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Abstract

Deep learning has been recently studied to generate high-quality prediction intervals (PIs)
for uncertainty quantification in regression tasks, including recent applications in simulation
metamodeling. The high-quality criterion requires PIs to be as narrow as possible, whilst main-
taining a pre-specified level of data (marginal) coverage. However, most existing works for
high-quality PIs lack accurate information on conditional coverage, which may cause unreliable
predictions if it is significantly smaller than the marginal coverage. To address this problem,
we propose an end-to-end framework which could output high-quality PIs and simultaneously
provide their conditional coverage estimation. In doing so, we design a new loss function that
is both easy-to-implement and theoretically justified via an exponential concentration bound.
Our evaluation on real-world benchmark datasets and synthetic examples shows that our ap-
proach not only achieves competitive results on high-quality PIs in terms of average PI width,
but also accurately estimates conditional coverage information that is useful in assessing model

uncertainty.
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1 Introduction

Prediction interval (PI) is poised to play an in-
creasingly prominent role in uncertainty quan-

tification for regression tasks ( ,

Y 9 9 )

7 )-

been used in simulation metamodeling

(2021,

used stochastic kriging and Gaussian process

Recently, it has also
) in the spirit of the widely
methodologies ( );

(2000); (2009). A

high-quality PI should be as narrow as possible,

whilst maintaining a pre-specified level of data
coverage or marginal coverage ( ,
). Compared with PIs ob-

tained based on coverage-only consideration, the

’ I

“high-quality” criterion is beneficial in balancing
between marginal coverage probability and in-
terval width. However, the conditional coverage
given a feature, which is critical for making re-
liable context-based decisions, is unassessed and
missing in most existing works on high-quality
Pls.

model misspecification, the marginal coverage

In the presence of heteroskedasticity and

can be very different from the conditional cov-
erage at a given point, which affects the down-

stream decision-making task that relies on the



uncertainty information provided by the PI. Our
main goal is to meaningfully incorporate and as-

sess conditional coverages in high-quality Pls.

Conditional coverage estimation is challeng-
ing for two reasons. First is that the natu-
ral evaluation metric of conditional coverage er-
ror, an LP distance between the estimated and
ground-truth conditional coverages, is difficult to
compute as it requires obtaining the conditional
probability given feature x, which is arguably as
challenging as the regression problem itself. Our
first goal in this paper is to address this issue by
developing a new metric called calibration-based
conditional coverage error for conditional cover-
age estimation measurement. Our approach is
inspired from the calibration notion in classifica-
tion ( , ). The basic idea is to relax
conditional coverage at any given point to being
averaged over all points that bear the same esti-
mated value. An estimator satisfying the relaxed
property is regarded as well-calibrated. In re-
gression, calibration-based conditional coverage
error provides a middle ground between the en-
forcement of marginal coverage (lacking any con-
ditional information) and conditional coverage
(computationally intractable). Compared with
conditional coverage, this middle-ground metric
can be viewed as a “dimension reduction” of the
conditioning variable from the original sample
space to the space [0,1], so that we can easily
discretize to compute the empirical metric val-

ues.

The second challenge is the discontinuity in
the above metrics that hinders efficient training
of PIs that are both high-quality and possess re-
liable conditional coverage information. To ad-

dress this, we design a new loss function based on

a combination of the high-quality criterion and a
coverage assessment loss. The latter can be flex-
ibly added as a separate module to any neural
network (NN) used to train PIs. It is based on
an empirical version of a tight upper bound on
the coverage error in terms of a Kullback—Leibler
(KL) divergence, which can be readily employed
for running gradient descent. We theoretically
show how training with our proposed loss func-
tion attains this upper-bounding value via a con-
centration bound. We also demonstrate the em-
pirical performance of our approach in terms of
PI quality and conditional coverage assessment

compared with benchmark methods.

We summarize our contributions as follows:

1. We identify the conditional coverage es-
timation problem as a new challenge for
high-quality PIs and introduce a new eval-

uation metric for coverage estimation.

2. We propose an end-to-end algorithm that
can simultaneously construct high-quality
PIs and generate conditional coverage es-
timates. In addition, we provide theoret-
ical justifications on the effectiveness of
our algorithm by developing concentration
bounds relating the coverage assessment

loss and conditional coverage error.

3. By evaluating on benchmark datasets and
synthetic examples, we empirically demon-
strate that our approach achieves high per-
formance on conditional coverage estima-
tion without penalizing the performance on

high-quality PI generation.



2 Evaluating Conditional Cov-
erage for High-Quality Pls

Let X € X and Y € Y C R be random variables
denoting the input feature and label, where the
pair (X,Y) follows an (unknown) ground-truth
joint distribution 7(X,Y). Let 7(Y|X) be the
conditional distribution of Y given X. Let 7(X)
be the marginal distribution of X. We are given
the training data D := {(x;,y;), i = 1,2,--- ,n}
where (z;,v;) are i.i.d. realizations of random
variables (X,Y"). Here, (x;,y;) could denote su-
pervised real data. It can also denote, in the
simulation context, a simulation model output
y; given the design point z;.

A PI refers to an interval [L(z), U(z)] where
L, U are two functions mapping from X to )
trained on the data D. [L(x),U(x)] is called
a PI at prediction level 1 —a (0 < a < 1)
if its marginal coverage is not less than 1 — «,
ie, PIY € [L(X),U(X)]|L,U] > 1 — o where
[P is with respect to a new test point (X,Y) ~
m(X,Y).

We say that [L(x),U(z)] is of high-quality if
its marginal coverage attains a pre-specified tar-
get prediction level and has a short width on
average. In particular, a best-quality PI at pre-
diction level 1 — « is an optimal solution to the
following constrained optimization problem:

min E[U(X) — L(X)],
subject to P[Y € [L(X),U(X)]|L,U] >1— a.
1)

The high-quality criterion has been widely

adopted in previous work ( ,
); (2017);
(2018); (2018);

(2019); (2021).

terion alone may fail to carry important model

However, this cri-

uncertainty information at specific test points.
To illustrate this statement, consider a simple
example where x ~ Uniform[0,1], y = 0 for
x € [0,0.95] and y|lx ~ Uniform[0,1] for = €
(0.95,1]. Then according to Equation 1, a best-
quality 95% PI is precisely L(z) = U(x) = 0 for
all z € [0,1]. This PI has nonconstant “condi-
tional” coverage if we condition at different input
points (1 for z € [0,0.95] and 0 for x € (0.95, 1]),
and can deviate significantly from the overall
marginal coverage 95%. Therefore, it is some-
times important to obtain conditional coverage
information, especially when the conditional cov-
erage at some input points differs a lot from the
marginal coverage. This simple example high-
lights the need to obtain conditional coverage

information.

To mitigate the drawback of the high-quality

criterion, we define:

Definition 1 (Conditional Coverage and Its Es-
timator). The (ground-truth) conditional cover-
age associated with a PI [L(x),U(x)] is defined
as A(xz) = PlY € [L(X),UX)]|L,U, X = z]
for any x € X, where P is taken with respect to
m(Y|X = x). For a (conditional) coverage es-
timator P, which is a measurable function from
X to [0,1], we define its LP conditional coverage
error (CA’EP) as

CE, = HA(X) - P(X)‘

Lp(X)
where the LP-norm is taken with respect to the

randomness of X (1 <p < +00).

Note that evaluating CA’E’p relies on approxi-

mating the conditional coverage A(x), which can



be as challenging as the original prediction prob-
lem. To address this, we leverage the similarity
of estimating A(z) to generating prediction prob-
abilities in binary classification, which motivates
us to borrow the notion of calibration in classi-
fication. This idea is based on a relaxed error
criterion by looking at the conditional coverage
among all points that bear the same coverage
estimator value, instead of conditioning at any
given point. The resulting error metric then only
relies on probabilities conditioned on variables
in a much lower-dimensional space [0, 1] than X.
To explain concretely, we introduce a “perfect-

calibrated coverage estimator” as:

Definition 2 (Perfect Calibration). A coverage
estimator P is called a perfect-calibrated cover-
age estimator associated with [L(x),U(x)] if it

satisfies

N

P(x) = P[Y € [L(X),U(X)]|L, U, P(X) = P(x)],

(2)
for a.e. P(z) € [0,1] where a.e. is with respect to
the probability measure on [0,1] induced by the

random variable P(X).

Equation 2 means that the “average” cov-
erage of the PI restricted on the subset {z €
X : P(z) = p} should be precisely p (where the
“average” coverage is the average of all the con-
ditional coverage A(z) on the subset {z € X :
P(x) = p}, with respect to the distribution m(X)
conditional on the subset {z € X : P(x) = p}).

Corresponding to Definition 2, we define:

Definition 3 (Calibration-based Error). An LP
(1 < p < +00) calibration-based conditional cov-

erage error, or coverage error for short (CEp),

of a coverage estimator P is:
CE, =
[Py € LX), UKL, U, P(X)] - P(X)|

LP(X)
(3)
where the LP-norm is taken with respect to the

randomness of P(X).

In the above definition the conditional proba-
bility P[Y € [L(X),U(X)]|L, U, P(X)] is a mea-
surable function of random variable P(X), say
v(P(X)). By a change of variable,

P

CED: = HV(p(X)) - P(X)‘ Lp(X)

(4)

1
= [ o - tpir0 6

where FP(X) is a probability distribution of
P(X) on [0,1]. Here, CE, only requires esti-
mating 7(t) for ¢ € [0,1], which can be done
easily by discretizing [0, 1] for empirical calcula-
tion. To do this, we first construct a discrete
version of (2) and then introduce an empirical
counterpart of CE, (3), which we refer to as L?
empirical calibration-based conditional coverage
error FCFE,. The ideas behind these are natural
extensions of the classification case ( ,
) into PlIs.
We consider the following partition A of

[0,1]. Let [0,1] be divided into M intervals
I, = (am—1,am] (m = 1,--- M) where 0 =
ap < ap < - < ay =1 Let By, = {i =
1,---,n : P(xl) € Iy}, ie., the set (bin) of

indices 7 of samples whose coverage estimator
P(z;) falls into the interval I,,,. Note that cover-
age estimations that are close to each other will
fall into the same interval. The coverage proba-

bility (i.e., the proportion of successful coverage)



in B,, is defined as:

1
OP(Bn) = (g1 2 Luelt@viy: (6)
™ ieBy,
The average coverage estimation in By, is defined

as:

where P (x;) is the coverage estimator for sample
z;. CP(By,) and AC(By,) approximate the left
and right hand sides of (2) respectively in the
interval I,,. A perfect-calibrated coverage esti-
mator should satisfty CP(B,,) = AC(B,,) for all
m € {1,---,M}. The diagram of CP(B,,) ver-
sus AC(B,,) for allm € {1,--- , M} is called the
reliability diagram in some literature (
: )-

Based on the partition A, we can introduce
an empirical version of CE,, (which we refer to
as ECE,) as:

Definition 4. The LP empirical calibration-
based conditional coverage error (ECE,) of a

coverage estimator P is defined as

ECE, = |[(CP(Bui)) — AC(Bm)))i=1.2, |y -

(8)
where the IP is the standard p-norm in R™ and

B (iy 1s the bin containing sample i.

Equivalently,

§ oo
ECE, = (Y " |CP(By) — AC(Bp)l"

m=1

for 1 < p < 400, and

ECEw = max |CP(Bp) = AC(By)|.

34"y

A calibration-based error C'E, provides a

middle ground between the enforcement of

marginal coverage and conditional coverage. The
ground-truth conditional coverage is perfectly
calibrated, but not vice versa. However, if we
enforce the perfect calibration criterion for a
coverage estimator to hold when restricted to
any positive-probability measurable subset in X,
then the choice of the estimator will reduce
uniquely to the conditional coverage. More for-

mally,

Definition 5. A coverage estimator P s called
a perfect-calibrated coverage estimator on a mea-
surable subset S C X with P(S) > 0 associated
with [L(x),U(x)] if it satisfies

P(z) =
PlY € [L(X),U(X)]|L, U, P(X) = P(z),X € 8]
(9)

for a.e. P(x) € [0,1] where a.e. is with respect to
the probability measure on [0,1] induced by the
random variable P(X|s). Note that the condi-
tional probability space is standard: (S,Fs :=
{ANS: Ae F},Ps(ANS) :=P(A]S)).

Lemma 1. (a) A coverage estimator is the con-
ditional coverage if and only if it is a perfect-
calibrated coverage estimator on any positive-
probability measurable subset S of X.

(b) Suppose Pisa perfect-calibrated coverage es-
timator on two disjoint positive-probability mea-
Then P is a perfect-

calibrated coverage estimator on Sy U Ss.

surable subsets S1, Ss.

More details can be found in Appendix A. In
the sense of Lemma 1(a), CE, is an error metric
that is a natural relaxation of C/'\Ep, and although
less precise, C'E), is computationally much more
tractable than CA*EP.
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Figure 1: The framework of our proposed coverage assessment network (CaNet).

We will use EC'E; as the primary evaluation
metric to measure the quality of a coverage esti-
mator. A high ECFE; value of a coverage estima-
tor indicates an unreliable coverage estimation
while a small EC FE; value indicates that the cov-
erage estimator is close to the perfect-calibrated
property. Ideally, an effective algorithm should
output a coverage estimator with a small FCE;

value.

3 Neural Network for Condi-

tional Coverage

We propose a novel end-to-end algorithm, named
coverage assessment network (CaNet), to simul-
taneously generate a coverage estimator along
with the high-quality PI. As illustrated in Fig-
ure 1, our CaNet takes any input data = as
its input layer (the leftmost layer in Figure
1), feeds = in the forward direction through
the network, and obtains four output values
(Y1(x), 2(x),13(x),4(x)) in the output layer.
Then these output values are used in two major
modules in our CaNet: (1) predictor module

and (2) coverage assessment module (Ca-

Module). The PI predictor module sorts the two
outputs (¢1(z),12(x)) to provide the upper and
lower bound of the estimated Pls. Meanwhile,
the Ca-Module is added to the output layer to ac-
cess the conditional coverage information of Pls
from the predictor module. Our model is jointly
optimized by three loss functions: coverage as-
sessment loss L¢ 4, intervals width loss Ly, and
coverage probability loss Lop. Benefiting from
these powerful modules, the CaNet can generate
and validate the coverage estimator at the same
time without any requirement for further post-
processing steps. In addition, we propose a novel
deep ensemble technique, suitably designed for
our setting, that can improve the performance
of both the predictor module and the coverage

assessment module.

3.1 Coverage Assessment Module

Our Ca-Module consists of two neurons

(Y3(z),¥4(x)) fully connected to the last hid-
den layer to estimate the conditional coverage.
After letting (i3(z),94(x)) pass through the
softmax activation function, it outputs a two-

A

point probability distribution (P(z),1 — P(z))



where P(z) is viewed as the coverage estimator
of the PI from the predictor module. Our Ca-
Module can be easily integrated into the output
layer of deep neural networks to estimate their

conditional coverage.

3.2 Loss Function Design and Tuning

Procedure

Our loss function is a sum of the predictor loss
and the coverage loss. The predictor loss aims
to narrow the prediction intervals as much as
possible, while maintaining a specified marginal
coverage of data. Inspired by

(2010, 2011); (2018);

( ), our predictor loss is formed by the
sum of interval width (IW) loss Ly and cover-
age probability (CP) loss Lop:

1
Lw =~ > (U(zi) - L(z)),

=1

(10)

n

ch:;;l}i, CP::LZ;/@,

(11)

where k; indicates whether each data point has
been captured by the Pls: k; = 1 if L(x;) <
yi < U(z;) and k; = 0 otherwise. k

k?l' is a
soft version of k;, which is defined as: k; :=

o(A3(U(x;)—vi))-o(As3(yi—L(z;))), where A3 > 0
is a tunable parameter and o(t) := # is the

sigmoid function. Therefore, Lop is a soft ver-
sion of C'P that can be used for gradient de-
scent. Associated with the Ca-Module, we intro-
duce a coverage assessment loss Lo 4 to estimate

the conditional coverage:
Loa=— 2 Zn: (ki tog(P()
CA = n v i 108 i

4 (1— k) log(1 — P(:ci))).

We will show in Section 4 that the expectation
of coverage assessment loss Lo 4 provides an up-
per bound for both the conditional coverage er-
ror (Definition 1) and calibration-based condi-
tional coverage error (Definition 3). Hence, min-
imizing Lcoa contributes to the recovery of the
conditional coverage. In order to run gradient-
based methods, we replace the discrete indicator
(ki,1—k;) in Lo a with its soft version (/;z, 1—l~ci):

n

I—/C’A = — %Z (];ZZ log(p(a:i))

(1 - k) log(1 — P@,»))).

Our total loss function for the CaNet is defined

as:
Total Loss = Lyw + A1(1 — Lop) + XoLcoa (12)

where A1 > 0, Ay > 0 are tunable parameters.
We propose an easy-to-implement yet effective
tuning procedure, Algorithm 1, to pick up these

parameters.

3.3 Deep Ensembles

Following previous research ( , ;

) ) ) )

, ; ; ), we ap-
ply the deep ensemble technique to provide more
robust and better results. During the training
period, with the same hyperparameters \;,i =
1,2,3, m networks are trained with different ini-
tializations. The prediction results from i-th net-

N

work are denoted as: ([L;(x),U;(x)], Pi(x),1 —



Algorithm 1 Tuning algorithm

Goal: Tune hyperparameters A1, Ao, and As;

Input: Prediction level 1 — o, training dataset D, validation dataset D’;

Procedure: Let the coverage probability C'Pp and the average coverage estimation ACps on D’

be

C D = ’D,‘ Z yLE[L(% (xz)]’

€D’

ACp = |D,| > P(x;)

€D’

where ([L(z),U(z)], P(x)) are prediction results from the deep ensemble.
(1) Initialize A\; (i = 1,2,3) so that C'Pps is nontrivial, i.e., not (almost) 0 or 1.

(2) While CPpr is nontrivial: tune Ay and A3 so that |C'Pp

—ACp/| <€ (eg., e=1%.)

(3) Otherwise tune A\; such that C'Pp is nontrivial. Do step 2 again until we find Ao and As.
(4) Tune Aj such that CPp > 1 — a where A2 and A3 are fixed from (3).

Output: A, A2, and As3.

P;(z)). Finally, the output from CaNet is:

Lower bound L = " 1L,

Upper bound U = " %U

Coverage estimator P o= > %P
(13)

4 Theoretical Analysis

In this section, we provide theoretical insights
about the coverage assessment loss Lo 4 in our
approach. We show that minimizing Lo 4 is
equivalent to minimizing a tight upper bound of
the conditional coverage error with high proba-
bility and thus contributes to reducing the con-
ditional coverage error of a coverage estimator.
This theoretical analysis consists of two steps.
First, we show that both C'E, and C/’\Ep are
bounded above by the expectation of a Kull-
back—Leibler divergence-type risk Ki(X).
ond, we establish the tail bound of the general-

Sec-

ization error E[K;(X)] and its empirical coun-

We will show

that the generalization bound holds uniformly

terpart which is exactly L¢a.

for any tuple of the joint output functions
(L(z),U(z), P(z),1 — P(z)) generated by our
CaNet. Because multiple hypothesis classes be-
yond (L(z),U(z), P(z),1 — P(z)) are involved
in Lo g, more effort is required to build the con-
nection among them to derive the generalization

bound.

Theorem 1. Let A(z) = P}Y ¢
[L(X),UX)]|L,U, X = x| be the condi-
tional coverage in Definition 1. Let K(x) :=

Az )log<AEI§)+(1—A( ))1og(1 Agf’fg) Then

1

. oy /2
CE, < CE, < <2E[K(X)]) V1< p < 400

V2<p<

+00. Moreover, the inequality is attainable if,

where oy = 1,V1 < p <2 and ap = %,

e.g., P(x) equals the conditional coverage A(x).

From Theorem 1, we see that minimizing

E[K (x)] is equivalent to minimizing a tight upper



bound for the coverage error. For every z, K(x)
is the Kullback—Leibler divergence between the
distributions represented by (P(z),1—P(z)) and
(A(z),1— A(x)). K(z) = Ko(x) + K1(z), where
Ko(z) = A(x)log(A(x)) + (1 — A(x))log(1 —
A(z)) and Ki(z) = —A(z)log(P(z)) — (1 —
A(z))log(1—P(x)). Minimizing E[K (X)] over P
is equivalent to minimizing E[K;(X)]. The type
of results in Theorem 1 that bounds an L? condi-
tional coverage error via a Kullback-Leibler-type
error is new as far as we know. Next, to show
Lea approximates E[K7(X)], we need the fol-

lowing assumptions:

Assumption 1. The four classes of functions
([L(z), U(z)], P(z),1— P(z)) output by the neu-
ral network (NN) in Figure 1 have finite VC di-

mensions, say they are bounded above by Vj.

Assumption 1 holds for a wide range of NNs
(e.g., Theorem 8.14 in
( ), Theorem 7 in ( ). In
particular, it holds for the one we adopt in the
experiments (where we use the ReLU-activated
NN to construct v;, i = 1,2, 3, 4; see Section 5):

Theorem 2. Suppose ;1 = 1,2,3,4 are the
pre-activated output neurons of the NN in Figure
1 using the ReLU activation function. Then As-
sumption 1 holds. Moreover, suppose the NN has
W parameters and U computation units (nodes).

Then Vo = O(WU).

Assumption 2. There exists a constant M <
+o00 such that |log(P(z))| < M, |log(l —
P(z))| < M for all x and P.

This is a natural assumption in practice be-

cause log(P(x)) and log(1 — P(x)) are replaced

by log(P(z) + €) and log(1 — P(x) + €) respec-
tively to avoid explosion when implementing the

algorithm. In particular, in our experiments in
Section 5, € = 0.1% and thus M = 14. Let

F={f(z,y) = Ljclr(x),U(a) :
L,U are output by the NN},

G = {P(z) : P is output by the NN}.

Theorem 3. Suppose Assumptions 1 and 2

hold. The training data D = {(z;,y;), © =
1,2,---,n} where (x;,y;) are i.i.d. samples
~ 7. Recall that the (hard) coverage esti-

mator assessment loss is Loa =

1
n Z?:l

(G ) log(Pw:)) + (1 = f(zi, ) log(1 = Pla)

Then for any t > 0, we have

ni2
P < sup |Loa — E[K1(X)]| > t) < C*e_wztw?,
fEF,Peg

where C* only depends on Vy in Assumption 1.

Theorem 3 shows that the coverage assess-
ment loss approximates E[K(z)] well with an
exponential tail bound. The difficulty in analyz-
ing Theorem 3 lies in the fact that the hypothesis
classes in Assumption 1 (which are constructed
by the NN) are different from the hypothesis
class used in Lgyg. To overcome this difficulty,
we use the theory of VC-subgraph classes to con-
nect the VC dimension among multiple hypoth-
esis classes, including the class of v;, the four
classes of output functions, and F, logG. Then
we establish the covering number bound for the
class F and log@, and finally prove Theorem
3. To conclude, minimizing E[K;(X)] over P is
equivalent to minimizing E[K (X)], which in turn
is minimizing a tight upper bound for the cov-

erage assessment loss. Our coverage assessment

).



loss empirically approximates E[K7(X)] well, so
that its minimization can ultimately help to re-

duce the conditional coverage error.

5 Experiments

Experimental Setup. We empirically verify
the effectiveness of our proposed CaNet on both
synthetic examples and benchmark regression
datasets. These datasets have been widely used

for the evaluation of methods in regression tasks

( : ;

) ) ) )

).

experimental procedure in

In addition, we adopt the same

(2018)

for data normalization and dataset splitting. To

9

avoid overfitting, we apply a simple network ar-
chitecture with only 2 hidden layers and each
For each hidden

layer, the ReLU activation function is applied to

hidden layer has 64 neurons.

capture the non-linear features. We empirically
set the ensemble number m to 5, as the small-
est number leading to a stable prediction results.
Please refer to Appendix D for implementation

details, including those for baseline algorithms.

Evaluation Metrics. To evaluate the con-
ditional coverage estimation of our CaNet, we ex-
amine the quality of our Ca-Module measured by
the empirical coverage error EC'E; over a parti-
tion A. A is constructed by equally dividing the
width of [0,1] into M sub-intervals. The value
of M depends on the size of the dataset, which
is determined by the following strategy: M =
min{|the number of data in validation/50]  +
1,20}. In addition, we also report the ITW and
CP, where IW = 15 (U(z;) — L(z;)) (Equa-

10

tion 10) and CP = L 3% | k;, (Equation 11) to
show the effectiveness of our predictor module
under the high-quality criteria. Thanks to the
deep ensemble technique (Section 3.3), our ex-
perimental results are robust and stable among
multiple experimental repetitions with a stan-
dard deviation typically less than 2%. Therefore,
we only report the mean value.

5.1

Conditional Coverage on Syn-

thetic Examples

In this section, we conduct a series of experi-
ments on synthetic examples to directly com-
pare our prediction results with the ground-truth
conditional coverage. In these examples, the
conditional coverage can be analytically calcu-
lated under the known data distribution. Fig-
ure 2 compares the conditional coverage with
our predicted coverage under the following set-
tings: = ~ Uniform[—2, 2] and y|z is drawn from
fi(z) = Lsin(z) + &i(z), € [~2,2] where
e1(x) =0.1 x N(0,1),
go(x) =0.1|z| x N(0,1),
63($) = 0.1|:L“ X t4.

N(0,1) is the standard Gaussian variable and t4
is the standard ¢ random variable with 4 degrees

of freedom. Then, the conditional coverage in

Definition 1 can be analytically calculated as:
B[Y € [L(X), UL U, X = a]

1 1
=F;(U(x) — 3 sin(z)) — F;(L(x) — 3 sin(x))
where Fj is the cumulative distribution function
of N(0,0.1%) for i = 1, N(0,(0.1z)?) for i = 2,
and 0.1|z| x t4 for i = 3. As shown in Figure 2

(b,c), the ground-truth conditional coverages of

high-quality Pls diverge among different points,



and they deviate from the marginal coverage.
Thus, having access to the marginal coverage
for the whole dataset is not sufficient for deci-
sion making, which highlights the need for con-
ditional coverage. In addition, the conditional
coverage estimator from our model is highly con-
sistent with the conditional coverage on all of the
synthetic examples in Figure 2. These results
confirm that our CaNet can accurately estimate

the conditional coverage on noisy datasets.

5.2 Performance of PIs on Benchmark

Datasets

In this section, we compare the performance
of PlIs generated by the predictor module of
our CaNet on real-world benchmark datasets
with following baseline algorithms: (1) nearest-
neighbors kernel conditional density estimation
(NNKCDE) ( , ), (2)
quantile regression forest (QRF) ( ,
), (3) split conformal learning (SCL) (

, ) and (4) the quality-driven PI method
(QD-Ens) ( , ). We quote the
results from ( ) as a compar-
ison since we share the same experiment setup.
Table 1 reports the results of CP, IW and ECE;
for generating PIs at 95% prediction level on
benchmark datasets. We employed the criteria in

( ) to evaluate the performance
of Pls: the best IW is achieved by the model
with the smallest /W value among those with
CP > 95%. As can be seen, our model achieves
competitive results on PI generation under the
high-quality criteria. With special consideration
on interval width quality, it obtains the small-

est average interval width (/T) while maintain-
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ing high coverage probability (CP > 95%) on
all datasets. These results show that adding an
additional module CA-Module does not penalize

the performance of PIs generated by our CaNet.

5.3 Performance of Coverage Estima-

tor on Benchmark Datasets

Coverage for 95% PIs. We use ECE; to
evaluate the coverage estimation performance
on real-world datasets as the conditional cov-
As shown in Table 1, the

ECEFE; on all experiments are generally around or

erage is unknown.

less than 1%, with better performance on larger
datasets. The coverage estimators produced by
CaNet have small EC'E; values, which are very
close to the perfect-calibrated coverage estima-
tors (Definition 2). Compared with FCE; val-
ues obtained from the state-of-the-art algorithms
in classification tasks ( , :

, ), the EC'E; values from CaNet are simi-
lar and sometimes less than their post-calibrated
ECE; results (usually around 1% to 3%), even
though the size of most regression datasets are
These

results further demonstrate that our CaNet can

smaller than the classification datasets.

accurately estimate the coverage information of
95% high-quality PIs on real-world regression
tasks.

Coverage for PlIs at Different Predic-
tion Levels. We conduct multiple experiments
on different PI prediction levels to show the ro-
bustness of our CaNet. By only modifying the
parameter A; in Equation 12, our Ca-Module
could get access to different levels of coverage
probability. Table 2 reports the C'P, IW and
ECE; values from the CaNet at different PI pre-
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Figure 2: Prediction and conditional coverage of 95% PIs on
0.95, IW = 0.40, ECE; = 0.62%. (b) CP =
CP = 095, IW = 0.50, ECE, = 0.65%.

highly consistent with the conditional coverage under different noise settings. The red curve rep-

synthetic examples. (a) CP =
0.96, IW = 0.40, ECE, = 0.12%. (c)

The predicted coverage estimation from CaNet is

resents the validation data. The dark blue curve represents the lower bound of the PI generated
by our CaNet. The green curve represents the upper bound of the PI generated by our CaNet.
The black curve represents the conditional coverage estimator generated by our CaNet. The light
blue curve represents the ground-truth conditional coverage. In all figures, the conditional coverage
estimator from our model (the black curve) is highly consistent with the ground-truth conditional

coverage (the light blue curve). In Figure 2 (b,c), the ground-truth conditional coverages (the light

blue curve) diverge among different points, highlighting the need for conditional coverage.

diction levels on three benchmark datasets. Re-
sults for more datasets can be found in Appendix
D. As can be seen, all EC'E values in Table 2 are
fairly small (~ 1%), demonstrating the stability
of our proposed model. Thus, our CaNet can
provide accurate coverage estimation on Pls at
different prediction levels. These results demon-
strate the robustness of our CaNet on real-world

datasets, further suggesting its broad applicabil-
ity.

6 Related Work

Finally, we discuss the connections of our paper

with several lines of related work.

6.1 Prediction Interval Estimation

High-quality PlIs, which can be viewed via a con-
strained optimization problem where the con-
straint concerns marginal coverage and the ob-
jective is the PI width, has been extensively stud-
(2010, 2011); Galvén
(2017); Pearce et al. (2018); Rosen-
al.  (2018); Zhu et al. (2019); Chen
(2021). Such intervals are in the same
spirit as the highest density intervals in statis-
tics (Box and Tiao , 2011).

these approaches could not directly provide the

ied in Khosravi et al.
et al.
feld et

et al.
While powerful,
conditional coverage information investigated in

this work. Coverage-only criteria, on the other

hand, focus solely on coverage satisfaction as the

12



NNKCDE QRF SCL QD-Ens CaNet: \s = 0.1° for all datasets

Dataset | CP IW | CP IW | CP IW | CP IW | CP IW ECE1 M\ A3
Boston 0.95 1.54 | 0.96 222 | 097 1.45|0.92 1.16 | 095 1.04 1.38% 6.0 1800
Concrete | 0.95 1.85 | 0.99 2.53 | 0.96 1.54 | 0.94 1.09 | 0.95 1.183 0.24% 6.5 1000
Energy 0.97 0.54 | 0.98 0.87 | 0.95 0.77 | 0.97 0.47 | 099 0.37 0.76% 5.0 500
Kin8nm | 0.99 2.76 | 0.99 3.27 | 0.94 1.20 | 0.96 1.25 | 0.95 1.04 1.32% 3.6 300
Plant 095 0.88 | 097 1.05| 095 088|095 0.86 | 0.95 0.84 0.38% 33 700
Protein | 0.93 1.98 | 0.98 242 | 0.95 2.81 | 0.95 227 | 095 2.26 041% 83 300
Wine 096 264 | 093 3.18 | 096 344|092 233|095 2.59 0.42% 19 1100
Yacht 095 115|095 1.72 ] 095 057|096 0.17 | 0.98 0.16 0.80% 1.6 500

Table 1: Evaluation metrics of different models on benchmark datasets. The C' P values are marked

in blue if they meet the 95% prediction level. The best IW results, marked in bold, are achieved

by models with the smallest IW value among those that meet the 95% prediction level. Our model

outperforms the baseline algorithms on high-quality PI generation. Meanwhile, it provides accurate

coverage estimation on real-world datasets.

guarantee. These approaches include conformal

learning (CL) and its conditional variants (

) ) ) ) )

) ,b). CL is desirably distribution-
or model-free, and in some cases enjoys finite-
sample guarantees on coverage. However, the
coverage guarantees from CL are only marginal
with respect to the training data (except split CL

( , 2012)).

PIs, they do not explicitly account for the inter-

Moreover, unlike high-quality

val width as a quality metric. Nevertheless, we
note that even in some literature with coverage-
only consideration, interval width has also been
implicitly served as a conservative measurement
of Pls, e.g., in ( );
( ). We also mention conditional den-
sity estimation ( , ;
; ; ) ;

, ) and closely relatedly quantile regres-

sion ( , :

, ) as PI construction approaches by con-
verting from the estimated conditional quantile
function. These approaches focus on the qual-
ity of conditional distribution/quantile, instead
of the high-quality criterion only. In this work,
we follow some recent work using deep learning
to achieve state-of-the-art performance for high-

quality PIs construction ( , ;

) ) Y )‘

6.2 Uncertainty Measurement in

Deep Learning

Standard Bayesian approaches, e.g., Bayesian
linear regression ( , ), can be ap-
plied to construct PIs based on the posterior pre-
dictive distribution. But they usually assume
that data follow a certain set of parameterized
distributions, which provide a different perspec-
tive from the distribution-free, frequentist view
On the other hand, as

for NNs, the Bayesian framework also offers a

taken in this paper.
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Kin8nm: Ay = 0.1%, A3 =300 | Plant: A = 0.15, A3 = 700 | Protein: Ao = 0.1°, X3 = 300
AN CP IW  ECE, M CP IW ECE, | A\ CP IW  ECE
1.9 0.83 073 1.54% |14 0.80 056 1.23% | 4.8 082 156  0.82%
21 085 077 159% |15 084 062 1.36% |51 0.8 170 0.71%
23 087 0.80 147% |16 085 063 086% |54 0.8 1.79 1.25%
24 088 0.84 1.21% |18 086 064 1.36% |56 090 1.84  1.04%
2.6 090 0.87 1.50% |20 089 070 051% |63 091 195 0.66%
29 091 0.89 050% |24 091 075 1.15% |65 092 207 1.36%
31 092 094 049% |26 092 080 129% | 7.0 093 211 1.23%
34 094 1.00 0.82% |30 094 083 023% |78 094 213  0.99%
36 095 1.04 1.32% |33 095 084 038% |83 095 22  0.41%
3.8 096 1.06 1.25% |40 096 089 080% | 9.3 096 236 0.52%

Table 2: ECE; results of our model on benchmark datasets with different coverage probabilities.

Our CaNet achieves robust performance on real-world datasets at different prediction levels.

principled approach for model uncertainty mea-
surement by computing the posterior distribu-
tion over the NN parameters ( , ;

, )-

certainty of the NN instead of the coverage over a

They focus on the parameter un-

test point. In addition, exact Bayesian inference

for deep Bayesian NNs is computationally in-

tractable, making it less practical to implement.

( ) applied a Monte

Carlo dropout method to proxy the inference.

Directly generated from non-Bayesian networks,

softmax response is also commonly used for un-

certainty measurement on deep learning models
( 7 ; ; ;

) ; ) ;
; )-
( ) showed that NNs typically pro-

duce well-calibrated probabilities on binary clas-

Moreover,

sification tasks without the need for any post-hoc
techniques. In this paper, we also follow this line
of work and use the softmax output to access the

model uncertainty information.

6.3 Simulation Metamodeling

Stochastic simulation aims to estimate a re-
sponse surface of simulation outputs from com-
plex stochastic models

(2006); (
approach in simulation metamodeling is stochas-
tic kriging (SK) ( , )

which can handle general nonlinear input-output

). A common and versatile

relations, and is also closely related to Gaussian
process methodologies in Bayesian optimization
(2018); (2022). SK typ-
ically focuses on mean response surface estima-
tion or quantile-based response measures
(2013); (2014);

( ), and can account for both epistemic
and aleatory uncertainties, and as such allows
to build PIs for the simulation random outputs.
In addition to SK, recent work

( )

metamodeling by adapting techniques from ma-

) proposes to build PIs for simulation

chine learning including using the high-quality
criterion and NNs, which is the approach con-

sidered in this paper. These studies mainly tar-
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get at the marginal coverage of Pls while our
methodology in this work aims to obtain con-
ditional coverage information of PlIs simultane-

ously.

7 Concluding Remarks

In this paper, we identify and investigate the
conditional coverage estimation problem for
high-quality PIs, which is critical for risk-based
decision making in regression tasks including
simulation metamodeling. To address the chal-
lenge, we propose an end-to-end algorithm with
two powerful modules: the coverage assessment
module and the predictor module. Benefiting
from these powerful modules, our model can gen-
erate and validate the coverage estimator with-
out any requirement for further post-processing
steps. In addition, we conduct a theoretical anal-
ysis to show the effectiveness of our proposed
model. Experimental results on synthetic ex-
amples and benchmark datasets further demon-
strate that our model can robustly provide ac-
curate coverage estimation while simultaneously
producing a high-quality PI. Another alterna-
tive approach for conditional coverage estima-
tion is a two-stage approach that considers the
PI problem and the conditional coverage esti-
mation problem separately in different networks.
However, the two-stage approach is very com-
plex and contains multiple steps that require two
training processes for different networks. Essen-
tially, we have to select more hyper-parameters
for the two networks and also train more net-
work weights to get the PI predictor and the con-
ditional coverage estimator, which means more

running time. Compared with the two-stage al-

15

gorithm, our model has several advantages: our
model is an end-to-end algorithm by leverag-
ing the common feature layer (the last hidden
layer) for both the PI predictor and the condi-
tional coverage estimator, which is very concise
and easy to implement. We can also efficiently
choose the parameters via our tuning procedure.
Moreover, our Ca-Module can be easily inte-
grated into other deep-learning-based algorithms
to access their conditional coverage information,
opening up more opportunities for broad appli-
cations. In the future, we will extend our work
by conducting comparison studies with Bayesian
methods.
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Appendices

This appendix presents further results and discussions and it consists of four parts. Appendix A
gives more detailed properties on coverage estimator and coverage error. Appendix B contains the
mathematical argument for Theorem 1. Appendix C discusses how to achieve Assumption 1 and
the proof of Theorem 2 and 3. Appendix D illustrates experimental details and more experimental

results.

A Further Details on Coverage Estimator and Coverage Error

A.1 Coverage Probability Types of Pls

( ) introduce the following four coverage probability types of PIs. In general,

most of the coverage in PIs considered in the literature falls into one of these types.

Type I: P[Y € [L(X),U(X)]] (marginal coverage);

Type II: P[Y € [L(X),U(X)]|L,U] (conditional coverage given the PI);

Type III: P[Y € [L(X),U(X)]|X = 2] (conditional coverage given X = z);

Type IV: P[Y € [L(X),U(X)]|L,U, X = z] (conditional coverage given the PI and X = z).

Note that in high-quality criteria, only Type II coverage is considered in the constraint but
Type IV coverage is lacking. Since Type I and III are not considered in our paper, for simplicity
Type II coverage is called the marginal coverage, and Type IV coverage is called the conditional
coverage in Definition 1.

Throughout Appendix, we let A(x) :=P[Y € [L(X),U(X)]|L,U, X = z] denote the conditional
coverage in Definition 1. Moreover, since we only concern Type II and IV coverage in this work,
we make the following convention. Throughout Appendix A-B, P and E should be understood as

probability and expectation conditional on L, U. So for A(x), we could simply write A(z) :=P[Y €
[L(X),U(X)]|X = z] and omit “conditional on L,U”.

A.2 The Terminology “Perfect-Calibrated”

The terminology “perfect-calibrated” is borrowed from the confidence calibration in classification
tasks. We first review the name of “confidence” in classification.

Confidence calibration is the problem of predicting probability estimates representative of the
true correctness likelihood ( ) ). Intuitively, an reliable confidence should reflect the
true correctness likelihood of the prediction ( , ). For example, given 100 predictions,

each with confidence of 0.8, we expect that 80 should be correctly classified ( , ).

Now let A be the prediction of any models, which is a map from X to ), trained on the data
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D. According to their definition, the “best” confidence map P should be the true probability of
correctness:
p(l‘) = E[lh(X) is correct for Y|h7X = 33], Vz e X. (14)

which is a measureable function from X to [0,1]. In particular, we consider h as a PI in regression
tasks and “correctness” of a PI is naturally defined as the success of coverage on the outcome Y.
Then the right hand side of Equation (14) becomes

E[lh(X) is correct for Y|P, X = 2] = E[]-YG[L(X),U(X)HLv U, X = ]
_BY € [L(X).U(XO)|L.U. X = 1.

which is the conditional coverage in our Definition 1.

In addition, ( ) introduce the perfect-calibrated confidence as follows:
P(Y =YY, P=p)=p, V¥pe[0,1]

where Y is the class prediction and Y = Y means that the predicted and true class label coincide.
Obviously, if P(X) = P(Y(X) = Y|X), i.e., the “best” confidence, then the above equality holds.

Transferring this idea into PIs, we can naturally define the perfect-calibrated coverage estimator as
p= IE[]-h(X) is correct for Y’La U, P = p] = P{Y € [L(X)a U(X)”La U, P = P]a Vp € [07 1]

which is the conditional coverage in our Definition 2.

A.3 Details on Coverage Estimator

A perfect-calibrated coverage estimator inherits some properties of a conditional coverage. For
example, both of them have the following interpretation: If we have 1000 testing points for a PI,
each with the same conditional/perfect-calibrated coverage 0.9, then approximately 900 of them are
correctly covered by the PI. Note that the conditional coverage is uniquely defined, but a perfect-
calibrated coverage estimator is not necessarily so. Moreover, we have the following facts: (a)
The conditional coverage is always perfect-calibrated, but not vice versa. (b) A perfect-calibrated
coverage estimator can be viewed as an averaged conditional coverage. (c) A perfect-calibrated

coverage estimator is less “informative” than the conditional coverage.

A perfect-calibrated coverage estimator is an averaged conditional coverage. Let P
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be a (general) coverage estimator. We have

rep-1py Elveoue X = tPX € dif
- P[X € P~(P(x))]
iep1(piay AMPLX € di]

 P[X € P-1(P(2))]

Suppose Pisa perfect-calibrated coverage estimator. Then we have

P(z) = Jiep-1(pay) AWPX € di]
U P e PP

which implies that P(z) is a weighted average of A(t) over the set P~1(P(xz)) with weights based

on the marginal distribution of X.

A conditional coverage is perfect-calibrated. If P(z) = A(z), then A(t) = A(z) for any
te A71(A(x)) so

fteA,l(A(x)) A(t)P[X € dt] B A(z) fteA,l(A(x))P[X € dt] .
PX € A1(A(z))]  PXeA1(A(x)] (z).

This shows that A(x) must be a perfect-calibrated coverage estimator. Another way to see this is

taking conditional expectation given A(X) = p in the Definition 1. Then we get

E[A(X)[A(X) = p]
E[PY e [L(X), UX)]|X]|A(X) = p]
PlY € [L(X),U(X)]|]A(X) =p] by the tower property.

b

A perfect-calibrated coverage estimator may be less informative and may not be
the conditional coverage. Suppose we have a PI [L(X),U(X)] at the exact prediction level of
1—a,ie, P[Y € [L(X),U(X)]] =1 — a. Then the constant coverage estimator

Plz)=1—a, VzelX

can be viewed as an average coverage estimator over the entire space X. It is a perfect-calibrated

coverage estimator since by definition,

PY € [L(X),UX)]|P(X)=1-a] =P[Y € [L(X),U(X)]] =1 - a = P(X).
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But it is not a conditional coverage in general (e.g., the second/third synthetic example in Section

=4

5.1).
In the main paper, we have given the following extension of the definition of “perfect-calibrated”

coverage estimator, allowing it to be defined on any positive-probability measurable subsets.

Definition 6 (Restated Definition 5). A coverage estimator P is called a perfect-calibrated coverage
estimator on a measurable subset S C X with P(S) > 0 associated with [L(z),U(x)] if it satisfies
P(z) =P[Y € [L(X),U(X)]|L,U,P(X) = P(z),X €8], a.e. P(z)el0,1]. (15)

where a.e. is with respect to the probability measure on [0, 1] induced by the random variable P(X\S)
Note that the conditional probability space is standard: (S, Fs:={ANS: A€ F},Ps(ANS) :=
P(A[S)).

(As our convention in Section A.1l, we will omit “conditional on L,U” for simplicity.)

Lemma 2 (Restated Lemma 1). (a) A coverage estimator is the conditional coverage if and only
if it is a perfect-calibrated coverage estimator on any positive-probability measurable subset S of X.
(b) Suppose Pisa perfect-calibrated coverage estimator on two disjoint positive-probability measur-

able subsets Sy, So. Then Pisa perfect-calibrated coverage estimator on Sy U So.

Proof. (a) The proof can be found in Lemma 3.
(b) We note that by law of total probability,
P[Y € [L(X),U(X)]|P(X) =p, X € §; USy)]
=P[Y € [L(X),U(X)]|P(X) =p,X € SIP[X € §1|P(X) =p, X € §; USy]
+PlY € [L(X),UX)]|P(X) =p, X € SP[X € S|P(X) =p, X € S; USy)
=p(P[X € $|P(X) =p, X € SiUS] +P[X € S| P(X) =p, X € S USy))
—p.

Hence P is a perfect-calibrated coverage estimator on S; U Ss. D

Lemma 1(a) is motivated from a theoretical point of view. It provides a guidance that in order
to well resemble the conditional coverage, an estimator should be perfect-calibrated on as many

subsets on the feature space as possible.

A.4 Details on Coverage Error

In Section 2, we have introduced C'E}, to quantify the discrepancy between a coverage estimator and
a perfect-calibrated coverage estimator, and C/’\E’p to quantify the discrepancy between a coverage

estimator and the conditional coverage. We note that by Holder’s inequality

CE, <CE,, for1 <p <q< +o0.
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A larger value of p corresponds to a larger C'E value. Continuing Definition 5, we can further

introduce the calibration-based conditional coverage error on a measurable subset as follows:

Definition 7. An LP (1 < p < 4o00) calibration-based conditional coverage error, or coverage error

for short, of a coverage estimator P on a measurable subset S C X with P(S) > 0 is defined as:

CE,(S) = HIP[Y e [L(X), U(X))|L, U, P(X),X € §] — P(X))

16
(s) (16)

where LP-norm is taken with respect to the randomness of 15(X ) on the conditional probability space
(S, Fs ={ANS:Aec F},Ps(ANS) :=P(A|S)). In particular, we have CE, := CE,(X).

Lemma 3. A coverage estimator P is the conditional coverage if and only if its coverage error
CE,(S) = 0 for any measurable subset S C X with P(S) > 0. In particular, a coverage estimator is
the conditional coverage if and only if it is a perfect-calibrated coverage estimator on any measurable
subset S of X with P(S) > 0.

Proof. We first show that the conditional coverage is perfect-calibrated. Taking conditional expec-
tation given {A(X) = p, X € S} in the Definition 1. Then we get

E[A(X)|A(X) =p, X € 5]
E[PY e [L(X), UX)JIX]|A(X) = p, X € S]
PlY € [L(X),U(X)]|A(X) =p, X € S] by the tower property.

b

So A(z) is a perfect-calibrated coverage estimator on any measurable subset S with P(S) > 0.
Hence CE,(S) = 0 for any measurable subsets S C X with P(S) > 0.

On the other hand, similarly to Section A.3, we can express

Jiep-1(payns ADPIX € di]
P[X € P~1(P(x)) N S]

N

PlY € [L(X),U(X)]|P(X) = P(z),X € 8] =

Suppose P(x) is not the conditional coverage, then P[P(X) # A(X)] > 0. Without loss of
generality, we assume P[P(X) > A(X)] > 0. Let S := {z € X : P(z) > A(z)}. Note
that Sy = UTX{z € X : P(z) > A(z) + 13} Since P(Sp) > 0, there exists a ng such that
S:={reX:P)>A )+nfo}andIP’(S)>O.

Then for z € §, we have

Siep1(payns AMPX € df] k&P( (Xﬂ—%WWeﬁ] o) 1
P[X € P-1(P(z))NS] Pm e P~Y(P(x))NS] no’

Then we have

so CE,(S) > 0, which is a contradiction. Hence P(z) is the conditional coverage. O
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B Mathematical Developments for Theorem 1

This section proves Theorem 1: we show that both coverage error and conditional coverage error
are tightly bounded above by the expectation of a Kullback—Leibler divergence-type random vari-
able Ki(x). This means that minimizing E[K;(X)] can recover the true conditional coverage and
effectively reduce the coverage error. The proof consists of several inequalities regarding coverage

errors and their relations. We first begin with the following connection between C'E),, and C/'\Ep.

Theorem 4. For any PI and its associated P, the LP coverage error is always less than or equal

to the LP conditional coverage error, i.e.,
CE,<CE,, V1<p<+oo

Proof. We note that the function ¢ — |tP is a convex function. We also note that o(P(X)) C o(X)

where o(Y) represents the o-field generated by a random variable Y.
——p - A P
CE, =E [|A(X) - P(X)‘ }

—E [E|A(2) - P(X)P|P(X)

—CEP

Therefore we have

CE,<CE,, V1<p<+oo.

Next we have the following bounds on LP conditional coverage error:

Theorem 5. The LP conditional coverage error is bounded above by a power function of the L?

conditional coverage error. Formally,
CE, <CE,", V1<p< +oo,
where a, = 1,V1 <p <2 and oy, = %,VQ <p < +o0.

Proof. By Holder’s inequality,
CE,<CEy, if1<p<2.

Since
0<|A(x) - P(z)] <1,
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then,
A(x) = P < |A@) - P@), vp>2

and thus
__ . . —2
CE, = E[|A(X) — P(X)"] < E[JA(X) - P(X)]] < CE), Vp>2.

Next, recall that

K(z) = A(z)log ({1(:1:)) + (1 — A(z)) log (1:?22) ;
)

P(x)
Ko(z) = A(z)log(A(z)) + (1 — A(x)) log(1 — A(x)),

Ki(z) = —A(z) log(P(z)) — (1 — A(z)) log(1 — P(x)).

Theorem 6. The L? conditional coverage error is bounded above by the expectation of K(z).

Formally,
o 1 ap/2
OBy’ < (jEIR()
where «, is defined in Theorem 5.

Proof. For any fixed x, consider two random variables with Bernoulli distributions:

Wy — { 1 w.p. A(x),
0 w.p. 1—-A(x).

W, — 1 w.p. p(l‘):
0 w.p. 1—P(z).

Let P; be the distribution of Wj. It follows from Pinsker’s inequality, e.g., Theorem 2.16 in (
, ), that

1
|1PL — Po||7y < §K(P17P2)‘

where T'V denotes the total variation distance and K denotes the KL divergence. Since P; is the

Bernoulli distribution, we can express it as
|[A(z) = P(x)|* < SK(z)
Taking expectation, we obtain
E[JACX) ~ P(X)P] < JE[K(X)].

Hence,

OB < (;E[K(X)])QP/Q.
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Combining Theorem 4, 5 and 6, we immediately conclude that:

Theorem 7 (Restated Theorem 1).
g 1
CE,<CE,<CE, < <2E[K(X)]> , VI<p<+co

where «y, is defined in Theorem 5. Moreover, all inequalities are attainable, e.g., if P(m) s the

conditional coverage A(x).

C Justification of Assumption 1 and Mathematical Developments

for Theorem 3

In this section, we analyze the rationality of Assumption 1 and build essential ingredients for proving
Theorem 2 and 3. The difficulty in analyzing Theorem 3 lies in the fact that the hypothesis classes
in Assumption 1 (which are constructed by the NN) are different from the hypothesis class used
in Lca. To overcome this difficulty, we use the theory of VC-subgraph classes to analyze the

connection between the VC dimension of the two hypothesis classes.

C.1 Review of the VC Dimension

For self-contained purpose, we first review the definition of the VC-subgraph class and VC dimen-

sion.

Definition 8. Consider an arbitrary collection {x1, - ,x,} of points in a set X and a collection
C of subsets of X. We say that C shatters {x1,--- ,x,} if all of 2" possible subsets of {x1, - ,zpn}
can be written as A = CN{xy,--- ,xn} for some C € C. The VC dimension V(C) of the class C
is the smallest n for which no set of size n {x1, -+ ,xn} is shattered by C. If C shatters sets of
arbitrarily large size, we set V(C) = co. We say that C is a VC-class if V(C) < oc.

In some literature, the VC dimension V(C) of the class C is alternatively defined as the largest
n for which there exists a set of size n {x1,--- ,x,} shattered by C, i.e., it is the value in definition

8 minus 1. We can more formally define the VC dimension by the growth function as follows:

Definition 9. Define the n'* shatter coefficient (or growth function) of C as

IIe(n) := max {A:A=Cn{x1, - ,zn} for some C € C}|

L1,y Tn

Then
V(C) :=inf{n : ¢(n) < 2"}.
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Definition 10. For a function f : X — R, the subset of X x R given by {(x,t) : t < f(x)} is
the (open) subgraph of f. A collection F of measurable real functions on the sample space X is a

VC-subgraph class or VC-class, if the collection of all subgraphs of functions in F forms a VC-class
of sets (as sets in X x R). Let V(F) denote the VC dimension of the set of subgraphs of F.

Lemma 4. In Definition 10, the open subgraph of f, {(z,t) : t < f(x)}, can be replaced by the
close subgraph {(z,t) : t < f(x)}, the close supergraph {(z,t) : t > f(x)} or the open supergraph
{(x,t) : t > f(x)}. All of them lead to the equivalent definition of the VC-class and the equal VC

dimension.
Proof. This result follows from Lemma 9.33 and Lemma 9.9(iv) in ( ). O

For indicator functions of sets, we have the following equivalence.

Lemma 5. For any class C of sets in a set X, the class F¢ of indicator functions of sets in C is a
VC-class if and only if C is a VC-class. Moreover, whenever at least one of C or F¢ is VC-class,

the respective VC' dimensions are equal.

Proof. This is Lemma 9.8 in ( ). Note that the sets of C are in X while the subgraphs
of functions of F¢ are in X x R. O

C.2 Justifying Assumption 1

We first restate the assumption:

~

Assumption 3 (Restated Assumption 1). The four classes of functions ([L(x),U(z)], P(x),1 —
P(x)) output by the neural network (NN) in Figure 1 have finite VC dimensions, say they are
bounded above by Vj.

In Figure 1, the output four neurons of the NN are denoted as (L(x),U(z), P(x),1 — .
We further let (1 (z), (), 1h3(2), ¥4 (z)) denote the pre-activated values of (L(z), U(z), P(z),1—
P(z)). In other words,

L(z) = min(¢1(2), a2 (z)),
U(z) = max(¢1(z), ¥2(x)),
D) = softmax(ts () [44(2)) = 00y (x) —a(2)),

1 — P(x) = softmax(¢a(x)|[¢3(x)) = o(a(x) — ¥3(2)),

where o is the sigmoid function. Let the function classes

‘Hi = {L(x) : L is output by the the NN},
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Ho = {U(z) : U is output by the the NN},
G = {P(z) : P is output by the NN},
1—G={1—-P(z): P is output by the NN},

Assumption 1 holds for a wide range of NNs, in particular the one we adopt in the experiments
(where we use the ReLU-activated NN to construct ¢, i = 1,2,3,4 ; see Section 5). Our first
result is to concretely show that the four NN outputs above, H1, Hs, G and 1 — G, under the ReLU

setting, all have finite VC dimensions and thus satisfy Assumption 1.

Theorem 8 (Restated Theorem 2). Suppose ¢;,i = 1,2,3,4 are the pre-activated output neurons
of the NN in Figure 1 using the ReLU activation function. Then Assumption 1 holds. Moreover,
suppose the NN has W parameters and U computation units (nodes). Then Vy = O(WU).

Proof. First, we look at L(z) and U(z). Note that the class of ¢; (i = 1,2) is constructed by a NN
with the ReLU activation function. Therefore by Theorem 8 in ( ) (see also 6
below),

V{y1}) = O0(WU) < oo, V({2}) = O(WU) < o0,

By Lemma 9.9 (i) in ( ), we have

V(H1) = V({min(y1,¢2)}) < V({¢n}) + V({¢2}) — 1 = O(WU) < occ.

By Lemma 9.9 (ii) in ( ), we have

V(Hz2) = V({max(¢1,v2)}) < V({¥1}) + V({e}) —1=0(WU) < c0.

Next, we look at P(z) and 1 — P(x). We add an additional neuron after the layer where 3, 14
stand. This neuron is defined as 15 = ¥3 — 14 which is a linear combination of 13 and 4. Note
that the class of 15 is constructed by a NN with the ReLLU activation function and linear activation

function (by adding one unit and two parameters in the originial NN). Therefore by Theorem 8 in

(2019),
V{s}) = O(WU) < o0

By Lemma 9.9 (viii) in ( ), we have

V(G) =V({o(s)}) < V({es}) = O(WU) < 0.

since o is a monotone function. Again, by Lemma 9.9 (viii) in ( ), we have
V(1-G)<V(G)=0(WU) < oo.

since t — 1 — ¢ is a monotone function. O
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We also list some results for other activations here. From these results, and using the same

argument as above, we see that Assumption 1 holds similarly for all these activations.

Lemma 6. Suppose the class of functions is constructed by a NN with W parameters and U units

with activation functions that are piecewise polynomials with at most p pieces and of degree at most

d. Then it has VC dimension O(WU log((d + 1)p)).
Proof. This is Theorem 8 in ( ) O

Note that the activation functions in Lemma 6 include in particular the ReLU activation and

linear activation.

Lemma 7. Suppose the class of functions is constructed by a NN with W parameters with binary

as well as linear activation function. Then it has VC dimension O(W?).

Proof. This is Theorem 5 in ( ) O

Lemma 8. Suppose the class of functions is constructed by a NN with W parameters and U units
with activation function that is the standard sigmoid function (except that the output unit being a
linear threshold unit). Then it has VC dimension O(W?2U?).

Proof. This is Theorem 8.13 in ( ). O

C.3 Connections among Different Hypothesis Classes

To prove Theorem 3, we need to study several building blocks on the relations between different

hypothesis classes. Our first observation is:
Theorem 9. Suppose V(G) < +oo. Then all of the following classes have VC dimension < V(G):
1—G:={1—P(x): P is output by the NN}.
G :=10g(G) := {log(P(x)) : P is output by the NN}.
log(1 — G) := {log(1 — P(z)) : P is output by the NN}.
Proof. The result follows from Lemma 9.9 (viii) in ( ) since all of the transformations

are monotone functions. ]

Our second observation is about
F={f(z,y) = Lyc1(2),U() : L, U are output by the NN}.

Note that the domain of functions in F is different from the domain of functions in #; (i = 1,2)
as it includes the outcome space. Below we derive a result that connects the VC dimension of H,;
with that of F.
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Theorem 10. Suppose V(H;) < Vy (i =1,2). We have that
V(1—F)<V(F) <10(Vp — 1) < 400

where

1-F:={1-f(z,y): feF}

Proof. The first inequality follows from Lemma 9.9 (viii) in ( ). We consider the
following two classes:
F1 = {IL(m)gt L eHy,te R},

.FQ = {IU(:C)Zt : U S HQ,t S R}

Since the functions in /7 are all indicator functions, by Lemma 5,
V(F) =V({{(z,t): L(x) <t} : L € Hyt €R}).

Note that the latter is the VC dimension of the close supergraphs of all functions in H;. Then by

Definition 10 and Lemma 4, we have
V{{(z,t): L(z) <t} : L€ Hi,t eR}) =V (Hq)

Therefore we have
V(F)=V(H1) <W

Similarly,
V(F)=V(Ha) < W
Note that we can write
LyelL@v@) = Iu@<ylu@>y
By the definition of growth functions,
[Ir(m) == g { Uy cin@n vy LymelL@m)U@m)) : L € H1,U € Ha}|

< max |{(IL($1)§y1’ o L @ay<yn) T L E Hl}} X
($1,y1),"',(9€m,ym)

max ’{(IU(wl)Zyl’ e 7IU(xm)2ym) : U € H2}‘
(Ilyyl)v“’v(fmyym)

:Hf1 (m)H]:2 (m)

em (0 1)
<

for all m > Vj where the last inequality is due to the Sauer—Shelah lemma. Taking m = 10(Vy —1),

we obtain

em \ 2(Vo-1)
<V 1) = (10e)*"~1 < 750%0 1 < om
-
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Combining the above inequality, we have
1I ]:(m) < 2™,

This shows that V(F) <m = 10(Vp — 1). O

C.4 Proof of Theorem 3

This subsection proves Theorem 3. Recall that
F = {lye((2),u(z)) : L, U are output by the NN},

G = {P(z) : P is output by the NN}.
G :=1log(G) := {log(P(z)) : P is output by the NN}.

Let N (e, F, L*(Q)) denote the covering number, i.e., the minimal number of balls {g : [lg—|| ;2(g) <

€} of radius € needed to cover the set F. We need the following bounds:

Lemma 9. Suppose F is a class of functions f : X x Y — [0, 1] with a finite VC dimension V (F).
For every 0 < e < 1,

sup log N (¢, F, LQ(Q)) < Ky <1>e
Q

€

where the constant Ko depends on V(F) only.

Proof. Tt follows from Theorem 2.6.7 in ( ) that there exists a

universal constant K such that

\VF)-1
sup N (e, F, L*(Q)) < KV (F)(16¢)"F) (6)
Q

for any 0 < € < 1. Since
1
1\« 1
- >max (log(—-),1), V0O<e<l,
€ €

SgplogN(@fy L*(Q)) < K3+ (V(F) — 1) log <1> < K, <1>i

€ €

we have

where K3 := log(KV (F)(16e)V ")) and Ky = K3+ V(F) — 1 only depending on V (F). =

We remark that a similar result can also be obtained for the class 1 — F by Theorem 10.
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Lemma 10. Suppose G is a class of functions P : X — [0, 1] with a finite VC dimension V(G) and
|log(P(z))| < M. Let G' := {log(P) : P € G}. Then, for every 0 < e < 1,

suplog N(eM,G', L*(Q)) < Ko <1>e
Q

€
where the constant Ko depends on V(G) only.

Proof. First note that ¢(t) := log(t) is a monotone function. Hence G’ := {log(P) : P € G} is a
VC-class with VC dimension < V(G) by Lemma 9.9 (viii) in ( ). The rest of the proof

is similar to 9. 0

We remark that a similar result can also be obtained for the class log(1 — G) by Theorem 9.

Next we restate Assumption 2:

Assumption 4 (Restated Assumption 2). There exists a constant M < 400 such that | log(P(z))| <
M, |log(1 — P(x))| < M for all x and P.

As discussed in Section 4, this is a natural assumption in practice because log(P(z)) and
log(1 — P(z)) are replaced by log(P(z) + €) and log(1 — P(z) + €) respectively to avoid explosion
when implementing the algorithm. In particular, in our experiments in Section 5, € = 0.1% and thus

M = 14.

We are now ready to prove Theorem 3:

Theorem 11 (Restated Theorem 3). Suppose Assumptions 1 and 2 hold. The training data D =
{(zs,9:), i = 1,2,--- ,n} where (z;,y;) are i.i.d. samples ~ 7. Recall that the (hard) coverage

estimator assessment loss is

n

Loa =~ 3" (Fae v oa(P(e) + (1~ f(as, o)) loa(l — P(x:)))
i=1
Then for any t > 0, we have

ni2
P ( sup |Loa — E[K1(X)]| > t) < C*e™ Ty
fEF,Peg

where C* only depends on Vy in Assumption 1.

Proof. Note that E[f(x;,y:)|zi] = A(x;) for any fixed L and U. Taking expectation on Lca, we

have
E[Lca) = E[E[Lcal|z1, 22, -, 4]
—E 7% Z (A(xi) log(P(x;)) + (1 — A(z;)) log(1 — P(%‘)))]
i=1
= E[K;(X)].
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We consider the first part A(x)log(P(z)). The second part can be done using the same argu-
ment. Note that by Theorem 9.15 in ( ), we have

suplog N (eM, F - g',LQ(Q)) < suplog N(e/2, F, LQ(Q)) + suplogN(eM/Q,g’,LQ(Q)).
Q Q Q

Consider the class 3 + 5 F -G’ == {1 + 5t (f(x,y) log(P(z))) : f € F,log(P) € ¢’} which consists
of functions taking values in [0, 1]. We have
1 1
logN(e, =+ —F -G, L*
sup log (€5 + 5377 9. L7(Q))
=suplog N(2¢M, F - G', L*(Q))
Q

<suplog N(e, F, L*(Q)) + suplog N(eM,G', L*(Q))
Q Q

1/e
€

where the last inequality follows from Lemma 9 and Lemma 10, and K3 only depends on V(F) and
V(G). (Recall that we have shown V(G') < V(G) in Lemma 10.) Moreover, by Theorems 9 and 10,
we can claim that Ky only depends on V. This inequality shows that % + ﬁ]—" - G’ satisfies the
conditions in Theorem 2.14.10 in ( ) and thus for every § > 0 and

t>0,
L > o(xi i) — Elg(a, y))| >

n-
=1

P ( sup t> < CeP(Vmt)7+e o —2ni?
p€5+557FG

2(6-3)

where U = P

that

< 1 and the constants C' and D depend on K» and § only. Let § =1 — U. Note

—2(v/nt)? + D(Vit) < —(V/t) + (D/2)".

> t> < Ot

Zf zi,yi) log(P(x:)) — E[A(x) log(P(z))]

Hence we have

Z o(zi, yi) — E[p(z,y)]

IP’( sup
e +2MFQ’

where C* only depends on Ky, or, only depends on V.
This shows that

< sup
feF,Peg

A similar result can be established for the second part since the hypothesis classes there have

been studied in Theorem 9 and 10:
> t)

nt2
> t) < C*e am?,

n

P ( sup |51 1)) og(1 — Pla)) — B[(1 — A(e) log(1 — P(x)]
feF,PeG i=1
SC*ef%.
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Combining the two parts and noting the following fact:

{sup|y + 3| > t}
C{sup |y| +sup|B| > t}

t t
C{sup |v| > 5} U {sup |B] > 5}7

we conclude that

n 2
P ( sup |Loa — E[K1(2)]| > t) < C* e~ Tor2
feF,Peg

where C* only depends on Vj. O

Lastly, the following corollary explicitly connects our theoretical developments to the experi-

mental setup:

Corollary 1. Suppose the NN is designed as the one specified in the experiments (Section 5). The
training data D = {(z;,y;), i = 1,2,--- ,n} where (x;,y;) are i.i.d. samples ~ w. Then for any

t > 0, we have

n 2
P ( sup |Loa — E[K1(X)]| > t) < C*e” 161t\/12,
fEF,Pcg

where C* only depends on Vy in Assumption 1.

Proof. We note that Assumptions 1 and 2 hold in this case by Theorem 2 and the observation after

Assumption 2. So Theorem 3 implies Corollary 1. O

D Experimental Details and More Results

This section illustrates experimental details and more experimental results from our proposed

model.

D.1 Experimental Details

Table 3 gives a detailed description about the datasets we use. These open-access real-world

benchmark regression datasets are widely used for the evaluation of methods in regression tasks

( ; ; , ; , ;
, 2018; , 2018; ; 2019).

For synthetic datasets, 2000 i.i.d data are generated for each synthetic setting and randomly

split into 1000 training data and 1000 testing data. For benchmark datasets, we first do the data

normalization and then randomly split 80% data for training and 20% for testing. The choice of
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80%/20% split, compared to the 90%/10% split in ( ), is motivated from the
need to increase the test size in order to get a meaningful EC'E evaluation. The latter is due to
that evaluating FCFE requires binning, where using a larger number of bins approximates more
closely C'E, but also requires a larger test size to sustain enough statistical quality for the resulting
ECE estimate. This delicate tradeoff motivates us to increase the share of the test set in our split.
Following ( ), our hyper-parameters are selected using the validation set from a
random split. Then, they are fixed during the evaluation on other random splits.

As specified in Section 2 (Equation (8)) and Appendix A.4 (Equation (16)), ECE is evaluated
based on dividing [0,1] into M sub-intervals. The larger M is, the more precise is in using ECE
to approximate CE, the latter being the ideal conditional coverage error estimator. On the other
hand, a larger test set size is needed to support the use of a larger M without deteriorating the
statistical quality of the ECE. This delicate tradeoff motivates us to increase the share of the test
set in our split.

For synthetic datasets, the hyperparameters and corresponding results in Figure 2 are:

(a) A\ = 1.7, A2 = 1075, \3 = 1500, CP = 0.95, IW = 0.40, ECE; = 0.62%.
(b) A1 = 1.9, A2 = 1075, A\3 = 1000, CP = 0.96, IW = 0.40, ECE; = 0.12%.
(c) A1 = 3.4, X2 = 1075, A\3 = 1000, CP = 0.95, IW = 0.50, ECE; = 0.65%.

For benchmark datasets, the implementation details for baseline algorithms in Table 1 are:

(1) Nearest-neighbors kernel conditional density estimation (NNKCDE). The algorithm is based
on Section 2.1 in ( ). We use the same Python code provided by

( ) with the default Gaussian kernel. Two tuning parameters, i.e., the number of nearest
neighbors k and the bandwidth h of the smoothing kernel, are chosen in a principled way by
minimizing the CDE loss on validation data, the same way as in ( ).

(2) Quantile regression forest (QRF). The algorithm is based on ( ). We use
the RandomForestQuantileRegressor from the package scikit-garden in Python.

(3) Split conformal learning (SCL). The algorithm based on Algorithm 2 in ( ).
The regression algorithm inside SCL that we use is a neural network with mean square loss. The

neural network has the same structure of hidden layers as in Section 5.

D.2 Additional Experimental Results

Table 4 gives experimental results for more datasets in addition to Section 5.3.
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Dataset N d Open-access Link

Boston: Boston Housing 506 13 kaggle.com/c/boston-housing
Concrete: Concrete Strength 1030 8 kaggle.com/aakashphadtare/concrete-data
Energy: Energy Efficiency 768 8 kaggle.com/elikplim/eergy-efficiency-dataset
Kin8nm 8192 8 openml.org/d /189
Plant: Combined Cycle Power Plant 9568 4 kaggle.com/gova26 /airpressure
Protein: Protein Structure 45730 9 networkrepository.com/CASP.php
Wine: Red Wine Quality 1599 11 kaggle.com/uciml/red-wine-quality-cortez-et-al-2009
Yacht: Yacht Hydrodynamics 308 6  archive.ics.uci.edu/ml/datasets/yacht+hydrodynamics

Table 3: Full names and details of benchmarking regression datasets. IV is the number of samples

in the dataset and d is the dimension of the feature vector.

1-st experiment 2-nd experiment 3-rd experiment
Dataset )\3 )\1 CcP Iw ECEl )\1 cpP w ECE1 )\1 cpP w ECEl

Boston 1800 | 3.5 0.87 0.72 1.25% | 4.5 0.89 085 0.96% | 6.0 095 1.04 1.38%
Concrete 1000 | 3.0 0.87 0.88 1.03% | 5.0 093 1.07 1.03% | 6.5 0.95 1.13 0.24%
Kin8nm 300 | 21 0.85 0.77 1.59% |29 091 089 0.50% | 3.6 095 1.04 1.32%
Plant 700 | 1.6 0.85 0.63 0.86% |24 091 075 1.15% |33 095 0.85 0.38%
Protein 300 | 5.1 086 1.70 0.71% | 6.3 0.91 1.95 0.66% |83 095 226 041%
Wine 1100 | 9.0 0.85 1.59 0.98% | 15 0.91 2.14 1.28% | 19 0.95 2.59 0.42%
Yacht 500 | 1.4 094 0.13 0.13% | 1.5 096 0.14 151% | 1.6 098 0.16 0.80%
Syntheticl 1500 | 1.0 0.89 0.34 0.73% | 1.3 0.93 0.37 0.55% | 1.7 0.95 0.40 0.62%
Synthetic2 1000 | 1.1 0.89 0.31 1.01% | 1.4 092 034 127% |19 0.96 040 0.12%
Synthetic3 1000 | 1.3 0.87 0.34 0.79% | 24 091 042 0.82% | 3.4 0.95 050 0.65%

Table 4: Evaluation metrics of our CaNet on benchmark datasets and synthetic examples with

different coverage probabilities.
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