality T2-3 is #2, in which two fixed alternatives are
tied for the first position and the unfixed alternatives are strictly ordered to occupy
positions 2 to n − 1. The characteristic vector that represents ranking structure #2 from
Table4 is generated by line 7 of the pseudocode(CPT2-1), after which a number of
move operations are performed to generate a vector representing structure #3 from
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the same table. Hence, certain modifications to lines 7–11 are needed to make the
construction procedure applicable to the ranking structures associated with T2-3VI.
These modifications are as follows. First, after Line 6, move the second fixed alter-
native, i2, one step to the right to generate a ranking representative of structure #2 in
Table5. Second, break the tie between alternatives i2 and j1 created by the previous
step by first moving i2 a half step to the right and then shifting i1 one step to the right
to tie it with j1; this generates a ranking representative of structure #3 in Table5. The
above changes can be encapsulated by replacing lines 7–11 of Algorithm 3 with the
following algorithmic expressions:

Line 7′ : {S0} ← 〈
i2, 1, {S0}

〉
Line 8′ : X.append(toBinary({S0}))
Line 9′ : {S0} ← 〈

i2,
1
2 , {S0}〉

Line 10′ : {S0} ← 〈
i1, 1, {S0}

〉
Line 11′ : X.append(toBinary({S0}))

Algorithm 3 Construction Procedure for Type 2-1 VI (CPT2-1)
1: procedure CPT2- 1(n, i1, i2)
2: {S0} = {{i1}, {i2}, { j1}, . . . , { jn − 4}, { jn − 2}, { jn − 3}}, where { jk }n − 2

k=1 = [n]\{i1, i2}
3: X = []
4: X .append(toBinary({S0}))
5: {S0} ←

〈
S0n , − 3

2 , {S0}
〉

6: X .append(toBinary({S0}))
7: {S0} ←

〈
i1, 1, {S0}

〉
8: X .append(toBinary({S0}))
9: {S0} ←

〈
S01 , 1, {S0}

〉
10: {S0} ←

〈
i2,

1
2 , {S0}

〉
11: X .append(toBinary({S0}))
12: p = |{S0}| = n − 1
13: (X, {S1}) ← [ M&R({S0}, i1, p− 2) | j th optional outer step defined by (12)]

14: {S1} ←
〈
i2, − 1, {S1}

〉
15: X .append(toBinary({S1}))
16: {S1} ←

〈
i2,

1
2 , {S1}

〉
17: for j = 1, . . . , p− 1 do

18: {S1} ←
〈
S1j ,

3
2 , {S1}

〉
19: X .append(toBinary({S1}))
20: end for
21: return X
22: end procedure
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Theorem 11 (T2-3FDI) T2-3VI is an FDI of Pn
WO, for n ≥ 4.

Proof The proof is similar to that of Theorem 9 and can be found in “Appendix B.3”.
��

Theorem 12 (T2-4FDI) T2-4VI is an FDI of Pn
WO, for any n ≥ 4.

Proof This theorem is proved by using a string of arguments similar to the proof of
Theorem 10, with the difference that the applicable characteristic vectors are symmet-
ric images of those generated by the algorithm used to establish that inequality (7) is
facet defining for n ≥ 4. ��

5 Additional insights and conjectures

We begin this section by discussing how the featured VIs yield FDIsWO4–WO9 (see
Sect. 2) as a special case. By fixing n = 4 in each expression, it is straightforward
to verify that VI T1 yields FDI WO4, while VIs T2-0, T2-1, and T2-2 correspond
to FDIs WO5, WO6, and WO7, respectively; finally VI T2-3 induces FDI WO9 and
VI T2-4 induces FDI WO8. According to this correspondence, O(n4) FDIs can be
generated from this single variant of each featured VI in a higher dimension n [see Eq.
(2)]. On that note, it is important to elaborate on how the featured VI classes provide a
distinctive expression for each setting of n ≥ 4. To see this, we present the expressions
for T1 VI for n = 4, 5, with i1 = 1 as the fixed alternative:

x12 + x21 + x13 + x31 + x14 + x41 − x23 − x32 − x24 − x42 − x34 − x43 ≤ 1.

(13a)

x12 + x21 + x13 + x31 + x14 + x41 − x23 − x32 − x24 − x42 − x34 − x43
+x15 + x51 − x25 − x52 − x35 − x53 − x45 − x54 ≤ −1. (13b)

Although the first 12 terms of the left-hand side of Eq. (13b) mirror the left-hand
side of Eq. (13a), neither of the two inequalities dominates the other. Specifically, for a
VI (π , π0) to be dominated by a VI (π ′, π ′

0), the relationshipsπ ′ ≥ μπ and π ′
0 ≤ μπ0

must hold, for some scalar μ > 0, with at least one of the two inequalities holding in
the strict sense. For the two above inequalities, we have that π ′

0 = −1 < 1 = π0—
choosing μ = 1 since the coefficients of the variables that do not involve alternative
index j = 5 alreadymatch. However, the left-hand side terms related to j = 5 are both
+ 1 and − 1 in Eq. (13b), while they are all zero-valued in Eq. (13a), implying that
π ′

� μπ . In general, as n increases, the right-hand side will get smaller. Conversely,
on the left-hand side, the coefficients of some newly added variables will become
smaller than 0, and the coefficient of other newly added variables will become larger
than 0 (hence, the incomparability will hold for any μ > 0). Similar arguments can be
applied to all of the T2 VIs. Therefore, for each of these large VI classes, each fixed
value n̂ ≥ 4 yields a distinctive VI that does not dominate or is dominated by another
member of the same class in a lower dimension.

Since a distinctive set of FDIs can be generated from VIs T1, T2-1, T2-2, T2-3,
and T2-4 for any fixed dimension n̂ ≥ 4, the number of FDIs that can be generated
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from these new classes of FDIs is very large. Specifically, the total number of FDIs
that can be generated from VI class of Type i in dimension n is given by:

∣∣WOn
T i

∣∣ =
n∑

n̂=4

∣∣WOn̂
T i

∣∣ =
n∑

n̂=4

(
n

n̂

)(
n̂

i

)
i ! = n!

n∑
n̂=4

1

(n − n̂)!(n̂ − i)! . (14)

That is, each of the five VI classes generates O(n!) FDIs in dimension n.
We conclude the paper by stating two conjectures related to how the insights herein

presented may induce many more large classes of FDIs.

Conjecture 13 Let N̂ = {i1, i2, i3} be the fixed index set, where i1, i2, i3 ∈ N s.t.
i1 �= i2 �= i3 and let N̂ c = N\N̂ . The following are T3 VIs and FDIs of Pn

WO, for any
n ≥ 5:

xi1i2 + xi3i2 +
∑
j∈N̂ c

(xi1 j + x ji1 + xi3 j + x ji3) − xi1i3 − xi3i1

−
∑

j, j ′∈N̂ c: j �= j ′

(
x j j ′ + x ji2

) ≤ 4 − (n − 5)(n − 6)

2

(15a)

xi2i1 + xi2i3 +
∑
j∈N̂ c

(xi1 j + x ji1 + xi3 j + x ji3) − xi1i3 − xi3i1

−
∑

j, j ′∈N̂ c: j �= j ′

(
x j j ′ + xi2 j

) ≤ 4 − (n − 5)(n − 6)

2

(15b)

xi1i3 + xi2i3 +
∑
j∈N̂ c

(xi1 j + x ji1 + xi2 j + x ji2) − xi1i2 − xi2i1

−
∑

j, j ′∈N̂ c: j �= j ′

(
x j j ′ + x ji3

) ≤ 4 − (n − 5)(n − 6)

2

(15c)

xi3i1 + xi3i2 +
∑
j∈N̂ c

(xi1 j + x ji1 + xi2 j + x ji2) − xi1i2 − xi2i1

−
∑

j, j ′∈N̂ c: j �= j ′

(
x j j ′ + xi3 j

) ≤ 4 − (n − 5)(n − 6)

2

(15d)

∑
j∈N̂ c

(
xi1 j + x ji1 + x ji2 + xi3 j + x ji3

) − xi1i2 − xi1i3 − xi3i1 − xi3i2

−
∑

j, j ′∈N̂ c: j �= j ′
x j j ′ ≤ 5 − (n − 6)(n − 7)

2

(15e)
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∑
j∈N̂ c

(
xi1 j + x ji1 + xi2 j + xi3 j + x ji3

) − xi2i1 − xi1i3 − xi3i1 − xi2i3

−
∑

j, j ′∈N̂ c: j �= j ′
x j j ′ ≤ 5 − (n − 6)(n − 7)

2

(15f)

∑
j∈N̂ c

(xi1 j + x ji1 + xi2 j + x ji2 + x ji3) − xi1i2 − xi2i1 − xi1i3 − xi2i3

−
∑

j, j ′∈N̂ c: j �= j ′
x j j ′ ≤ 5 − (n − 6)(n − 7)

2

(15g)

∑
j∈N̂ c

(xi1 j + x ji1 + xi2 j + x ji2 + xi3 j ) − xi1i2 − xi2i1 − xi3i1 − xi3i2

−
∑

j, j ′∈N̂ c: j �= j ′
x j j ′ ≤ 5 − (n − 6)(n − 7)

2

(15h)

This conjecture was conceived as a two-step process. In the first step, the follow-
ing binary programming problem was solved for all possible format and orientation
choices of arcs that join only the fixed alternatives (i.e., {i1, i2, i3} = N̂ ) combined
with the possible format and orientation choices of arc sets A{i1, j},A{i2, j},A{i3, j}
(where j ∈ N̂ c is an unfixed alternative index):

max
∑

(i, j)∈A+
xi j −

∑
(i, j)∈A−

xi j

st. Constraints (1a)−(1c)

xi j ∈ {0, 1} i, j ∈ N ; i �= j .

These format and orientation choices determine the contents of the setsA+ andA−; we
remark that the characteristics of the arcs that join only the unfixed alternatives, namely
A{ j, j ′} := {( j, j ′) : j ∈ N̂ c, j �= j ′}, were set to the constant format and orientation
as the six digraphs given in Fig. 1 (all dashed and bidirectional). In general, the above
binary program can be defined for a specific number of fixed alternatives and solved for
various values of n so as to deduce a generalizable expression. The objective function
provides an algebraic expression for the left-hand side of a VI, while the sequence of
numerical objective function values obtained from solving for consecutive values of
n are analyzed to derive an algebraic expression for its right-hand side.

The second step to conceive the above conjecture involved verifying that the VIs
generated in the first step are FDIs for at least a few values of n. This was done by
enumerating all characteristic vectors that satisfy each inequality in (15) at equality
and verifying that these vectors induce a matrix of rank n(n − 1), for 5 ≤ n ≤ 10.
Hence, the above conjecture is true for at least these values. It remains to show that the
result will hold for any n ≥ 11. Proving this using the techniques introduced in this
work would require introducing new construction procedures for each VI, followed
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by additional formal proofs (which would likely be even more protracted). Hence, it
is left for future work.

Conjecture 14 Let, N̂ = {i1, i2 . . . ik} be a subset of N = [n], where k ≤ n − 2 and
i1, i2 . . . ik ∈ N s.t. i1 �= i2 . . . �= ik . By fixing these |N̂ | alternatives, new large classes
of FDIs that incorporate at least one variable from each pair of alternatives in N can
be obtained using the insights presented in this work.

Verification of Conjecture 14 could lead to the development of new techniques for
deriving numerous new large classes of FDIs. Each such class would define a set of
FDIs specific to Pn̂

WO, that is, no individualmember of the FDIs specific to dimension n̂
would be defined in dimensionq < n̂. As such, the FDIswould require the involvement
of all alternative pairs on N̂ . Conversely, when using the Lifting Lemma to generate
FDIs of Pn̂

WO from FDIs of Pq
WO , only the alternative pairs from a smaller set are

utilized—for example, from N̂\{q + 1, q + 2, . . . , n̂}.
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A Valid inequality proofs

A.1 T2-0VI proof

Theorem 2 (T2-0VI) Inequality (4) is a VI of Pn
WO, for any n ≥ 4.

Proof Inequality (4) is satisfied at equality by the characteristic vectors corresponding
to the ranking structures listed in Table3, which are justified as follows. Here, the
positive and negative arc subsets are given by:

A+ = {(i2, i1)} ∪ {(i1, j) : j ∈ N̂ c} ∪ {( j, i2) : j ∈ N̂ c},
A− = {(i1, i2)} ∪ {( j, j ′) : j, j ′ ∈ N̂ c, j �= j ′}.

Let W be an arbitrary weak order defined over the set of alternatives N , where the
fixed alternatives i1 and i2 are tied with exactly t1 ≥ 0 and t2 ≥ 0 unfixed alternatives,
respectively, such that t1 + t2 ≤ n − 2. The structure of the weak orders generated by
the different values of t1 and t2 can be encapsulated by the following cases:
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Case 1 (t1 ≤ 1, t2 ≤ 1) Suppose that the ranks of alternatives i1 and i2 are fixed as
ri1 = k1 > 0 and ri2 = k2 > 0, respectively. Furthermore, let N̂ c

<k1
⊆ N̂ c denote the

set of unfixed alternatives with rank r < k1, and N̂ c
>k2

⊆ N̂ c denote the set of unfixed

alternatives with rank r ′ > k2. Note that N̂ c
<k1

∩ N̂ c
>k2

= ∅ only when either k1 ≤ k2
or k1 = k2 + t2. Based on the relative values of k1 and k2, the weak orders can be
further divided into the following two sub-cases:

Case 1a (k1 < k2) For each ĵ ∈ N̂ c
<k1

and ĵ ′ ∈ N̂ c
>k2

add positive arcs (i1, ĵ)

and ( ĵ ′, i2), respectively, to W to obtain a weak order where alternative i1 is in
first place and alternative i2 is in last place. This gives precisely 2(n − 2) selected
positive arcs: n − 2 each from the ordering of the two fixed alternatives i1 and i2
with each unfixed alternative j ∈ N̂ c. In the event of ties between i1 and an unfixed
alternative, say j1 (i.e., t1 = 1), or/and between i2 and an unfixed alternative, say
j2 (i.e., t2 = 1), it may be necessary to remove the corresponding arcs, specifically
arcs ( j1, i1) and (i2, j2), respectively, to maintain transitivity. Since these are zero
arcs (i.e., π j1,i1 = πi2, j2 = 0), their removal does not affect the values of ‖xW− ‖
or ‖xW+ ‖. Next, break the ties (if any) between j, j ′ ∈ N̂ c, where j �= j ′, by
removing either negative arc ( j, j ′) or negative arc ( j ′, j) from W ; denote the
generated weak order as W ′. This gives a total of (n − 2)(n − 3)/2+ 1 selected
negative arcs. Since all preceding operations do not increase the value of ‖xW− ‖
or decrease the value of ‖xW+ ‖, we have that ‖xW+ ‖−‖xW− ‖ ≤ ‖xW ′

+ ‖−‖xW ′
− ‖.

For any member of the presented ranking structure, the value of ‖xW ′
+ ‖−‖xW ′

− ‖
equals the right-hand side of inequality (4). Note that, since there must be at least
one arc between every pair of alternatives to induce a total order, further reduction
in negative arcs is not possible. Now, depending on the initial position of i1 and
i2 and the value of t1 and t2, W ′ attains one of four ranking structures: alternative
i1 is uniquely in first place and alternative i2 is uniquely in last place (#1), an
alternative j1 ∈ N̂ c is tied with i1 for first place (#2), an alternative j2 ∈ N̂ c is
tied with i2 for the last available position, n − 1 in this case (#3), or both of these
ties occur, with j1 �= j2 (#4).
Case 1b (k1 ≥ k2) This case is addressed using the same arguments as in Case
1a with the addition that, to maintain transitivity, it is necessary either to replace
positive arc (i2, i1) with negative arc (i1, i2) (when k1 > k2) or to remove positive
arc (i2, i1) (when k1 = k2) to place i1 strictly in front of i2; denote the generated
weak order asW ′. In this case, the relevant operations increase the value of ‖xW− ‖
by at most 1 and of ‖xW+ ‖ by at least n − 3 ≥ 1. As a result, we have that ‖xW+ ‖−
‖xW− ‖ ≤ ‖xW ′

+ ‖−‖xW ′
− ‖. This also leads to the same ranking structures as in Case

1a.

Case 2 (t1 ≥ 2, t2 ≤ 1) Let [ j1, jt1 ] ⊆ N̂ c denote those unfixed alternatives tied with
i1 in rank position k1. First, break the ties between ĵ and jt1 by removing arc ( jt1 , ĵ)
fromW , for each ĵ ∈ {i1}∪ [ j1, jt1 − 1]; denote the generated weak order asWt1 − 1,t2 .
Since this removal decreases the value of ‖xW− ‖ by (t1 − 1) ≥ 1 and keeps the value

of ‖xW+ ‖ unchanged, we have that ‖xW+ ‖−‖xW− ‖ < ‖xWt1 − 1,t2+ ‖−‖xWt1 − 1,t2− ‖. It is
worth noting that, as ( jt1, i1) is a zero arc, its removal does not affect the values of
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‖xW− ‖ or ‖xW+ ‖. Next, break the ties between each of ĵ ∈ {i1}∪ [ j1, jt1 − 2]with jt1 − 1
in Wt1 − 1,t2 in a similar fashion to obtain a modified weak order, denoted as Wt1 − 2,t2 .
Repeat this process until arriving at a weak order, denoted asW1,t2 , in which i1 is tied
with exactly one unfixed alternative j1. At this point, apply the results of Case 1 by
setting W :=W1,t2 .

Case 3 (t2 ≥ 2) Let [ j1, jt2 ] ⊆ N̂ c denote those unfixed alternatives tied with alter-
native i2 in rank position k2. This case is addressed using the same arguments as in
Case 2 by replacing {i1} ∪ [ j1, jt ′ − 1] and ( jt ′, ĵ) with {i2} ∪ [ j1, jt ′ − 1] and ( ĵ, jt ′),
respectively, in each step, where t ′ = t2, t2 − 1, . . . , 2. In the generated weak order,
denoted asWt1,1, i2 is tied with exactly one unfixed alternative j1. At this point, apply
the results of Case 1 or 2 by setting W :=Wt1,1. ��

A.2 T2-3VI proof

Theorem 5 (T2-3VI) Inequality (7) is a VI of Pn
WO, for any n ≥ 4.

Proof Inequality (7) is satisfied at equality by the characteristic vectors corresponding
to the ranking structures listed in Table5. Here, the positive and negative arc subsets
are given by:

A+ = {(i2, j) : j ∈ N̂ c} ∪ {(i1, j) : j ∈ N̂ c} ∪ {( j, i1) : j ∈ N̂ c},
A− = {(i2, i1)} ∪ {( j, j ′) : j, j ′ ∈ N̂ c, j �= j ′}.

Let W be an arbitrary weak order defined over the set of alternatives N , where the
fixed alternatives i1 and i2 are tied with exactly t1 ≥ 0 and t2 ≥ 0 unfixed alternatives,
respectively, such that t1+t2 ≤ n − 2. Now suppose that the ranks of these alternatives
are fixed as ri1 = k1 > 0 and ri2 = k2 > 0. Additionally, let N̂ c

<k1
⊆ N̂ c denote

the set of unfixed alternatives with rank r < ri1 , and N̂ c
<k2

⊆ N̂ c denote the set of

unfixed alternatives with rank r ′ < ri2 . Note that, N̂
c
<k1

∩ N̂ c
<k2

= ∅ only when either

N̂ c
<k1

= ∅ or N̂ c
<k2

= ∅ or both. The structure of the weak orders generated by the
different values of t1 and t2 can be encapsulated by the following cases:

Case 1 (t1 = 0, t2 ≤ 1) For each ĵ ∈ N̂ c
<k1

, replace positive arc ( ĵ, i1) with positive

arc (i1, ĵ) and for each ĵ ′ ∈ N̂ c
<k2

, add positive arc (i2, ĵ ′) toW to obtain a weak order

where alternatives i1 and i2 are placed in front of all j ∈ N̂ c. This gives precisely
2(n − 2) selected positive arcs: n − 2 each from the strict ordering of the two fixed
alternatives i1 and i2 with each unfixed alternative j ∈ N̂ c. Next, break the ties (if
any) between j, j ′ ∈ N̂ c, where j �= j ′, by removing either negative arc ( j, j ′) or
negative arc ( j ′, j) from W . Additionally, when k1 ≥ k2, replace negative arc (i2, i1)
with zero arc (i1, i2) to obtain a weak order, denoted as W ′, in which i1 is uniquely
in first place and i2 is uniquely in second place. This gives a total of (n − 3)(n − 2)/2
selected negative arcs. In the event of ties between i2 and an unfixed alternative, say
j1 ∈ N̂ c (i.e., t2 = 1), it is also necessary to replace negative arc ( ĵ ′, j1)with negative
arc ( j1, ĵ ′) for each ĵ ′ ∈ N̂ c

<k2
to maintain the tie between i2 and j1. Furthermore,
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when k1 = k2 remove positive arc ( j1, i1), whereas when k1 > k2 replace positive arc
( j1, i1) with positive arc (i1, j1) to place i1 strictly infront of j1. Since all preceding
operations neither increase the value of ‖xW− ‖ nor decrease the value of ‖xW+ ‖, we
have that ‖xW+ ‖−‖xW− ‖ ≤ ‖xW ′

+ ‖−‖xW ′
− ‖. For any such weak order, equivalently

characterized by either ranking structure #1, if t2 = 0, or #2, if t2 = 1, the value of
‖xW ′

+ ‖−‖xW ′
− ‖ equals the right-hand side of inequality (7).

Case 2 (t1 = 1, t2 ≤ 1) Let j1 ∈ N̂ c denote the unfixed alternative tied with i1 in
rank position k1. For each ĵ ′ ∈ N̂ c

<k2
\{ j1}, add positive arc (i2, ĵ ′) to W to place i2

infront of all j ∈ N̂ c\{ j1}. Additionally, when k1 ≤ k2, for each ĵ ∈ N̂ c
<k1

, replace

positive arc ( ĵ, i1) with positive arc (i1, ĵ) and negative arc ( ĵ, j1) with negative arc
( j1, ĵ), to obtain a weak order where alternatives i1, j1, and i2 are placed in front
of all j ∈ N̂ c\{ j1}. In the event of tie between i2 and an unfixed alternative, say
j2 ∈ N̂ c\{ j1} (i.e., t2 = 1), it is also necessary to replace negative arc ( ĵ ′, j2) with
negative arc ( j2, ĵ ′) for each ĵ ′ ∈ N̂ c

<k2
\{ j1} to maintain the tie between i2 and j2.

Next the ties (if any) between j, j ′ ∈ N̂ c\{ j1}, where j �= j ′, are broken by removing
either negative arc ( j, j ′) or negative arc ( j ′, j) from W ; denote the generated weak
order as W ′. Since the preceding operations neither increase the value of ‖xW− ‖ nor

decrease the value of ‖xW+ ‖, we have that ‖xW+ ‖−‖xW− ‖ ≤ ‖xW ′
+ ‖−‖xW ′

− ‖. Now,
depending on the initial position of i1 and i2 and the value of t2, W ′ attains one of six
ranking structures: i1 is tied with j1 for first place (#3); i1 is tied with j1 for first place
and i2 is tied with j2 for third place (#4); i1, i2, and j1 all remain tied for first place
(#5); i1, i2, j1, and j2 all remain tied for first place (#6); i1 and j1 remain tied for any
position but first, which is occupied by i2 (#7); i1 and j1 remain tied for any position
but first, which is occupied by i2 jointly with j2 (#8).

Case 3 (t1 = 2, t2 ≤ 1) Let j1, j2 ∈ N̂ c denote the unfixed alternatives tied with i1 in
rank position k1. For each ĵ ′ ∈ N̂ c

<k2
, add positive arc (i2, ĵ ′) to W to place i2 infront

of all alternatives j ∈ N . Additionally, when k1 < k2, replace zero arc (i1, i2) with
negative arc (i2, i1), whereas when k1 = k2 remove zero arc (i1, i2) to place i2 strictly
infront of i1. In the event of tie between i2 and an alternative, say j3 ∈ N̂ c\{ j1, j2}
(i.e., t2 = 1), it is also necessary to replace negative arc ( ĵ ′, j3) with negative arc
( j3, ĵ ′) for each ĵ ′ ∈ N̂ c

<k2
to maintain the tie between i2 and j3. Furthermore, when

k1 < k2 replace arc ( ĵ, j3) with arc ( j3, ĵ), whereas when k1 = k2 remove arc ( ĵ, j3)
for each ĵ ∈ {i1, j1, j2}. Next, the ties (if any) between j, j ′ ∈ N̂ c\{ j1, j2}, where
j �= j ′, are broken by removing either negative arc ( j, j ′) or negative arc ( j ′, j)
from W ; denote the generated weak order as W ′. Since the preceding operations
neither increase the value of ‖xW− ‖ nor decrease the value of ‖xW+ ‖, we have that

‖xW+ ‖−‖xW− ‖ ≤ ‖xW ′
+ ‖−‖xW ′

− ‖. Here, W ′ is a member of ranking structure #9, if
t2 = 0, or #10, if t2 = 1.

Case 4 (t1 ≥ 3, t2 ≤ 1) Let [ j1, jt1 ] ⊆ N̂ c denote the unfixed alternatives tied with
i1 in rank position k1. First, break the tie between ĵ and jt1 by removing arc ( jt1 , ĵ)
from W , for each ĵ ∈ {i1} ∪ [ j1, jt1 − 1] (when k1 = k2, ĵ ∈ {i1, i2} ∪ [ j1, jt1 − 1]);
denote the generated weak order as Wt1 − 1,t2 . Since this removal decreases the value
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of ‖xW− ‖ and ‖xW+ ‖ by at least (t1 − 1) ≥ 1 and at most 1, respectively, we have

that ‖xW+ ‖−‖xW− ‖ ≤ ‖xWt1 − 1,t2+ ‖−‖xWt1 − 1,t2− ‖. Next, break the ties between each of
ĵ ∈ {i1}∪[ j1, jt1 − 2] (when k1 = k2, ĵ ∈ {i1, i2}∪[ j1, jt1 − 2]) with jt1 − 1 inWt1 − 1,t2
in a similar fashion to obtain a modified weak order, denoted as Wt1 − 2,t2 . Repeat this
process until arriving at a weak order, denoted asW2,t2 , in which i1 is tied with exactly
two unfixed alternatives, say j1 and j2 (when k1 = k2, both i1 and i2 are tied with j1
and j2). At this point, apply the results of Case 3 by setting W :=W2,t2 .

Case 5 (t2 ≥ 2) Let [ j1, jt2 ] ⊆ N̂ c denote the unfixed alternatives tied with i2 in rank
position k2. This case is addressed using the same arguments as in Case 4 by replacing
{i1}∪[ j1, jt ′ − 1]with {i2}∪[ j1, jt ′ − 1] in each step, where t ′ = t2, t2 − 1, . . . , 1. In the
generated weak order, denoted asWt1,1, i2 is tied with exactly one unfixed alternative,
say j1. At this point, apply the results of Cases 1-4 by setting W :=Wt1,1. ��

B Facet defining inequality proofs

B.1 T1 FDI differences matrix

To introduce the differences matrix we fixed i1 = 1 and jk = k + 1, for k =
1, . . . , n − 1; note that the same relabeling was used in the proof. The difference
matrix, X̄ is generated after iteratively subtracting several rows of X as described in
the T1 FDI proof (see Theorem 8). For ease of visualization, X̄ is partitioned into two
matrices as,

X̄ =
[
X̄
1

X̄
2
]

(16)

where X̄1∈ Z
n(n − 1)×2(n − 1) and X̄2∈ Z

n(n − 1)×(n − 1)(n − 2) such that, the first 2n − 2
columns i.e., elements involving the comparison of alternative 1 with j ∈ N̂ c show
up in X̄1 and, the last (n − 1)(n − 2) columns i.e., all comparisons between j, j ′ ∈
N̂ c = N\{1} appear in X̄2. Both of these matrices are illustrated as follows:
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B.2 T2-1 FDI differences matrix and proof

To introduce the differences matrix for the T2-1FDI proof we fixed i1 = 1, i2 = n
and jk = k + 1, for k = 1, . . . , n − 2. The difference matrix, X̄ is generated after
iteratively subtracting several rows of X as described in the following proof. For ease
of visualization, X̄ is partitioned into two matrices as,

X̄ =
[
X̄
1

X̄
2
]

(17)

where X̄1∈ Z
n(n − 1)×2(n − 1) and X̄2∈ Z

n(n − 1)×(n − 1)(n − 2) such that, the first 2n − 2
columns i.e., elements involving the comparison of alternative 1 with j ∈ N\{1}
show up in X̄1 and, the last (n − 1)(n − 2) columns i.e., all comparisons between
j, j ′ ∈ N\{1} appear in X̄2. Both of these matrices are illustrated as follows:
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Theorem 9 (T2-1FDI) T2-1VI is an FDI of Pn
WO, for any n ≥ 4.

Proof In the T2-1 valid inequality expression, fix i1 = 1 and i2 = n for ease of
exposition—or assume a corresponding relabeling of the alternatives is performed a
priori. It is straightforward to verify that all points output by CPT2-1 belong to the six
ranking structures given in Table4 that satisfy the inequality at equality.

To obtain the difference matrix, X̄ , first shift rows 1,2 and 3 to the bottom of the
matrix such that they become rows n(n − 1)− 2, n(n − 1)− 1 and n(n − 1) respec-
tively; all other rows are shifted upward. Second, iteratively subtract row i − 1 from
row i , for i = n(n − 1)− 3, . . . , 2. Third, subtract row n(n − 1) from row 1, row
n(n − 1)− 1 from row n(n − 1)− 2 and row n(n − 1)− 2 from row n(n − 1)− 1. To
proceed, set A0 ∈ R

n(n − 1)×n(n − 1) with a rearranged column ordering of X̄ such that,
all comparisons between the alternatives j, j ′ ∈ N̂ c = N\{1, n} appear in the first
(n − 2)(n − 3) columns, the next 2(n − 2) columns involve the comparisons between
i2 = n and j ∈ N̂ c and the finally elements involving the comparison of i1 = 1 with
j ∈ N̂ c and i2 = n shows up in the last 2(n − 1) columns. The first thing to remark
about the structure of A0 is that for the submatrix involving the first (n − 1)(n − 2)
columns and the first (n − 1)2 − 1 rows, nearly all rows have either a 1 or a − 1 as
the only nonzero element and the nonzero occurs under a unique column. The only
n − 2 rows that do not fit this pattern are rows 2n(i − 1)− i2 + 2, for i = 1, . . . , n − 2
which have a 1 and a − 1 under columns (i + 1, n) and (n, i + 1), respectively. The
two consecutive vectors after each of these n − 2 rows have a nonzero element of
the opposite sign under the same columns. In particular, row 2n(i − 1)− i2 + 3 has
a 1 under column (n, i + 1) and row 2n(i − 1)− i2 + 4 has a − 1 under column
(i + 1, n), where 1 ≤ i ≤ n − 2. Another thing to note about A0 is that, the binary
values of its final row corresponds to the alternative-ordering in which items {1, n}
are tied for the first position and the remaining alternatives are in a lexicographical
linear ordering occupying positions 2 to (n − 1). To eliminate the nonzero elements
of the first (n − 1)(n − 2) columns of this row add to it rows 2n(i − 1)− i2 + 2 j ,
where, 1 ≤ i ≤ n − 2 and 1 ≤ j ≤ n − i . As the next step, eliminate the first two
nonzero entries of row 2n(i − 1)− i2 + 2 by adding to it rows 2n(i − 1)− i2 + 3 and
2n(i − 1)− i2 + 4, for i = 1, . . . , n − 2. Then shift these n − 2 rows to the bottom of
the matrix and denote the resulting matrix as A1. More explicitly, row (n − 1)2 + i + 1
of A1 receives row 2n(i − 1)− i2 + 2 from A0, for 1 ≤ i ≤ n − 2; all other rows are
shifted upwards. Afterwards, the structure of A1 can be described via a partition with
the same number of submatrices and related dimensions as defined by Eq. (11).

Similar to the proof of Theorem 8, it is only necessary to know a part of the contents
of these submatrices to proceed. B1 is comprised entirely of positive or negative unit
vectors and, thus we have, | det(B1)| = 1. C1 is mostly a zero matrix, with the excep-
tion of row i whose values under columns (n − i − 1, n − 1) and (n − 1, n − i − 1)
are 1 and −1, respectively, for i = 1, .., n − 3 and row n − 2 which has a − 1
under column (n − 2, n − 1) and a 1 under column (n − 1, n − 2). To turn C1 into
a zero matrix first add to row i , where 1 ≤ i ≤ n − 3, the two consecutive ele-
mentary vectors from B1 that have nonzeroes of the opposite sign under columns
(n − i − 1, n − 1) and (n − 1, n − i − 1). Next, to eliminate the entries of row n − 2
subtract from it rows (n − 1)(n − 2)− 4 and (n − 1)(n − 2)− 3 of B1. Similar to
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B1, D1 is comprised entirely of elementary vectors, more specifically, it consists
of the following entries: a 1 under column (n, 1) and (i + j + 1, 1) in row 1 and
(2n − i)(i − 1)− 2(i − j)+ 3 respectively and a − 1 under (1, n) and (1, i + j + 1)
in row 2 and (2n − i)(i − 1)− 2(i − j)+ 4 respectively, where, 1 ≤ i ≤ n − 3 and
1 ≤ j ≤ n − i − 1. Finally, the structure of E1 can be described as follows:

From the above structure we can see that, row n of E1 in addition to having a 1
under column (1, i), where 1 ≤ i ≤ n − 1, also has a non-increasing sequence of
negative integers under column ( j, 1), where, 3≤ j ≤ n − 2. Upon completion of the
elimination steps to convert C1 into a zero matrix, the entries of E1 change slightly
and only affect the entries in columns (1, n − 1) and (n − 1, 1). The structure of the
new matrix, denoted as E2, is given by:

Now, since the determinant of B1 is 1 and C2 has been turned into a zero matrix, we
can write | det(A1)| = | det(E2)|. To simplify E2, first add row n − 2 to row i , where
1 ≤ i ≤ n − 3. Second, add to row n + i + 1 the updated rows j , where 1 ≤ i ≤ n − 4
and 1 ≤ j ≤ n − i − 4 and subtract from it row n − 2. Third, add rows 1 to n − 4 and
rows n + 2 to 2n − 2 to row n + 1. Fourth, eliminate the nonzero entries of row n from
column (1, 2) to (n − 2, 1) by following similar steps that was used to eliminate the
entries of row (2n − 2) in the proof of Theorem 8. The resulting matrix E3 from the
above elimination steps possesses the following form:
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where

α = − n + 4; β = 2 −
n−4∑
k=1

(k − 1) = (n − 1)− (n − 3)(n − 5)

2
;

Using the same reasoning as in the proof of Theorem 8, it can be concluded that the
non-singularity of E3 depends on the non-singularity of the following 4×4 matrix:

⎡
⎢⎢⎣
1 − 1 0 0
0 0 0 − 1
β α 0 α − 1
1 0 − 1 0

⎤
⎥⎥⎦ .

The symbolic determinant of this matrix is α +β, which equals 0 when,

α + β = 0 ⇔ n = 7

2
±

√
17

2
/∈ Z.

which implies that the characteristic vectors produced by CPT2-1 are affinely inde-
pendent, thereby establishing that T2-1VI is facet defining for n ≥ 4. ��

B.3 T2-3 FDI differences matrix and proof

To introduce the differences matrix for the T2-3FDI proof the same relabeling of
alternatives was used as in the previous subsection. The difference matrix, X̄ is then
generated after iteratively subtracting several rows of X as described in the proof
below. Similar to the previous proof, for ease of visualization X̄ is described via a
partition with the same number of submatrices and related dimensions as defined by
Eq. (17). Both of the partitioned matrices X̄1 and X̄2 are illustrated as follows:
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Theorem 11 (T2-3FDI) T2-3VI is an FDI of Pn
WO, for any n ≥ 4.

Proof As in the previous theorem, fix i1 = 1 and i2 = n or assume that a corresponding
relabeling of the alternatives is performed a priori. It is straightforward to verify that
all points yielded by the modified version of CPT2-1 , denoted here as CPT2-3 for ease
of explanation (the details of which can be found in page 21 of the main paper), belong
to the ten ranking structures of Table5 satisfy inequality (7) at equality. The rest of
this proof follows almost the same steps as in the proof of Theorem 9. Therefore we
sketch below only minor differences and where a change in the structure occurs due to
the differences between CPT2-1 and CPT2-3. First, most entries of the two difference
matrices, both denoted by X̄ , are the same except those in rows 1, n(n − 1)− 1 and
n(n − 1). The first row has only a 1 under column (2, 1) and a − 1 under column (n, 2),
row n(n − 1)− 1 has a − 1 under column (2, n)with no other nonzero entry and finally
row n(n − 1) has a binary structure that corresponds to a alternative-ordering where,
item i1 = 1 is in the first position, items {2, n} are tied in the second position and
the rest of the alternatives follow a lexicographical linear ordering. Second, due to
the difference between the entries in the first row of A0 generated from CPT2-1 and
CPT2-3, the following changes are needed to convert A0 into A1: eliminate the entries
in the first (n − 1)(n − 2) columns of row 2n(i − 1)− i2 + 2 by first adding the second
row to row 1 and then by adding rows 2n(i − 1)− i2 + 3 and 2n(i − 1)− i2 + 4 to
row 2n(i − 1)− i2 + 2, for i = 2, . . . , n − 2. Third, submatrix C1 has an additional
− 1 in row n − 1 under column (2, n), which can be eliminated by subtracting from it
the second row of B1. The final change is related to difference in the structure of E2.
The additional operations performed to eliminate the nonzero entry of C1 only affects
two rows of E2; row n − 1 which now consists of a 1 under column (1, n) and row
n + 1 which in addition to the 1 under column (2, 1) has another 1 under column (n, 1)
instead of a − 1 under column (1, n). After the same elimination steps are performed
on E2 as in the proof of Theorem 9 we get the following structure for E3:

where α and β have the same value as in the proof of Theorem 9. Now, applying the
same reasoning for the non-singularity of E3 as in the proof of the previous theorem, it
can be concluded that the determinant of this sub-matrix depends only on the following
4×4 matrix: ⎡

⎢⎢⎣
1 − 1 0 0
0 0 1 0
β α 0 α − 1
1 0 0 1

⎤
⎥⎥⎦ .
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The determinant of this matrix is − β − 1, which equals 0 when,

β + 1 = 0 ⇔ (n − 1)− (n − 3)(n − 5)

2
+ 1

= − 1

2
(n2 − 9n + 14) = − 1

2
(n − 2)(n − 7) = 0 ⇔ n = 7 or 2.

Therefore, for all n ≥ 4, except n = 7, the n(n − 1) characteristic vectors generated
by CPT2-3 that satisfy inequality (7) at equality are linearly independent and, thus,
affinely independent. To prove that the result holds for n = 7 as well, subtract row
n(n − 1) ofmatrix X from row i , where i = 1, 2 . . . n(n − 1)− 1, to yield a newmatrix
X̂ . It is straightforward to verify that the first 41 vectors of X̂ are linearly independent
(i.e., the row rank is 41) and, therefore, the 42 characteristic vectors are indeed affinely
independent. Hence, the result also holds for n = 7, and T2-3VI is facet defining for
any n ≥ 4. ��
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