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Abstract

Deep learning has been recently studied to generate high-quality prediction intervals (PIs)

for uncertainty quantification in regression tasks, including recent applications in simulation

metamodeling. The high-quality criterion requires PIs to be as narrow as possible, whilst main-

taining a pre-specified level of data (marginal) coverage. However, most existing works for

high-quality PIs lack accurate information on conditional coverage, which may cause unreliable

predictions if it is significantly smaller than the marginal coverage. To address this problem,

we propose an end-to-end framework which could output high-quality PIs and simultaneously

provide their conditional coverage estimation. In doing so, we design a new loss function that

is both easy-to-implement and theoretically justified via an exponential concentration bound.

Our evaluation on real-world benchmark datasets and synthetic examples shows that our ap-

proach not only achieves competitive results on high-quality PIs in terms of average PI width,

but also accurately estimates conditional coverage information that is useful in assessing model

uncertainty.

Keywords: Uncertainty quantification, prediction intervals, conditional coverage, neural net-

works, calibration error

1 Introduction

Prediction interval (PI) is poised to play an in-

creasingly prominent role in uncertainty quan-

tification for regression tasks (Khosravi et al. ,

2010, 2011; Galván et al. , 2017; Rosenfeld et al.

, 2018; Tagasovska and Lopez-Paz , 2018, 2019;

Romano et al. , 2019; Wang et al. , 2019; Ki-

varanovic et al. , 2020). Recently, it has also

been used in simulation metamodeling Lam and

Zhang (2021, 2022) in the spirit of the widely

used stochastic kriging and Gaussian process

methodologies Ankenman et al. (2010); Barton

and Meckesheimer (2006); Staum (2009). A

high-quality PI should be as narrow as possible,

whilst maintaining a pre-specified level of data

coverage or marginal coverage (Pearce et al. ,

2018; Zhu et al. , 2019). Compared with PIs ob-

tained based on coverage-only consideration, the

“high-quality” criterion is beneficial in balancing

between marginal coverage probability and in-

terval width. However, the conditional coverage

given a feature, which is critical for making re-

liable context-based decisions, is unassessed and

missing in most existing works on high-quality

PIs. In the presence of heteroskedasticity and

model misspecification, the marginal coverage

can be very different from the conditional cov-

erage at a given point, which affects the down-

stream decision-making task that relies on the
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uncertainty information provided by the PI. Our

main goal is to meaningfully incorporate and as-

sess conditional coverages in high-quality PIs.

Conditional coverage estimation is challeng-

ing for two reasons. First is that the natu-

ral evaluation metric of conditional coverage er-

ror, an Lp distance between the estimated and

ground-truth conditional coverages, is difficult to

compute as it requires obtaining the conditional

probability given feature x, which is arguably as

challenging as the regression problem itself. Our

first goal in this paper is to address this issue by

developing a new metric called calibration-based

conditional coverage error for conditional cover-

age estimation measurement. Our approach is

inspired from the calibration notion in classifica-

tion (Guo et al. , 2017). The basic idea is to relax

conditional coverage at any given point to being

averaged over all points that bear the same esti-

mated value. An estimator satisfying the relaxed

property is regarded as well-calibrated. In re-

gression, calibration-based conditional coverage

error provides a middle ground between the en-

forcement of marginal coverage (lacking any con-

ditional information) and conditional coverage

(computationally intractable). Compared with

conditional coverage, this middle-ground metric

can be viewed as a “dimension reduction” of the

conditioning variable from the original sample

space to the space [0, 1], so that we can easily

discretize to compute the empirical metric val-

ues.

The second challenge is the discontinuity in

the above metrics that hinders efficient training

of PIs that are both high-quality and possess re-

liable conditional coverage information. To ad-

dress this, we design a new loss function based on

a combination of the high-quality criterion and a

coverage assessment loss. The latter can be flex-

ibly added as a separate module to any neural

network (NN) used to train PIs. It is based on

an empirical version of a tight upper bound on

the coverage error in terms of a Kullback–Leibler

(KL) divergence, which can be readily employed

for running gradient descent. We theoretically

show how training with our proposed loss func-

tion attains this upper-bounding value via a con-

centration bound. We also demonstrate the em-

pirical performance of our approach in terms of

PI quality and conditional coverage assessment

compared with benchmark methods.

We summarize our contributions as follows:

1. We identify the conditional coverage es-

timation problem as a new challenge for

high-quality PIs and introduce a new eval-

uation metric for coverage estimation.

2. We propose an end-to-end algorithm that

can simultaneously construct high-quality

PIs and generate conditional coverage es-

timates. In addition, we provide theoret-

ical justifications on the effectiveness of

our algorithm by developing concentration

bounds relating the coverage assessment

loss and conditional coverage error.

3. By evaluating on benchmark datasets and

synthetic examples, we empirically demon-

strate that our approach achieves high per-

formance on conditional coverage estima-

tion without penalizing the performance on

high-quality PI generation.
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2 Evaluating Conditional Cov-

erage for High-Quality PIs

Let X ∈ X and Y ∈ Y ⊂ R be random variables

denoting the input feature and label, where the

pair (X,Y ) follows an (unknown) ground-truth

joint distribution π(X,Y ). Let π(Y |X) be the

conditional distribution of Y given X. Let π(X)

be the marginal distribution of X. We are given

the training data D := {(xi, yi), i = 1, 2, · · · , n}
where (xi, yi) are i.i.d. realizations of random

variables (X,Y ). Here, (xi, yi) could denote su-

pervised real data. It can also denote, in the

simulation context, a simulation model output

yi given the design point xi.

A PI refers to an interval [L(x), U(x)] where

L, U are two functions mapping from X to Y
trained on the data D. [L(x), U(x)] is called

a PI at prediction level 1 − α (0 ≤ α ≤ 1)

if its marginal coverage is not less than 1 − α,

i.e., P[Y ∈ [L(X), U(X)]|L,U ] ≥ 1 − α where

P is with respect to a new test point (X,Y ) ∼
π(X,Y ).

We say that [L(x), U(x)] is of high-quality if

its marginal coverage attains a pre-specified tar-

get prediction level and has a short width on

average. In particular, a best-quality PI at pre-

diction level 1 − α is an optimal solution to the

following constrained optimization problem:

min
L,U

E[U(X)− L(X)],

subject to P[Y ∈ [L(X), U(X)]|L,U ] ≥ 1− α.

(1)

The high-quality criterion has been widely

adopted in previous work Khosravi et al. (2010,

2011); Galván et al. (2017); Pearce et al.

(2018); Rosenfeld et al. (2018); Zhu et al.

(2019); Chen et al. (2021). However, this cri-

terion alone may fail to carry important model

uncertainty information at specific test points.

To illustrate this statement, consider a simple

example where x ∼ Uniform[0, 1], y = 0 for

x ∈ [0, 0.95] and y|x ∼ Uniform[0, 1] for x ∈
(0.95, 1]. Then according to Equation 1, a best-

quality 95% PI is precisely L(x) = U(x) = 0 for

all x ∈ [0, 1]. This PI has nonconstant “condi-

tional” coverage if we condition at different input

points (1 for x ∈ [0, 0.95] and 0 for x ∈ (0.95, 1]),

and can deviate significantly from the overall

marginal coverage 95%. Therefore, it is some-

times important to obtain conditional coverage

information, especially when the conditional cov-

erage at some input points differs a lot from the

marginal coverage. This simple example high-

lights the need to obtain conditional coverage

information.

To mitigate the drawback of the high-quality

criterion, we define:

Definition 1 (Conditional Coverage and Its Es-

timator). The (ground-truth) conditional cover-

age associated with a PI [L(x), U(x)] is defined

as A(x) := P[Y ∈ [L(X), U(X)]|L,U,X = x]

for any x ∈ X , where P is taken with respect to

π(Y |X = x). For a (conditional) coverage es-

timator P̂ , which is a measurable function from

X to [0, 1], we define its Lp conditional coverage

error (C̃Ep) as

C̃Ep :=
∥∥∥A(X)− P̂ (X)

∥∥∥
Lp(X )

where the Lp-norm is taken with respect to the

randomness of X (1 ≤ p ≤ +∞).

Note that evaluating C̃Ep relies on approxi-

mating the conditional coverage A(x), which can
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be as challenging as the original prediction prob-

lem. To address this, we leverage the similarity

of estimating A(x) to generating prediction prob-

abilities in binary classification, which motivates

us to borrow the notion of calibration in classi-

fication. This idea is based on a relaxed error

criterion by looking at the conditional coverage

among all points that bear the same coverage

estimator value, instead of conditioning at any

given point. The resulting error metric then only

relies on probabilities conditioned on variables

in a much lower-dimensional space [0, 1] than X .

To explain concretely, we introduce a “perfect-

calibrated coverage estimator” as:

Definition 2 (Perfect Calibration). A coverage

estimator P̂ is called a perfect-calibrated cover-

age estimator associated with [L(x), U(x)] if it

satisfies

P̂ (x) = P[Y ∈ [L(X), U(X)]|L,U, P̂ (X) = P̂ (x)],

(2)

for a.e. P̂ (x) ∈ [0, 1] where a.e. is with respect to

the probability measure on [0, 1] induced by the

random variable P̂ (X).

Equation 2 means that the “average” cov-

erage of the PI restricted on the subset {x ∈
X : P̂ (x) = p} should be precisely p (where the

“average” coverage is the average of all the con-

ditional coverage A(x) on the subset {x ∈ X :

P̂ (x) = p}, with respect to the distribution π(X)

conditional on the subset {x ∈ X : P̂ (x) = p}).
Corresponding to Definition 2, we define:

Definition 3 (Calibration-based Error). An Lp

(1 ≤ p ≤ +∞) calibration-based conditional cov-

erage error, or coverage error for short (CEp),

of a coverage estimator P̂ is:

CEp :=∥∥∥P[Y ∈ [L(X), U(X)]|L,U, P̂ (X)]− P̂ (X)
∥∥∥
Lp(X )

(3)

where the Lp-norm is taken with respect to the

randomness of P̂ (X).

In the above definition the conditional proba-

bility P[Y ∈ [L(X), U(X)]|L,U, P̂ (X)] is a mea-

surable function of random variable P̂ (X), say

γ(P̂ (X)). By a change of variable,

CEp
p : =

∥∥∥γ(P̂ (X))− P̂ (X)
∥∥∥p
Lp(X )

(4)

=

∫ 1

0
|γ(t)− t|pdFP̂ (X)(t) (5)

where FP̂ (X) is a probability distribution of

P̂ (X) on [0, 1]. Here, CEp only requires esti-

mating γ(t) for t ∈ [0, 1], which can be done

easily by discretizing [0, 1] for empirical calcula-

tion. To do this, we first construct a discrete

version of (2) and then introduce an empirical

counterpart of CEp (3), which we refer to as Lp

empirical calibration-based conditional coverage

error ECEp. The ideas behind these are natural

extensions of the classification case (Guo et al. ,

2017; Kull , 2019; Kumar , 2019; Nixon et al. ,

2019) into PIs.

We consider the following partition ∆ of

[0, 1]. Let [0, 1] be divided into M intervals

Im = (am−1, am] (m = 1, · · · ,M) where 0 =

a0 ≤ a1 ≤ · · · ≤ aM = 1. Let Bm = {i =

1, · · · , n : P̂ (xi) ∈ Im}, i.e., the set (bin) of

indices i of samples whose coverage estimator

P̂ (xi) falls into the interval Im. Note that cover-

age estimations that are close to each other will

fall into the same interval. The coverage proba-

bility (i.e., the proportion of successful coverage)
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in Bm is defined as:

CP (Bm) =
1

|Bm|
∑
i∈Bm

1yi∈[L(xi),U(xi)]. (6)

The average coverage estimation in Bm is defined

as:

AC(Bm) =
1

|Bm|
∑
i∈Bm

P̂ (xi) (7)

where P̂ (xi) is the coverage estimator for sample

xi. CP (Bm) and AC(Bm) approximate the left

and right hand sides of (2) respectively in the

interval Im. A perfect-calibrated coverage esti-

mator should satisfy CP (Bm) = AC(Bm) for all

m ∈ {1, · · · ,M}. The diagram of CP (Bm) ver-

sus AC(Bm) for all m ∈ {1, · · · ,M} is called the

reliability diagram in some literature (Guo et al.

, 2017).

Based on the partition ∆, we can introduce

an empirical version of CEp (which we refer to

as ECEp) as:

Definition 4. The Lp empirical calibration-

based conditional coverage error (ECEp) of a

coverage estimator P̂ is defined as

ECEp =
∥∥(CP (Bm(i))−AC(Bm(i)))i=1,2,··· ,n

∥∥
lp
.

(8)

where the lp is the standard p-norm in Rn and

Bm(i) is the bin containing sample i.

Equivalently,

ECEp =

(
M∑

m=1

|Bm|
n

|CP (Bm)−AC(Bm)|p
) 1

p

for 1 ≤ p < +∞, and

ECE∞ = max
m=1,2,··· ,M

|CP (Bm)−AC(Bm)| .

A calibration-based error CEp provides a

middle ground between the enforcement of

marginal coverage and conditional coverage. The

ground-truth conditional coverage is perfectly

calibrated, but not vice versa. However, if we

enforce the perfect calibration criterion for a

coverage estimator to hold when restricted to

any positive-probability measurable subset in X ,

then the choice of the estimator will reduce

uniquely to the conditional coverage. More for-

mally,

Definition 5. A coverage estimator P̂ is called

a perfect-calibrated coverage estimator on a mea-

surable subset S ⊂ X with P(S) > 0 associated

with [L(x), U(x)] if it satisfies

P̂ (x) =

P[Y ∈ [L(X), U(X)]|L,U, P̂ (X) = P̂ (x), X ∈ S]
(9)

for a.e. P̂ (x) ∈ [0, 1] where a.e. is with respect to

the probability measure on [0, 1] induced by the

random variable P̂ (X|S). Note that the condi-

tional probability space is standard: (S,FS :=

{A ∩ S : A ∈ F},PS(A ∩ S) := P(A|S)).

Lemma 1. (a) A coverage estimator is the con-

ditional coverage if and only if it is a perfect-

calibrated coverage estimator on any positive-

probability measurable subset S of X .

(b) Suppose P̂ is a perfect-calibrated coverage es-

timator on two disjoint positive-probability mea-

surable subsets S1, S2. Then P̂ is a perfect-

calibrated coverage estimator on S1 ∪ S2.

More details can be found in Appendix A. In

the sense of Lemma 1(a), CEp is an error metric

that is a natural relaxation of C̃Ep, and although

less precise, CEp is computationally much more

tractable than C̃Ep.
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Figure 1: The framework of our proposed coverage assessment network (CaNet).

We will use ECE1 as the primary evaluation

metric to measure the quality of a coverage esti-

mator. A high ECE1 value of a coverage estima-

tor indicates an unreliable coverage estimation

while a small ECE1 value indicates that the cov-

erage estimator is close to the perfect-calibrated

property. Ideally, an effective algorithm should

output a coverage estimator with a small ECE1

value.

3 Neural Network for Condi-

tional Coverage

We propose a novel end-to-end algorithm, named

coverage assessment network (CaNet), to simul-

taneously generate a coverage estimator along

with the high-quality PI. As illustrated in Fig-

ure 1, our CaNet takes any input data x as

its input layer (the leftmost layer in Figure

1), feeds x in the forward direction through

the network, and obtains four output values

(ψ1(x), ψ2(x), ψ3(x), ψ4(x)) in the output layer.

Then these output values are used in two major

modules in our CaNet: (1) predictor module

and (2) coverage assessment module (Ca-

Module). The PI predictor module sorts the two

outputs (ψ1(x), ψ2(x)) to provide the upper and

lower bound of the estimated PIs. Meanwhile,

the Ca-Module is added to the output layer to ac-

cess the conditional coverage information of PIs

from the predictor module. Our model is jointly

optimized by three loss functions: coverage as-

sessment loss LCA, intervals width loss LIW , and

coverage probability loss LCP . Benefiting from

these powerful modules, the CaNet can generate

and validate the coverage estimator at the same

time without any requirement for further post-

processing steps. In addition, we propose a novel

deep ensemble technique, suitably designed for

our setting, that can improve the performance

of both the predictor module and the coverage

assessment module.

3.1 Coverage Assessment Module

Our Ca-Module consists of two neurons

(ψ3(x), ψ4(x)) fully connected to the last hid-

den layer to estimate the conditional coverage.

After letting (ψ3(x), ψ4(x)) pass through the

softmax activation function, it outputs a two-

point probability distribution (P̂ (x), 1 − P̂ (x))
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where P̂ (x) is viewed as the coverage estimator

of the PI from the predictor module. Our Ca-

Module can be easily integrated into the output

layer of deep neural networks to estimate their

conditional coverage.

3.2 Loss Function Design and Tuning

Procedure

Our loss function is a sum of the predictor loss

and the coverage loss. The predictor loss aims

to narrow the prediction intervals as much as

possible, while maintaining a specified marginal

coverage of data. Inspired by Khosravi et al.

(2010, 2011); Pearce et al. (2018); Rosenfeld et

al. (2018), our predictor loss is formed by the

sum of interval width (IW) loss LIW and cover-

age probability (CP) loss LCP :

LIW =
1

n

n∑
i=1

(U(xi)− L(xi)), (10)

LCP =
1

n

n∑
i=1

k̃i, CP =
1

n

n∑
i=1

ki, (11)

where ki indicates whether each data point has

been captured by the PIs: ki = 1 if L(xi) ≤
yi ≤ U(xi) and ki = 0 otherwise. k̃i is a

soft version of ki, which is defined as: k̃i :=

σ(λ3(U(xi)−yi))·σ(λ3(yi−L(xi))), where λ3 ≥ 0

is a tunable parameter and σ(t) := 1
1+e−t is the

sigmoid function. Therefore, LCP is a soft ver-

sion of CP that can be used for gradient de-

scent. Associated with the Ca-Module, we intro-

duce a coverage assessment loss LCA to estimate

the conditional coverage:

LCA =− 1

n

n∑
i=1

(
ki log(P̂ (xi))

+ (1− ki) log(1− P̂ (xi))
)
.

We will show in Section 4 that the expectation

of coverage assessment loss LCA provides an up-

per bound for both the conditional coverage er-

ror (Definition 1) and calibration-based condi-

tional coverage error (Definition 3). Hence, min-

imizing LCA contributes to the recovery of the

conditional coverage. In order to run gradient-

based methods, we replace the discrete indicator

(ki, 1−ki) in LCA with its soft version (k̃i, 1−k̃i):

L̃CA =− 1

n

n∑
i=1

(
k̃i log(P̂ (xi))

+ (1− k̃i) log(1− P̂ (xi))
)
.

Our total loss function for the CaNet is defined

as:

Total Loss = LIW +λ1(1−LCP )+λ2L̃CA (12)

where λ1 ≥ 0, λ2 ≥ 0 are tunable parameters.

We propose an easy-to-implement yet effective

tuning procedure, Algorithm 1, to pick up these

parameters.

3.3 Deep Ensembles

Following previous research (Lee et al. , 2015;

Lakshminarayanan , 2017; Pearce et al. , 2018;

Fort et al. , 2019; Ovadia et al. , 2019; Gustafs-

son et al. , 2020; Pearce et al. , 2020), we ap-

ply the deep ensemble technique to provide more

robust and better results. During the training

period, with the same hyperparameters λi, i =

1, 2, 3, m networks are trained with different ini-

tializations. The prediction results from i-th net-

work are denoted as: ([Li(x), Ui(x)], P̂i(x), 1 −
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Algorithm 1 Tuning algorithm

Goal: Tune hyperparameters λ1, λ2, and λ3;

Input: Prediction level 1− α, training dataset D, validation dataset D′;

Procedure: Let the coverage probability CPD′ and the average coverage estimation ACD′ on D′

be

CPD′ =
1

|D′|
∑
i∈D′

1yi∈[L(xi),U(xi)],

ACD′ =
1

|D′|
∑
i∈D′

P̂ (xi).

where ([L(x), U(x)], P̂ (x)) are prediction results from the deep ensemble.

(1) Initialize λi (i = 1, 2, 3) so that CPD′ is nontrivial, i.e., not (almost) 0 or 1.

(2) While CPD′ is nontrivial: tune λ2 and λ3 so that |CPD′ −ACD′ | ≤ ϵ (e.g., ϵ = 1%.)

(3) Otherwise tune λ1 such that CPD′ is nontrivial. Do step 2 again until we find λ2 and λ3.

(4) Tune λ1 such that CPD′ > 1− α where λ2 and λ3 are fixed from (3).

Output: λ1, λ2, and λ3.

P̂i(x)). Finally, the output from CaNet is:

Lower bound L̄ :=
∑m

i=1
1
mLi,

Upper bound Ū :=
∑m

i=1
1
mUi,

Coverage estimator
¯̂
P :=

∑m
i=1

1
m P̂i.

(13)

4 Theoretical Analysis

In this section, we provide theoretical insights

about the coverage assessment loss LCA in our

approach. We show that minimizing LCA is

equivalent to minimizing a tight upper bound of

the conditional coverage error with high proba-

bility and thus contributes to reducing the con-

ditional coverage error of a coverage estimator.

This theoretical analysis consists of two steps.

First, we show that both CEp and C̃Ep are

bounded above by the expectation of a Kull-

back–Leibler divergence-type risk K1(X). Sec-

ond, we establish the tail bound of the general-

ization error E[K1(X)] and its empirical coun-

terpart which is exactly LCA. We will show

that the generalization bound holds uniformly

for any tuple of the joint output functions

(L(x), U(x), P̂ (x), 1 − P̂ (x)) generated by our

CaNet. Because multiple hypothesis classes be-

yond (L(x), U(x), P̂ (x), 1 − P̂ (x)) are involved

in LCA, more effort is required to build the con-

nection among them to derive the generalization

bound.

Theorem 1. Let A(x) := P[Y ∈
[L(X), U(X)]|L,U,X = x] be the condi-

tional coverage in Definition 1. Let K(x) :=

A(x) log
(
A(x)

P̂ (x)

)
+(1−A(x)) log

(
1−A(x)

1−P̂ (x)

)
. Then

CEp ≤ C̃Ep ≤
(
1

2
E[K(X)]

)αp/2

, ∀1 ≤ p ≤ +∞

where αp = 1, ∀1 ≤ p ≤ 2 and αp = 2
p , ∀2 ≤ p ≤

+∞. Moreover, the inequality is attainable if,

e.g., P̂ (x) equals the conditional coverage A(x).

From Theorem 1, we see that minimizing

E[K(x)] is equivalent to minimizing a tight upper
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bound for the coverage error. For every x, K(x)

is the Kullback–Leibler divergence between the

distributions represented by (P̂ (x), 1−P̂ (x)) and
(A(x), 1−A(x)). K(x) = K0(x) +K1(x), where

K0(x) = A(x) log(A(x)) + (1 − A(x)) log(1 −
A(x)) and K1(x) = −A(x) log(P̂ (x)) − (1 −
A(x)) log(1−P̂ (x)). Minimizing E[K(X)] over P̂

is equivalent to minimizing E[K1(X)]. The type

of results in Theorem 1 that bounds an Lp condi-

tional coverage error via a Kullback-Leibler-type

error is new as far as we know. Next, to show

LCA approximates E[K1(X)], we need the fol-

lowing assumptions:

Assumption 1. The four classes of functions

([L(x), U(x)], P̂ (x), 1− P̂ (x)) output by the neu-

ral network (NN) in Figure 1 have finite VC di-

mensions, say they are bounded above by V0.

Assumption 1 holds for a wide range of NNs

(e.g., Theorem 8.14 in Anthony and Bartlett

(1999), Theorem 7 in Bartlett et al. (2019)). In

particular, it holds for the one we adopt in the

experiments (where we use the ReLU-activated

NN to construct ψi, i = 1, 2, 3, 4; see Section 5):

Theorem 2. Suppose ψi, i = 1, 2, 3, 4 are the

pre-activated output neurons of the NN in Figure

1 using the ReLU activation function. Then As-

sumption 1 holds. Moreover, suppose the NN has

W parameters and U computation units (nodes).

Then V0 = O(WU).

Assumption 2. There exists a constant M <

+∞ such that | log(P̂ (x))| ≤ M , | log(1 −
P̂ (x))| ≤M for all x and P̂ .

This is a natural assumption in practice be-

cause log(P̂ (x)) and log(1 − P̂ (x)) are replaced

by log(P̂ (x) + ϵ) and log(1 − P̂ (x) + ϵ) respec-

tively to avoid explosion when implementing the

algorithm. In particular, in our experiments in

Section 5, ϵ = 0.16 and thus M = 14. Let

F = {f(x, y) = Iy∈[L(x),U(x)] :

L,U are output by the NN},

G = {P̂ (x) : P̂ is output by the NN}.

Theorem 3. Suppose Assumptions 1 and 2

hold. The training data D = {(xi, yi), i =

1, 2, · · · , n} where (xi, yi) are i.i.d. samples

∼ π. Recall that the (hard) coverage esti-

mator assessment loss is LCA = − 1
n

∑n
i=1(

f(xi, yi) log(P̂ (xi)) + (1− f(xi, yi)) log(1− P̂ (xi))
)
.

Then for any t > 0, we have

P

(
sup

f∈F ,P̂∈G
|LCA − E[K1(X)]| ≥ t

)
≤ C∗e−

nt2

16M2 .

where C∗ only depends on V0 in Assumption 1.

Theorem 3 shows that the coverage assess-

ment loss approximates E[K1(x)] well with an

exponential tail bound. The difficulty in analyz-

ing Theorem 3 lies in the fact that the hypothesis

classes in Assumption 1 (which are constructed

by the NN) are different from the hypothesis

class used in LCA. To overcome this difficulty,

we use the theory of VC-subgraph classes to con-

nect the VC dimension among multiple hypoth-

esis classes, including the class of ψi, the four

classes of output functions, and F , log G. Then

we establish the covering number bound for the

class F and log G, and finally prove Theorem

3. To conclude, minimizing E[K1(X)] over P̂ is

equivalent to minimizing E[K(X)], which in turn

is minimizing a tight upper bound for the cov-

erage assessment loss. Our coverage assessment

9



loss empirically approximates E[K1(X)] well, so

that its minimization can ultimately help to re-

duce the conditional coverage error.

5 Experiments

Experimental Setup. We empirically verify

the effectiveness of our proposed CaNet on both

synthetic examples and benchmark regression

datasets. These datasets have been widely used

for the evaluation of methods in regression tasks

(Hernández-Lobato and Adams , 2015; Gal and

Ghahramani , 2016; Lakshminarayanan , 2017;

Rosenfeld et al. , 2018; Pearce et al. , 2018; Zhu

et al. , 2019). In addition, we adopt the same

experimental procedure in Pearce et al. (2018)

for data normalization and dataset splitting. To

avoid overfitting, we apply a simple network ar-

chitecture with only 2 hidden layers and each

hidden layer has 64 neurons. For each hidden

layer, the ReLU activation function is applied to

capture the non-linear features. We empirically

set the ensemble number m to 5, as the small-

est number leading to a stable prediction results.

Please refer to Appendix D for implementation

details, including those for baseline algorithms.

Evaluation Metrics. To evaluate the con-

ditional coverage estimation of our CaNet, we ex-

amine the quality of our Ca-Module measured by

the empirical coverage error ECE1 over a parti-

tion ∆. ∆ is constructed by equally dividing the

width of [0, 1] into M sub-intervals. The value

of M depends on the size of the dataset, which

is determined by the following strategy: M =

min{⌊the number of data in validation/50⌋ +

1, 20}. In addition, we also report the IW and

CP , where IW = 1
n

∑n
i=1(U(xi)−L(xi)) (Equa-

tion 10) and CP = 1
n

∑n
i=1 ki, (Equation 11) to

show the effectiveness of our predictor module

under the high-quality criteria. Thanks to the

deep ensemble technique (Section 3.3), our ex-

perimental results are robust and stable among

multiple experimental repetitions with a stan-

dard deviation typically less than 2%. Therefore,

we only report the mean value.

5.1 Conditional Coverage on Syn-

thetic Examples

In this section, we conduct a series of experi-

ments on synthetic examples to directly com-

pare our prediction results with the ground-truth

conditional coverage. In these examples, the

conditional coverage can be analytically calcu-

lated under the known data distribution. Fig-

ure 2 compares the conditional coverage with

our predicted coverage under the following set-

tings: x ∼ Uniform[−2, 2] and y|x is drawn from

fi(x) =
1
3 sin(x) + εi(x), x ∈ [−2, 2] where

ε1(x) = 0.1×N(0, 1),

ε2(x) = 0.1|x| ×N(0, 1),

ε3(x) = 0.1|x| × t4.

N(0, 1) is the standard Gaussian variable and t4

is the standard t random variable with 4 degrees

of freedom. Then, the conditional coverage in

Definition 1 can be analytically calculated as:

P[Y ∈ [L(X), U(X)]|L,U,X = x]

=Fi(U(x)− 1

3
sin(x))− Fi(L(x)−

1

3
sin(x))

where Fi is the cumulative distribution function

of N(0, 0.12) for i = 1, N(0, (0.1x)2) for i = 2,

and 0.1|x| × t4 for i = 3. As shown in Figure 2

(b,c), the ground-truth conditional coverages of

high-quality PIs diverge among different points,

10



and they deviate from the marginal coverage.

Thus, having access to the marginal coverage

for the whole dataset is not sufficient for deci-

sion making, which highlights the need for con-

ditional coverage. In addition, the conditional

coverage estimator from our model is highly con-

sistent with the conditional coverage on all of the

synthetic examples in Figure 2. These results

confirm that our CaNet can accurately estimate

the conditional coverage on noisy datasets.

5.2 Performance of PIs on Benchmark

Datasets

In this section, we compare the performance

of PIs generated by the predictor module of

our CaNet on real-world benchmark datasets

with following baseline algorithms: (1) nearest-

neighbors kernel conditional density estimation

(NNKCDE) (Dalmasso et al. , 2020), (2)

quantile regression forest (QRF) (Meinshausen ,

2006), (3) split conformal learning (SCL) (Lei et

al. , 2018) and (4) the quality-driven PI method

(QD-Ens) (Pearce et al. , 2018). We quote the

results from Pearce et al. (2018) as a compar-

ison since we share the same experiment setup.

Table 1 reports the results of CP , IW and ECE1

for generating PIs at 95% prediction level on

benchmark datasets. We employed the criteria in

Pearce et al. (2018) to evaluate the performance

of PIs: the best IW is achieved by the model

with the smallest IW value among those with

CP ≥ 95%. As can be seen, our model achieves

competitive results on PI generation under the

high-quality criteria. With special consideration

on interval width quality, it obtains the small-

est average interval width (IW ) while maintain-

ing high coverage probability (CP ≥ 95%) on

all datasets. These results show that adding an

additional module CA-Module does not penalize

the performance of PIs generated by our CaNet.

5.3 Performance of Coverage Estima-

tor on Benchmark Datasets

Coverage for 95% PIs. We use ECE1 to

evaluate the coverage estimation performance

on real-world datasets as the conditional cov-

erage is unknown. As shown in Table 1, the

ECE1 on all experiments are generally around or

less than 1%, with better performance on larger

datasets. The coverage estimators produced by

CaNet have small ECE1 values, which are very

close to the perfect-calibrated coverage estima-

tors (Definition 2). Compared with ECE1 val-

ues obtained from the state-of-the-art algorithms

in classification tasks (Guo et al. , 2017; Kull

, 2019), the ECE1 values from CaNet are simi-

lar and sometimes less than their post-calibrated

ECE1 results (usually around 1% to 3%), even

though the size of most regression datasets are

smaller than the classification datasets. These

results further demonstrate that our CaNet can

accurately estimate the coverage information of

95% high-quality PIs on real-world regression

tasks.

Coverage for PIs at Different Predic-

tion Levels. We conduct multiple experiments

on different PI prediction levels to show the ro-

bustness of our CaNet. By only modifying the

parameter λ1 in Equation 12, our Ca-Module

could get access to different levels of coverage

probability. Table 2 reports the CP, IW and

ECE1 values from the CaNet at different PI pre-

11



Figure 2: Prediction and conditional coverage of 95% PIs on synthetic examples. (a) CP =

0.95, IW = 0.40, ECE1 = 0.62%. (b) CP = 0.96, IW = 0.40, ECE1 = 0.12%. (c)

CP = 0.95, IW = 0.50, ECE1 = 0.65%. The predicted coverage estimation from CaNet is

highly consistent with the conditional coverage under different noise settings. The red curve rep-

resents the validation data. The dark blue curve represents the lower bound of the PI generated

by our CaNet. The green curve represents the upper bound of the PI generated by our CaNet.

The black curve represents the conditional coverage estimator generated by our CaNet. The light

blue curve represents the ground-truth conditional coverage. In all figures, the conditional coverage

estimator from our model (the black curve) is highly consistent with the ground-truth conditional

coverage (the light blue curve). In Figure 2 (b,c), the ground-truth conditional coverages (the light

blue curve) diverge among different points, highlighting the need for conditional coverage.

diction levels on three benchmark datasets. Re-

sults for more datasets can be found in Appendix

D. As can be seen, all ECE1 values in Table 2 are

fairly small (∼ 1%), demonstrating the stability

of our proposed model. Thus, our CaNet can

provide accurate coverage estimation on PIs at

different prediction levels. These results demon-

strate the robustness of our CaNet on real-world

datasets, further suggesting its broad applicabil-

ity.

6 Related Work

Finally, we discuss the connections of our paper

with several lines of related work.

6.1 Prediction Interval Estimation

High-quality PIs, which can be viewed via a con-

strained optimization problem where the con-

straint concerns marginal coverage and the ob-

jective is the PI width, has been extensively stud-

ied in Khosravi et al. (2010, 2011); Galván

et al. (2017); Pearce et al. (2018); Rosen-

feld et al. (2018); Zhu et al. (2019); Chen

et al. (2021). Such intervals are in the same

spirit as the highest density intervals in statis-

tics (Box and Tiao , 2011). While powerful,

these approaches could not directly provide the

conditional coverage information investigated in

this work. Coverage-only criteria, on the other

hand, focus solely on coverage satisfaction as the

12



NNKCDE QRF SCL QD-Ens CaNet: λ2 = 0.15 for all datasets

Dataset CP IW CP IW CP IW CP IW CP IW ECE1 λ1 λ3

Boston 0.95 1.54 0.96 2.22 0.97 1.45 0.92 1.16 0.95 1.04 1.38% 6.0 1800

Concrete 0.95 1.85 0.99 2.53 0.96 1.54 0.94 1.09 0.95 1.13 0.24% 6.5 1000

Energy 0.97 0.54 0.98 0.87 0.95 0.77 0.97 0.47 0.99 0.37 0.76% 5.0 500

Kin8nm 0.99 2.76 0.99 3.27 0.94 1.20 0.96 1.25 0.95 1.04 1.32% 3.6 300

Plant 0.95 0.88 0.97 1.05 0.95 0.88 0.95 0.86 0.95 0.84 0.38% 3.3 700

Protein 0.93 1.98 0.98 2.42 0.95 2.81 0.95 2.27 0.95 2.26 0.41% 8.3 300

Wine 0.96 2.64 0.93 3.18 0.96 3.44 0.92 2.33 0.95 2.59 0.42% 19 1100

Yacht 0.95 1.15 0.95 1.72 0.95 0.57 0.96 0.17 0.98 0.16 0.80% 1.6 500

Table 1: Evaluation metrics of different models on benchmark datasets. The CP values are marked

in blue if they meet the 95% prediction level. The best IW results, marked in bold, are achieved

by models with the smallest IW value among those that meet the 95% prediction level. Our model

outperforms the baseline algorithms on high-quality PI generation. Meanwhile, it provides accurate

coverage estimation on real-world datasets.

guarantee. These approaches include conformal

learning (CL) and its conditional variants (Vovk

et al. , 2005, 2009; Lei and Wasserman , 2014;

Lei et al. , 2015, 2018; Kuchibhotla and Ram-

das , 2019; Romano et al. , 2019; Barber et

al. , 2019a,b). CL is desirably distribution-

or model-free, and in some cases enjoys finite-

sample guarantees on coverage. However, the

coverage guarantees from CL are only marginal

with respect to the training data (except split CL

(Vovk , 2012)). Moreover, unlike high-quality

PIs, they do not explicitly account for the inter-

val width as a quality metric. Nevertheless, we

note that even in some literature with coverage-

only consideration, interval width has also been

implicitly served as a conservative measurement

of PIs, e.g., in Zhang et al. (2019); Barber et

al. (2019b). We also mention conditional den-

sity estimation (Holmes et al. , 2007; Dutordoir

et al. , 2018; Izbicki and Lee , 2016; Dalmasso

et al. , 2020; Freeman et al. , 2017; Izbicki et

al. , 2017) and closely relatedly quantile regres-

sion (Koenker and Hallock , 2001; Meinshausen

, 2006) as PI construction approaches by con-

verting from the estimated conditional quantile

function. These approaches focus on the qual-

ity of conditional distribution/quantile, instead

of the high-quality criterion only. In this work,

we follow some recent work using deep learning

to achieve state-of-the-art performance for high-

quality PIs construction (Khosravi et al. , 2010;

Pearce et al. , 2018; Kivaranovic et al. , 2020).

6.2 Uncertainty Measurement in

Deep Learning

Standard Bayesian approaches, e.g., Bayesian

linear regression (Bishop , 2006), can be ap-

plied to construct PIs based on the posterior pre-

dictive distribution. But they usually assume

that data follow a certain set of parameterized

distributions, which provide a different perspec-

tive from the distribution-free, frequentist view

taken in this paper. On the other hand, as

for NNs, the Bayesian framework also offers a
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Kin8nm: λ2 = 0.15, λ3 = 300 Plant: λ2 = 0.15, λ3 = 700 Protein: λ2 = 0.15, λ3 = 300

λ1 CP IW ECE1 λ1 CP IW ECE1 λ1 CP IW ECE1

1.9 0.83 0.73 1.54% 1.4 0.80 0.56 1.23% 4.8 0.82 1.56 0.82%

2.1 0.85 0.77 1.59% 1.5 0.84 0.62 1.36% 5.1 0.86 1.70 0.71%

2.3 0.87 0.80 1.47% 1.6 0.85 0.63 0.86% 5.4 0.88 1.79 1.25%

2.4 0.88 0.84 1.21% 1.8 0.86 0.64 1.36% 5.6 0.90 1.84 1.04%

2.6 0.90 0.87 1.50% 2.0 0.89 0.70 0.51% 6.3 0.91 1.95 0.66%

2.9 0.91 0.89 0.50% 2.4 0.91 0.75 1.15% 6.5 0.92 2.07 1.36%

3.1 0.92 0.94 0.49% 2.6 0.92 0.80 1.29% 7.0 0.93 2.11 1.23%

3.4 0.94 1.00 0.82% 3.0 0.94 0.83 0.23% 7.8 0.94 2.13 0.99%

3.6 0.95 1.04 1.32% 3.3 0.95 0.84 0.38% 8.3 0.95 2.26 0.41%

3.8 0.96 1.06 1.25% 4.0 0.96 0.89 0.80% 9.3 0.96 2.36 0.52%

Table 2: ECE1 results of our model on benchmark datasets with different coverage probabilities.

Our CaNet achieves robust performance on real-world datasets at different prediction levels.

principled approach for model uncertainty mea-

surement by computing the posterior distribu-

tion over the NN parameters (MacKay , 1992;

Neal , 2012). They focus on the parameter un-

certainty of the NN instead of the coverage over a

test point. In addition, exact Bayesian inference

for deep Bayesian NNs is computationally in-

tractable, making it less practical to implement.

Gal and Ghahramani (2016) applied a Monte

Carlo dropout method to proxy the inference.

Directly generated from non-Bayesian networks,

softmax response is also commonly used for un-

certainty measurement on deep learning models

(Bridle , 1990; Lakshminarayanan , 2017; Geif-

man et al. , 2018; Sensoy et al. , 2018; Ozbulak

et al. , 2018). Moreover, Niculescu-Mizil and

Caruana (2005) showed that NNs typically pro-

duce well-calibrated probabilities on binary clas-

sification tasks without the need for any post-hoc

techniques. In this paper, we also follow this line

of work and use the softmax output to access the

model uncertainty information.

6.3 Simulation Metamodeling

Stochastic simulation aims to estimate a re-

sponse surface of simulation outputs from com-

plex stochastic models Barton and Meckesheimer

(2006); Staum (2009). A common and versatile

approach in simulation metamodeling is stochas-

tic kriging (SK) Ankenman et al. (2008, 2010)

which can handle general nonlinear input-output

relations, and is also closely related to Gaussian

process methodologies in Bayesian optimization

Frazier (2018); Couckuyt et al. (2022). SK typ-

ically focuses on mean response surface estima-

tion or quantile-based response measures Chen

and Kim (2013); Bekki et al. (2014); Chen and

Kim (2016), and can account for both epistemic

and aleatory uncertainties, and as such allows

to build PIs for the simulation random outputs.

In addition to SK, recent work Lam and Zhang

(2021, 2022) proposes to build PIs for simulation

metamodeling by adapting techniques from ma-

chine learning including using the high-quality

criterion and NNs, which is the approach con-

sidered in this paper. These studies mainly tar-
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get at the marginal coverage of PIs while our

methodology in this work aims to obtain con-

ditional coverage information of PIs simultane-

ously.

7 Concluding Remarks

In this paper, we identify and investigate the

conditional coverage estimation problem for

high-quality PIs, which is critical for risk-based

decision making in regression tasks including

simulation metamodeling. To address the chal-

lenge, we propose an end-to-end algorithm with

two powerful modules: the coverage assessment

module and the predictor module. Benefiting

from these powerful modules, our model can gen-

erate and validate the coverage estimator with-

out any requirement for further post-processing

steps. In addition, we conduct a theoretical anal-

ysis to show the effectiveness of our proposed

model. Experimental results on synthetic ex-

amples and benchmark datasets further demon-

strate that our model can robustly provide ac-

curate coverage estimation while simultaneously

producing a high-quality PI. Another alterna-

tive approach for conditional coverage estima-

tion is a two-stage approach that considers the

PI problem and the conditional coverage esti-

mation problem separately in different networks.

However, the two-stage approach is very com-

plex and contains multiple steps that require two

training processes for different networks. Essen-

tially, we have to select more hyper-parameters

for the two networks and also train more net-

work weights to get the PI predictor and the con-

ditional coverage estimator, which means more

running time. Compared with the two-stage al-

gorithm, our model has several advantages: our

model is an end-to-end algorithm by leverag-

ing the common feature layer (the last hidden

layer) for both the PI predictor and the condi-

tional coverage estimator, which is very concise

and easy to implement. We can also efficiently

choose the parameters via our tuning procedure.

Moreover, our Ca-Module can be easily inte-

grated into other deep-learning-based algorithms

to access their conditional coverage information,

opening up more opportunities for broad appli-

cations. In the future, we will extend our work

by conducting comparison studies with Bayesian

methods.
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Appendices

This appendix presents further results and discussions and it consists of four parts. Appendix A

gives more detailed properties on coverage estimator and coverage error. Appendix B contains the

mathematical argument for Theorem 1. Appendix C discusses how to achieve Assumption 1 and

the proof of Theorem 2 and 3. Appendix D illustrates experimental details and more experimental

results.

A Further Details on Coverage Estimator and Coverage Error

A.1 Coverage Probability Types of PIs

Zhang et al. (2019) introduce the following four coverage probability types of PIs. In general,

most of the coverage in PIs considered in the literature falls into one of these types.

Type I: P[Y ∈ [L(X), U(X)]] (marginal coverage);

Type II: P[Y ∈ [L(X), U(X)]|L,U ] (conditional coverage given the PI);

Type III: P[Y ∈ [L(X), U(X)]|X = x] (conditional coverage given X = x);

Type IV: P[Y ∈ [L(X), U(X)]|L,U,X = x] (conditional coverage given the PI and X = x).

Note that in high-quality criteria, only Type II coverage is considered in the constraint but

Type IV coverage is lacking. Since Type I and III are not considered in our paper, for simplicity

Type II coverage is called the marginal coverage, and Type IV coverage is called the conditional

coverage in Definition 1.

Throughout Appendix, we let A(x) := P[Y ∈ [L(X), U(X)]|L,U,X = x] denote the conditional

coverage in Definition 1. Moreover, since we only concern Type II and IV coverage in this work,

we make the following convention. Throughout Appendix A-B, P and E should be understood as

probability and expectation conditional on L,U . So for A(x), we could simply write A(x) := P[Y ∈
[L(X), U(X)]|X = x] and omit “conditional on L,U”.

A.2 The Terminology “Perfect-Calibrated”

The terminology “perfect-calibrated” is borrowed from the confidence calibration in classification

tasks. We first review the name of “confidence” in classification.

Confidence calibration is the problem of predicting probability estimates representative of the

true correctness likelihood (Guo et al. , 2017). Intuitively, an reliable confidence should reflect the

true correctness likelihood of the prediction (Kumar , 2019). For example, given 100 predictions,

each with confidence of 0.8, we expect that 80 should be correctly classified (Guo et al. , 2017).

Now let h be the prediction of any models, which is a map from X to Y, trained on the data
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D. According to their definition, the “best” confidence map P̂ should be the true probability of

correctness:

P̂ (x) = E[1h(X) is correct for Y |h,X = x], ∀x ∈ X . (14)

which is a measureable function from X to [0, 1]. In particular, we consider h as a PI in regression

tasks and “correctness” of a PI is naturally defined as the success of coverage on the outcome Y .

Then the right hand side of Equation (14) becomes

E[1h(X) is correct for Y |h,X = x] = E[1Y ∈[L(X),U(X)]|L,U,X = x]

= P[Y ∈ [L(X), U(X)]|L,U,X = x].

which is the conditional coverage in our Definition 1.

In addition, Guo et al. (2017) introduce the perfect-calibrated confidence as follows:

P(Ŷ = Y |Ŷ , P̂ = p) = p, ∀p ∈ [0, 1]

where Ŷ is the class prediction and Ŷ = Y means that the predicted and true class label coincide.

Obviously, if P̂ (X) = P(Ŷ (X) = Y |X), i.e., the “best” confidence, then the above equality holds.

Transferring this idea into PIs, we can naturally define the perfect-calibrated coverage estimator as

p = E[1h(X) is correct for Y |L,U, P̂ = p] = P[Y ∈ [L(X), U(X)]|L,U, P̂ = p], ∀p ∈ [0, 1].

which is the conditional coverage in our Definition 2.

A.3 Details on Coverage Estimator

A perfect-calibrated coverage estimator inherits some properties of a conditional coverage. For

example, both of them have the following interpretation: If we have 1000 testing points for a PI,

each with the same conditional/perfect-calibrated coverage 0.9, then approximately 900 of them are

correctly covered by the PI. Note that the conditional coverage is uniquely defined, but a perfect-

calibrated coverage estimator is not necessarily so. Moreover, we have the following facts: (a)

The conditional coverage is always perfect-calibrated, but not vice versa. (b) A perfect-calibrated

coverage estimator can be viewed as an averaged conditional coverage. (c) A perfect-calibrated

coverage estimator is less “informative” than the conditional coverage.

A perfect-calibrated coverage estimator is an averaged conditional coverage. Let P̂
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be a (general) coverage estimator. We have

P[Y ∈ [L(X), U(X)]|P̂ (X) = P̂ (x)]

=P[Y ∈ [L(X), U(X)]|X ∈ P̂−1(P̂ (x))]

=
P[Y ∈ [L(X), U(X)], X ∈ P̂−1(P̂ (x))]

P[X ∈ P̂−1(P̂ (x))]

=

∫
t∈P̂−1(P̂ (x)) E[1Y ∈[L(X),U(X)]|X = t]P[X ∈ dt]

P[X ∈ P̂−1(P̂ (x))]

=

∫
t∈P̂−1(P̂ (x))A(t)P[X ∈ dt]

P[X ∈ P̂−1(P̂ (x))]

Suppose P̂ is a perfect-calibrated coverage estimator. Then we have

P̂ (x) =

∫
t∈P̂−1(P̂ (x))A(t)P[X ∈ dt]

P[X ∈ P̂−1(P̂ (x))]

which implies that P̂ (x) is a weighted average of A(t) over the set P̂−1(P̂ (x)) with weights based

on the marginal distribution of X.

A conditional coverage is perfect-calibrated. If P̂ (x) = A(x), then A(t) = A(x) for any

t ∈ A−1(A(x)) so∫
t∈A−1(A(x))A(t)P[X ∈ dt]

P[X ∈ A−1(A(x))]
=
A(x)

∫
t∈A−1(A(x)) P[X ∈ dt]

P[X ∈ A−1(A(x))]
= A(x).

This shows that A(x) must be a perfect-calibrated coverage estimator. Another way to see this is

taking conditional expectation given A(X) = p in the Definition 1. Then we get

p = E[A(X)|A(X) = p]

= E[P[Y ∈ [L(X), U(X)]|X]|A(X) = p]

= P[Y ∈ [L(X), U(X)]|A(X) = p] by the tower property.

A perfect-calibrated coverage estimator may be less informative and may not be

the conditional coverage. Suppose we have a PI [L(X), U(X)] at the exact prediction level of

1− α, i.e., P[Y ∈ [L(X), U(X)]] = 1− α. Then the constant coverage estimator

P̂ (x) = 1− α, ∀x ∈ X

can be viewed as an average coverage estimator over the entire space X . It is a perfect-calibrated

coverage estimator since by definition,

P[Y ∈ [L(X), U(X)]|P̂ (X) = 1− α] = P[Y ∈ [L(X), U(X)]] = 1− α = P̂ (X).
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But it is not a conditional coverage in general (e.g., the second/third synthetic example in Section

5.1).

In the main paper, we have given the following extension of the definition of “perfect-calibrated”

coverage estimator, allowing it to be defined on any positive-probability measurable subsets.

Definition 6 (Restated Definition 5). A coverage estimator P̂ is called a perfect-calibrated coverage

estimator on a measurable subset S ⊂ X with P(S) > 0 associated with [L(x), U(x)] if it satisfies

P̂ (x) = P[Y ∈ [L(X), U(X)]|L,U, P̂ (X) = P̂ (x), X ∈ S], a.e. P̂ (x) ∈ [0, 1]. (15)

where a.e. is with respect to the probability measure on [0, 1] induced by the random variable P̂ (X|S).
Note that the conditional probability space is standard: (S,FS := {A ∩ S : A ∈ F},PS(A ∩ S) :=
P(A|S)).

(As our convention in Section A.1, we will omit “conditional on L,U” for simplicity.)

Lemma 2 (Restated Lemma 1). (a) A coverage estimator is the conditional coverage if and only

if it is a perfect-calibrated coverage estimator on any positive-probability measurable subset S of X .

(b) Suppose P̂ is a perfect-calibrated coverage estimator on two disjoint positive-probability measur-

able subsets S1, S2. Then P̂ is a perfect-calibrated coverage estimator on S1 ∪ S2.

Proof. (a) The proof can be found in Lemma 3.

(b) We note that by law of total probability,

P[Y ∈ [L(X), U(X)]|P̂ (X) = p,X ∈ S1 ∪ S2]

=P[Y ∈ [L(X), U(X)]|P̂ (X) = p,X ∈ S1]P[X ∈ S1|P̂ (X) = p,X ∈ S1 ∪ S2]

+ P[Y ∈ [L(X), U(X)]|P̂ (X) = p,X ∈ S2]P[X ∈ S2|P̂ (X) = p,X ∈ S1 ∪ S2]

=p(P[X ∈ S1|P̂ (X) = p,X ∈ S1 ∪ S2] + P[X ∈ S2|P̂ (X) = p,X ∈ S1 ∪ S2])

=p.

Hence P̂ is a perfect-calibrated coverage estimator on S1 ∪ S2.

Lemma 1(a) is motivated from a theoretical point of view. It provides a guidance that in order

to well resemble the conditional coverage, an estimator should be perfect-calibrated on as many

subsets on the feature space as possible.

A.4 Details on Coverage Error

In Section 2, we have introduced CEp to quantify the discrepancy between a coverage estimator and

a perfect-calibrated coverage estimator, and C̃Ep to quantify the discrepancy between a coverage

estimator and the conditional coverage. We note that by Hölder’s inequality

CEp ≤ CEq, for 1 ≤ p ≤ q ≤ +∞.
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A larger value of p corresponds to a larger CE value. Continuing Definition 5, we can further

introduce the calibration-based conditional coverage error on a measurable subset as follows:

Definition 7. An Lp (1 ≤ p ≤ +∞) calibration-based conditional coverage error, or coverage error

for short, of a coverage estimator P̂ on a measurable subset S ⊂ X with P(S) > 0 is defined as:

CEp(S) =
∥∥∥P[Y ∈ [L(X), U(X)]|L,U, P̂ (X), X ∈ S]− P̂ (X)

∥∥∥
Lp(S)

(16)

where Lp-norm is taken with respect to the randomness of P̂ (X) on the conditional probability space

(S,FS := {A ∩ S : A ∈ F},PS(A ∩ S) := P(A|S)). In particular, we have CEp := CEp(X ).

Lemma 3. A coverage estimator P̂ is the conditional coverage if and only if its coverage error

CEp(S) = 0 for any measurable subset S ⊂ X with P(S) > 0. In particular, a coverage estimator is

the conditional coverage if and only if it is a perfect-calibrated coverage estimator on any measurable

subset S of X with P(S) > 0.

Proof. We first show that the conditional coverage is perfect-calibrated. Taking conditional expec-

tation given {A(X) = p,X ∈ S} in the Definition 1. Then we get

p = E[A(X)|A(X) = p,X ∈ S]

= E[P[Y ∈ [L(X), U(X)]|X]|A(X) = p,X ∈ S]

= P[Y ∈ [L(X), U(X)]|A(X) = p,X ∈ S] by the tower property.

So A(x) is a perfect-calibrated coverage estimator on any measurable subset S with P(S) > 0.

Hence CEp(S) = 0 for any measurable subsets S ⊂ X with P(S) > 0.

On the other hand, similarly to Section A.3, we can express

P[Y ∈ [L(X), U(X)]|P̂ (X) = P̂ (x), X ∈ S] =

∫
t∈P̂−1(P̂ (x))∩S A(t)P[X ∈ dt]

P[X ∈ P̂−1(P̂ (x)) ∩ S]
.

Suppose P̂ (x) is not the conditional coverage, then P[P̂ (X) ̸= A(X)] > 0. Without loss of

generality, we assume P[P̂ (X) > A(X)] > 0. Let S0 := {x ∈ X : P̂ (x) > A(x)}. Note

that S0 = ∪+∞
n=1{x ∈ X : P̂ (x) > A(x) + 1

n}. Since P(S0) > 0, there exists a n0 such that

S := {x ∈ X : P̂ (x) > A(x) + 1
n0
} and P(S) > 0.

Then for x ∈ S, we have∫
t∈P̂−1(P̂ (x))∩S A(t)P[X ∈ dt]

P[X ∈ P̂−1(P̂ (x)) ∩ S]
≤

∫
t∈P̂−1(P̂ (x))∩S(P̂ (t)−

1
n0
)P[X ∈ dt]

P[X ∈ P̂−1(P̂ (x)) ∩ S]
= P̂ (x)− 1

n0
.

Then we have

CEp(S) ≥ CE1(S) ≥
1

n0
> 0

so CEp(S) > 0, which is a contradiction. Hence P̂ (x) is the conditional coverage.
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B Mathematical Developments for Theorem 1

This section proves Theorem 1: we show that both coverage error and conditional coverage error

are tightly bounded above by the expectation of a Kullback–Leibler divergence-type random vari-

able K1(x). This means that minimizing E[K1(X)] can recover the true conditional coverage and

effectively reduce the coverage error. The proof consists of several inequalities regarding coverage

errors and their relations. We first begin with the following connection between CEp and C̃Ep.

Theorem 4. For any PI and its associated P̂ , the Lp coverage error is always less than or equal

to the Lp conditional coverage error, i.e.,

CEp ≤ C̃Ep, ∀1 ≤ p ≤ +∞

Proof. We note that the function t 7→ |t|p is a convex function. We also note that σ(P̂ (X)) ⊂ σ(X)

where σ(Y ) represents the σ-field generated by a random variable Y .

C̃E
p

p =E
[∣∣∣A(X)− P̂ (X)

∣∣∣p]
=E

[
E|A(x)− P̂ (X)|p|P̂ (X)]

]
≥E

[∣∣∣E[A(x)− P̂ (X)|P̂ (X)]
∣∣∣p] by Jensen’s inequality

=E
[∣∣∣E[1Y ∈[L(X),U(X)]|P̂ (X)]− P̂ (X)

∣∣∣p] by the tower property

=CEp
p

Therefore we have

CEp ≤ C̃Ep, ∀1 ≤ p ≤ +∞.

Next we have the following bounds on Lp conditional coverage error:

Theorem 5. The Lp conditional coverage error is bounded above by a power function of the L2

conditional coverage error. Formally,

C̃Ep ≤ C̃E
αp

2 , ∀1 ≤ p ≤ +∞,

where αp = 1, ∀1 ≤ p ≤ 2 and αp =
2
p , ∀2 ≤ p ≤ +∞.

Proof. By Hölder’s inequality,

C̃Ep ≤ C̃E2, if 1 ≤ p ≤ 2.

Since

0 ≤ |A(x)− P̂ (x)| ≤ 1,
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then,

|A(x)− P̂ (x)|p ≤ |A(x)− P̂ (x)|2, ∀p ≥ 2

and thus

C̃E
p

p = E[|A(X)− P̂ (X)|p] ≤ E[|A(X)− P̂ (X)|2] ≤ C̃E
2

2, ∀p ≥ 2.

Next, recall that

K(x) = A(x) log

(
A(x)

P̂ (x)

)
+ (1−A(x)) log

(
1−A(x)

1− P̂ (x)

)
,

K0(x) = A(x) log(A(x)) + (1−A(x)) log(1−A(x)),

K1(x) = −A(x) log(P̂ (x))− (1−A(x)) log(1− P̂ (x)).

Theorem 6. The L2 conditional coverage error is bounded above by the expectation of K(x).

Formally,

C̃E
αp

2 ≤
(
1

2
E[K(X)]

)αp/2

,

where αp is defined in Theorem 5.

Proof. For any fixed x, consider two random variables with Bernoulli distributions:

W1 =

{
1 w.p. A(x),

0 w.p. 1−A(x).

W2 =

{
1 w.p. P̂ (x),

0 w.p. 1− P̂ (x).

Let Pi be the distribution ofWi. It follows from Pinsker’s inequality, e.g., Theorem 2.16 in (Massart

, 2007), that

∥P1 − P2∥2TV ≤ 1

2
K(P1, P2).

where TV denotes the total variation distance and K denotes the KL divergence. Since Pi is the

Bernoulli distribution, we can express it as

|A(x)− P (x)|2 ≤ 1

2
K(x)

Taking expectation, we obtain

E[|A(X)− P (X)|2] ≤ 1

2
E[K(X)].

Hence,

C̃E
αp

2 ≤
(
1

2
E[K(X)]

)αp/2

.
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Combining Theorem 4, 5 and 6, we immediately conclude that:

Theorem 7 (Restated Theorem 1).

CEp ≤ C̃Ep ≤ C̃E
αp

2 ≤
(
1

2
E[K(X)]

)αp/2

, ∀1 ≤ p ≤ +∞

where αp is defined in Theorem 5. Moreover, all inequalities are attainable, e.g., if P̂ (x) is the

conditional coverage A(x).

C Justification of Assumption 1 and Mathematical Developments

for Theorem 3

In this section, we analyze the rationality of Assumption 1 and build essential ingredients for proving

Theorem 2 and 3. The difficulty in analyzing Theorem 3 lies in the fact that the hypothesis classes

in Assumption 1 (which are constructed by the NN) are different from the hypothesis class used

in LCA. To overcome this difficulty, we use the theory of VC-subgraph classes to analyze the

connection between the VC dimension of the two hypothesis classes.

C.1 Review of the VC Dimension

For self-contained purpose, we first review the definition of the VC-subgraph class and VC dimen-

sion.

Definition 8. Consider an arbitrary collection {x1, · · · , xn} of points in a set X and a collection

C of subsets of X . We say that C shatters {x1, · · · , xn} if all of 2n possible subsets of {x1, · · · , xn}
can be written as A = C ∩ {x1, · · · , xn} for some C ∈ C. The VC dimension V (C) of the class C
is the smallest n for which no set of size n {x1, · · · , xn} is shattered by C. If C shatters sets of

arbitrarily large size, we set V (C) = ∞. We say that C is a VC-class if V (C) <∞.

In some literature, the VC dimension V (C) of the class C is alternatively defined as the largest

n for which there exists a set of size n {x1, · · · , xn} shattered by C, i.e., it is the value in definition

8 minus 1. We can more formally define the VC dimension by the growth function as follows:

Definition 9. Define the nth shatter coefficient (or growth function) of C as

ΠC(n) := max
x1,··· ,xn

|{A : A = C ∩ {x1, · · · , xn} for some C ∈ C}|

Then

V (C) := inf{n : ΠC(n) < 2n}.
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Definition 10. For a function f : X → R, the subset of X × R given by {(x, t) : t < f(x)} is

the (open) subgraph of f . A collection F of measurable real functions on the sample space X is a

VC-subgraph class or VC-class, if the collection of all subgraphs of functions in F forms a VC-class

of sets (as sets in X × R). Let V (F) denote the VC dimension of the set of subgraphs of F .

Lemma 4. In Definition 10, the open subgraph of f , {(x, t) : t < f(x)}, can be replaced by the

close subgraph {(x, t) : t ≤ f(x)}, the close supergraph {(x, t) : t ≥ f(x)} or the open supergraph

{(x, t) : t > f(x)}. All of them lead to the equivalent definition of the VC-class and the equal VC

dimension.

Proof. This result follows from Lemma 9.33 and Lemma 9.9(iv) in Kosorok (2007).

For indicator functions of sets, we have the following equivalence.

Lemma 5. For any class C of sets in a set X , the class FC of indicator functions of sets in C is a

VC-class if and only if C is a VC-class. Moreover, whenever at least one of C or FC is VC-class,

the respective VC dimensions are equal.

Proof. This is Lemma 9.8 in Kosorok (2007). Note that the sets of C are in X while the subgraphs

of functions of FC are in X × R.

C.2 Justifying Assumption 1

We first restate the assumption:

Assumption 3 (Restated Assumption 1). The four classes of functions ([L(x), U(x)], P̂ (x), 1 −
P̂ (x)) output by the neural network (NN) in Figure 1 have finite VC dimensions, say they are

bounded above by V0.

In Figure 1, the output four neurons of the NN are denoted as (L(x), U(x), P̂ (x), 1 − P̂ (x)).

We further let (ψ1(x), ψ2(x), ψ3(x), ψ4(x)) denote the pre-activated values of (L(x), U(x), P̂ (x), 1−
P̂ (x)). In other words,

L(x) = min(ψ1(x), ψ2(x)),

U(x) = max(ψ1(x), ψ2(x)),

P̂ (x) = softmax(ψ3(x)||ψ4(x)) = σ(ψ3(x)− ψ4(x)),

1− P̂ (x) = softmax(ψ4(x)||ψ3(x)) = σ(ψ4(x)− ψ3(x)),

where σ is the sigmoid function. Let the function classes

H1 = {L(x) : L is output by the the NN},
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H2 = {U(x) : U is output by the the NN},

G = {P̂ (x) : P̂ is output by the NN},

1− G = {1− P̂ (x) : P̂ is output by the NN}.

Assumption 1 holds for a wide range of NNs, in particular the one we adopt in the experiments

(where we use the ReLU-activated NN to construct ψi, i = 1, 2, 3, 4 ; see Section 5). Our first

result is to concretely show that the four NN outputs above, H1, H2, G and 1−G, under the ReLU
setting, all have finite VC dimensions and thus satisfy Assumption 1.

Theorem 8 (Restated Theorem 2). Suppose ψi, i = 1, 2, 3, 4 are the pre-activated output neurons

of the NN in Figure 1 using the ReLU activation function. Then Assumption 1 holds. Moreover,

suppose the NN has W parameters and U computation units (nodes). Then V0 = O(WU).

Proof. First, we look at L(x) and U(x). Note that the class of ψi (i = 1, 2) is constructed by a NN

with the ReLU activation function. Therefore by Theorem 8 in Bartlett et al. (2019) (see also 6

below),

V ({ψ1}) = O(WU) <∞, V ({ψ2}) = O(WU) <∞.

By Lemma 9.9 (i) in Kosorok (2007), we have

V (H1) = V ({min(ψ1, ψ2)}) ≤ V ({ψ1}) + V ({ψ2})− 1 = O(WU) <∞.

By Lemma 9.9 (ii) in Kosorok (2007), we have

V (H2) = V ({max(ψ1, ψ2)}) ≤ V ({ψ1}) + V ({ψ2})− 1 = O(WU) <∞.

Next, we look at P̂ (x) and 1 − P̂ (x). We add an additional neuron after the layer where ψ3, ψ4

stand. This neuron is defined as ψ5 = ψ3 − ψ4 which is a linear combination of ψ3 and ψ4. Note

that the class of ψ5 is constructed by a NN with the ReLU activation function and linear activation

function (by adding one unit and two parameters in the originial NN). Therefore by Theorem 8 in

Bartlett et al. (2019),

V ({ψ5}) = O(WU) <∞

By Lemma 9.9 (viii) in Kosorok (2007), we have

V (G) = V ({σ(ψ5)}) ≤ V ({ψ5}) = O(WU) <∞.

since σ is a monotone function. Again, by Lemma 9.9 (viii) in Kosorok (2007), we have

V (1− G) ≤ V (G) = O(WU) <∞.

since t 7→ 1− t is a monotone function.

30



We also list some results for other activations here. From these results, and using the same

argument as above, we see that Assumption 1 holds similarly for all these activations.

Lemma 6. Suppose the class of functions is constructed by a NN with W parameters and U units

with activation functions that are piecewise polynomials with at most p pieces and of degree at most

d. Then it has VC dimension O(WU log((d+ 1)p)).

Proof. This is Theorem 8 in Bartlett et al. (2019).

Note that the activation functions in Lemma 6 include in particular the ReLU activation and

linear activation.

Lemma 7. Suppose the class of functions is constructed by a NN with W parameters with binary

as well as linear activation function. Then it has VC dimension O(W 2).

Proof. This is Theorem 5 in Sontag (1998).

Lemma 8. Suppose the class of functions is constructed by a NN with W parameters and U units

with activation function that is the standard sigmoid function (except that the output unit being a

linear threshold unit). Then it has VC dimension O(W 2U2).

Proof. This is Theorem 8.13 in Anthony and Bartlett (1999).

C.3 Connections among Different Hypothesis Classes

To prove Theorem 3, we need to study several building blocks on the relations between different

hypothesis classes. Our first observation is:

Theorem 9. Suppose V (G) < +∞. Then all of the following classes have VC dimension ≤ V (G):

1− G := {1− P̂ (x) : P̂ is output by the NN}.

G′ := log(G) := {log(P̂ (x)) : P̂ is output by the NN}.

log(1− G) := {log(1− P̂ (x)) : P̂ is output by the NN}.

Proof. The result follows from Lemma 9.9 (viii) in Kosorok (2007) since all of the transformations

are monotone functions.

Our second observation is about

F = {f(x, y) = Iy∈[L(x),U(x)] : L,U are output by the NN}.

Note that the domain of functions in F is different from the domain of functions in Hi (i = 1, 2)

as it includes the outcome space. Below we derive a result that connects the VC dimension of Hi

with that of F .

31



Theorem 10. Suppose V (Hi) ≤ V0 (i = 1, 2). We have that

V (1−F) ≤ V (F) ≤ 10(V0 − 1) < +∞

where

1−F := {1− f(x, y) : f ∈ F}.

Proof. The first inequality follows from Lemma 9.9 (viii) in Kosorok (2007). We consider the

following two classes:

F1 := {IL(x)≤t : L ∈ H1, t ∈ R},

F2 := {IU(x)≥t : U ∈ H2, t ∈ R}.

Since the functions in F1 are all indicator functions, by Lemma 5,

V (F1) = V ({{(x, t) : L(x) ≤ t} : L ∈ H1, t ∈ R}).

Note that the latter is the VC dimension of the close supergraphs of all functions in H1. Then by

Definition 10 and Lemma 4, we have

V ({{(x, t) : L(x) ≤ t} : L ∈ H1, t ∈ R}) = V (H1)

Therefore we have

V (F1) = V (H1) ≤ V0

Similarly,

V (F2) = V (H2) ≤ V0

Note that we can write

Iy∈[L(x),U(x)] = IL(x)≤yIU(x)≥y

By the definition of growth functions,

ΠF (m) := max
(x1,y1),··· ,(xm,ym)

∣∣{(Iy1∈[L(x1),U(x1)], · · · , Iym∈[L(xm),U(xm)]) : L ∈ H1, U ∈ H2}
∣∣

≤ max
(x1,y1),··· ,(xm,ym)

∣∣{(IL(x1)≤y1 , · · · , IL(xm)≤ym) : L ∈ H1}
∣∣×

max
(x1,y1),··· ,(xm,ym)

∣∣{(IU(x1)≥y1 , · · · , IU(xm)≥ym) : U ∈ H2}
∣∣

=ΠF1(m)ΠF2(m)

≤
(

em

V0 − 1

)2(V0−1)

for all m ≥ V0 where the last inequality is due to the Sauer–Shelah lemma. Taking m = 10(V0−1),

we obtain (
em

V0 − 1

)2(V0−1)

= (10e)2(V0−1) ≤ 750V0−1 < 2m
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Combining the above inequality, we have

ΠF (m) < 2m.

This shows that V (F) ≤ m = 10(V0 − 1).

C.4 Proof of Theorem 3

This subsection proves Theorem 3. Recall that

F = {Iy∈[L(x),U(x)] : L,U are output by the NN},

G = {P̂ (x) : P̂ is output by the NN}.

G′ := log(G) := {log(P̂ (x)) : P̂ is output by the NN}.

LetN(ϵ,F , L2(Q)) denote the covering number, i.e., the minimal number of balls {g : ∥g−h∥L2(Q) <

ϵ} of radius ϵ needed to cover the set F . We need the following bounds:

Lemma 9. Suppose F is a class of functions f : X ×Y → [0, 1] with a finite VC dimension V (F).

For every 0 < ϵ < 1,

sup
Q

logN(ϵ,F , L2(Q)) ≤ K2

(
1

ϵ

) 1
e

where the constant K2 depends on V (F) only.

Proof. It follows from Theorem 2.6.7 in Van der Vaart and Wellner (1996) that there exists a

universal constant K such that

sup
Q
N(ϵ,F , L2(Q)) ≤ KV (F)(16e)V (F)

(
1

ϵ

)V (F)−1

for any 0 < ϵ < 1. Since (
1

ϵ

) 1
e

≥ max

(
log

(
1

ϵ

)
, 1

)
, ∀0 < ϵ < 1,

we have

sup
Q

logN(ϵ,F , L2(Q)) ≤ K3 + (V (F)− 1) log

(
1

ϵ

)
≤ K2

(
1

ϵ

) 1
e

where K3 := log(KV (F)(16e)V (F)) and K2 = K3 + V (F)− 1 only depending on V (F).

We remark that a similar result can also be obtained for the class 1−F by Theorem 10.
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Lemma 10. Suppose G is a class of functions P̂ : X → [0, 1] with a finite VC dimension V (G) and
| log(P̂ (x))| ≤M . Let G′ := {log(P̂ ) : P̂ ∈ G}. Then, for every 0 < ϵ < 1,

sup
Q

logN(ϵM,G′, L2(Q)) ≤ K2

(
1

ϵ

) 1
e

where the constant K2 depends on V (G) only.

Proof. First note that ϕ(t) := log(t) is a monotone function. Hence G′ := {log(P̂ ) : P̂ ∈ G} is a

VC-class with VC dimension ≤ V (G) by Lemma 9.9 (viii) in Kosorok (2007). The rest of the proof

is similar to 9.

We remark that a similar result can also be obtained for the class log(1− G) by Theorem 9.

Next we restate Assumption 2:

Assumption 4 (Restated Assumption 2). There exists a constantM < +∞ such that | log(P̂ (x))| ≤
M , | log(1− P̂ (x))| ≤M for all x and P̂ .

As discussed in Section 4, this is a natural assumption in practice because log(P̂ (x)) and

log(1 − P̂ (x)) are replaced by log(P̂ (x) + ϵ) and log(1 − P̂ (x) + ϵ) respectively to avoid explosion

when implementing the algorithm. In particular, in our experiments in Section 5, ϵ = 0.16 and thus

M = 14.

We are now ready to prove Theorem 3:

Theorem 11 (Restated Theorem 3). Suppose Assumptions 1 and 2 hold. The training data D =

{(xi, yi), i = 1, 2, · · · , n} where (xi, yi) are i.i.d. samples ∼ π. Recall that the (hard) coverage

estimator assessment loss is

LCA = − 1

n

n∑
i=1

(
f(xi, yi) log(P̂ (xi)) + (1− f(xi, yi)) log(1− P̂ (xi))

)
.

Then for any t > 0, we have

P

(
sup

f∈F ,P̂∈G
|LCA − E[K1(X)]| ≥ t

)
≤ C∗e−

nt2

16M2

where C∗ only depends on V0 in Assumption 1.

Proof. Note that E[f(xi, yi)|xi] = A(xi) for any fixed L and U . Taking expectation on LCA, we

have

E[LCA] = E [E[LCA|x1, x2, · · · , xn]]

= E

[
− 1

n

n∑
i=1

(
A(xi) log(P̂ (xi)) + (1−A(xi)) log(1− P̂ (xi))

)]
= E[K1(X)].

34



We consider the first part A(x) log(P̂ (x)). The second part can be done using the same argu-

ment. Note that by Theorem 9.15 in Kosorok (2007), we have

sup
Q

logN(ϵM,F · G′, L2(Q)) ≤ sup
Q

logN(ϵ/2,F , L2(Q)) + sup
Q

logN(ϵM/2,G′, L2(Q)).

Consider the class 1
2 +

1
2MF · G′ := {1

2 +
1

2M (f(x, y) log(P̂ (x))) : f ∈ F , log(P̂ ) ∈ G′} which consists

of functions taking values in [0, 1]. We have

sup
Q

logN(ϵ,
1

2
+

1

2M
F · G′, L2(Q))

= sup
Q

logN(2ϵM,F · G′, L2(Q))

≤ sup
Q

logN(ϵ,F , L2(Q)) + sup
Q

logN(ϵM,G′, L2(Q))

≤K2

(
1

ϵ

)1/e

where the last inequality follows from Lemma 9 and Lemma 10, and K2 only depends on V (F) and

V (G). (Recall that we have shown V (G′) ≤ V (G) in Lemma 10.) Moreover, by Theorems 9 and 10,

we can claim that K2 only depends on V0. This inequality shows that 1
2 + 1

2MF · G′ satisfies the

conditions in Theorem 2.14.10 in Van der Vaart and Wellner (1996) and thus for every δ > 0 and

t > 0,

P

(
sup

ϕ∈ 1
2
+ 1

2M
F·G′

∣∣∣∣∣ 1n
n∑

i=1

ϕ(xi, yi)− E[ϕ(x, y)]

∣∣∣∣∣ ≥ t

)
≤ CeD(

√
nt)U+δ

e−2nt2

where U =
1
e
(6− 1

e
)

2+ 1
e

< 1 and the constants C and D depend on K2 and δ only. Let δ = 1−U . Note

that

−2(
√
nt)2 +D(

√
nt) ≤ −(

√
nt)2 + (D/2)2.

Hence we have

P

(
sup

ϕ∈ 1
2
+ 1

2M
F·G′

∣∣∣∣∣ 1n
n∑

i=1

ϕ(xi, yi)− E[ϕ(x, y)]

∣∣∣∣∣ ≥ t

)
≤ C∗e−nt2

where C∗ only depends on K2, or, only depends on V0.

This shows that

P

(
sup

f∈F ,P̂∈G

∣∣∣∣∣ 1n
n∑

i=1

f(xi, yi) log(P̂ (xi))− E[A(x) log(P̂ (x))]

∣∣∣∣∣ ≥ t

)
≤ C∗e−

nt2

4M2 .

A similar result can be established for the second part since the hypothesis classes there have

been studied in Theorem 9 and 10:

P

(
sup

f∈F ,P̂∈G

∣∣∣∣∣ 1n
n∑

i=1

(1− f(xi, yi)) log(1− P̂ (xi))− E[(1−A(x)) log(1− P̂ (x))]

∣∣∣∣∣ ≥ t

)

≤C∗e−
nt2

4M2 .
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Combining the two parts and noting the following fact:

{sup |γ + β| ≥ t}

⊂{sup |γ|+ sup |β| ≥ t}

⊂{sup |γ| ≥ t

2
} ∪ {sup |β| ≥ t

2
},

we conclude that

P

(
sup

f∈F ,P̂∈G
|LCA − E[K1(x)]| ≥ t

)
≤ C∗e−

nt2

16M2

where C∗ only depends on V0.

Lastly, the following corollary explicitly connects our theoretical developments to the experi-

mental setup:

Corollary 1. Suppose the NN is designed as the one specified in the experiments (Section 5). The

training data D = {(xi, yi), i = 1, 2, · · · , n} where (xi, yi) are i.i.d. samples ∼ π. Then for any

t > 0, we have

P

(
sup

f∈F ,P̂∈G
|LCA − E[K1(X)]| ≥ t

)
≤ C∗e−

nt2

16M2 .

where C∗ only depends on V0 in Assumption 1.

Proof. We note that Assumptions 1 and 2 hold in this case by Theorem 2 and the observation after

Assumption 2. So Theorem 3 implies Corollary 1.

D Experimental Details and More Results

This section illustrates experimental details and more experimental results from our proposed

model.

D.1 Experimental Details

Table 3 gives a detailed description about the datasets we use. These open-access real-world

benchmark regression datasets are widely used for the evaluation of methods in regression tasks

(Hernández-Lobato and Adams , 2015; Gal and Ghahramani , 2016; Lakshminarayanan , 2017;

Rosenfeld et al. , 2018; Pearce et al. , 2018; Zhu et al. , 2019).

For synthetic datasets, 2000 i.i.d data are generated for each synthetic setting and randomly

split into 1000 training data and 1000 testing data. For benchmark datasets, we first do the data

normalization and then randomly split 80% data for training and 20% for testing. The choice of
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80%/20% split, compared to the 90%/10% split in Pearce et al. (2018), is motivated from the

need to increase the test size in order to get a meaningful ECE evaluation. The latter is due to

that evaluating ECE requires binning, where using a larger number of bins approximates more

closely CE, but also requires a larger test size to sustain enough statistical quality for the resulting

ECE estimate. This delicate tradeoff motivates us to increase the share of the test set in our split.

Following Pearce et al. (2018), our hyper-parameters are selected using the validation set from a

random split. Then, they are fixed during the evaluation on other random splits.

As specified in Section 2 (Equation (8)) and Appendix A.4 (Equation (16)), ECE is evaluated

based on dividing [0,1] into M sub-intervals. The larger M is, the more precise is in using ECE

to approximate CE, the latter being the ideal conditional coverage error estimator. On the other

hand, a larger test set size is needed to support the use of a larger M without deteriorating the

statistical quality of the ECE. This delicate tradeoff motivates us to increase the share of the test

set in our split.

For synthetic datasets, the hyperparameters and corresponding results in Figure 2 are:

(a) λ1 = 1.7, λ2 = 10−5, λ3 = 1500, CP = 0.95, IW = 0.40, ECE1 = 0.62%.

(b) λ1 = 1.9, λ2 = 10−5, λ3 = 1000, CP = 0.96, IW = 0.40, ECE1 = 0.12%.

(c) λ1 = 3.4, λ2 = 10−5, λ3 = 1000, CP = 0.95, IW = 0.50, ECE1 = 0.65%.

For benchmark datasets, the implementation details for baseline algorithms in Table 1 are:

(1) Nearest-neighbors kernel conditional density estimation (NNKCDE). The algorithm is based

on Section 2.1 in Dalmasso et al. (2020). We use the same Python code provided by Dalmasso et

al. (2020) with the default Gaussian kernel. Two tuning parameters, i.e., the number of nearest

neighbors k and the bandwidth h of the smoothing kernel, are chosen in a principled way by

minimizing the CDE loss on validation data, the same way as in Dalmasso et al. (2020).

(2) Quantile regression forest (QRF). The algorithm is based on Meinshausen (2006). We use

the RandomForestQuantileRegressor from the package scikit-garden in Python.

(3) Split conformal learning (SCL). The algorithm based on Algorithm 2 in Lei et al. (2018).

The regression algorithm inside SCL that we use is a neural network with mean square loss. The

neural network has the same structure of hidden layers as in Section 5.

D.2 Additional Experimental Results

Table 4 gives experimental results for more datasets in addition to Section 5.3.
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Dataset N d Open-access Link

Boston: Boston Housing 506 13 kaggle.com/c/boston-housing

Concrete: Concrete Strength 1030 8 kaggle.com/aakashphadtare/concrete-data

Energy: Energy Efficiency 768 8 kaggle.com/elikplim/eergy-efficiency-dataset

Kin8nm 8192 8 openml.org/d/189

Plant: Combined Cycle Power Plant 9568 4 kaggle.com/gova26/airpressure

Protein: Protein Structure 45730 9 networkrepository.com/CASP.php

Wine: Red Wine Quality 1599 11 kaggle.com/uciml/red-wine-quality-cortez-et-al-2009

Yacht: Yacht Hydrodynamics 308 6 archive.ics.uci.edu/ml/datasets/yacht+hydrodynamics

Table 3: Full names and details of benchmarking regression datasets. N is the number of samples

in the dataset and d is the dimension of the feature vector.

1-st experiment 2-nd experiment 3-rd experiment

Dataset λ3 λ1 CP IW ECE1 λ1 CP IW ECE1 λ1 CP IW ECE1

Boston 1800 3.5 0.87 0.72 1.25% 4.5 0.89 0.85 0.96% 6.0 0.95 1.04 1.38%

Concrete 1000 3.0 0.87 0.88 1.03% 5.0 0.93 1.07 1.03% 6.5 0.95 1.13 0.24%

Kin8nm 300 2.1 0.85 0.77 1.59% 2.9 0.91 0.89 0.50% 3.6 0.95 1.04 1.32%

Plant 700 1.6 0.85 0.63 0.86% 2.4 0.91 0.75 1.15% 3.3 0.95 0.85 0.38%

Protein 300 5.1 0.86 1.70 0.71% 6.3 0.91 1.95 0.66% 8.3 0.95 2.26 0.41%

Wine 1100 9.0 0.85 1.59 0.98% 15 0.91 2.14 1.28% 19 0.95 2.59 0.42%

Yacht 500 1.4 0.94 0.13 0.13% 1.5 0.96 0.14 1.51% 1.6 0.98 0.16 0.80%

Synthetic1 1500 1.0 0.89 0.34 0.73% 1.3 0.93 0.37 0.55% 1.7 0.95 0.40 0.62%

Synthetic2 1000 1.1 0.89 0.31 1.01% 1.4 0.92 0.34 1.27% 1.9 0.96 0.40 0.12%

Synthetic3 1000 1.3 0.87 0.34 0.79% 2.4 0.91 0.42 0.82% 3.4 0.95 0.50 0.65%

Table 4: Evaluation metrics of our CaNet on benchmark datasets and synthetic examples with

different coverage probabilities.

38


	Introduction
	Evaluating Conditional Coverage for High-Quality PIs
	Neural Network for Conditional Coverage
	Coverage Assessment Module
	Loss Function Design and Tuning Procedure
	Deep Ensembles

	Theoretical Analysis
	Experiments
	Conditional Coverage on Synthetic Examples
	Performance of PIs on Benchmark Datasets
	Performance of Coverage Estimator on Benchmark Datasets

	Related Work
	Prediction Interval Estimation
	Uncertainty Measurement in Deep Learning
	Simulation Metamodeling

	Concluding Remarks
	Further Details on Coverage Estimator and Coverage Error
	Coverage Probability Types of PIs
	The Terminology ``Perfect-Calibrated"
	Details on Coverage Estimator
	Details on Coverage Error

	Mathematical Developments for Theorem 1
	Justification of Assumption 1 and Mathematical Developments for Theorem 3
	Review of the VC Dimension
	Justifying Assumption 1
	Connections among Different Hypothesis Classes
	Proof of Theorem 3

	Experimental Details and More Results
	Experimental Details
	Additional Experimental Results


