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Biased stochastic estimators, such as finite-differences for noisy gradient estimation, often contain parameters
that need to be properly chosen to balance impacts from the bias and the variance. While the optimal
order of these parameters in terms of the simulation budget can be readily established, the precise best
values depend on model characteristics that are typically unknown in advance. We introduce a framework
to construct new classes of estimators, based on judicious combinations of simulation runs on sequences of
tuning parameter values, such that the estimators consistently outperform a given tuning parameter choice
in the conventional approach, regardless of the unknown model characteristics. We argue the outperformance
via what we call the asymptotic minimax risk ratio, obtained by minimizing the worst-case asymptotic ratio
between the mean square errors of our estimators and the conventional one, where the worst case is over any
possible values of the model unknowns. In particular, when the minimax ratio is less than 1, the calibrated
estimator is guaranteed to perform better asymptotically. We identify this minimax ratio for general classes
of weighted estimators, and the regimes where this ratio is less than 1. Moreover, we show that the best
weighting scheme is characterized by a sum of two components with distinct decay rates. We explain how
this arises from bias-variance balancing that combats the adversarial selection of the model constants, which

can be analyzed via a tractable reformulation of a non-convex optimization problem.
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1. Introduction

This paper studies biased stochastic estimators which, in the simplest form, are expressed as
follows. To estimate a target quantity of interest §y € R, we use Monte Carlo simulation where each

simulation run outputs

6(0) =6, +0b(6)+v(0) (1)

Here v (0) represents the noise of the simulation and satisfies E[v (§)] =0, and b (4) is the bias given

by E[f ()] — 0. We obtain the final estimate by averaging n independent runs produced by (1):

1
- ; 0;(5) (2)
where 6; (-) denotes an independent run.

The simulation runs in (1) are specified by a parameter § that typically impacts the bias and the
variance in an antagonistic fashion. A common example is finite-difference schemes for black-box
or zeroth-order noisy gradient estimation, in which ¢ is the perturbation size for the function input
of interest. As J increases, bias increases while variance decreases (and vice versa). To minimize
the mean square error (MSE), the best choice of 4, in terms of the simulation budget, balances
the magnitudes of the two error sources. In central finite-difference for instance, this optimal §
turns out to be of order n*%, whereas in forward or backward finite-difference it is of order n—%
(e.g., Glasserman (2013) Chapter 7; Asmussen and Glynn (2007) Chapter 7; Fu (2006); L’Ecuyer
(1991)).

While the above tradeoff and the optimal order of § in n is well understood in the literature,
the precise best choice of 6 depends on other, typically unknown, model characteristics (i.e., the
“constants” inside b (d) and v (9)). For example, choosing § = dn~% in a central finite-difference, and
considering only the first-order error term, the best choice of d depends on third-order derivative
information and the variance of the noise that are typically unavailable in advance.

Our goal in this paper is to develop a framework that enhances the standard estimator (2)

regarding the choice of § subject to the ambiguity of the model characteristics. A key idea we will



Lam, Zhang and Zhang: Enhanced Bias-Variance Balancing: A Minimaz Perspective
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 3

undertake is to consider estimators beyond the form of naive sample average, in a way that reduces
the impact of this uncertainty. Under this framework, we derive new estimators that consistently
improve (2) at a given choice of §, regardless of these unknowns. This improvement is in terms of the
asymptotic MSE as the simulation budget increases. More specifically, we consider the asymptotic

ratio between the MSEs of any proposed estimator and (2):

MSE of a proposed estimator

(3)

R=1
lnmjc}.}p MSE of the conventional estimator (2)

The proposed estimator can be parametrized by possibly many tuning parameters. The asymp-
totic ratio R thus contains these parameters, the unknown model characteristics, and the ¢ in (2).
Regarding (2) and its § as a “baseline”, we calibrate the tuning parameters in the proposed esti-
mator to minimize the worst-case asymptotic MSE ratio, where the worst case is over all possible

model characteristics and choices of . On a high level, this can be expressed as

R*= min max R (4)
calibration model 5
strategy characteristics’

This minimized worst-case ratio R* provides a performance guarantee on our calibrated proposed
estimator relative to (2) — The MSE of our estimator is asymptotically at most R* of (2) at the
chosen ¢, independent of any possible model specifications. In particular, if R* < 1, our estimator
is guaranteed to strictly improve over (2). For convenience, we call R* the asymptotic minimazx risk
ratio (AMRR).

As our main contributions, we systematically identify the AMRR R*, achieve R* < 1, and con-
struct a scheme that consistently outperforms the conventional choice (2), for the class of weighted

estimators in the form
> w6, (5)) (5)
j=1

where §;,7 =1,...,n is a suitable sequence of tuning parameters, and w;,j =1,...,n is any weight-

ing sequence. For example, when w;’s are the uniform weights, (5) is precisely the so-called recursive
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estimator introduced in Glynn and Whitt (1992). Our main results show that, in general, the

optimal weighting scheme to obtain R* is in the form

AN N
=5

(6)

wj

where (1,8, > 0 are two distinct decay rates. The two coefficients A\;, Ay depend on the budget
n, in a way that none of the two terms in (6) is asymptotically negligible when used in the
weighted estimator. This weighting scheme and an associated transformation from § to {J,}; give
rise to an explicitly identifiable R*. This reveals that, for instance, in the central finite-difference
scheme, R* is 0.67 when the multiplicative constants in § and {d,}, are the same. Since R* <1,
the weighted estimator using (6) always outperforms (2) in terms of asymptotic MSE, independent
of the unknown constants in b(d) and v (6). In contrast, the corresponding R* is 1.08 when the
weights are obtained via the recursive estimator or its immediate generalization, indicating that
such a restriction on the weighting sequence could lead to subpar performance in the MSE.

Our main analyses build on the insight that, to maintain a low worst-case risk ratio, one typically
must calibrate the proposed estimator such that it maintains the relative magnitudes of bias and
variance in a similar manner as the conventional scheme (2). We will show that any distortion away
from such a balancing allows an “adversary” to enlarge the risk ratio, thus leading to suboptimal
outcomes. This balancing requirement generally leads to a non-convex constrained optimization
problem which, upon a reformulation, reveals a tractable structure and solution to the minimax
problem in (4).

Finally, we conduct experiments to test and compare our optimally weighted estimator with the
recursive estimator and sample-average baseline. Our experimental results demonstrate that, when
applied to various models, our optimally weighted estimator exhibits lower MSE than the baseline
when the simulation budget is as low as 20, whereas the optimal recursive estimator has a slightly
higher MSE than the baseline, which match our theoretical predictions. Moreover, we illustrate the
potential of harnessing our optimal weighting scheme in obtaining faster convergence for black-box

stochastic optimization, by incorporating it in the finite difference estimator at each iteration of a
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zeroth-order stochastic gradient descent algorithm (Kushner and Yin (2003)). On the other hand,
we observe some (positive) deviations of our risk ratios from the AMRR, suggesting non-negligible
finite-sample effects, especially when 9, differ from ¢ by a large factor. Nonetheless, a thorough
theoretical understanding of the finite-sample behavior of our weighting scheme is beyond the scope
of this paper and will be left for the future.

The remainder of the paper is as follows. Section 2 first reviews some related works. Section 3
describes the problem settings and reviews some established results on biased estimation. Section
4 presents our minimax framework and investigation on a special class of estimators. Section
5 presents our main results and explains their implications on general weighted estimators and
AMRR. Section 6 discusses how our results carry to multivariate settings. Section 7 reports our
numerical experiments. Section 8 concludes the paper. All proofs and additional numerical results

are provided in the Appendix.
2. Related Literature

Our study is related to several lines of work. The minimax formulation that we use to analyze
and construct estimators resembles robust optimization (e.g., Ben-Tal et al. (2009), Bertsimas
et al. (2011), Ben-Tal and Nemirovski (2002)) and robust control (e.g., Zhou and Doyle (1998))
that advocates decision-making against the worst-case scenario. Such ideas also have roots in
game theory (Cesa-Bianchi and Lugosi (2006)). Related notions have also been used in online
optimization, in which decision is made at each step under a noisily observed dynamical process
(e.g., Flaxman et al. (2005), Shalev-Shwartz (2012), Hazan et al. (2016)). The performance in this
literature is often measured by the regret that indicates the suboptimality of a decision relative
to the best decision assuming complete information (see, e.g., Besbes and Zeevi (2009, 2011) for
applications in revenue management). Instead of using an “oracle” best as the benchmark in our
minimax formulation, we use the sample average as our benchmark, and focus on improving this
conventional estimator by analyzing the risk ratio. In this regard, we note that a ratio formulation

and a non-oracle-best benchmark has been used in Agrawal et al. (2012), but in a different context
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in quantifying the impact of correlation in mean estimation, and their benchmark is an independent
distribution with the worst-case being evaluated over a class of dependent models. Ratios between
MSEs also appear in Pasupathy (2010) in studying the tradeoff between error tolerance and sample
size in so-called retrospective approximation, which is a technique for solving stochastic root-finding
or optimization problems via imposing a sequence of sample average approximation problems.

A main application of our work is finite-difference stochastic gradient estimation (e.g., Glasser-
man (2013) Chapter 7; Asmussen and Glynn (2007) Chapter 7; Fu (2006); L’Ecuyer (1991)),
typically used when there is only a noisy simulation oracle to evaluate the function value or model
output. Variants of the finite-difference method include the central, forward and backward finite-
differences, with different perturbation directions and orders of bias (Zazanis and Suri (1993), Fox
and Glynn (1989)). In contrast to finite-differences are unbiased derivative estimators, which include
the infinitesimal perturbation analysis or pathwise differentiation (Ho et al. (1983), Heidelberger
et al. (1988)), the likelihood ratio or the score function method (Glynn (1990), Rubinstein (1986),
Reiman and Weiss (1989)), measure-valued or weak differentiation (Heidergott and Véazquez-Abad
(2008), Heidergott et al. (2010)), and other variants such as the push-out method (Rubinstein
(1992), L’Ecuyer (1990)), conditional and smoothed perturbation analysis (Gong and Ho (1987),
Hong (2009), Fu and Hu (1992), Glasserman and Gong (1990), Fu et al. (2009)) and the general-
ized likelihood ratio method (Peng et al. (2018)). In multivariate settings, Spall (1992, 1997) study
simultaneous perturbation to estimate gradients used in SA, by randomly generating a pertur-
bation direction vector and properly weighting with the perturbation sizes to control estimation
bias. Nesterov and Spokoiny (2017) proposes Gaussian smoothing with a different adjustment and
investigates finite-sample behaviors in related optimization. Flaxman et al. (2005) suggests uniform
sampling. Our framework can be applied to these procedures, as will be discussed in Section 6.

The main skeleton of our proposed estimators uses a sequentialized choice of the tuning param-
eter, which appears in Glynn and Whitt (1992) in their discussion of subcanonical estimators. A

generalization of this latter scheme, which appeared in Duplay et al. (2018) and discussed in Section
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4, resembles the idea of stochastic approximation (SA) in stochastic optimization and root-finding
that iteratively updates noisy estimates (Kushner and Yin (2003), Borkar (2009), Pasupathy and
Kim (2011), Nemirovski et al. (2009), Polyak and Juditsky (1992), Ruppert (1988)). Our analy-
ses there utilize the classical asymptotic techniques in Fabian (1968) and Chung (1954), and also
Polyak and Juditsky (1992) in the averaging case.

Finally, we compare our work to multi-level Monte Carlo (Giles (2008)). This approach aims
to reduce variance in simulation in the presence of a parameter selection like §, by stratifying the
simulation budget into different § values. Of particular relevance is the randomized level selection
(Rhee and Glynn (2015), Blanchet and Glynn (2015), Rychlik (1990), McLeish (2011)) that can
turn biased estimators in the form of (1) into unbiased estimators with possibly canonical square-
root convergences. The approach is generalized in Vihola (2018), which uses further stratification
to obtain an expanded class of unbiased estimators with efficiency matching their biased counter-
parts, thus incurring negligible cost in the debiasing operation. Multi-level Monte Carlo and its
debiased variants have been applied successfully in many stochastic problems including the simu-
lation of stochastic differential equations and nonlinear functions of expectations. However, they
require a probabilistic coupling between simulation runs at consecutive levels to exhibit statisti-
cal advantages. In contrast, the framework studied in this paper consists of black-boxr simulation
where we assume no internal structure can be leveraged, thus ruling out the possibility of coupling

simulation runs.

3. Background and Problem Setting

We elaborate our problem and notations in the introduction. We are interested in estimating 6, € R.
Given a tuning parameter § € R, , we run Monte Carlo simulation where each run outputs (1) with

b(6) =Bdé" +0(0%) as d -0, v(0) = Z(q—‘;), and ¢1, g2 > 0. We assume that:

AsSsuMPTION 1. We have

1. B€R is a non-zero constant.

2. €(0) €R is a random variable such that Ee (§) =0 and o? (6) =Var (e(6)) =0 >0 as § — 0.
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The above assumptions dictate that the order of the bias b(d) is 7, while the order of the variance
is 67292, The former is ensured by the first assumption and the latter by the second one.
As an example, in estimating the derivative of a function f (z) with unbiased noisy function

evaluation, the central finite-difference (CFD) scheme elicits the output

flat+d)—Ff@-9)
20

where f (1) is an unbiased evaluation of f(-), and 6 > 0 is the perturbation size. Given that f is
thrice continuously differentiable with non-zero f”’(x), the bias term has order ¢; = 2. Typically,
the order of the variance is ¢, = 1. Suppose we do not apply common random numbers (CRN) in
generating f (z+0) and f(x—4), and that Var (f (x+ 6)) — Var (f (1:)) as 6 — 0. Then o2 =
Var (f (ac)) Suppose we are able to apply CRN so that Coov (f(x +6),f(z— 5)> — Var (f (x))
as 0 — 0. Then, under standard assumptions (such as those in equation (2.4) in Glynn (1989)), the
order of the variance becomes ¢y = %

Similarly, the forward finite-difference (FFD) scheme elicits the output

flz+6)—f(2)
5

Given that f is twice continuously differentiable with non-zero f” (z), the bias term has order
g1 = 1. Analogous conditions on the noise as above guarantees that ¢, =1 or % The same discussion
holds for the backward finite-difference (BFD) scheme.

Given the capability to output independent runs of (1), say 6, (), the conventional approach
to obtain an estimate of 6, is to take their sample average. Denote this as 0,, = %Z;;l 6, (6). The

MSE of 6,,, denoted MSE, = E (G_n — 90)2, can be expressed as

2
MSE, = bias® + variance = B?§%% +

i + higher-order terms (7)

Considering the first order term, the bias increases with § and the variance decreases with §.
Minimizing the MSE requires balancing these two errors to the same order, namely by choosing

d=10,=0(n"*) where a = which solves the equation —2aq; = —1 4 2ag,. This leads to

1
2(q1+492)’
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an optimal MSE order n~ aite . For example, in CFD and under the conditions we discussed above
without CRN, we have J,, = © <n_%>, leading to an optimal MSE order n‘%; in FFD or BFD we
have 4,, =0 (n‘?le>, leading to an optimal MSE order noz.

In order to fully optimize the first-order MSE, including the coefficient, one needs to choose

1
2 2(q1 +4a2) 1
[0} 1 2 —_
Op = ( q2 ) n 2(a1ta2)

B2q,
(e.g., by applying the first-order optimality condition on the leading terms in (7)). This gives an

optimal first-order MSE

_q1 _4q2
+ +
B g it (q) Ly (q) ) pats (®)
q1 q2

The above choice of §,, depends on the “constants” in the bias and variance terms, namely B and

2

o?. While ¢; and ¢, are often obtainable, constants like B and ¢? are unknown a priori and can

affect the performance of the simulation estimator, despite choosing an optimal order on n in §,

1
2(q1+4q2)

using the knowledge of ¢; and ¢y. Suppose we choose d,, = dn~* for some d > 0, where o =

is optimally chosen. Then the first-order MSE is

2
<B2d2(11 + do2-q2> ni‘ﬂquqQ (9)

which can be arbitrarily suboptimal relative to the best coefficient in (8). Our goal in this paper
is to improve on this suboptimality, by considering estimators beyond the conventional sample
average that consistently outperforms the constant showing up in (9).

The following theorem, which follows straightforwardly from Fox and Glynn (1989), summarizes

the above discussion on the optimal order of the MSE:

THEOREM 1. Under Assumption 1, suppose that lim,, . 6,n* =d, where 0 < d < oo, the sample-

average-based estimator 0,, exhibits the asymptotic MSE

2

= 2 _ o - - -
E (0, —0y) =d*"B’n=>*" + P n?**2=! 4o (n 72 4 n** 271 as n— 0o

Choosing oo = achieves the optimal MSE order, and the asymptotic MSE is

1
2(q1+492)

B 2
E (Hn - 90)2 = (d2q132 + dz%) n D +o0 <n7 ‘1111‘12) as n — 0o
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Lastly, we mention that, in practice, there are other considerations in obtaining good estimators,
such as issues regarding the finiteness of the sample that can affect the accuracy of the asymp-
totic results. These considerations are beyond the scope of this work, which focuses mainly on a

theoretical framework on improving the asymptotic constant.

4. A Minimax Comparison Framework

We introduce a framework to assess, and calibrate, estimators beyond the sample-average-based
estimator @,. This framework compares the asymptotic MSEs using 6, as a baseline based on a
minimax argument. Section 4.1 presents this framework, and Section 4.2 provides an initial study

on a special type of estimators.

4.1. Asymptotic Risk Ratio

Consider an estimator 6,, for 6, using n simulation runs in the form (1), where the tuning param-
eter § in each run can be arbitrarily chosen. Our goal is to calibrate 6, that performs well, or
outperforms, 6, in the first-order coefficient of the MSE, presuming that both 0,, and 6,, have the
optimal order of errors. Let MSE; denote the MSE of 6,, for convenience.

The estimator 0, can depend on other tuning parameters in addition to the ¢ in each run. We
denote the collection of all the parameters that 0, involves as v, so that 6, =6, (). Correspond-
ingly, MSE; also depends on v.

We suppose knowledge on the order of the bias and noise, namely ¢; and ¢ in (1). However, we
do not know the constants B and o?. To make the discussion more precise, for fixed q;,q, >0, we

denote the class of simulation outputs
H={0():0()=0,+b(5)+v(d) such that
b(6) =Bdé" +0(0") and v () = 65(;? where Var (e (6)) — 0%, as § — 0,

for arbitrary non-zero B and positive 0%} (10)

In other words, H is the set of outputs with bias of order 6%t and noise of order 692, with arbitrary

constants B, 2.
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The MSE of 0,,, MSEy, depends on 6 (-) evaluated at chosen 6. To highlight this dependence, we
write MSEq = MSE (6 (+),6), where we make implicit the dependence on n for ease of notation.
Similarly, MSE; depends on 6 (-) and v, so that MSE; = MSE; (6 (-) ,v), where we also make implicit

the dependence on n for ease of notation. We consider the asymptotic risk ratio

R(0(-),v,d) =limsup MSE, (0(),v)

WSUP NSy ()0 (11)

that measures the performance of 6,, relative to 6, as a baseline. Since we only know 6 () is in H
but not its exact forms (i.e., the constants), we consider the worst-case scenario of R, and search

for the best parameters in 6,, that minimize this worst-case risk. Namely, we aim to solve

min max R(6(-),v,0) (12)

v 0()eH

Note that (12), and the best choice of v, depend on the § used in 6,. We now take a further
viewpoint that an arbitrary user may select any 9, and we look for a strategy to calibrate 0,, that
is guaranteed to perform well no matter how § is chosen. To write this more explicitly, we let
v=v(9) be dependent on §, and we search for the best collection of parameters that is potentially
a function v (-) on J:

R*=min max R(0(),v(-),9) (13)

v(-)eAO(-)eH,5€RT
where A denotes a set of functions. This set A depends on the class of estimators 0., we use, which
will be described in detail. Moreover, as we will see, (12) and (13) are closely related; in fact, under
the settings we consider, solving either of them simultaneously solves another. In the following, we
will focus on (13) and discuss the immediate implications on (12) where appropriate. We shall call

R* the asymptotic minimax risk ratio (AMRR).

4.2. An Initial Example: Recursive Estimators

For convenience, let us from now on set § =d(n+mngy) ~ as the tuning parameter in the sample-

average-based estimator 6,,, where o = so that it achieves the optimal MSE order. The

1
2(q1+92)
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number ng can be any fixed integer to prevent ¢ from being too big at the early stage, and does
not affect our asymptotic analyses.

To construct our proposed estimator én, we will first use the idea of the recursive estimator stud-
ied in Section 5 of Glynn and Whitt (1992). At run j, we simulate 6, (), where §; = d (j +ng)~ " for
some constant a~l, and « is the same as in 0,,, i.e., the parameter is chosen as if the current simulation
run is the last one in the budget if a conventional sample-average-based estimator is used. The
estimator in Glynn and Whitt (1992) uses the average of 6; (9;), namely 37" 6;(d;). As shown
in Glynn and Whitt (1992), this estimator exhibits the optimal MSE order like 6,,. Moreover, as
they have also noted, this estimator admits a recursive representation 6,, = (1-1) 0, 1+ 16, (0,),
where each update depends only on the parameter indexed by the current run number, rather
than the budget. Thus, the optimal MSE order is achieved in an “online” fashion as n increases,
independent of the final budget.

The initial class of estimators that we will consider is a generalization of Glynn and Whitt (1992),
which is also considered in Duplay et al. (2018). Specifically, we consider estimators defined via

the recursion

0 = (1—7,) 00°, + 7,0, (5,) (14)

where 8, =d (n+mng)”* is defined as before and o> 0, and 7, is in the form ¢ (n+mny) ™ for some

c>0and >0. égec can be arbitrary. Moreover, we also consider averaging éffc in the form
éavg - l i éT@C (15)
n n 7
j=1

which resembles the standard Polyak-Ruppert averaging in SA (Polyak and Juditsky (1992)).
Our first result is that, in terms of the AMRR, the class of estimators 7 and 699 are quite
restrictive and cannot bring in much improvement over 6,,. To elicit this result, we begin with some

consistency properties of 07.°:

PROPOSITION 1. Under Assumption 1, we have:
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1. If <1l and a< the estimator 0”0 is Lo-consistent for 0y, i.e.,

2q’

hnlza(ég”-—eo)Q::O

n—oo

2. If <1 and a > %, or if B> 1, the error of é:ﬁc in estimating 0y is bounded away from zero
mn Lo-norm as n — oo, i.e.,
. 2
hmhﬁE(@“—HO >0
n—oo

Proposition 1 shows that 0’““ estimates 6 sensibly only when 8 <1 and a < 5. We thus focus

on this case subsequently. The following describes the convergence rate:

THEOREM 2. Under Assumption 1, the MSE of é:fc in estimating 0y behaves as follows:

1. For f<1 anda<%

N 2 co?
E (92“ — 90) =d?nBip a4 ____pl2eeb g, (n‘Q‘“a + n2‘12°“_ﬁ) as n— oo

2d2a2

_ - _ 1 a1

2. For =1, a= 5"~ and c> 50—,
R 2 cd?t ? 202 __a __a1
E (0;66 _ 90> _ — B+ n @t 4o (n a1 +az ) as m— 0o (16)
€ 2(a1+az) (26 o q1+q ) d?az

_ _ 1 R 5

3. For =1, a= 2(q1+q2) and ¢ < 2a+a2)’ O for f=1 and a# 2( q1+q2)

q N 2
limsup n@ts (97’;“ - 00> =00

n—oo

The proofs of the above results, which are detailed in Appendix B, utilize the classical asymptotic
techniques for recursive sequences in Fabian (1968) and a slight modification of Chung’s lemma
(i.e., Lemma 1 in Appendix B).

We now look at the AMRR for HA;"‘C. First, Theorem 2 shows that the choice S =1,a = m

q
is the unique choice that gives rise to the optimal MSE order n Tia | Moreover, given this choice

of a,, we need ¢ > in addition to 8 =1. We will focus on these configurations for 7¢ that

2(q1+q2)’
achieve the same MSE order as the conventional estimator 6, with the same a.

Suppose we set d= d, but allow the free selection of ¢ within the range that gives rise to the

optimal MSE order. We thus can write 07 = 67 (/) where v = (d, ¢) is the collection of all tuning
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Arec . . —1
parameters that 67°¢ depends on, defined via (14) with ~, =c(n+ng) ~ where ¢ > Saita - Lhe
integer ny does not affect any asymptotic and can be taken as any given value. The following

characterizes the AMRR and the configuration that attains it:

THEOREM 3. Under Assumption 1, let MSE““(0(-),d,c) be the MSE of éffc (d,c), and

) MSE;“ (0 (-),d,c

We have

2
. qi !
min max R™(0(-),d,c)= +
> 5l 0()EH,d>0 o 16 (i +q2)°  2(¢1+ @)
591 +492
2(q1t+q2)

which is attained by choosing c =

Next, we provide more flexibility in the choice of d in éffc (v), where v = (ci, c). In particular,
rather than setting d=d, we allow d to depend on d in any arbitrary fashion, i.e., d= g (d) where
g(-):Ry — Ry is any function. Let F be the space of any functions from R, to R.. We have the

following results on the AMRR of this enhanced scheme where. For convenience, we denote

1
G* _ ( q1 + 2(]2 > 2(q1+4q2) (17)
4(q1 +q2)

THEOREM 4. Under Assumption 1, let MSE]* (9() .d, c) be the MSE of éff’c <az, c>, and

MS ;C(e(),ci,c)

Rree <9() ,d, aNZ, c) = limsup : )

nooo  MSEy(0(-)

We have
911292

2q 2 q1+q
min max R’“SC(Q(‘),d,g(d),C):2‘11+2‘12 <q1+qQ> o

g()EF c> 2(q1q_1~_q2) 6(-)€H,d>0 q1+q2

which is attained by choosing g (d) = G*d and c=1, where G* is defined in (17).

We note that Theorem 4 indicates ¢ =1 is optimal in this enhanced scheme, while the optimal
d is chosen as a constant factor G* of d.
Next we look at éffg. It turns out that the AMRR depicted for é;ec in Theorem 4 applies also

to §2v9. To this end, we first state the MSE of 69
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THEOREM 5. Under Assumption 1, the MSE of égvg in estimating 6y behaves as follows:

1. For <1 and a<

2(q1+q2)’
2 2
E (éavg B 90>2 _ dn B2n72q1a + 0-—77,2(12&71 +o (n72q1a + n2(120‘*1) as n — 0o
n 1—qia (1+2q2a) d2a2
(18)
2. For <1 and o> 2(q1+q2)
E (éavg -0 )2 — J—ZnQQQOC—l +0 (nQQQa—l) as n — 0o
" °) T (14 2ga)d2e

Comparing Theorem 5 with Theorem 2, we see that, when o = the first-order MSE of

(q1+q2
029 in the considered regime (in (18)) exactly equals that of 67¢¢ (in (16)) when ¢=1 and 3 =1.
Like before, o = W is the unique choice that optimizes the MSE order for é;“g . Thus, we will

focus on this choice of o in #2%9. Note that then 629 = §2v9 (1) where v = (dN7 c, 6) is the collection

of tuning parameters that ég”g depends on. This leads us to the following AMRR:

THEOREM 6. Under Assumption 1, let MSE}"? (0() .d,c, B) be the MSE of ég”g = éﬁ”g (J, c, B).

Let
" ; s (0().de.)
R (6’(-),d, d,c,ﬁ) :llills;}p MSE, (0().d)
We have
+2 -
g(-)ef,rg30<6<1 0(-)%11%?§>()Ravg (0(),d,g(d), ’B)_2ql+q2 <H>

which is attained by choosing g(d) = G*d, and any ¢ >0 and 0 < 8 < 1, where G* is defined in

(17).

The minimax ratios stated in Theorems 3, 4 and 6 remain the same, in a uniform fashion, when
the parameter d in 6, is fixed instead of being chosen by an adversarial user. In other words, the
minimax risk ratio of 67 or #2*9 compared to 6, would not improve with a finer calibration on

the tuning parameters ci, ¢, B catered to each specific d. This is described in the following result:

THEOREM 7. We have the following:
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1. Under the conditions and notations in Theorem 3, we have, for any fized d,

2
. 4 4
min  max R (0(-),d,c) = +
c> 2(qf-14-q2) o()eH 16 (Q1 + QQ)2 2 (QI + QQ)

591+4492
2(q1+q2) °

which is attained by choosing c =

2. Under the conditions and notations in Theorem 4, we have, for any fized d,

9112492

3 ~%iFer
min max R (0(-),d,d,c> _omts (WQQQ> e

7 a1 0(VeH
d>0.c> 5ty 0()€ ¢1+q2

which s attained by choosing d=G*d and c=1, where G* is defined in (17).

3. Under the conditions and notations in Theorem 6, we have, for any fixed d,

_91+292

~ 2 2 q1+q
min max R*Y (9(~),d, d,cjﬁ) — 9wt (M> o

d>0,e>0,0<8<1 0(-)€EH a1+ q2

which is attained by choosing d = G*d, and any ¢>0 and 0 < 8 <1, where G* is defined in (17).

Theorem 7 is consistent with Theorems 3, 4 and 6 in that the optimal strategies to calibrate the
d in éffc and ég“g remain as a constant scaling on d, regardless of what the specific value of d is.

To get a numerical sense of the above results, Tables 1 and 2 show the AMRR and optimal
configurations of éffc and ég“g . Table 1 illustrates the scenario ¢; =2 and ¢z =1 (the CFD case
without CRN). Restricting d =d in §7°° (i.e., Theorem 3), the AMRR is 1.38, attained by setting
c=2.33 in éff‘:. In contrary, if we allow d to arbitrarily depend on d (i.e., Theorem 4), the AMRR
is reduced to 1.08, attained by setting ¢ (d) = 0.83d, and ¢ =1 in 7. Similarly, the AMRR for
029 (i.e., Theorem 6) is also 1.08, attained again by setting g (d) = 0.83d but now with any ¢ >0
and 0 < < 1.

Analogously, Table 2 illustrates the scenario ¢; =1 and ¢, =1 (the FFD and BFD cases without
CRN). If we restrict d=din é:fc (i.e., Theorem 3), the AMRR becomes 1.27, attained by setting
c=2.251in é,’jfc. In contrary, if we allow d to arbitrarily depend on d (i.e., Theorems 4 and 6), the
AMRR is 1.09, attained by setting g (d) =0.78d, and ¢=1 in 67 or ¢>0,0< 3 <1 in 9.

Note that, in all cases considered above, the AMRR is greater than 1, implying that without
knowledge on the model characteristics, the estimators é;ec and éﬁ“g can have a higher MSE than

the baseline 6, asymptotically.
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0re¢ (d unadjusted) | 67¢¢ (d optimized) feve
AMRR 1.38 1.08 1.08

Optimal Configuration | ¢=2.33, 3=1 |d=0.83d,c=1,6=1|d=0.83d,¢>0,0<8<1

Table 1 AMRR and optimal configurations for the case g1 =2,q2 =1

07 (d unadjusted) | 07 (d optimized) G

AMRR 1.27 1.09 1.09

Optimal Configuration c=225=1 d=0.78d,c=1,=1|d=0.78d,¢>0,0< <1
Table 2 AMRR and optimal configurations for the case g1 =1,q2 =1

4.3. Maintaining Bias-Variance Balance

We provide an intuitive explanation on the minimax results in Section 4.2. More specifically, we
demonstrate that a key argument to obtain the minimax calibration strategy of a proposed class of
estimators is to balance bias and variance in a similar manner as the baseline estimator, in terms
of the factors multiplying the unknown first-order constants B and o?. This insight is general and
will be helpful in optimally calibrating wider classes of estimators, such as the general weighted
estimators presented in the next section.

To explain, let us recall the notation in (11) that in general, the asymptotic risk ratio between
a proposed estimator with parameter v and a baseline estimator (where we hide its parameter for

now) can be expressed as

R(O(),v) =ﬁfgs;}pl\m

Suppose that both estimators have the same MSE order, which is obtained optimally by balancing
the orders of the bias and variance. Then the limit in the above expression becomes

_ bias; (v)* +var, (v)

il
bias; + var

R(O(),v) (19)

where bias; (v) and var; (v) refer to the first-order coefficient in the bias and variance terms of
the proposed estimator, and similarly biasy and vary refer to the corresponding quantities of the

baseline estimator. Furthermore, with the model constants B and o2, we can further write (19) as

B Cin'as (I/) B2 + Cfar (l/) 0.2

R(G() 7V) CgiasBZ+C6)aro-2
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where C?* (v) and CV*" (v) are the coefficients in front of B? and ¢? in the first-order MSE of the
proposed estimator, and C§** and C2?" are the corresponding quantities of the baseline estimator.

Now, given these coefficients, an adversary who attempts to maximize R (6(-),v) would select
either an arbitrarily big B? or ¢? , depending on which ratio CY* (v) /C** or CVer (v) /CEe"
is larger respectively, which leads to a worst-case ratio max{C?* (v) /C§*s, Cy* (v) /Cy*"}. This
forces the minimizer to calibrate v such that the two ratios are exactly the same, i.e., we choose v

such that
chos () _ Gy (v)
Cgias Cgar

=S (20)

for some constant S. With this observation, the solution to solve for AMRR can be formulated as
minimizing S subject to the constraint (20), namely

c () _ Crr )
Cgias Cgar

min S subject to =5 (21)

which gives the AMRR R*, and an optimal solution for (21) is the minimax calibration for the
proposed estimator. This line of analysis applies similarly when the baseline estimator contains its
own tuning parameter J, and that the proposed estimator is calibrated in a way dependent on
(either in formulation (12) or (13)).

Now let us consider #7¢° in Theorem 3. From Theorems 1 and 2, since we assume both the

parameters of 6, and éffc are chosen to exhibit the optimal MSE order, we can write

rec . MSE"’@C 0 . ,d7C
R (9()7d7 C) :hmﬁsup MS;_EO((G(()) d) )

2
2 2 __9 N
__cdt B2+ c’o n aitae 4o(n ate
c— 91 24292 <Ci q1 )
. 2(q1+a2) 2(q1+492)
= limsup

__a __ a1
n— o0 <d2q1 B2+ —dg; ) n a1t +o (n ‘11+q2>

2
q1 2
(C_qul> B+ ot a0
B 2(q1+92) (6_2(41+q2))

- 2 2 1 2
1 B? + o

We set

2
( cdil ) 2
___ a4 2q2< 71171)
G o 2d ‘" 2a1tar)
d?n ey
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and notice that d can be all cancelled out, giving

2
( c ) B c?
_ q1 - .
¢ Har+a2) 2 (C o 2(6111-1*-@))

which upon solving leads to ¢ = g(qql:t]q;) and both sides of the equation being — (

2
'S + q1
a1+a2)? | 2(a1+492)

+1,
thus giving the corresponding result in Theorem 3. Note that, since d is cancelled out in the above
derivation, the same result in Theorem 7 holds immediately for the setting of any fixed d.
For 67 in Theorem 4, we can write
2 2

2
cdl 2
——— | B°+ — o
q
Rree (9 () d CZ C) _ (c 2(q1-1&-q2)) 242492 (c— 2(q1q41»q2))

21 32 + L 42
1 B? + o

and we set )
( cddl ) 2
_ q1 7
MEICTR) - 2d%12 (Ci 2(q1q<lkq2))
d2a - 1 (22)
292
However, the d is not cancelled out here. Nonetheless, we can rewrite (22) in terms of the ratio %,

as

d

2 ~\ 2q1
a7 = 1’
€T Aot d 2 (C_ 2<q1qiqz>> (d> -

1
Optimizing jointly over ¢ and n = % gives c=1 and n = (ﬁ%ﬁg;) 2(q1+q2), and the value on both
2 _q1+2q9 .
sides of the equation is 273 (%) “7% This shows the result for 07°¢ in Theorem 4. More-

over, note that regardless of whether d is chosen by the adversary or fixed in advance, we choose d
as nd, and thus we also show the corresponding results in Theorem 7. Appendix B further details

the above arguments.

5. General Weighted Estimators

We now consider a substantially more general class of estimators than éffc and é;“g . Namely, given

we generate 0, (8,),j=1,...,n where 6, =d (j +no)”* with the optimally chosen a = and

1
2(q1+92)

ng is any fixed integer, we consider

05 = Z w; .05 (6;) (23)
=1
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where w™ = (w,,,) ., is any weighting sequence.

Jj=1,...,
In the following, we will first present our main result on the AMRR of (23) relative to 6,, with
d=d(n+ne) “, and the associated characterization of the optimal weighting scheme as a sum of

two distinct decaying components (Section 5.1). Then we will describe the key developments of the

result that relies on analyzing a non-convex constrained optimization (Section 5.2).

5.1. Optimal Weighted Estimators and Two-Decay Characterization

The estimator éff" in (23) contains the tuning parameter d and the weighting sequence w(™.
While d is chosen independent of n in the asymptotic (as it appears in the asymptotic risk ratio
that is independent of n), the sequence {w(n)}n=1727___ is a triangular array of w;, as n — co. For
convenience, we denote W = {w(™},_,,  as this array. We write MSE{*" (9() ,J,w(")> as the
MSE of ége" = éff” (v), where v = (d, w(")> is the collection of tuning parameters that é;(’f" depends

on, and recall MSE, (6 (+),d) as the MSE of the baseline estimator 0,, =, (d). We define

RI" (9 (+),d, d, W) = limsup MSE™ (9 ) ’J’ w(n))

MU T NISE, (6().d) 2

as the asymptotic risk ratio between éf’f” and 6,,.
Moreover, we impose a condition on the magnitude of d relative to d. In particular, we restrict
d to be at most Kd for some constant K > 0. We consider calibration of d as a function g (+) on d.

This is equivalent to requiring g (d) < Kd for any d, for a maximal inflation factor K > 0. Denote
Fr={g9():9(d) < Kd}
W as the space of any triangular array, and H as in (10). We consider the AMRR

min max R (0(-),d,g(d),W)

g(VEFK WEWO(-)EH,d>0

We have the following identification of the AMRR and the characterization of optimal calibration:

THEOREM 8. Under Assumption 1, we have the following:
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1. The AMRR of éff" satisfies

. q1 1
R (0(:),d,g(d), W)= 25
() EF W EW ()M 450 (6(),dg(d), W) ¢ + g K2 (25)
2. The weights W* = (w},,)j=1,..n that achieve (25) is given by
T n=1,2,...
. Al Ab
Wjn = 1q1+242 . 2 _4q2
Gng)Tnted (G 4ng)T
where X}, N5 are solved by
At STRST a*
= (26)
A2 a1 22 1
and a* is an optimal solution to
2499 9 _9a
min |a|T¥e2 (&110° + 26120 4 Eop) T2 (27)

CL:(K2(‘71+‘72) —511)a2—2§12a—52220

where

ISERST ¢ (1) ¢ <2%}1ﬁ32)>

] o) o(at)
and ¢ (k) =37, (j+mn0)"". Moreover, g(-) is defined by g(d) = Kd.

Next, we also note the same result if we fix d in the baseline estimator 6,,, uniformly for any d:

COROLLARY 1. Under the conditions and notations in Theorem 8, we have, for any fized d,

. ! 1
min max R"(0(-),d,g(d),W)=
o1 o0 OL).dgld), W)=, Rom

Jin

which is attained by the weights W* = (w* )j:]),,,’n and setting g (d) = Kd that achieve the AMRR
n=1,2,...

in part 2 of Theorem 8.

Before we discuss some implications of the results above, we point out that the condition g (d) <
Kd is imposed to combat the hidden finite-sample impact of our asymptotic calculations. More
precisely, the limiting value in (24) can incur two approximation errors in practice: First, while
we have focused on the asymptotic first-order terms in the biases and variances, the second-order

terms can play a role. Second, even assuming there are no second-order terms, the finiteness of
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sample size could still result in a discrepancy between the worst-case ratio and AMRR. As K
gets larger, the tuning parameter g(d) in our proposed estimator could get proportionately larger,
thus strengthening the finite-sample effects, meaning that more budget n is needed to observe
our asymptotic gain. This strengthening is likewise two-fold: First, the parameters ¢,’s are larger,
thus increasing the second-order effect. Second, the discrepancy between the first-order terms and
AMRR also increases. Thus, while theoretically the AMRR gradually decays to zero as K — oo,
such an interpretation should be cautioned with care. In our experiments (Section 7), we will
see that simply choosing K =1 gives numerical results largely coinciding with our theoretical
calculations under reasonable budget (e.g., n = 20), while the results when K = 3 or 4 could deviate
from the theoretical AMRR unless more sample size is used.

We discuss several implications of Theorem 8. First, the optimal weighting sequence wj,, com-

prises two components, each with a different decay rate, i.e., 2‘2;_33;) and qqu% respectively. The

coefficients in these decays, namely A} and A}, depend on n that is solved via a linear system of

equations, which ensures that neither of the two components in w}, is asymptotically negligible.
To illustrate the latter point, we demonstrate the asymptotic behaviors of A}, A, which are

revealed by first understanding the behavior of a* and using (26). Note that ¢ (x) ~ =—n'~" for

Kk < 1 and ~ logn for k =1, where a,, ~ b, represents asymptotic equivalence between two sequences

{an}nz, and {b,}72,, i.e., lim, o 3 = 1. Thus, the matrix

-1

q1+292
SERSE ¢ (1) ¢ (2(q1+q2))
q1+292 q2
§21 & _¢ (2(q1+q2)) ¢ (ql+q2>
- -1
2(a1+a2) ) 3, Fa3)
logn 2491792) 4 2(q1 +a2)
~ a
a1 aq
21+92)  3(q +ap) DER Tt
L @ a1
91
1 Guta pgten  _ 2A0te) ot e
a1 a
N q1+42nq1qT1,;2 logn — 4(q1+q2)2nqqu1q2 2(q1+42) a1 (28)
@ 8 a3 — STy 201 +a2) logn

q1

where the asymptotic equivalence “~” is on every entry of the matrix.
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_a o
Now, conjecturing that a* is of order n 2(1+%2) | we write a = an 2@+e]. By plugging in (28),

we have

a &1 &2 —a—
flla2 + 28120+ 820 = [ql 1] n2(a1+42)
2
n 2(a1+a2) 521 522 1
1 0 0 a
~ a7 [a 1]
natae q1 1
q1+q2
51 1

= 7{]1
g1+ g2 nd1+az

q
Thus, as n — 00, an “asymptotic” version of (27), when multiplying the objective value by naite ,

becomes
‘i&
2 91192
min ]d|# <q1 )
a:K2(a+e2)g2> qﬂ&qz ¢+ 42
which gives |a =, /4. This implies that
. (TR e
¢ q1 + g2 Knta noTaTe (29)
Thus, putting (28) and (29) into (26), we obtain that
q1 1 1
X~ < - 2)  — (30)
1 G+ g Kata n2(q1q-1i—q2) logn
and
q1 — 41
AN~ — n ate 31
Pt (31
We can now see that both terms in wj ,, namely A; T35 and 23 =z, contribute to the
(j+ng) 2(@1Fa2) (j+ng) 1142

first-order bias. Note that the first-order bias is of order } ", w;,d]", where §; = d(j+mne)”" and

1

o= 7.
2(q1+492)

Thus, using (30), the bias contribution from the first component in wj,, gives rise to

an order

n

1 1 1 _ 1 —~ 1

q1 q1+249 . a1 - a1 ;
n 2(a1+a2) logn J=1 (j +n0) 2(q1+42) (j + no) 2(q1+42) n 2(a1+a2) logn =1 J+no

e (n‘m> (32)
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On the other hand, using (31), the bias contribution from the second component in w}, gives rise

to an order

1 & 1 1 1
a Z - —a a = Z 41 +242

natae 557 (j4ng)nte (j +ng) 2(ar+a2) nfnﬂz 1 (f + ng) 2@ta)

=0 (n_ 2(q1+q2)

which is the same order as (32). Thus both terms in wj, contribute significantly to the first-order

bias term.

252q2

00 Using (30), the contribution from

Similarly, the first-order variance is of order Z" LW

the first component in wj}, gives rise to an order

1 = 1 _ay 1
(J +no) 1772 =
n‘H(Q‘ZQ (log n)2 ; (] + nO) qqlltzqq; nq;z&qz (logn Jz: 7+ ng

=0 (33)
nq1+‘12 logn

and, using (31), the contribution from the second component gives rise to an order

n n

1 1 . 2 1 1
24 2 (U 70) 72 = —55 , @
nute j—; (] + no) q1+a2 narta j—q (j + no) a1+

-0 (n*qqulqz)

which has an order larger than (33) by a logarithmic factor. Thus, considering also the cross term
between the two components in w7, in the expansion of the variance, the first-order variance is of
order n_qfflfm, which is the same as the squared bias.

Next we present some basic numerical values of the AMRR. Table 3 shows the values of the
AMRR for various maximal inflation factor K when ¢; =2 and ¢, =1 (the CFD case without
CRN). The AMRR is non-increasing in K, as advocated in Theorem 8 and attributed to more
optimizing power for the proposed estimator in the asymptotic limit as K increases (however, as
discussed before, we should be cautious about finite-sample distortions). The critical threshold

of K above which égf” is guaranteed to improve over 6, is K = \/g = 0.82. In particular, when
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Figure 1 Distribution of weights, with K =1, and budget n from 100 to 2000, when ¢1 =2,q2 =1

K =1 (we only allow choosing d as large as d at most), we have the AMRR equal to 2, which is

39
strictly less than 1. In other words, no matter what are the values of the model unknowns, the
optimized calibration of éff", in particular the two-decay weights {w}, };=1,..» and setting d= d,
would achieve a better MSE than 6,, asymptotically.

Figures 1 and 2 show the behaviors of the optimal weights for K = 1. Figure 1 shows that in
general the weights range across positive and negative numbers, with higher concentration around
0 as the budget increases. Figure 2 shows that, against the simulation run index, the weight starts
from the most negative and gradually increases to the positive region. Lastly, Table 4 shows the

AMRR when ¢; =1,¢g2 =1 (the FFD and BFD cases without CRN) as a comparison. The AMRR

in this case has the same decay rate and is smaller than that for ¢; = 2,¢, =1 across all K.

K 0.5 082 1.0 | 2.0 | 3.0 | 4.0

AMRR | 2.67|1.00|0.67 | 0.17 | 0.07 | 0.04
Table 3 AMRR for general weighted estimators, against K, when ¢1 =2,¢q2 =1
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Figure 2 Distribution of weights against simulation step, with K =1, and budget n = 1000, when ¢1 =2,¢2 =1

K 0.5 (071 1.0 | 2.0 3.0 4.0

AMRR | 2.00 | 1.00|0.50 [ 0.13 | 0.06 | 0.03
Table 4 AMRR for general weighted estimators, against K, when ¢1 =1,¢g2 =1

5.2. Constrained Optimization for Bias-Variance Balancing

We explain intuitively the key arguments that lead to the optimal two-decay weights w}, and
the identification of the AMRR in the form depicted in Theorem 8. We first note that to avoid
arbitrarily large value of R°", the sequence w;,, must sum up to 1 (up to a vanishing error), since
otherwise the scenario where 6 (-) has no bias and noise but 6, is arbitrarily big will blow up R9°".

Thus, for simplicity let us assume that Z?:l w;,, = 1. Also, for convenience, we shorthand w;
as wj,, and w as w™ when no confusion arises. Moreover, without loss of generality, here we
assume ny = 0 for notational convenience. Considering the bias and variance of Z;;l w;0; (6;), we

can write

MSE{”" (9(.),J,w) = <ijb(5j)> +D_wiVar(v(5))

~ 2
(¥ dn 1 L0t (L+o(1))
(S (B o)) ) + L w Tl
Jj=1

j=1
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n 2 9 n
7 Wi o 20qy, 2
= | Bd" E — | += JY2ws; + error (34)
JO‘(II d24a2 J
Jj=1 Jj=1

Recall the discussion in Section 4.3. To control the adversary from increasing R°", we attempt
to maintain the relative balance of bias and variance in a similar manner as the baseline. More
specifically, presuming that ég@” exhibits the optimal MSE order n_qqul%, we keep the ratios of
the coefficients in front of B? and o2 of the first-order MSE terms, between 69" and 8,,, to be the
same. The coefficient of the squared bias term is roughly
N 2
nqqul‘H (d‘“ Z ;g;)

j=1

while the coefficient of the variance term is roughly

n

a1 1
nataz — E jzo“12 U)2-
d2a2 J

Jj=1

Thus, similar to (20), we would like to ensure

~\ 91 o 2 n

a d w; a1 0

nat+a (<d> g j“‘;) =natae (J T E 52 ‘ijz. (35)
j=1 3> =1

5 q
Denoting n = g, and dropping n@i+a on both sides of (35), we consider the optimization problem

min,, S

2
1 — q n wj _ _1 n 20q 2
subject to S = <77 i) =1 jaql) = 2 > =1 JE P w;

n<K

Z?:l w; =1
Note that the first constraint is the bias-variance-balancing condition as in (21). The second and
third constraints capture the inflation condition g (-) € Fx and 77, w; = 1. Denote the optimal
value of (36) as S%. Then roughly speaking, the AMRR would be lim,, . N7 S . The associated
optimal solution w,n turns out to dominate any other possibilities, in particular those obtained by
allowing any of the bias and variance terms dominate another.

In the rest of this subsection, we will explain how (36) leads to the two-decay representation

*
Jm?

of w?,, and leave other details to Appendix C. Note that (36) is non-convex. However, we can
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reformulate it into a convex program together with a simple one-dimensional line search over a

region that consists of at most two intervals.
To this end, first notice that from the first constraint in (36), we have

1
" ) ) 2(q1+a2)
) 40eq2

) 2
Z’n u;]
Jj=1 5291

’]7:

so that the second constraint is equivalent to

n

2aqz, .2 2(q1+q2) Wy
Z] wj S K ' Z jaql

j=1

j=1

Moreover, by plugging in (37) to either expression of S in the first constraint of (36), the objective

function becomes
n q1+q2 n 91142
E wj E ~2aq2w2
jaql j J
=1 =1
Therefore, (36) can be rewritten as
_293 _a
. n wy | 91Fa2 n 20q, 2 q1+4q2
min, ‘Zj:l joa1 (Zj:lj w;

2
subject to Y ", j**Pw? < K0t (2?21 jlcfgl) (38)

Z?:l w; =1

n w4 .
j=1 70T and write

To reduce (38) into a more tractable form, we introduce the variable a =

(38) as
. 2% n 52aq2,,2 qqulq?
min,, , la|a+a2 (Zj:l] wj)
subject to 37, j* P w} < K*0t02)q? (39)

wy

Z?:1 W =a
Z?:l w;=1

Now we decompose the minimization in (39) into two layers, first minimizing w given a, and then

minimizing a. This way, (39) can be rewritten as

(40)

_2ap _2q1
min |a|1te2 Z¥ (a) 1
a
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where

[N

Zi(@)=min, (S5
subject to Y 7| j2Pw] < K2@ta)g?
Dy s =a
Sogwy=1

Note that (41) is a quadratic program. We write it in a simpler form as

(41)

min,  [Shu
subject to HE%wHQ < K2(a1+az) g2
(42)
pww=a
1Tw=1
where Y = diag (]'206112)]_:1 € R™ ", = (jfath) € R", 1= (1)j €R", and H . H is the Lo-norm.

We can further separate out the first constraint in (42) and consider the rest of the optimization.

To this end, denote

77 (a) = min,, 23]
subject to p'w=a (43)
1Tw=1

If Z* (a) < K*@1+%)q?  this means the w that solves (43) is a feasible solution to (42) and, since it
is optimal without the first constraint, it then must be optimal too for the entire optimization in
(42). Moreover, in this case Z(a) = Z*(a). Otherwise, if Z* (a) > K2(@1+92)g2 then there is no w
that can satisfy the first constraint in (42) simultaneously with the second and third constraints,

and thus (42) is infeasible. Therefore, we have

Zr(a) if Z7 (a)” < K2@+@)g2
Z, (a) = (44)

00 otherwise

Putting in (44), optimization problem (40) becomes

292~ 291
min |a| q1+a2 Z:; (a) q1+a2 (45)
a:Z;;(a)QgK?(ﬂJrqz)aQ
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Thus, our strategy to solve (36) is to first solve for an optimal solution w* (a) = (w} (a"‘))j=1 .
o (43) and obtain Z(a), and then conduct a line search for a in (45). An optimal calibration
configuration is given by the weighting sequence w* (a*), where a* is an optimal solution to (45),

and n*, where

1
2(q1+a2)

. Z?Zl j2aq2w;_< (CL*)Q

no wia)\?
21 jear

by using (37).
The two-decay characterization of the weighting sequence arises from the solution to (43). To

illustrate, consider the Lagrangian
||Z%w|| M (pTw—a) =X (1Tw—1)

Differentiating with respect to w and equating to 0, we get

Yw
S 2w

—>\1,LL—)\21:0

which gives

w = 271 ()‘1:U’+ )\21) = )\1271[,6 + )\22711

for some A1, \s (scaled by ||$2wl|| compared to the ones displayed before). Note that this is equiv-

alent to

wy— L e (47)

ja(q1+2q2) j2eaz

for j=1,...,n. This is precisely the form of w}, in Theorem 8. By identifying A; and A, using
the constraints in (43), and writing out 7* and Z* (a), we arrive at the depicted choices of w and
g (+) in the theorem. The remainder of the argument comprises an analysis to show that no other
choices of w and g () can give a better asymptotic minimax ratio, via comparing with an alternate
optimization problem and demonstrating that the residual error induced by wj, and 7* in (34) is

indeed of higher order. Appendix C shows the details.
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6. Multivariate Generalizations

All results we have presented apply to the multivariate version of (1). For convenience, we adopt
the notations there. We are interested in estimating 6y € R?. Given a tuning parameter d € R, , we

can run Monte Carlo simulation where each simulation run outputs
0(0)=0,+Db(5)+v(J) (48)

with b (6) = B& +0(6%) as § =0, v(8) = <2 and ¢, ¢ > 0. We assume that:

5%
ASSUMPTION 2. We have
1. B€RP is a non-zero constant vector.
2. €(0) €RP is a family of random vectors such that Fe (6) =0 and lims_,oCov (e () =X for

some positive semidefinite matriz ¥ with tr (X) > 0.

The constructions of the considered estimators are generalized in a natural manner. Namely,
the sample-average-based estimator 8, is obtained by taking the average of n vectors of 6 (§). The
recursive estimator (14) is obtained in a vectorized form, where the step size v, € Ry is still in
the form ¢ (n + no)fﬁ and 0, = d (n+n,) . Similar vectorization holds for the averaging estimator
(15). Lastly, the general weighted estimator in (23) can also be defined in a vectorized form, with
{wjn}tj=1,. n neto,. still a triangular array of weights.

To gauge the error of an estimator 6,,, we use the MSE given by E Hén — 6||>. Note that we
can decompose this into bias and variance in Lo, namely ||E8,, — 0| + tr (Cov (én)> With this
definition of MSE, the asymptotic risk ratios (11) and (13) can be similarly defined. Then all the
results in Sections 3, 4 and 5 hold with only cosmetic changes. Appendices A and B show the
multivariate version of the theorems and proofs in Sections 3 and 4, while it will be clear from
the developments in Appendix C that the multivariate analog of Theorem 8 follows from its proof
directly (essentially, by replacing B? with ||BJ|? and o2 with tr(X)).

Multivariate estimators in the form (48) arise in, for example, zeroth order gradient estimator

using simultaneous perturbation (Spall (1992)). To estimate V f (x), a sample output would involve
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first simulating a random vector, say h = (h;) _p €R?, then generating two unbiased simulation

i=1,.
runs f (x+0h) and f (x — 6h), and finally outputting, for each direction 4,

A~ A~

f (x+6h) — f (x — 6h)

(49)

where § > 0 is the perturbation size. This scheme satisfies (48) with ¢; =2,¢, =1 by choosing h to
have mean-zero, independent components with finite inverse second moments, and under enough
smoothness conditions on f. One can also use several variants of (49) to obtain similar conclusions,
for example the one-sided version ﬁlif(x—i— dh) (Spall (1997)), or %f(x—i— oh) h; by choosing h to
satisfy other types of conditions, as in Gaussian smoothing (Nesterov and Spokoiny (2017)) or
uniform sampling (Flaxman et al. (2005)).

Moreover, one important application of the above multivariate estimators concerns input uncer-
tainty quantification (e.g., Barton (2012), Henderson (2003), Chick (2006), Song et al. (2014), Lam
(2016)). In particular, a common estimation target in this problem is the output variance of a
simulation experiment that is contributed from the statistical noises of the input models calibrated
from external data sources, which is typically expressed in the form V) (x) " AV (x) where A is the
sampling covariance of the estimates of the input parameter vector x € R?, Vi (x) is the gradient
of the simulation performance measure with respect to x, and " denotes transpose. Thus, this is in

the form of G (8y) where 8, = V¢ (x) and G (6y) = 6, ABy. Our results applies to estimate G (6)

with a plug-in of 8y and a standard application of the delta method to control the inherited error.

7. Numerical Results

We conduct a set of experiments to test the theoretical results derived in this paper. We consider
several variants of an M /M /1 queueing system and target performance measures. Specifically, we
have the following;:

e Case 1: Critically loaded queue and transient performance measure. We set the arrival and
service rates to be both 4, so that the system is critically loaded. The queue is initially empty.

We consider a transient performance measure of the expected averaged system time of the first 10
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customers, and are interested in the gradient of this quantity with respect to the arrival and service
rates. Here, the true derivatives with respect to these rates are 0.0946 and —0.2501 respectively,
which are calculated by the likelihood ratio / score function method (e.g., Glynn (1990), Rubinstein
(1986), Reiman and Weiss (1989)) with 1 million simulation repetitions.

e Case 2: Non-critically loaded queue and transient performance measure. We set the arrival
rate to be 3 and the service rate to be 5, so that the system is not critically loaded. The queue
is initially empty. We consider the same performance measure and target gradient as the setting
above. Here, the true derivatives with respect to the arrival and service rates are 0.0676 and —0.1136
respectively.

e (Case 3: Non-critically loaded queue and steady-state performance measure. We set the arrival
rate to be 3 and the service rate to be 5, so that the system is not critically loaded. The queue is
initially empty. We consider a steady-state performance measure of the expected averaged system
time of the first 1000 customers, and are interested in the gradient of this quantity with respect
to the arrival and service rates. The true derivatives with respect to these rates are 0.2746 and
—0.2440 respectively.

In our experiments we assume these systems or performance measures can be simulated only
through black box, i.e., we cannot introduce effective coupling among simulation runs that allows
one to use unbiased derivative estimators or multilevel Monte Carlo (however, we use unbiased
derivative estimator, via the likelihood ratio / score function method, to obtain the ground truth
in order to calculate MSEs). For each system and target performance measure above, we consider
two settings. The first setting uses CFD to estimate the derivative with respect to the arrival rate.
The second setting uses simultaneous perturbation (described in Section 6), with the perturbation
vector h having each entry being independent symmetric variable on £1, to estimate the gradient
with respect to the arrival and service rates simultaneously. In each setting, we consider three

estimators: 1) The conventional sample-average-based estimator 6,,; 2) the recursive estimator é;“;

o=

and 3) the general weighted estimator é;’f". In 0, we set 6 =d(n+mny) © where d=1. In é;ec, we
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set c=1, 0; = J(j+n0)7% for the j-th simulation run, where d = 3-5d = 0.83d. For éfﬁ", we set
0, = CZ(j + no)_% where d = n*d, and use weights w}, , with n* = K and w}, both chosen according
to Theorem 8. Moreover, we consider values of K ranging from 0.5 to 4 among different settings,
which correspond to the values shown in Table 3. For each experimental setting, we consider
simulation run-lengths n varying between 20 and 1000, with n, fixed to be 5. We repeat the
simulation for 1000 times to estimate the empirical MSEs. Moreover, we output the 95% confidence
intervals for the risk ratios, which are obtained by a standard application of the delta method.

Tables 5-10 summarize the results for the derivative estimation with respect to the arrival rate
and the two-dimensional gradient estimation with respect to both the arrival and the service rates,
respectively for Cases 1-3 above. Note that in interpreting these tables, one should focus on the
risk ratios instead of the absolute magnitude of the derivatives. This is because we can always
artificially inflate or deflate the values by simply multiplying the considered performance measures
by a scalar. Thus, an appropriate measurement of the estimation error should be the relative error,
namely MSE/ (true value), where the denominator is canceled out in the risk ratio calculation.
We see that, across all estimation settings in Cases 1 and 2 (Tables 5-8), the empirical risk ratios
between the recursive estimator 67¢° and the baseline 6, are stably around 0.96 (n = 700 in Table 6)
to 1.21 (n =1000 in Table 6) when the budget n is at least 100, while they range from 0.81 (n =20
in Table 5) to 1.03 (n =50 in Table 7) when n is 20 or 50. These behave quite consistently with
the theoretical prediction of 1.08. For Case 3, the risk ratios can range from 0.27 to 6.36 (n =20
in Tables 10 and 9) for small n, but as n increases towards 1000 the ratio appears to converge
to roughly 1.0-1.2 when estimating the derivative with respect to the arrival rate (Table 9), and
to roughly 0.8-1.0 when estimating the gradient with respect to both arrival and service rates
(Table 10). These results also appear to match our AMRR prediction of 1.08.

Next we discuss the general weighted estimator éff". Its risk ratios vary with K. We first consider
the transient measures in Cases 1 and 2. When K = 0.5, the risk ratios across all estimation settings

lie around 2.34 (n =700 in Table 6) to 3.38 (n = 100,140 in Table 5), which is roughly around,



Lam, Zhang and Zhang: Enhanced Bias-Variance Balancing: A Minimaz Perspective
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 35

though could be higher than, the theoretical AMRR value of 2.67. When K = 0.82, the ratios
are around 0.93 (n =500 in Table 7) to 1.31 (n =100 in Table 5), which become closer to the
theoretical AMRR value of 1. When K =1, the ratios are around 0.68 (n =900 in Table 7) to
0.89 (n =140 in Table 5), again becoming closer to the theoretical AMRR value of 0.67. When
K =2, we see that in the derivative estimation of arrival rate, the ratios are around 0.15 (n =120
in Table 5) to 0.21 (n =50 in Table 7), which match the theoretical AMRR value of 0.17. However,
for the gradient estimation with respect to both rates, the ratios increase to around 0.26 (n = 1000
in Table 8) to 0.45 (n =20 in Table 6), indicating (positive) deviation away from the theoretical
AMRR. Furthermore, when K =3 or 4, the risk ratios appear a lot less stable, taking values as
low as 0.04 (n =50 in Table 5) and as high as 8.59 (n =100 in Table 6). For the steady-state
performance measure in Case 3 (Tables 9-10), we see that the trends for K = 0.5 to 1 behave
roughly similar to Cases 1 and 2, but with higher variability in general. When K = 0.5, the risk
ratios range between 1.32 (n =280 in Table 9) and 2.74 (n = 220 in Table 10), which roughly
match the theoretical AMRR of 2.67. However, when K = 0.82, the risk ratios take values as low
as 0.69 (n =280 in Table 9) and as high as 1.57 (n =120 in Table 10), indicating more deviations
away from the theoretical AMRR of 1 than Cases 1 and 2. When K =1, the ratios range from
0.26 (n =20 in Table 10) to 0.81 (n = 1000 in Table 9), again indicating more fluctuations away
from the theoretical AMRR of 0.67 than Cases 1 and 2 (though the ratios are still lower than 1).
The deviations from the theoretical AMRR suggest our asymptotic characterization in some of
these cases is not accurate enough to capture the statistical behavior under the considered budget.
As described in Section 5.1, these deviations can be attributed to two approximation errors, first
the impact of the second-order terms in the biases and variances of estimators, and second, the
finiteness of sample size for the first-order terms even if there are no second-order terms in the
considered MSE ratio. As K gets larger, these finite-sample effects appear to strengthen and deem
the need of a larger sample size to observe the asymptotic behavior. Moreover, though we have fixed

d =1 in this set of experiments, the choice of d also appears to have a finite-sample effect, which
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we illustrate with an additional numerical experiment in Appendix D. Precisely understanding
these effects requires analyzing the finite-sample properties of the worst-case risk ratios, which is
beyond the scope of this paper but would constitute important future work. Nonetheless, from our
experiments, we see that simply choosing K =1 seems to be robust across all of our considered
settings.

We present additional experimental results in Appendix E to illustrate how our optimal weight-
ing scheme can be potentially incorporated in zeroth-order stochastic gradient descent or SA to
obtain faster convergence for black-box stochastic optimization. We also compare our scheme with
some benchmarks. Like the finite-sample investigation, a full study on more efficient stochastic

optimization based on the present framework will be left for future work.
8. Conclusion

We have studied a framework to construct new estimators that, in situations where simulation
runs are biased for a target estimation quantity, consistently outperform baseline estimators as the
sample averages of the simulation runs with a chosen tuning parameter. One challenge in choosing
the latter lies in the often lack of knowledge on the model characteristics that affect the bias-variance
tradeoff. To mitigate the adversarial impact of this ambiguity, we propose a minimax analysis on
the asymptotic risk ratio that compares the mean square errors between proposed estimators and
the baseline. In particular, we identify the asymptotic minimax risk ratio (AMRR) and the optimal
configurations for recursive estimators and their standard averaging versions. We show that, in
typical cases, the AMRR for these estimators are not small enough to justify any outperformance
against the standard baseline. We then consider a more general class of weighted estimators, and
identify the AMRR that can be significantly reduced to a level that implies that the resulting
optimal estimator asymptotically outperforms the baseline, regardless of any realizations of the
unknown model characteristics. Moreover, we provide an explicit characterizations of the optimal
weights in a two-decay-rate form, and argue how this arises from a balancing of bias-variance that

matches the baseline in order to control an adversarial enlargement of the risk ratio.
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n 0, oree 09" K =0.5 09" K = 0.82
20 1.08E-2 7.72E-3 (81+11%) | 3.52E-2 (325 £43%) | 1.26E-2 (116 £+ 15%)
50 5.95E-3 5.63E-3 (95+12%) | 1.78E-2 (300 £ 39%) | 6.48E-3 (109 4+ 14%)
100 3.32E-3 3.55E-3 (107 £ 14%) | 1.12E-2 (338 +=42%) | 4.36E-3 (131 £17%)
120 3.33E-3 3.43E-3 (103 £12%) | 8.93E-3 (268 +34%) | 3.72E-3 (111 £ 13%)
140 2.66E-3 2.90E-3 (109 £+ 14%) | 9.02E-3 (338 +=39%) | 3.47E-3 (130 £ 16%)
160 2.63E-3 2.57E-3 (97+£12%) | 7.65E-3 (291 £37%) | 2.92E-3 (111 +13%)
180 2.36E-3 2.48E-3 (105 £ 13%) | 6.94E-3 (294 +35%) | 2.46E-3 (104 £ 12%)
200 2.20E-3 2.38E-3 (108 +13%) | 6.69E-3 (305+37%) | 2.37E-3 (108 £ 14%)
220 2.11E-3 2.24E-3 (106 £13%) | 6.07E-3 (288 +35%) | 2.17E-3 (103 +13%)
240 2.01E-3 2.13E-3 (106 +13%) | 5.99E-3 (298 +37%) | 2.10E-3 (104 £+ 14%)
260 1.87E-3 2.10E-3 (112 £ 14%) | 5.17E-3 (276 +35%) | 2.24E-3 (120 £ 15%)
280 1.87E-3 1.92E-3 (97 +12%) | 5.15E-3 (276 +34%) | 1.81E-3 (97 +12%)
300 1.64E-3 1.80E-3 (110 +13%) | 4.78E-3 (291 £ 35%) | 1.75E-3 (107 +13%)
400 1.38E-3 1.54E-3 (112 +13%) | 4.19E-3 (303 +37%) | 1.55E-3 (112 +12%)
500 1.22E-3 1.28E-3 (105 +13%) | 3.66E-3 (299 £36%) | 1.22E-3 (100 +13%)
600 1.04E-3 1.18E-3 (113 +14%) | 3.03E-3 (292 +35%) | 1.11E-3 (107 £13%)
700 9.24E-4 9.83E-4 (106 +13%) | 2.56E-3 (276 +35%) | 9.40E-4 (102 £+ 13%)
800 8.61E-4 9.14E-4 (106 £13%) | 2.60E-3 (302 +37%) | 9.86E-4 (115+ 14%)
900 8.23E-4 8.54E-4 (104 £13%) | 2.30E-3 (280 +36%) | 9.07E-4 (110 £ 14%)
1000 7.17E-4 8.12E-4 (113 +£14%) | 2.03E-3 (283 +36%) | 7.66E-4 (107 £+ 13%)
n g9 K =1 g9 K =2 g9 K =3 g9 K =4

20 | 8.63E-3 (80E£10%) | 2.13E-3 (20+3%
50 | 4.67E-3 (79+£10%) | 1.03E-3 (17+2%
100 | 2.79E-3 (844+10%) | 6.76E-4 (20 +2%
120 | 2.44E-3 (73+£9%) | 5.16E-4 (15+2%
140 | 2.36E-3 (89+11%) | 5.31E-4 (20 + 3%
160 | 1.97E-3 (7T5+£9%) | 4.56BE-4 (17 +2%

9.20E-4 (8 & 1%) 5.25E-4 (5 + 1%)
4.36E-4 (T+1%) 2.56E-4 (44 1%)
2.77E-4 (8+1%) | 1.99E-3 (60+8%
2.25E-4 (7T£1%) | 1.53E-3 (46+6%
2.11E-4 (8+1%) | 1.32E-3 (49+6%
2.16E-3 (82+10%) | 1.16E-3 (42+6%

400 | 1.03E-3 (75+9%) | 2.62E-4 (19+2%
500 | 9.31E-4 (76 +9%) | 2.16E-4 (18+2%
600 | 7.99E-4 (77+9%) | 2.00E-4 (19+2%
700 | 7.48E-4 (81+10%) | 1.68E-4 (18+2%
800 | 6.36BE-4 (74+9%) | 1.58E-4 (18+2% 3.74E-4 (43 +5% 1.91E-4 (22 + 3%
900 | 6.18E-4 (75+10%) | 1.57E-4 (19+2% 3.36E-4 (41 + 5% 1.79E-4 (224 2%
1000 | 5.76E-4 (80+10%) | 1.36E-4 (19+2%) | 2.83E-4 (39+5%) | 1.42E-4 (20+2%)

Table 5  Empirical MSEs among estimators for the derivative with respect to the arrival rate for Case 1.

180 | 1.66E-3 (7T0+£8%) | 4.51E-4 (194+2%) | 2.12E-3 (89+11%) | 9.88E-4 (39+6%
200 | 1.67E-3 (76 £9%) | 4.14E-4 (1942%) | 1.78E-3 (81+10%) | 8.55E-4 (33+5%
220 | 1.57E-3 (74£9%) | 3.49E-4 (17+2% 1.50E-3 (71£9%) | 6.99E-4 (32+5%
240 | 1.48E-3 (744 9%) 6.48E-4 (33 +4%
260 | 1.40E-3 (75+9%) | 3.02E-4 (16+2% 1.26E-3 (67 4 9%
280 | 1.37E-3 (734+9%) | 3.28E-4 (18+2% 1.13E-3 (61 +7% 5.81E-4 (34 4%
300 | 1.21E-3 (74+9%) | 3.21E-4 (20+2% 1.05E-3 (644 7% 5.55E-4 (28 + 4%
( )
( )

6.60E-4 (54 + 6%
4.98E-4 (48 + 6%
4.02E-4 (43 +5%

3.19E-4 (25 + 3%
2.59E-4 (24 £ 3%

)
)
)
)
)
)
)
)
3.50E-4 (17+2%) | 1.37E-3 (68 9%
)
)
)
)
g
) 2.26E-4 (24 % 3%
)
)

)
)
)
)
)
)
g
6.26E-4 (31 +4%)
)
)
)
)
)
)
)
)

)
)
)
7.89E-4 (57+7%) | 3.82E-4 (26+4%
)
)
)
)
)

Bracketed numbers represent the 95% confidence intervals (Cls) for the risk ratios between the considered

estimators and the baseline 6,,.

Our work opens the door to multiple lines of expansion, in terms of both the formulating frame-
work and the techniques. First is the finite-sample counterpart of our analyses that aims to more
accurately capture the second-order effect of the bias-variance balance. Second, our framework can
be used to find better estimators for problems where simulation runtime is significantly affected
by the tuning parameters, in addition to bias and variance. Third, the statistical inference and
construction of confidence intervals/regions of our weighted estimators, which involves analyzing

central limit behaviors and the proper design of data-driven schemes like sectioning, are also of
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n 0., oree 09" K =0.5 09" K = 0.82

20 2.75E-2 2.32E-2 (85+7%) 7.99E-2 (291 +£27%) | 3.56E-2 (1304 12%)

50 1.42E-2 1.34E-2 (95 +8%) 3.94E-2 (278 £25%) | 1.68E-2 (119+11%)
100 8.71E-3 8.81E-3 (101 £9%) | 2.19E-2 (251 £22%) | 9.52E-3 (109 £+ 9%)
120 7.48E-3 7.53E-3 (101 £9%) | 2.01E-2 (268 £23%) | 8.85E-3 (118 +10%)
140 6.43E-3 6.59E-3 (102 +9%) | 1.81E-2 (280 +24%) | 7.46E-3 (116 +10%)
160 5.78E-3 6.02E-3 (104 £9%) | 1.51E-2 (261 £22%) | 6.75E-3 (117 +10%)
180 5.38E-3 5.66E-3 (105 +9%) | 1.52E-2 (282 +25%) | 6.33E-3 (103 +10%)
200 5.27TE-3 5.28E-3 (100 +9%) | 1.37E-2 (261 £23%) | 5.45E-3 (108 +9%)
220 4.62E-3 5.00E-3 (108 £10%) | 1.21E-2 (262 +24%) | 5.00E-3 (108 4 10%)
240 4.33E-3 4.64E-3 (107£9%) | 1.20E-2 (276 +24%) | 4.69E-3 (107 £9%)
260 4.03E-3 4.40E-3 (109 +9%) | 1.09E-2 (270 +23%) | 4.31E-3 (107 +9%)
280 3.93E-3 4.17E-3 (106 £9%) | 1.07E-2 (272 +23%) | 4.25E-3 (108 +9%)
300 3.75E-3 4.04E-3 (108 £9%) | 1.04E-2 (277 +24%) | 3.82E-3 (102+9%)
400 3.21E-3 3.46E-3 (108 £9%) | 8.52E-3 (265 +23%) | 3.22E-3 (100 £ 9%)
500 2.65E-3 2.71E-3 (102 £9%) | 6.68E-3 (252 £22%) | 2.83E-3 (106 +10%)
600 2.39E-3 2.44E-3 (102 £ 9%) | 6.28E-3 (263 +£23%) | 2.42E-3 (101 £9%)
700 2.23E-3 2.13E-3 (96 +8%) 5.20E-3 (234 +20%) | 2.26E-3 (102 +9%)
800 2.01E-3 2.08E-3 (103 +9%) | 5.15E-3 (256 + 22%) 1.97E-3 (98 = 9%)
900 1.73E-3 1.88E-3 (109 +10%) | 4.57E-3 (264 +£23%) | 1.85E-3 (107 £9%)
1000 1.55E-3 1.88E-3 (121 +11%) | 4.45E-3 (287 £25%) | 1.79E-3 (115+10%)

n g9 K =1 09 K =2 09 K =3 09" K =4

20 | 2.42E-2 (88 +8%) 1.25E-2 (45 +4%) 1.91E-2 (70 £ 6%) 5.61E-2 (204 +16%)

50 1.15E-2 (81 +7%) 5.85E-3 (41 +4%) 8.85E-3 (62 +6%) 2.82E-2 (199 £ 15%)
100 | 6.52E-3 (75+7%) 3.04E-3 (35+3%) 4.78E-3 (54 £5%) 7.49E-2 (859 + 85%)
120 | 5.62E-3 (75+7%) 2.57E-3 (34+3%) 4.44E-3 (59 £ 5%) 5.41E-2 (723 +71%)
140 | 5.21E-3 (81+7%) 2.38E-3 (37+£3%) 3.88E-3 (60 +5%) | 4.14E-2 (644 +61%)
160 | 4.58E-3 (79+7%) 2.18E-3 (38 +3%) 2.44E-2 (423 £40%) | 3.47E-2 (601 +58%)
180 | 4.28E-3 (80+7%) 1.89E-3 (35 +3%) 2.05E-2 (381 £37%) | 2.90E-2 (539 +54%)
200 | 3.93E-3 (74 +6%) 1.73E-3 (33 +3%) 1.70E-2 (322 +30%) | 2.68E-2 (509 & 49%)
220 | 3.62E-3 (78 £7%) 1.50E-3 (33 +3%) 1.52E-2 (330 +32%) | 2.40E-2 (520 £ 51%)
240 | 3.53E-3 (81 +7%) 1.56E-3 (36 +3%) 1.39E-2 (321 +32%) | 2.13E-2 (491 +£47%)
260 | 3.06E-3 (76 £6%) 1.48E-3 (37 +3%) 1.20E-2 (296 £+ 28%) | 1.88E-2 (467 &+ 45%)
280 | 2.96E-3 (75+7%) 1.40E-3 (36 +3%) 1.03E-2 (261 +23%) | 1.80E-2 (456 & 43%)
300 | 2.94E-3 (78 £ 7%) 1.30E-3 (35 +3%) 1.02E-2 (272 +24%) | 1.56E-2 (416 £ 40%)
400 | 2.42E-3 (75+7%) 1.00E-3 (31 +3%) 7.18E-3 (224 +22%) | 1.17E-2 (363 £ 36%)
500 | 2.04E-3 (77 +7%) 8.31E-4 (31+3%) 5.23E-3 (197 £19%) | 8.77E-3 (331 +31%)
600 | 1.86E-3 (78 £7%) 6.99E-4 (29+3%) | 4.43E-3 (186 +18%) | 6.90E-3 (289 +27%)
700 | 1.58E-3 (71 +6%) 6.56E-4 (29 +3%) 3.43E-3 (154 £ 14%) | 6.19E-3 (278 +-26%)
800 | 1.52E-3 (76 £6%) 5.97E-4 (30+3%) 3.16E-3 (157 +14%) | 4.89E-3 (243 +23%)
900 | 1.35E-3 (78 £7%) 5.40E-4 (31+3%) 2.64E-3 (152 £ 14%) | 4.27E-3 (247 +23%)
1000 | 1.28E-3 (82 + 7%) 5.13E-4 (33+3%) 2.28E-3 (147 +14%) | 4.07E-3 (262 +25%)

Table 6 Empirical MSEs among estimators for the gradient with respect to the arrival and service rates for

Case 1. Bracketed numbers represent the 95% ClIs for the risk ratios between the considered estimators and the

baseline 0,,.

interest. Lastly, we plan to expand the study on using our enhanced estimators in stochastic black-
box optimization where the gradients in a descent algorithm are estimated via finite differences or

zeroth-order schemes.
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n 0., oree 09" K =0.5 09" K = 0.82

20 4.02E-3 3.29E-3 (82+11%) | 1.33E-2 (331 £42%) | 4.85E-3 (121 £15%)
50 1.94E-3 1.99E-3 (103 +13%) | 5.57E-3 (287 £37%) | 2.21E-3 (114 £ 15%)
100 1.24E-3 1.28E-3 (1024 13%) | 3.63E-3 (292 +£37%) | 1.43E-3 (114 + 15%)
120 1.06E-3 1.10E-3 (1044 13%) | 2.94E-3 (278 £35%) | 1.25E-3 (118 +14%)
140 9.45E-4 1.06E-3 (118 +14%) | 2.88E-3 (3054 38%) | 1.20E-3 (126 + 16%)
160 8.41E-4 9.16E-4 (109 £ 13%) | 2.31E-3 (274 £ 40%) | 1.01E-3 (120 & 14%)
180 7.58E-4 9.11E-4 (120 £15%) | 2.31E-3 (3054 35%) | 9.08E-4 (120 £ 15%)
200 7.44E-4 8.51E-4 (114 +14%) | 2.20E-3 (296 +35%) | 7.91E-4 (106 & 13%)
220 7.15E-4 7.72E-4 (108 £14%) | 1.99E-3 (278 +36%) | 8.00E-4 (112 £ 15%)
240 6.99E-4 7.19E-4 (103 +13%) | 2.02E-3 (288 +36%) | 7.35E-4 (105 + 13%)
260 6.57E-4 7.09E-4 (108 +14%) | 1.91E-3 (2914 36%) | 6.61E-4 (101 & 13%)
280 6.00E-4 6.76E-4 (113 +14%) | 1.75E-3 (292 +36%) | 6.90E-4 (115 + 14%)
300 5.82E-4 6.52E-4 (112+14%) | 1.67E-3 (288 £ 34%) | 6.46E-4 (1114 14%)
400 4.75E-4 5.57E-4 (117 +£14%) | 1.39E-3 (293 +36%) | 5.14E-4 (108 & 13%)
500 4.37E-4 4.51E-4 (103+13%) | 1.17E-3 (267 £ 36%) | 4.07E-4 (93 +13%)
600 3.60E-4 3.90E-4 (109 +13%) | 1.07E-3 (297 +36%) | 3.83E-4 (107 & 13%)
700 3.20E-4 3.56E-4 (111 £14%) | 8.62E-4 (270 +32%) | 3.77E-4 (118 + 14%)
800 2.83E-4 3.31E-4 (117 +£14%) | 8.29E-4 (293 +37%) | 3.14E-4 (111 4+ 13%)
900 2.78E-4 3.08E-4 (111 +£14%) | 7.27E-4 (262 +33%) | 3.03E-4 (109 & 14%)
1000 2.54E-4 2.84E-4 (112+13%) | 7.36E-4 (2894 35%) | 2.77E-4 (109 + 13%)

n 0 K =1 09 K =2 fsen K =3 09 K =4

20 | 3.06E-3 (76 +10%) | 7.83E-4 (19 £3%) 3.76E-4 (9+£1%) 2.71E-4 (T£1%)
50 | 1.51E-3 (78 £10%) | 4.03E-4 (214+3%) | 1.86E-4 (10+1%) 1.46E-4 (8 +1%)
100 | 8.92E-4 (72+£9%) | 2.22E-4 (18 4+2%) 1.12E-4 (94 1%) 8.92E-4 (72 4+ 9%)
120 | 8.29E-4 (78 +9%) | 2.09E-4 (20+2%) 9.90E-5 (9+1%) 6.87E-4 (654 8%)
140 | 8.01E-4 (84+10%) | 1.93E-4 (204+3%) | 9.58E-5 (10£1%) | 5.44E-4 (58 £7%)
160 | 6.72E-4 (80+10%) | 1.63E-4 (19+2%) | 8.86E-4 (105+13%) | 5.17E-4 (62+8%)
180 | 5.88E-4 (78 £10%) | 1.55E-4 (20£3%) | 7.34E-4 (97+13%) | 4.18E-4 (554 7%)
200 | 5.64E-4 (76 £9%) | 1.42E-4 (194£2%) | 6.64E-4 (894+11%) | 3.41E-4 (464 6%)
220 | 5.05E-4 (71+£9%) | 1.37E-4 (194£2%) | 5.78E-4 (814+10%) | 3.31E-4 (464 6%)
240 | 4.85E-4 (T0£8%) | 1.31E-4 (19£2%) | 5.04E-4 (72+9%) | 3.16E-4 (454 6%)
260 | 4.55E-4 (T0+£8%) | 1.17E-4 (184+2%) | 5.09E-4 (78 +£10%) | 2.60E-4 (404 5%)
280 | 4.59E-4 (76 £10%) | 1.14E-4 (19+2%) | 4.70E-4 (78 £10%) | 2.39E-4 (40 £5%)
300 | 4.24E-4 (73+£9%) | 1.05E-4 (18+2%) | 4.51E-4 (78 +£10%) | 2.27E-4 (394 5%)
400 | 3.55E-4 (75+9%) | 9.06E-5 (19+2%) | 2.90E-4 (61+10%) | 1.63E-4 (34+4%)
500 | 3.20E-4 (73+£9%) | 7.58E-5 (17+2%) | 2.27E-4 (52+8%) | 1.22E-4 (28+4%)
600 | 2.77E-4 (T7+£10%) | 6.54E-5 (18+2%) | 1.81E-4 (50+£6%) | 1.09E-4 (304 4%)
700 | 2.39E-4 (75+9%) | 5.87E-5 (18+2%) | 1.68E-4 (52+6%) | 8.84E-5 (284 3%)
800 | 2.39E-4 (84+10%) | 5.21E-5 (18+2%) | 1.44E-4 (50+£7%) | 7.75E-5 (274 3%)
900 | 1.88E-4 (68+9%) | 5.37E-5 (194+2%) | 1.30E-4 (47+6%) | 6.66E-5 (244 3%)
1000 | 1.82E-4 (71+9%) | 5.21E-5 (20£3%) | 1.19E-4 (474+6%) | 6.45E-5 (25+3%)

Table 7

Empirical MSEs among estimators for the derivative with respect to the arrival rate for Case 2.

Bracketed numbers represent the 95% CIs for the risk ratios between the considered estimators and the baseline 6,,.
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n 0., oree 09" K =0.5 09" K = 0.82

20 9.28E-3 7.62E-3 (82 +8%) 2.60E-2 (280+28%) | 1.11E-2 (119+12%)

50 4.81E-3 4.62E-3 (96 £ 9%) 1.31E-2 (273 £25%) | 5.37E-3 (1124 10%)
100 2.88E-3 2.88E-3 (100 £9%) | 7.68E-3 (266 +24%) | 3.13E-3 (109 +10%)
120 2.49E-3 2.48E-3 (100 £9%) | 6.35E-3 (255 +£23%) | 2.87E-3 (115+11%)
140 2.09E-3 2.21E-3 (106 £9%) | 5.66E-3 (271 +£25%) | 2.72E-3 (130 +12%)
160 2.00E-3 2.25E-3 (113 £10%) | 5.45E-3 (273 +24%) | 2.21E-3 (111 £ 10%)
180 1.73E-3 1.83E-3 (106 +9%) | 5.03E-3 (292 +25%) | 1.92E-3 (105 4+ 10%)
200 1.74E-3 1.78E-3 (102 £ 10%) | 4.60E-3 (265 £ 24%) | 1.82E-3 (105 £+ 10%)
220 1.59E-3 1.76E-3 (111 +10%) | 4.26E-3 (268 +£24%) | 1.79E-3 (107 £ 9%)
240 1.53E-3 1.50E-3 (98 £9%) | 4.16E-3 (272+24%) | 1.69E-3 (110 4+ 10%)
260 1.38E-3 1.47E-3 (106 +9%) | 3.79E-3 (274 +25%) | 1.53E-3 (111 +10%)
280 1.34E-3 1.37E-3 (102+9%) | 3.31E-3 (246 £21%) | 1.36E-3 (101 +9%)
300 1.25E-3 1.28E-3 (102+9%) | 3.29E-3 (262 +23%) | 1.43E-3 (114 £+ 10%)
400 1.03E-3 1.08E-3 (106 +=9%) | 2.75E-3 (268 +22%) | 1.13E-3 (111+9%)
500 8.83E-4 9.89E-4 (112£10%) | 2.47E-3 (280 +25%) | 9.73E-4 (110 £ 10%)
600 7.61E-4 9.00E-4 (118 £10%) | 2.13E-3 (280 +24%) | 8.31E-4 (109 +9%)
700 7.21E-4 7.46E-4 (105+9%) | 1.93E-3 (267 £24%) | 7.33E-4 (102+9%)
800 6.51E-4 6.89E-4 (106 £9%) | 1.75E-3 (269 £23%) | 7.26E-4 (1124 10%)
900 6.11E-4 6.27E-4 (102+9%) | 1.70E-3 (277 +25%) | 6.28E-4 (103 +9%)
1000 5.62E-4 5.77E-4 (103+9%) | 1.48E-3 (263 +23%) | 5.93E-4 (106 £9%)

n g9 K =1 09 K =2 09 K =3 09" K =4

20 | 7.63E-3 (82+8%) 3.57E-3 (38 +£4%) 4.32E-3 (47 +5%) 8.18E-3 (88 £ 9%)

50 | 3.59E-3 (75+7%) 1.69E-3 (35 +3%) 2.01E-3 (42+4%) 4.16E-3 (86 £ 7%)
100 | 2.13E-3 (74+7%) 9.09E-4 (32+3%) 1.17E-3 (40 +4%) 1.22E-2 (424 +44%)
120 | 1.97E-3 (79+7%) 8.12E-4 (33+3%) 1.04E-3 (42 £ 4%) 9.08E-3 (365 +40%)
140 | 1.76E-3 (84 +7%) 7.25E-4 (35+3%) 8.60E-4 (41 +4%) 7.31E-3 (350 £ 35%)
160 | 1.44E-3 (72+7%) 6.86E-4 (34 +3%) 5.64E-3 (282+27%) | 6.16E-3 (309 &+ 33%)
180 | 1.31E-3 (76 +7%) 5.42E-4 (31+3%) 5.04E-3 (292 £29%) | 5.52E-3 (320 +36%)
200 | 1.32E-3 (76 £7%) 5.48E-4 (32+3%) 4.20E-3 (242 £25%) | 4.22E-3 (243 +26%)
220 | 1.22E-3 (7T7£7%) 4.80E-4 (30 £3%) 3.85E-3 (242 £24%) | 4.29E-3 (270 +28%)
240 | 1.10E-3 (72 +£6%) 4.92E-4 (32+3%) 3.20E-3 (209 £21%) | 3.52E-3 (230 4+ 23%)
260 | 1.09E-3 (79+7%) 4.21E-4 (30+3%) 3.11E-3 (224 +22%) | 3.26E-3 (236 +24%)
280 | 9.89E-4 (74 £7%) 4.21E-4 (32+£3%) 2.90E-3 (215 +£21%) | 3.11E-3 (232 +25%)
300 | 1.01E-3 (80+7%) 3.82E-4 (31+3%) 2.79E-3 (223 £22%) | 2.61E-3 (209 &+ 22%)
400 | 7.94E-4 (77 +7%) 2.96E-4 (29 +2%) 1.87E-3 (182+17%) | 1.95E-3 (190 +21%)
500 | 6.85E-4 (78 £7%) 2.61E-4 (30 +3%) 1.46E-3 (165 +17%) | 1.37E-3 (156 +16%)
600 | 6.00E-4 (7T9+7%) 2.19E-4 (29+3%) 1.06E-3 (139 +14%) | 1.05E-3 (138 £15%)
700 | 5.42E-4 (75+7%) 1.99E-4 (28 +3%) 9.34E-5 (130 £13%) | 9.70E-3 (135 +14%)
800 | 4.82E-4 (74 +6%) 1.78E-4 (27 £2%) 7.96E-4 (122+11%) | 7.96E-3 (122 +12%)
900 | 4.66E-4 (76 £7%) 1.63E-4 (27 +2%) 7.23E-4 (118 £11%) | 7.37E-3 (121 +12%)
1000 | 4.22E-4 (75 + 7%) 1.45E-4 (26 +2%) 5.93E-4 (106 +10%) | 6.13E-3 (109 +11%)

Table 8 Empirical MSEs among estimators for the gradient with respect to the arrival and service rates for

Case 2. Bracketed numbers represent the 95% CIs for the risk ratios between the considered estimators and the

baseline 0,,.
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n 0, oree g9 K =0.5 09°" K =0.82 f9en K =1

20 | 7.27E-4 | 4.63E-3 (636 +178%) | 1.85E-3 (254 +87%) | 9.77E-4 (134 £62%) | 5.11E-4 (70 £27%)

50 | 4.68E-4 | 1.40E-3 (299 +95%) | 9.85E-4 (2104 76%) | 4.86E-4 (104 +37%) | 2.77E-4 (59 + 24%)
100 | 3.63E-4 | 9.56E-4 (264 +75%) | 7.78E-4 (214 +64%) | 3.62E-4 (100 33%) | 2.35E-4 (65 + 20%)
120 | 4.38E-4 | 8.05E-4 (184 +46%) | 6.58E-4 (150 £45%) | 4.41E-4 (101 +32%) | 2.45E-4 (56 £ 17%)
140 | 3.93E-4 | 8.22E-4 (209£51%) | 7.45E-4 (189 £55%) | 4.04E-4 (103 £37%) | 2.27E-4 (58 & 17%)
160 | 3.85E-4 | 7.80E-4 (202+51%) | 7.22E-4 (187+47%) | 3.50E-4 (91+25%) | 2.32E-4 (60 + 18%)
180 | 4.09E-4 | 6.84E-4 (167 +38%) | 8.02E-4 (196 4+ 52%) | 4.08E-4 (100 +25%) | 2.07E-4 (51 + 14%)
200 | 4.33E-4 | 6.93E-4 (160+33%) | 7.32E-4 (169 +40%) | 3.06E-4 (71+16%) | 2.47E-4 (57 + 15%)
220 | 4.02E-4 | 5.79E-4 (144 £34%) | 7.72E-4 (192 +45%) | 3.51E-4 (87 +£22%) | 2.43E-4 (61+17%)
240 | 3.83E-4 | 6,66E-4 (174+35%) | 6.95E-4 (181 +45%) | 3.42E-4 (89 +£21%) | 2.16E-4 (56 +13%)
260 | 4.51E-4 | 5.68E-4 (126 +27%) | 7.71E-4 (171+36%) | 3.84E-4 (854 17%) | 2.16E-4 (48 + 12%)
280 | 5.27E-4 | 5.68E-4 (108 +21%) | 6.94FE-4 (132+28%) | 3.66FE-4 (69+16%) | 2.48F-4 (47 +11%)
300 | 3.83E-4 | 6.62E-4 (173+35%) | 9.11E-4 (237 +52%) | 4.49E-4 (117 +£26%) | 2.56E-4 (67 +16%)
400 | 4.71E-4 | 5.49E-4 (117 +19%) | 7.40E-4 (157 +32%) | 4.90E-4 (103 +19%) | 2.90E-4 (61 & 11%)
500 | 4.47E-4 | 5.73E-4 (128 £21%) | 7.26E-4 (163 £29%) | 4.59E-4 (103 +17%) | 3.28E-4 (73 +12%)
600 | 4.67E-4 | 5.59E-4 (120 19%) | 7.13E-4 (153 £26%) | 4.50E-4 (96 £ 15%) | 3.64E-4 (78 +13%)
700 | 4.60E-4 | 5.66FE-4 (123+£17%) | 7.67E-4 (167 +27%) | 4.44E-4 (96 +14%) | 3.42BE-4 (74 +11%)
800 | 4.96E-4 | 5.82E-4 (117£16%) | 6.81E-4 (137 £ 23%) | 4.96E-4 (100 & 15%) | 3.85E-4 (78 +£11%)
900 | 5.16E-4 | 5.47FE-4 (106 +13%) | 6.99E-4 (135 +20%) | 4.82FE-4 (93+13%) | 3.91E-4 (76 & 10%)
1000 | 5.34E-4 | 6.10E-4 (1144 15%) | 7.09E-4 (133 +20%) | 4.92E-4 (924 12%) | 4.34E-4 (814 11%)

Table 9 Empirical MSEs among estimators for the derivative with respect to the arrival rate for Case 3.

Bracketed numbers represent the 95% Cls for the risk ratios between the considered estimators and the baseline 8,,.

n 0, gree fsen K =05 fsen K =0.82 feen K =1

20 | 4.185-2 | 1.145-2 (27 £10%) | 7.54E-2 (180 £51%) | 3.465-2 (83 £ 25%) | L.09E-2 (26 £ 8%)

50 | 1.53E-2 | 7.59E-3 (50+£16%) | 3.66E-2 (239+69%) | 1.48E-2 (97+31%) | 4.71E-3 (31 +10%)
100 | 9.71E-3 | 5.20E-3 (54+17%) | 2.12E-2 (218 £55%) | 1.33E-2 (137 +39%) | 3.48E-3 (36 + 11%)
120 | 6.53E-3 | 4.88E-3 (74+22%) | 1.77E-2 (270 £ 69%) | 1.02E-2 (157 £ 48%) | 2.22E-3 (34 & 10%)
140 | 6.66E-3 | 3.54E-3 (53+15%) | 1.77E-2 (266 & 65%) | 8.24E-3 (124 +34%) | 2.23E-3 (324 9%)
160 | 5.01E-3 | 3.53E-3 (714 18%) | 1.25E-2 (249 £55%) | 5.92E-3 (118 £ 30%) | 1.97E-3 (39 & 11%)
180 | 4.85E-3 | 3.07E-3 (63+18%) | 1.25E-2 (258 +58%) | 5.75E-3 (119 + 28%) | 1.93E-3 (40 & 10%)
200 | 4.41E-3 | 3.42E-3 (78 £22%) | 9.84E-3 (223 +£50%) | 5.93E-3 (135 36%) | 1.93E-3 (44 +£11%)
220 | 3.62E-3 | 3.00E-3 (83+£21%) | 9.93E-3 (274 +60%) | 5.09E-3 (140 +39%) | 1.86E-3 (51 + 13%)
240 | 3.31E-3 | 2.42E-3 (7T3+£17%) | 8.78E-3 (265 +54%) | 4.91E-3 (1494 34%) | 1.62E-3 (49 +11%)
260 | 3.47E-3 | 2.53E-3 (7T3+£17%) | 9.04E-3 (261 +54%) | 3.94E-3 (114 +27%) | 1.62E-3 (47 +11%)
280 | 3.18E-3 | 2.29E-3 (7T2+£17%) | 7.72E-3 (243 £47%) | 3.31E-3 (104 +23%) | 1.71E-3 (54 + 13%)
300 | 2.99E-3 | 2.17E-3 (72£17%) | 7.54E-3 (252 £52%) | 3.15E-3 (105 £ 24%) | 1.68E-3 (56 & 13%)
400 | 2.25E-3 | 2.04E-3 (91+18%) | 5.48E-3 (244 +46%) | 2.44E-3 (108 +24%) | 1.12E-3 (51 +11%)
500 | 2.14E-3 | 1.80E-3 (84+£17%) | 4.91E-3 (230 £43%) | 2.03E-3 (95 19%) | 9.77E-3 (46 £ 10%)
600 | 1.62E-3 | 1.31E-3 (81+£15%) | 3.83E-3 (236 +£43%) | 1.78E-3 (110 +22%) | 9.28E-3 (57 +11%)
700 | 1.50E-3 | 1.29E-3 (86+15%) | 3.48E-3 (232+36%) | 1.43E-3 (95 17%) | 1.04E-3 (69 +13%)
800 | 1.28E-3 | 1.29E-3 (100 = 18%) | 2.91E-3 (227 +36%) | 1.59E-3 (124 4 22%) | 8.32E-3 (65 +11%)
900 | 1.20E-3 | 1.07E-3 (89+14%) | 2.27E-3 (189 +29%) | 1.37E-3 (1144 18%) | 8.32E-3 (70 + 12%)
1000 | 1.08E-3 | 1.07E-3 (99 4+ 16%) | 2.13E-3 (197 +30%) | 1.26E-3 (116 £ 20%) | 7.74E-3 (72 & 12%)

Table 10

Empirical MSEs among estimators for the gradient with respect to the

arrival and service rates for

Case 3. Bracketed numbers represent the 95% ClIs for the risk ratios between the considered estimators and the

Besbes O, Zeevi A (2011) On the minimax complexity of pricing in a changing environment. Operations

Research 59(1):66-79.

baseline 0,,.

Blanchet JH, Glynn PW (2015) Unbiased Monte Carlo for optimization and functions of expectations via

multi-level randomization. Proceedings of the Winter Simulation Conference, 3656-3667 (IEEE).

Borkar VS (2009) Stochastic approximation: a dynamical systems viewpoint, volume 48 (Springer).



Lam, Zhang and Zhang: Enhanced Bias-Variance Balancing: A Minimaz Perspective
42 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Cesa-Bianchi N, Lugosi G (2006) Prediction, learning, and games (Cambridge University Press).

Chick SE (2006) Bayesian ideas and discrete event simulation: why, what and how. Proceedings of the Winter

Simulation Conference, 96-105 (IEEE).
Chung KL (1954) On a stochastic approximation method. The Annals of Mathematical Statistics 463-483.

Duplay D, Lam H, Zhang X (2018) Achieving optimal bias-variance tradeoff in online derivative estimation.

Proceedings of the Winter Simulation Conference (IEEE).

Fabian V (1968) On asymptotic normality in stochastic approximation. The Annals of Mathematical Statistics

39(4):1327-1332.

Flaxman AD, Kalai AT, McMahan HB (2005) Online convex optimization in the bandit setting: gradient
descent without a gradient. Proceedings of the sizteenth annual ACM-SIAM symposium on Discrete

algorithms, 385-394 (Society for Industrial and Applied Mathematics).

Fox BL, Glynn PW (1989) Replication schemes for limiting expectations. Probability in the Engineering and

Informational Sciences 3(3):299-318.
Fu MC (2006) Gradient estimation. Handbooks in operations research and management science 13:575-616.

Fu MC, Hong LJ, Hu JQ (2009) Conditional Monte Carlo estimation of quantile sensitivities. Management

Science 55(12):2019-2027.

Fu MC, Hu JQ (1992) Extensions and generalizations of smoothed perturbation analysis in a generalized

semi-Markov process framework. IEEE Transactions on Automatic Control 37(10):1483-1500.
Giles MB (2008) Multilevel Monte Carlo path simulation. Operations Research 56(3):607-617.

Glasserman P (2013) Monte Carlo methods in financial engineering, volume 53 (Springer Science & Business
Media).
Glasserman P, Gong WB (1990) Smoothed perturbation analysis for a class of discrete-event systems. IEEFE

Transactions on Automatic Control 35(11):1218-1230.

Glynn PW (1989) Optimization of stochastic systems via simulation. Proceedings of the Winter Simulation

Conference, 90105 (IEEE).



Lam, Zhang and Zhang: Enhanced Bias-Variance Balancing: A Minimaz Perspective
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 43

Glynn PW (1990) Likelihood ratio gradient estimation for stochastic systems. Communications of the ACM

33(10):75-84.

Glynn PW, Whitt W (1992) The asymptotic efficiency of simulation estimators. Operations Research
40(3):505-520.

Gong WB, Ho YC (1987) Smoothed (conditional) perturbation analysis of discrete event dynamical systems.
IEEE Transactions on Automatic Control 32(10):858-866.

Hazan E, et al. (2016) Introduction to online convex optimization. Foundations and Trends®) in Optimization
2(3-4):157-325.

Heidelberger P, Cao XR, Zazanis MA, Suri R (1988) Convergence properties of infinitesimal perturbation

analysis estimates. Management Science 34(11):1281-1302.

Heidergott B, Pflug G, Farenhorst-Yuan T, et al. (2010) Gradient estimation for discrete-event systems by
measure-valued differentiation. ACM Transactions on Modeling and Computer Simulation (TOMACS)

20(1):5.

Heidergott B, Vazquez-Abad FJ (2008) Measure-valued differentiation for Markov Chains. Journal of Opti-

mization Theory and Applications 136(2):187-209.

Henderson SG (2003) Input model uncertainty: Why do we care and what should we do about it? Proceedings

of the Winter Simulation Conference, 90-100 (IEEE).

Ho YC, Cao X, Cassandras C (1983) Infinitesimal and finite perturbation analysis for queueing networks.

Automatica 19(4):439-445.
Hong LJ (2009) Estimating quantile sensitivities. Operations Research 57(1):118-130.

Kushner H, Yin GG (2003) Stochastic approzimation and recursive algorithms and applications, volume 35

(Springer Science & Business Media).

Lam H (2016) Advanced tutorial: Input uncertainty and robust analysis in stochastic simulation. Proceedings

of the Winter Simulation Conference, 178-192 (IEEE).

L’Ecuyer P (1990) A unified view of the IPA, SF, and LR gradient estimation techniques. Management

Science 36(11):1364-1383.



Lam, Zhang and Zhang: Enhanced Bias-Variance Balancing: A Minimaz Perspective
44 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

L’Ecuyer P (1991) An overview of derivative estimation. Proceedings of the Winter Simulation Conference,

207-217 (IEEE).

McLeish D (2011) A general method for debiasing a Monte Carlo estimator. Monte Carlo Methods and

Applications 17(4):301-315.

Nemirovski A, Juditsky A, Lan G, Shapiro A (2009) Robust stochastic approximation approach to stochastic

programming. SIAM Journal on Optimization 19(4):1574-16009.

Nesterov Y, Spokoiny V (2017) Random gradient-free minimization of convex functions. Foundations of

Computational Mathematics 17(2):527-566.

Pasupathy R (2010) On choosing parameters in retrospective-approximation algorithms for stochastic root

finding and simulation optimization. Operations Research 58(4-part-1):889-901.

Pasupathy R, Kim S (2011) The stochastic root-finding problem: Overview, solutions, and open questions.

ACM Transactions on Modeling and Computer Simulation (TOMACS) 21(3):19.

Peng Y, Fu MC, Hu JQ, Heidergott B (2018) A new unbiased stochastic derivative estimator for discontinuous

sample performances with structural parameters. Operations Research 66(2):487-499.

Polyak BT, Juditsky AB (1992) Acceleration of stochastic approximation by averaging. SIAM Journal on

Control and Optimization 30(4):838-855.

Reiman MI, Weiss A (1989) Sensitivity analysis for simulations via likelihood ratios. Operations Research
37(5):830-844.
Rhee Ch, Glynn PW (2015) Unbiased estimation with square root convergence for SDE models. Operations

Research 63(5):1026-1043.

Rubinstein RY (1986) The score function approach for sensitivity analysis of computer simulation models.

Mathematics and Computers in Simulation 28(5):351-379.

Rubinstein RY (1992) Sensitivity analysis of discrete event systems by the push out method. Annals of

Operations Research 39(1):229-250.

Ruppert D (1988) Efficient estimations from a slowly convergent Robbins-Monro process. Technical report,

Cornell University Operations Research and Industrial Engineering.



Lam, Zhang and Zhang: Enhanced Bias-Variance Balancing: A Minimaz Perspective
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 45

Rychlik T (1990) Unbiased nonparametric estimation of the derivative of the mean. Statistics & probability

letters 10(4):329-333.

Shalev-Shwartz S (2012) Online learning and online convex optimization. Foundations and Trends® in

Machine Learning 4(2):107-194.

Song E, Nelson BL, Pegden CD (2014) Advanced tutorial: Input uncertainty quantification. Proceedings of

the Winter Simulation Conference, 162-176 (IEEE).

Spall JC (1992) Multivariate stochastic approximation using a simultaneous perturbation gradient approxi-

mation. IEEE transactions on automatic control 37(3):332-341.

Spall JC (1997) A one-measurement form of simultaneous perturbation stochastic approximation. Automatica
33(1):109-112.

Vihola M (2018) Unbiased estimators and multilevel Monte Carlo. Operations Research 66(2):448-462.

Zazanis MA, Suri R (1993) Convergence rates of finite-difference sensitivity estimates for stochastic systems.

Operations Research 41(4):694-703.

Zhou K, Doyle JC (1998) Essentials of robust control, volume 104 (Prentice hall Upper Saddle River, NJ).

Author Biographies

Henry Lam is an Associate Professor in the Department of Industrial Engineering and Operations
Research at Columbia University. His research interests include Monte Carlo methods, uncertainty
quantification, data-driven optimization and rare-event analysis. His works have been recognized
by several venues such as the NSF CAREER Award, JP Morgan Chase Faculty Research
Award and Adobe Faculty Research Award. Henry serves on the editorial boards of Operations
Research, INFORMS Journal on Computing, Applied Probability Journals, Stochastic Models,
Manufacturing and Service Operations Management, and Queueing Systems, and as the Area
Editor in Stochastic Models and Data Science in Operations Research Letters. His current email

address is henry.lam@columbia.edu.



Lam, Zhang and Zhang: Enhanced Bias-Variance Balancing: A Minimaz Perspective
46 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Xinyu Zhang obtained his Ph.D. in the Department of Industrial Engineering and Operations
Research at Columbia University in December 2021 under the supervision of Henry Lam. His cur-

rent position is Software Engineer at Amazon. His current email address is xz2691@columbia. edu.

Xuhui Zhang is currently a PhD student in the Department of Management Science and Engineer-
ing at Stanford University. He graduated from the University of Science and Technology of China
and was a summer intern under the supervision of Prof. Henry Lam in 2018. His current email

address is xzhang98@stanford.edu.



Lam, Zhang and Zhang: Enhanced Bias-Variance Balancing: A Minimaz Perspective
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 1

Appendix A: Proofs for Section 3

We will prove a multivariate version of Theorem 1.

THEOREM 9. Under Assumption 2, suppose that lim,,_,., §,n* = d, where 0 < d < oo the sample-

average-based estimator 0, exhibits the asymptotic MSE

_ tr (X
E|0, — 6,|]* = d*"||BJ|*n 2" + Zl;n)nm‘m_l +o0(n 2 4027 asn— o0

Choosing o = m achieves the optimal MSE order, and the asymptotic MSE is
- tr (% __a __a
E|6, —6,* = <d2(“ IBI* + 22((12)> n mE 40 (n q1q+1q2) as n— oo

Proof of theorem 9. By the bias-variance decomposition, we have

E|6, — 64> = EB, — 6]* +tr (Cov (6,))

= lIb(6.) I+ tr (Cov (v (5,)))

—[BIPsn +o ain) + L) o)
n n n

5721(12
Setting 9,, = dtﬁfl), we obtain
) (d+o(1)*" 2 tr(X)+o(1) 500
B8, - 6, = BP0 oy T 0D g,y
ne (d+o(1))

tr (2
= (IB]Pd*" +0(1)) n2*" 4 ( 22(@) +0(1)> n2ea2—1

1

To achieve the optimal MSE order, we solve —2aq; = 2aq; — 1. Thus a= artan)

and the optimal
a1
order is n~ a1taz,

Proof of Theorem 1. The proof follows immediately by considering dimension 1 in Theorem 9.
O

Appendix B: Proofs for Section 4.2
We provide and prove multivariate versions of the results, from which the ones in Section 4.2 follow
immediately.

Frequently used in the subsequent proofs is the following result adapted from Lemma 4.2, a

version of Chung’s Lemma, in Fabian (1967):

LEMMA 1 (Chung’s Lemma). For v,,c,,b, real numbers, and 0 < a <1, suppose lim,_,, ¢, =

c>0, and consider the iteration

n bn
Vi1 = (1 - %) V0 (50)

n ne

If b, — 0, then v, —0; if b, —» b>0, then v, — %; and if b, — 0o, then v, — 0.
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Proof of Lemma 1. Our version of Chung’s lemma is different in appearance from Lemma 4.2
in Fabian (1968), and thus we repeat the proof here. First, if b, — b where b >0 is a real number,
then for given 0 < € < ¢, we can choose n; sufficiently large such that, for all n > n,, we have 22 <1,

b,<b+eand c—e<c¢, <c+e Nowlet n>ny. If v, > %, then from the iteration (50)

b+2 1 1
+ 6(c—e)——i—(b—i—e)—gvn—i
ne ne ne

U7z+1 S Up —
C—E€

On the other hand, if v, < ¢, then since the right hand side of the iteration (50) is an increasing

function of v,,, we have

b+2 b+2e 1 1 b+2e
Upt1 < - (c—€)—+(b+e)— <
c—E€ c—E€ ne ne c—E€
Combined with the fact that > -L diverges, we have limsup,, . v, < 22 Since € is arbitrary,
n=1
we get
b
limsupwv, < - (51)
n—00 &

Ifb=0, vy11 > v, + -5 for v, <—2< and v, > — 2= for v, > —2=. Therefore we have liminf v, >

c—e c—e c—e n—s 00

0 and limsupwv, <0. We conclude that lim,,_,., v,, = 0. By the same analysis, if b,, — b > 0, where

n—00

b possibly take the value of oo, we would have

b
liminfwv,, > - (52)
n—00 C
Thus if b= co, we conclude that lim,, . v, — 00, and if 0 < b < 0o, combining (51) and (52), we
get lim,,_, v, = % ]

We now consider multivariate versions of our results and their proofs:
PROPOSITION 2. Under Assumption 2, we have:

1. If <1l and a < %, the estimator 07¢ is Ly-consistent for Oq, i.e.,

lim E|67° —6]|>=0
n—oo

n

2. If <1 and a > %, orif B> 1, the error of 07 in estimating 0y is bounded away from zero
i Ly norm as n — oo, i.e.,

lim inf E|67° — 6> > 0
n—oo
Proof of Proposition 2. We first prove the proposition for § < 1. From the recursion
0, = (1-7.) 0,7 +7,0.(,) (53)

we have

6, — 0y = (1= ) (B0, — 0 ) + 70 (E6 (6,) — 60)
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Since E0 (5,) — 6y =b(5,) — 0 as n — oo, we have EO7*° — 6y, — 0 by Chung’s lemma. Note that
E||07c —0,]|% = | EOT — 0, ||* + tr <C’ov (é;ec) ) . Thus the convergence will depend on the variance

term. Taking covariance of (53), by independence we have

Cov (8;) = (1=7,)" Cov (8;) +~2Cov (6.(5,)) (54)
Since
Cov (6 (6,)) = &;Z(Jov (e(0,))
we have
i cm;(gﬁn)) = d?zqz

We now rewrite the iteration (54) as

tr (Cov (é:fc)) =(1—=2+0(1))y,)tr (Cov (éf_ﬂ)) + YnSn

where s, = CZQ(—Q?TLQQW_B +0(n%22=8) We note that lim,,_, s, = oo if a > %, lim,, o0 Sp = ctdrg(—q? >
B

0if a= 303 and lim,_,. s, =0if a < %. Thus by Chung’s lemma
lim ¢r (C’ov (éff“)) — o0 if oo > 2£

n—o0 q2

lim tr (C’ov (éff‘)) _ ) if b

n—00 —° 2d?42 - TQQ

and

lim ¢r (Cov <07f°>) =0ifa< £

n—o00 2q2

This completes the proof for g <1.
Next consider 3 > 1, we now argue that choosing 7, = cn™” does not lead to convergence. We

note that 67 is a linear combination of 8¢, 0, (5,),i=1,--- ,n, ie.

é;ec = aoégec + Z aiai ((Sz)
=1

o0

where ag = [[;_, (1—7;) and a; =¥ [[;_;,, (1 — ;). Since 3"~ | v, = >~ | -5 < 00, by the relation

between infinite product and infinite sum, we get

lim a; exists and is positive for any ¢

n—oo

Since by independence

tr (Cov <é;€c>) =agtr (Cov <é§ec>) + zn:aftr (Cov (6(4:)))

=1
we have that
liminf ¢r (Cov <é;€c)) >0

n—oo
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THEOREM 10. Under Assumption 2, the MSE of éffc in estimating 6y behaves as follows:

1. For f<1 (mdoz<2q,

B0~ 0o = 2 [B|n2ne 4

tr (L)n?2e=F 1o (n’qua + anQ‘X’B) as n— 0o

i
— — 1
2. FOT‘B—l, Oé—m andc>m,
2
R dat 2 a a
E||075 - 6,]|* = (Cq> IBI|> + ¢ tr(S) | 5% 4o (n 5% ) asn— oo
€T 2ata) (QC_ q1+q ) d?a2

— _ 1 q1
3. For =1, a= CICTETy) and ¢ < Sata O for B=1 and a # 57 q1+q2)
. e Arec 2
limsupnata E||07°° — 0| = oo
n—oo

Proof of Theorem 10. Taking expectation of (53) and rearranging terms, we have

B (6;° = 00) = (1=7,) B (05, = 8 )+ (EO (5,) = 8) = (1= 7) E (675, = 6 )+, (BO2 40 (5%))
(55)

If v, =¢ and a < we multiply (55) by n™® to get

(111+q )?

non B (8777~ 0,) = (_1) (1= ) =1 B (025, - 8,) + < (Ba® +0(1)

_ (1 _ C—qla“’(l)) (n—1)"" B (85, 0,) + = (Bd" +o(1))

n

For ¢ > ¢;a, by Chung’s lemma, lim,, ,,, n®*FE (é:fc — 00) = L B Thys

c—qra
~ da
(o) e ol
c—qa
If v, =c¢/n and o > m, we multiply (55) by n'/2=2% to get
A —1/2 1 e A 1
nl/2—aep (9;66 _ 00) _ (1 ¢ / +7ql201+0( )) (TL . 1)1/2 2 @ (9:16—61 _ 90> +o <n>

For ¢ >1/2 — g, by Chung’s lemma, lim,,_,,, n'/?2"2*F <0Aff“ — 00> =0. Thus
(65— ) o fame1)
Similarly, if v, = -5, 8 < 1, we multiply (55) by n”® to get
a Nrec ct+o(l o p rec c
W E (0,0, ) = (1 = nﬁ( )> (n—1)""E (07~ 0, ) + = (Bd" +0(1))

For ¢ > 0, by Chung’s lemma, lim,,_,,, n®1*FE (é;ec — 00> =Bd?%. Thus

E(é,’fﬁc 00) Bd%n 1 40 (n~*) (56)
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Next we take covariance of (53) and by independence,

Cov (éffc> =(1—7.)"Cov (éfffl) +~2Cov (6(6,))
Arec Cov (g (9,
=(1- ’yn)2 Cov (Gn‘_‘l) + %27'5(,2;12())
ATCC OCZ—"_O 1
=(1—7,)>Cov (0 ) + yon*e d2‘12() (57)

If v, =< and o > m, we multiply (57) by n'~2922* and take trace to get
Atr(X)4o(1)

n'= ey (COU (92"‘)) = (nﬁ 1>1_2‘I2°‘ (1 — %)2 (n— 1)1_2(’2&757“ (C’ov (éff_cl)) + P
_ (1 B 20+2q2an— 1 —i—o(l)) (n— 1) (Cov (é:f_cl)) N itr(EC)lQ—qi—Qo(l)
(58)

For ¢>1/2 — gz, by Chung’s lemma, lim,, ., n'~24%r <C’ov (92“)) = W;j;%. Thus

Arec . CQtT’ (E) 2qoa—1 2qoa—1
" (COU (9" )>  (2¢+ 2qpa — 1) d2e2 ' o (n*20 )

Similarly, if v, = -5, 8 < 1, we multiply (57) by nf=2¢2 and take trace to get

woenetr (Cou (07)) = (25 - S e (o (8, ) + S G E0)
— <1 SasL (1)> (n—1)""=tr (Cov (075, ) ) + % (23;;0 Q)
For ¢ > 0, by Chung’s lemma, lim,,_,., n®~22%p (Cov (0;“)) = 02:2(52) Thus
r <C’ov (éffc)> = C;:léi)anQ“B + o0 (2P
In conclusion, if v, = £, a = 2((1%%) and ¢ > 51—, then
E||6; — 0, |2 = 1E0;: — 0 + tr (Cov (8;) )
ctr (2) n?2ot 4o (anW-l)

cdn 2||B||2 —2q1 ( —2q1a)
= n +o(n +
0L — 2,
(2¢+2gocx — 1) d?e2

c—qa
< cdf >2||B||2+ c? ¢ (E) —q1/(‘I1+‘12)+ ( _Q1/(QI+Q2))

= T n o\n

c—q1/ (2(q1 +q2)) (2c— a1/ (1 + g2)) d*

and ¢ > 1/2 — gaav, then

_ C 1
If oy = w & 2(q1+42)
ATSC CQtT (E) a— o—
ElIe: =600l = oo iaga e o) (59)

Similarly, if v, = -5, 8 <1 and ¢ >0, then

A7‘ec — « —_ « c o— o—
E|0;° — 0, = &> | B|*n 1% 4 0 (n ¢ )—F2dz(12t7"(2)112‘12 P40 (n*227F)
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This completes the proof for part 1 and part 2 of the theorem.

Next we prove part 3 of the theorem. If o > m and ¢ > 1/2 — g, we note from (59) that

lim naits |67 — 0, = oc
n—oo

Ifa>; 5 and ¢ < 1/2 — ga, and supposing that the sequence n'~242%tr (C’ov (é;“)) is

1
(q1+42

bounded, then from (58) we have that
) e ) 1
nl—22%%y (C’ov (0;“)) > (n— 1)1 2a20 4, (C’ov (0;6_61>> + 701 +n0( )
for some C; > 0, for all large enough n. Since Y >~ 1/n = oo, we get
n'—2a20y (COU (ézec» — 00 as n— 00

which is a contradiction. Thus

lim sup n 7197 |0, — 8y |* > limsup n! 224 (C’ov <éffc>) -

n—oo n— oo

q

1 ~
Ifa< m, and supposing that the sequence n2i+2) F (0;“ — 00) is bounded, we multiply (55)

q1
by n2@i+e2) to get
q1 ~
n2Gai+a) F (0260 — 90>

= <1_ c—q1/(2(q1 +¢q2) +0(1)

< (Bd +0(1))

) (n— 1)72<q1qiq2> E (é;@_cl - 00) +
cBd? 4+ 0(1)

nta (starran )

! (ztarran )

= (n — 1)2(‘11(1<1FQ2) E (é"ec — 00> +

n—1

. 0o 1—q1 (é—a)
Since ) -, 1/n 2(q1+42) =00, we get
a1 A~
n2ata) (9;60 — 0()) — 00 as n— 00
which is a contradiction. Thus
. a1 Arec 2 . 4l grec 2
limsupn@ta E||0 — 0||* > limsupnaite || EO* — 0,||° = co
n—oo n— oo
This completes the proof for part 3 of the theorem. g
Proof of Theorem 2. This follows immediately from Theorem 10 by setting the dimension to 1.

O
Proof of Theorem 3. We have

2
q1 2
<c_ <d ql) B+ 24242 o’
2(q1+92) (Ci 2(q1 +q2))

2 2 1 2
dqlB +dQTQO'

R™ (9 () .d, C) =
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For any d, B and ¢, we have

2
( cdil c? 9
. a1 2 a1 2
T 31 +a2) 2d792 (e— gy c C
R™“(6(-),d,c) <max S ( = w) = max 7 ,
d*n d2a2 €= 2(q1iq2) 2{c— 58—
2(q1+42)

Note that the right hand side above is approachable by choosing B or o2 to be arbitrarily big.
Therefore

2
rec C C2
max R (0(-),d,c) =max ) (60)
0(-)E€H,d>0 c——4 a
’ 2(q1+aq2) 2 (C - m)
Now suppose that ,
c - c?
_ q1
¢ 2(q1+q2) 2 (C - m)
2
which is equivalent to ¢ < 241292 Since the function | —S—— | is monotonically decreasing in
2(q1+42) C*m
; a1 591 +44q2
the region 5tarras) < C < Siqiras) WO have
2 2 2
c c? c S c
max S
__au ’ __au = __ a1
€7 2qta) 2 (C - m) €7 2qtar) €7 2@ ta) e= 5((1(11114;22)
Similarly, suppose that ,
c - c?
_ 91
€7 2 +a) 2 (C - m)
which is equivalent to ¢ > %. Since the function ( o ) is monotonically increasing in
€21 +a2)
; 5q1+4q2
the region ¢ > Satan Ve have
2
c c? c? S c?
max =
a ’ —
C— 57—~ _ 5] _ q1 _ q1 _ 5q1+4q2
2Aar+az) 2 (C 2(Q1+Q2)) 2 (C 2(q1+q2)> 2 (C 2(q1+q2)> 201 ta2)
Thus the minimization of (60) gives us ¢= %, which solves
2
c B c?
_ q1 -
€7 Aataz) 2 (C - ﬁ)
2
. . . . ql ql
and we note that both sides of this equation is 6001 ra)7 + 5@y T 1. ]

Proof of Theorem 4. We have

2
q 9
(d) B+ 0
Rrec (9 () d d’ C) o 2(q1+4a2) <Ci 2(01+Q2))
) Wy - 1
d2qlBQ+dzTQ0-2
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For any d,d, B and o2, we have

2
( cd9L > 2
91 72 q1
~ T3t 2d492 (c— 57— 11—
Rrec <9 () ,d, d, C> S max (a1+a2) ’ ( 12(41+QQ))
d2a 1
d2a2

2 ~\ 2q1
< C d . 1
= max o - ; -\ 2¢q
¢ q+a) d 2(“%) (g) 2

Note that the right hand side above is approachable by choosing B or ¢? to be arbitrarily big.

Therefore

_ @
(a1+42) 2(q1+4q2)

2
rec . 7 . & 2q1 02 1
o max R (9()>d7d,c>—r}}33<max (C_2 o >n(d) ,2( )n(d)2q2 (61)

where we let 7 (d) = g , and note that d = g (d) is also a function of d. We minimize the right hand

side of (61) via minimizing
2

2
c 20 c 1
max — | (@)™, (62)
(C o 2((11%(12) ) 2 (C — 4 ) n (d)2q2

2(q1+492)

for each d. With d fixed arbitrarily, first, for any ¢, since both of the expressions in (62) are

monotonic in 7 (d), we need

2
2
c 20 c 1
— | (@) = 5
(C 2(q141rq2) ) 2 (C - m) n(d)™

which upon solving leads to
— 1/(2(q1+42))
n (d) _ ( 2(q1+92) )

2
Thus (62) becomes

2 5 2 2

c 201 c 1 o c 2a1 _ 1 c
max _ a1 ) n(d)™, 2a2 (T _ a1 n(d)™ = + q1+24
{ (C 2(a1+a2) 2 (C* s ) n(d) T 2+ 2a/tate) <c a1 s

1 q1+a2
2(q1+ —
(q1+4a2) 2(q1+q2))

We then optimize ¢ over the region ¢ > 72((11‘1%2), i.e,
c = argmin L a =1
s C>W 2aq1/(a1+4q2) ( u qqlltfq«;z -
2(q1+42)
T 20 \ @D 22 o\~ B2 ‘
This gives n(d) = (ﬁ) and (62) is 2a+e (TT‘Z;) . We note that the optimal

_41+2q99

2
¢,n(d) are independent of d, and therefore the value of (61) is also 9ar+as (%) nre O
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Next, we consider the uniform-averaging scheme:

THEOREM 11. Under Assumption 2, the MSE of ég”g in estimating @y behaves as follows:

1
1. For <1 andagm,

dan
l—-q

1
(1+2gqzcx) d?e

2
E|62 — 6> = ( ) |BJ|?n 20 + tr (Z)n®2* 4o (n 21 + 02271 as n— 00

2. For g<1 andoz>2(T1+q2),

1

B0 — y|* = ——————
16 ol (1 + 2g,a) d2e2

tr (Z)n*2*" "+ o (n*2*7") as n— oo

Proof of Theorem 11.  We first analyze EQ9 — @, For 0 < a < m,

n+1 n n
/ s s < E e S/ sTN%]s
1 Py 0

since -1 < —qua <0,

we have that

Thus
n n n npl-ao
Zi*qlo‘ = / s % s+o (/ sqlads> = +o0 (nlfqlo‘)
=1 0 0 l-qa
and
1 & 1
*Zi_qla — n—q1a+0(n—q1a)
n <= 1—qa

From (56) we have E (éffc - 90) =Bdun 1%+ o (n"1%). Thus

B0~ 0y = % Zn: E (éf“ - 90) _1 Xn: (Bd®i~ 40 (i71%)) = dn
i=1

—q1 —qra
- Bn 4%+ 0 (n" %)

i=1

1—q

For o > m, by a similar analysis we get

. 1 & .
By —6y=— 3 E (6, —0,) = 0 (142} if —ga =1
n
i=1 (

Since 1/2 — g < 1 and 1/2 — e < ¢y v, we have
nt/ree (éff’g - 00> =o(1)
We then analyze tr (C’ov <éfj’-‘7)). Rewrite the iteration (53) as
By — DO = (11— 7) (035, — BOL, ) 4+ (81(6,) — £O(5,))

Let U, = 67¢° — E@°°. Thus
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Following Polyak and Juditsky (1992), we can write

U, = H 1—) Uo-i—Z(H 1—’Yj))’7iv(5i)

=1 Jj=i+1

Thus 049 — E@%"9 can be written as

R R 1 <
0(1’[)9 _ Eaavg — U
n n n Z k

k=1
1 n k 1 n k k
S| (ERILEES v 9f ) RIRSA) EAYES
k=1 i=1 k=1 i=1 \j=i+1
1 n k 1 n n k
:*ZHG*%)UO_'—* ( (1’7J)) 72v(51)
k=1 i=1 N3\ join
Let
n k
po=>_]0-)
k=1 i=1
n k
(]; =% H (1 - 73)
k=i j=i+1
and w! =q' —1. Then
Hav Hav _ pn 1 - 1 - 7
gng_Egng_nU0+nizz;v(5i)+nZ:an(5i) (63)

From Lemma 1 and Lemma 2 in Polyak and Juditsky (1992), we have that

lim — Z\w | =0, and |w’| < C}, |p,| < Oy, for some C; >0

n—oo N

Multiplying (63) by n'/27%  we have

. . 1 - 1 “L
1/2—qaax avg __ avg \ _ Pn . R ¢
n 2 (0” E@: ) = zraa U, + Sy TEw— ZV (0;) + Vo~ anv (0.
i=1

i=1

Since p,, is bounded, E||1/§+¢WU0||2 =o0(1). Besides, by independence,

n

1 2 = Cy <&

2 ] 2 2 2

n1/2+q2a Zw v || nlt+2aa Z (w;) E”V (62) || n1+2q2a Z ’w ‘Z 2 < = ; Zl |w;|
i=

i=1

for some C; > 0. Therefore, E|| gz >0, whv (6:) [|* = 0(1). Thus

pl-2a0 <C’0v (9avg)> n1+2q2a Ztr Cov (v (4;)))+o(1)

1 "L oot (X)) +o(1)

= nlt2ea ZZ = d24a2 +0(1)
=1

_ ot

(14 2g0) d2e2

o(1)
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In conclusion, for a < ——1—, we have
2(q1+q2)

B8 — 0|12 = | 6 — 61> + tr (Cov (6:7))

2
:< dn > ”B”znfqua+&nmwzfl+0(n72q1a+n2fma*1)

l—qua (1+ 2¢p0) d?a
and for o > m, we have
A tr (%)
E eavg — 0 2 -  Z 2qpa—1 2goa—1
167 oll (15 200 " +o(n )

O

Proof of Theorem 5. This follows immediately from Theorem 11 by setting the dimension to 1.
O

Proof of Theorem 6. The proof follows exactly that of Theorem 4 and setting the dimension to

1, by noting the equivalence between the MSE expressions in Theorem 11 and Theorem 10 with

- — 1

c=1,48=1 anda—Q(qH(m. O

Proof of Theorem 7. This follows immediately by noting that the proofs for Theorems 3 and 4
apply exactly the same when d is fixed. 0

Appendix C: Proofs in Section 5.2

We prove Theorem 8. Note that part of the proof has been sketched in Section 5.2, and for clarity
we will have slight amount of repetition to make this proof self-contained.

Proof of Theorem 8. Let a= m. For convenience, we skip the second subscript of w;,, and

write w;, and denote w = (w,) when no confusion arises. We also assume ny = 0 without

j=1,.m
loss of generality.

First, we argue that Z?Zl w; — 1. Suppose not, then there exists a subsequence n; such that

ng
j=

S (P 1)

j=1

‘Z;ﬁ LWy — 1’ > ¢ for some €, > 0. Assume without loss of generality that > - * w; —1> €. More-

over, suppose the sequence

is bounded. We can choose a sufficiently large 6, such that

(& & g (d)™ 1Y
1g§igf Z{:lUj—-l 004-252“% <l§jaq1—F()(jaql>:> >0
j=1 j=1

On the other hand, suppose (64) is unbounded. Then we can choose 6, =0 so that

. & s g(d)™ 1\ )
hglsoljp lej—l eo—i—zle' (Bjaql_‘_O(]aql)) =0
J= J=

Therefore, either way we would have R, — oo.
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Now, we consider a particular scheme w, g (-) such that »;w; =1 and g (d) = nd for some n > 0.
Then

n

2
w; (14o0(1 N,
MSE; = (qu1nq1§ (Lol ))) + o Y W) (140 (1))
j=1

= joa d*2y
2
n 2 n
— q1 )91 Wy o 2092, )2
- (Bd ! joa + d2a2m?2a2 Z] Wi+ En (65)
j=1 j=1

where ¢,, is an error term.
As described in Section 5.2, we consider optimization problem (36) to obtain w,n that minimizes
(65) (or (34)) asymptotically. We call S} the optimal value of (36). We will show that

max R (0(-),d,g(d),W) = lim n7i'% S

0(-)€H,d>0 n—00

is the asymptotic minimax risk ratio we seek for, and consequently the solution w,n to (36) is the
optimal configuration. In the following, we first obtain a characterization of the solution to (36),
and then verify that the solution also ensures the error term ¢, is negligible. Then we argue that
no other configurations, namely w, g () such that »,w; — 1 and g(-) € Fx that can give a better
risk ratio. Although the solution 7 to (36) may depend on n, we will demonstrate that 1 converges
to a positive number as n — oo, and it will be clear that substituting n with its limit will not affect
the asymptotic risk ratio.

To solve (36), we follow the derivation in Section 5.2 starting from (37) to obtain the optimal
weights in (47), with A;, A2 as the Lagrange multipliers of the two constraints in (43) evaluated at
the solution a* of (45), and the optimal n* in (46).

Now, for convenience, we write

At |

w= [y 7] o (66)
so that
plw=[p"S "y p"E1] i;
and
1TTw=[1TS""p 1787"1] i;

Setting p'w=a and 1Tw =1, we get

M| (e 2L “Ma
N | T (1TE Ty |
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Let ¢ (k) =>_"_, 1/5". We can write this as

R;] - [@(&(fq?j 22qqz2)))) ¢(a¢(21210j;3)q2))}1 [611]

-1
+2
e o(aim) m o
+2
¢ (2(2114-33)) ¢ (41qu2)
From (66), we can represent the optimal weights as

Ty-1 Ty—149 711
N _ [TAD IRy TR TAD M| a
w (a) - [E 1:“ by 11] |:1T21u 1T211:| |:1:|

—_

and write
Z (a)* = [|2Y%w” (a) |?

Ty -1 Ty-197"1 ry—1 Ty—1 Ty-19771
[TAD YRy TR VD M | W _ _ TR YRy TR T M | a
=la 1] [Nzlu 1T211} [le SR 2T ey 1| o

—1 -1
_ [a 1] uTzflu MT2711 MTzflu Iuszfll /,LT271M /LT2711 a
1" 17811 1" 17811 | (178 1 1781 1

=la 1]5{61‘}

where 1
-1 +2
= 511 512 — MTE_ll’L ,U’TE_ll — (b(l) ¢ (2%}11"!‘32)) (68)
B a1 2o 1™3 1 17811 ¢< a1+2¢2 ) ¢< a2
2(q1+4q2) q1+92
Thus, (45) can be written as
; qffqg 249 Q1q+1q2 69
min |a| (§110° + 2&12a + E2) (69)

a:(KQ(thrq?) 7511)11272612&*52220

q _ a1
We now find the asymptotic limit of (36) scaled by naita First, we write a as an 2(a1+a2) . Then,

_ ~ — 0
reparametrizing by @ and denoting Z (a) = Z} (Em 2’<‘11+‘12>>, we have

a
q1

n 2(q1+42)
1

Note that ¢ (1) ~logn and ¢ (k) ~ ==n'"" for kK <1 as n — co. Thus,

[1]

Z (@)’ = [d 1]

q1
n 2(a1+a2)

ninn Z; ()"
-1 -

- q1 a
o a (1+0(1))logn wnz(qlm) —a
= nare 7 1 a1 L @ n2(a1+4a2)
|y 2@ +a2) 2(a1+92)(A+0(1) o 37 +q)  (@1+a2)(A+0(D) ) GrFgy 1
q1 q1
(@1ta)(to()), 7y _ 2aitan) (o) ) 305 Fap)
q1 q1
a [ & _ 2a1+a2) (40(1) | 55105 (140(1))logn :
— patae 1 a1 2(q1 +a2)
A (q1+492) qul Aq1tg2)?, R " 1
Ln2(ai+a2) el L ogn(1+0(1)) — anl a2 (1+0(1))

1
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_ 2arta)(1o(1) (1 —i—o(lq)l)logn

q1

i

[ (g1+4g2)(1+0(1)) _2((11+q2)(1+0(1))]

%logn(uo(l))—%(uom) m 70
—a 1(E+o) |{]

where

[1]x

_[0 0 ]
0 (113}(12

Rewriting (45) in terms of a, we have that (45), when multiplying its objective value by nq1q+1q2,

becomes
q1

2a9 [ FTETY

\ min |d| a1 +az (’I’L q1+az Z:‘L (&)2> e (71)
1
an 91192 Zx (a)?<K2(a1+492) 52
We consider an asymptotic version of (71) given by
* 1
. 2492 q1+a2
min - fajee ()T o (72)
a:—2_ < g2(a1+a2)52 q1+ g2 q1 + qo K22

q1+4q2

We now argue that the absolute value of an optimal solution to (71), denoted &, converges to

n?

Nt L from which it follows immediately that the value of (71) converges to —L——;

q1t+az K2927
q1 1
as n — 0o. Suppose that ‘|ank\ ~\ s1tes KO ¥

for infinitely many % it holds that |a; | < ,/-%— — — €, then a,, is excluded from the feasible

> ¢, for some € > 0 and subsequence n; — oco. If

q1 +QQ Ka1+42

region of (71), namely

&nk ¢ {a . nzﬂ(qﬁm)zzlC (&)2 < KQ(‘“"‘QQ)ZLQ} (73)

infinitely often, which is a contradiction by the definition of a}. Therefore we have |d;k\ >

N e i T € for all k sufficiently large. Next, from (70), we have that N7t Z(a)? is bounded

from below uniformly over a:

q1

(g1+g2)(A+0(1))  _ 2(q1+92)(1+0(1))
q1

| e (1) logn
minnate Z*(a)" =minfa 1 2

2tz Jogn (14 0(1)) - H0525 (14 0(1) M

(I+0(1)) <logn— M)

q1
q1+q2 logn(l —I-O(l)) . 4(q1;%<12)2 (1 +0(1))
q
= 14+0(1
Q1 +q2 ( (1)

where in the second equality we have used the property for the minimum of a quadratic function.

Suppose that |a;, | is unbounded, then

299 e q+1q _ 9\ a1ta2
: ~ x - 1192 7% (~x _
limsup|a; |7 i 7, (a,) — o0
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which is again a contradiction. Thus we are left with the case where |a;, | >,/ ” +q2 KqﬁqQ +eand

|ay, | is bounded. Note that since |a;, | is bounded we have

a
nZIJﬂD Z:Lk (a* )2 o q1 — 0(1)

"k q1+qo

Thus

q1 242 a1
N 299 I _ 5 2\ 1t ¢ 1 q1+az 7 TR
a, |mve (n "2 72 (a; > ——— te¢ +o(l 74
a7 (o2 2, @)°) e ([ ) (o) (74)

On the other hand, since the feasible region to (71) admits a such that a =,/ <ars to(l),

we have for such a

a1
N L o 1
’a‘q1+q2 <nk1 2an (CL) = ¢+ ¢ K242 +0(1)

Comparing the above equation to (74), we again have a contradiction. Thus we have shown that

the absolute value of a solution a; to (71) converges to ,/—%—

q1 +q2 K91 +q2

Z*( *)2 1/(2(a1+92)) a 1/(2(q1+92))
a
n* — ( n ) ) ( 7 q1+q21 ) = R (75)

a*2 L S S S
q1+qg2 KQ(QI +a2)

Besides, we have

We now show that the error term in (65) is asymptotically negligible, which is true if

Z“%— (Z jﬁi) (70

j=1

and

ij‘mw (I+0(1 Z]Qa‘”wd—ko <Z]2"q2w ) (77)

For (76), let v= <0 <Ja%1>) € R". We first show that v "X 'u=0(u" X7 ). For any € > 0,
Jj=1,-,
by the definition of v we have that |v;| < §pu; for all j > jo, for some jo = jo (¢). Thus for all n > jo

n Jo n
T ST T =TI e

=1 =1 j=jo+1
where Ej_jl denote the jth diagonal element of X71. Since u' X1 — 0o as n — oo, we have for all

n large enough

Jo n
VST < DTG+ Y I T e
=1 =0
€
5 TE lu—|— Z /"LJE]J /,LJ
J =jo+1

S E,LLTE_l,LL
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Thus 7' X 'u=o0(p"S"'p). Similarly we can show that v' 371 =0 (u"X711). We note that

n . 1
Suio (5

¢(1) ¢( q1+2q2 ) a*
_ ['YT271H 7T2711] 2(q1+q2)

_1t242_ g
¢<2<Zl+q§)) ¢(q1fq2) !
q1 q1
. _2ote)0te W aatm (14 0(1)logn %) (niﬂqfiqw)
= [0 (logn) o (nmﬁq?))} a1 4 2
(qI;qZ)nm logn(l—l—o(l))—%nql*” (1+0(1)) 1
1
a1
0] <n2(Q1+QQ)>
O (logn)

a1
= [o(logn) 0(n2(q1+‘12>)} - 5
(q1;42)nm logn (1+0(1)) — 4(q1;§qz)2nm (1+0(1)

a1
0 (n2(71+f12> log n)

_ 91 2 _91
o) %55 logn (140 (1)) — 202 s (14 0(1))

91
__a
=0 (n 2(q1+q2))

n w*
~(g3)

i=1

where we have used the expression for w*. For (77), since

n

naita Z (u);'.‘)2 0 (jzo“”) —0

j=1

we also have that

n

Z (w;)2j2aq20(1) =0 <Z (w;)2j2aq2>

j=1 j=1
Next, to show that no other choices of W, g(:) can asymptotically dominate w* (a*) and g ()

where ¢ (d) = Kd obtained above, we consider a configuration of w,n obtained by solving w in
minw Q = K%qz Z;:l jzan w_? 5
subject to 35 Z?Zl JRerw? > K20 (E?Zl ;}f—él) (78)

and choosing n = K. Let Q) the optimal value of (78). We first solve (78) and show that it does

not give a smaller optimal value than (36) asymptotically. Consider

L, (a) = min,, RG]
subject to ||X1/2w]]? > KX a1+a) g2 (79)
plw=a

1Tw=1
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For any a, if the optimal solution to (43) satisfies
A (a)2 > K2ai+a2) ;2
n

then the minimum in definition (79) is attainable and L, (a) = Z (a). Otherwise, the minimum
~ _ q1
is possibly unattainable and L, (a) > K*©1+%2)g2, Let a = an 2@+%) . Reparametrizing by a, we
_ ~ _ q1 q
denote L, (a) =L, <dn 2a1+42) ) Multiplying the objective value of (78) by na+s , we have

1
K?2a2

a4 o
naitae QY =na+a inf L, (a)
a

regardless of whether the minimum in (78) is attainable. Suppose that N7 Z: (a)® > K2ata)g?,
From (70) we have that a is asymptotically bounded. Thus for some o (1) uniform over such a, we
have

nite L, () —nats Z* (a)?

K242

On the other hand, suppose that naite Zr(a)? < K¥a1+92)52, Then

_a - ~\2 1 2( + )~2 1
nata [, (a) Tom > K2ate)g e

q]
~ 42 _d = 2\ ata2
> (KQ(Q1+q2)a2) a1+az <nq1+q2 Z* (a) )

1
K2
240 a Tt
: 2 41 = 2\ a1ata2
> min |a| atay (patae 7* (a)
- S n
an 91192 Zx (a)2<K2(a1+492) 52

q1 1
> 14+o0(1
_Q1+(I2K2q2( o(1))

for some o (1) independent of a. Therefore, we have

_a1 a1
liminfnate @) > lim nate S)
Using (72) we identify the AMRR in the first part of the theorem. Using (47), (67), (68), (69) and
(75) we identify the solution in the second part of the theorem.
It remains to argue that no other configurations w, g (-) such that Z;l w; — 1 and ¢ () € Fg that

can give a better risk ratio. We first note that we can solve the variant of optimization (36)

min,, , T
. 2 n e
subject to 7= (™ Y27, ) = e 5 52003 (80)
n< K

E?:l w;=1+o0(1)
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via solving (45) like before, but this time with the constraint 17w =1 in (43) replaced by 1'w =
1+ 0(1). This additional o(1) term can be seen, by following the arguments above, to eventu-

ally be absorbed with no effect on the analysis. This gives an optimal solution 77 such that

*

lim,, o T)¥/ Sk = 1. Similarly, the variant of optimization (78)

: _ 1 n r200q2 5,2
min,, P =05, 77 %w;

) 2
subject to 35 Z?Zl JReew? > K20 (Z;F:l j:él) (81)
S wi=1+0(1)

J

_91 . _a
gives an optimal value P} such that liminf, ,,, na+2 P’ >lim, , nate =4 !

T qtgq K22°
We aim to find 6 (-) € H and d > 0, such that

q1 1
R (0(),d,g(d),W) >
(00).dg(d), W) > A

We will consider 6(-) € H with 6, = 0 and without the higher order terms in the asymptotic
expansion, i.e. b(d) = B for some B # 0 and v (0) = f;(é) such that Var (e(0)) =02 > 0. In this

case

n 2 2 n
. g(d) " W o’ d o 2ags, 2
MSE; = (qu1 (d) Zjaql + 0 m Z] quj
=1

=1
For any W, g (-), we note that two cases can arise:

1. For all large enough n, either

or

()" (55%) #(5l) S

but there exists n < K, such that

2
2q1 wj _ -2aq2 ,,,2
n(zﬂj—miy u
j=1

Jj=1

2. There exists a subsequence n;, such that

n 2 ng
; 1
K’qu w] -2aq3 ,,,2
(Z jaq1> < K 2a2 Z] wj

Jj=1 Jj=1

For case 1, by the definition of 7;" we have

o (M) (S5 ) L (5t) " S =

j=1
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Thus

max RI"(0(),d,g(d),W)

0(-)eEH,d>0

Bqu (44 B w; 2 o2 i )22 n 202 )2

] d Zj:1jaq1 + 2% 9(d) Zj:lj w;
max  limsup

B#0,02>0,d>0 n—soo 1

2
b (B + g ) +o (I
n41+4q2 nd1+a2

v

1
> lim nata T;{

n—oo
1
> q1
¢+ go K?92

For case 2, we have

g (@) (& w; | LAY
J 2 J
(40) 7 (L) <xm (o) <

Jj=1 Jj=1

1 & d \’? &
20 2 20 2
o 27 quj§<g(d)> 2

Jj=1

Thus by the definition of P}

max R (0(),d,g(d),W)

0(-)eH,d>0

Bda 9@\ e wy 2 o? d 242 "k s2aq2,,2
) Xk ) tEa o) i it

> max  limsup
B+#0,02>0,d>0 k—o0 1 2 1
- B2d2a1 + 7(1%512 +o| —aq—
ny, 91192 ny 11+a2
9(d) )91 s~ W5 2
B2d2n (( d ) 2j=1 j“ql) a2
q 1 "k LSk 200qg,2 d2a2
. s 200, 2 K292 ~j=1 J
> max  limsupn,ate o 77wy .
2 2
B#0,04>0,d>0 k—oo = <BQd2q1 + deQ) +0(1)
1 &
. q . L . .
> limsupny ¥z — E ]2aq2w? (by considering B arbitrarily close to 0)
k—o0 K2 J=1

aq
limsupn, " P
k—o0

q1 1
1 + g2 K2

Y

v

O
Proof of Corollary 1. This follows immediately by noting that the proof of Theorem 8 applies

exactly the same when d is fixed. O

Appendix D: Finite-sample effect of the choice of d

We investigate the effect of the choice of d on the finite-sample risk ratios between our proposed
estimator é?f” and the sample-average-based estimator #, via a simple numerical experiment.

Consider estimating

o= A B[UZ >} |eco = o P(Z > 2)leco = ~6(@)]um0 = ~0(0),
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where Z is a standard normal random variable and ¢(-) is the standard normal density. We can

evaluate the simulation outputs where, for § >0,

0(6) = 1{Z>6}—1{Z>0}'

)
In the form of (1), the bias b(d) is given by
b(6) = B1p(5)] 0= TEZNLEZ0) o) Zh o0y
_ SO O OF o) L i)

since ¢ (0) = 0. Similarly, the noise v(d) is given by v(8) = 0(8) — E[0(5)] so that

_ Var({Z> 8}~ 1{Z>0}) _Var(R)

Var(v(d)) 5 TR

where R takes value —1 with probability P(0 < Z <§) and 0 with probability 1 — P(0 < Z < ).
Therefore
Var(R)=P(0< Z<0)(1-P(0< Z<4))=¢(0)d 4+ 0(0).

Therefore, the constants in the set H (in (10)) are B=—3 "(0),02=0(0),¢1 =2,¢2 = 1. Table 11
shows the AMRR obtained from Corollary 1.

K 05|08 101]20)|30]40

AMRR | 1.60|1.00|0.80 |0.40|0.27|0.20
Table 11 AMRR for general weighted estimators, against K, when ¢1 =2,q2 = %

We fix a budget n = 20,n9 =5, choose values of K ranging from 0.5 to 4.0, and choose values of

d among {0.5,1,d*,5}, where d* is the optimal choice for the sample-average-based estimator 0,,

1

2 2(q1+az)

d" = g % o ~ 1.86.
B%q,

which can be calculated by

For each configuration of K and d, we repeat the simulation for 1000 times to estimate the empirical
MSEs of 6,, and égf”. Moreover, we output the 95% confidence intervals for the risk ratios, which
are obtained by a standard application of the delta method. Table 12 summarizes the finite-sample
risk ratios together with the confidence intervals. We see that the choice of d indeed affects the
finite-sample performance of our proposed estimator. When d = 0.5, the finite-sample risk ratios
closely match with the theoretical AMRR for all values of K considered. As d increases, we see

that the finite-sample risk ratios still roughly match the theoretical AMRR for K ranging from
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0.5 to 1, but begin to deviate away from the theoretical AMRR for K ranging from 2 to 4. The
deviation is largest for d = 1.86, which is intuitively unsurprising as this value of d is optimal for
the conventional estimator #,. When d = 5, we see more fluctuations away from the theoretical
AMRR for K ranging from 0.5 to 1. Although some deviations are in our favor, this indicates a

significant finite-sample effect for such a large value of d.

d K=0.5 K =028 K=1 K=2 K=3 K=4
0.5 | 182+24% | 101 +14% |89+ 11% | 37+5% 23+ 3% 21 +2%
1 1229+30% | 107+13% [91+£11% | 51+6% 1+7% |129+11%
1.86 [ 186 £23% | 103 +£11% | 98 +11% | 228 +19% | 416 +33% | 559 + 46%
) 37+ 3% 87T+£3% |112+£4% | 217£6% | 255 +£6% | 272+ 7%
Table 12  Finite-sample risk ratios with 95% ClIs between 09" and 0.

Appendix E: Further numerical illustrations in the application of stochastic optimization

We further study an incorporation of our enhanced estimators in zeroth-order stochastic gradient
descent or SA for black-box stochastic optimization problem. Here, the gradients in the descent

E[F(0,¢)],

the expected value of a function depending on the random variable £ and use the iterative algorithm

algorithm are estimated via finite differences. We consider the minimization of f(0) =

shown in (82) to obtain solutions, where the gradient is approximated using some weighted finite

difference (83):

91'_;,_1 9 - 061Vf( ) 1= 1 I (82)
- Nsim (01+6z,7§z,)— (‘97,_61,752 )
VI0) =D w ! J%H e (83)
j=1 3

is a sequence of positive step sizes with i as the iteration index, and I is the total

and {&; ;};2F

w; is the weight coefficient and ¢, ; is the perturbation size for each finite difference. Four variants

where oy, as,. ..
iteration number. {&; ;}75 are independent realizations of the random variable &,
of finite difference are studied in our experiment:
1. (FP): Fixed perturbation, with ¢, ; =
2. (KW): Kiefer-Wolfowitz, with ¢, ; =
3. (RE): Recursive estimator, with §; ; =
1 (

d —
(n0+nsim)1/6 and w'] T Nsim
1

Msim

0.83d and w; = ——;

nslm
Kd and w; = wj”

d _
W and ’lUj—

d=
d=

)

(n0+ j)1/67

OW): Optimal weighting, with 9§, ; = (o + 176 * given by Theorem 8.
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We consider an objective function F' expressed as a sum of deterministic and stochastic parts,
ie., F(0,8) = Fi(0)+ F»(&). Two experimental sets are considered with different deterministic and
stochastic parts. In the first experimental set, the deterministic part F(f) is selected from one
of 6],160]*,10]*2,0]*3,|0|**, and the stochastic part F»(§) =& ~ N(0,0?) varies by the choice of
o to be among 1 to 10. In the second set, F;(6) is selected from one of (2 — cosf)' —1,(2 —
cosf)t —1,(2 —cosf)'? —1,(2 —cosf)'* —1,(2 — cosf)'* — 1, and Fy(§) =& ~ N(0,0%) with o
chosen among 5 to 10. In both experimental sets, the true optimum is 0. Note that Fj in the
first set may not be (higher-order) differentiable at the optimum 0, and thus does not guarantee
convergence of the standard Kiefer-Wolfowitz algorithm (Kiefer and Wolfowitz (1952)). However,
in our implementation we focus on the early stage of the iterations where the updated solutions
are still far away from the true optimum, and the easy form of Fj facilitates the understanding on
the impacts of curvature on the performances of the tested algorithms. On the other hand, Fj in
the second experimental set is infinitely differentiable everywhere in R and we would see similar
experimental observations as the first set regarding early-iteration behaviors.

We first focus on the first experimental set. There is a combination of 50 (=5 x 10) possible
objective functions to be considered in total. We vary the simulation run-length per iteration ng,, to
be among 100, 150, 200, and step size «; among 0.2,0.2-1'_%,0.2'i‘g,O.Q-z’_l. Also we set I = ng,.
This is because we would like the order of J; ; among the four methods to be close to each other
at the end of the iteration, in order to avoid significant impacts on the solution quality due to
huge discrepancies in the magnitude of ¢; ; (note that KW has decreasing d; ; in ¢ while the other
three methods do not). We set d=1, K =1,ny = 50,6, = 5. Our performance metric is the MSE of
the obtained solution at the last iteration, i.e., 87,1 against the ground-truth optimal solution. We
repeat the experiment 200 times to estimate the empirical MSEs.

Tables 13-16 summarize the results, where Table 13 shows the performance for fixed step size and
Tables 14, 15 and 16 show those for varying step sizes 0.2-2'_%, 0.2-i"% and 0.2+ respectively. The
varying step sizes all satisfy the typical requirement needed for convergence of the Kiefer-Wolfowitz
algorithm. However, as noted earlier, in this experimental set differentiability at the optimum does
not hold, while in our next experimental set differentiability would hold so that the algorithm
asymptotically converges. Moreover, note that, as in Section 7, to interpret these tables, one should
focus on the ratios of MSEs instead of the absolute magnitude of the MSE. This is because one
can always arbitrarily inflate or deflate MSEs by simple scalar multiplication adjustments. Thus,
an appropriate measurement of the estimation error is the ratio between the MSEs of two different
algorithms (i.e., in the form MSE; /MSE, where 1 and 2 represent some algorithms). Figure 3 gives
one typical numerical trajectory when setting the objective function as |8+ &, & ~ N(0,10%), and

Ngim = 200 and o; =0.2-771. In this setting, the empirical MSE given by OW gradually shrinks as
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shown in Figure 3a, and the effectiveness of OW is further demonstrated by the MSE ratio curves
in Figure 3b, where the ratios are well below the value 1 (dashed horizontal line) throughout the
200 update steps. Note that the solution at the 200-th step is still quite far away from the true
optimum, hinted by the MSE being noticeably far away from 0 (as mentioned before, we focus on

the early stage of iterations in this experimental set).

_______________________________________

(a) MSE via OW against iteration number (b) MSE ratio against iteration number
Figure 3  Performance trajectories for F(6,€&) = |0]"* 4 &,& ~ N(0,10?) and ngim = 200,03 = 0.2 7!

We make several observations from Tables 13-16. First, throughout all the experiment settings,

MSEep / MSErw MSERE) are all strictly less than 1. These ratios can

the empirical MSE ratios (
reach as low as 0.66, 0.72 and 0.64 (in Table 13) respectively, implying a closer solution to the
ground-truth optimal in using OW than other benchmark methods given the same total number
of update steps. Note that, for more statistical preciseness, we can construct the 95% confidence
intervals for these empirical ratios, where most of them would be seen to still lie strictly less than
1, but for ease of presentation we do not show these intervals in the tables.

Another noticeable pattern is observed along the choice of the stochastic part. The empirical

MSE ratios all decrease as the variance parameter ¢ increases, indicating that OW gives a relatively

smaller MSE when the function evaluation bears a higher variance. For example, for ﬁgggg, the

ratio monotonically decreases from 0.87 to 0.78 as ¢ increases from 1 to 10 under the setting of
Fi(0) =10|"*, o, = 0.2 and ngy, = 100 in Table 13. Similar patterns can be found across different
choices of ng, and update step size. These observations hint that the bias-variance balancing using
OW is more effective when the objective function evaluation is subject to a higher noise.

We notice that a larger ng,, may not necessarily lead to a greater improvement in term of MSE
ratios. This could be due to several factors, including the step-size-sensitive behavior of the descent

algorithm and the approximation errors in the bias-variance balancing analysis for finite-difference
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estimators mentioned in Sections 5.1 and 7. In addition, compared to Tables 14, 15 and 16 where
we set varying update sizes, greater improvements are observed under the scenario of fixed step
size shown in Table 13. This could be because during the early iterations accurate estimation
of gradients obtained by OW has a larger influence on the solution update under the fixed-step
scheme, while such influence is smaller for the other three schemes as their update sizes shrink
along the iterations.

In the second experimental set, we again vary the simulation run-length per iteration ng,, to be
among 100, 150,200. We vary the step size o; among 0.1-5-%7, 0.1-4-7/8, 0.1-7i~', and again set
I=ng,. Weset d=1, K =1, ng=>50, 6; =2. We use the same criterion of MSE as in the first
experimental set, and repeat the experiment 200 times to estimate the empirical MSEs.

Results are given in Tables 17-19. We observe similar patterns as in the first experimental set.
OW obtains the smallest empirical MSE among the four methods in all cases. Moreover, when the
objective function is subject to a larger variance of noise, i.e., larger o, a larger outperformance
of OW over other methods is observed as exhibited by smaller MSE ratios. Here, like in the first
experimental set, we have focused on the early iterations and the solutions obtained are still far
away from the optimum. Thus, the outperformance of OW can be attributed to a faster decay
of the objective function brought by more accurate gradient estimation in the early stage of the

descent algorithm.
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MNsim

o[

o1t

|9|1‘2

|0‘143

|9‘144

100

0.818,/0.885/0.773
0.818,/0.885/0.773
0.818,/0.885/0.773
0.817/0.884/0.773
0.798,/0.874/0.769
0.765,/0.848,/0.754
0.735/0.813/0.739
0.710/0.774/0.715
0.685,/0.741/0.684

0.663,/0.715/0.655

0.815,/0.882/0.776
0.815,/0.882/0.776
0.814/0.881/0.775
0.812/0.879/0.774
0.795,/0.869/0.770
0.766,/0.847/0.758
0.740/0.818/0.745
0.720,/0.785/0.727
0.699/0.756,/0.705

0.682,/0.733/0.682

0.812/0.878/0.777
0.811/0.877/0.777
0.810,/0.876,0.776
0.806,/0.873/0.775
0.791,/0.864/0.771
0.767/0.845,/0.760
0.744/0.821,/0.749
0.727/0.794/0.735
0.710/0.769/0.719

0.695,/0.748,/0.703

0.807/0.873/0.778
0.806,/0.873/0.777
0.804,/0.871/0.777
0.800,/0.868/0.775
0.787/0.859/0.771
0.767/0.843/0.762
0.748,/0.823/0.753
0.733/0.801,/0.742
0.719/0.780/0.729

0.707/0.762/0.717

0.802/0.868/0.777
0.801,/0.867/0.777
0.799,/0.866,/0.776
0.795,/0.862/0.774
0.783,/0.854/0.770
0.766,/0.840,/0.763
0.750,/0.824/0.755
0.738/0.807/0.746
0.727/0.790/0.737

0.717/0.775/0.727

150

0.774/0.820/0.972
0.774/0.820/0.972
0.774/0.820/0.972
0.774/0.820/0.972
0.772/0.819/0.970
0.765/0.816,/0.964
0.757/0.810/0.968
0.751,/0.802/0.972
0.746,/0.797/0.963

0.746,/0.798,/0.952

0.769,/0.814/0.973
0.769,/0.814/0.973
0.769,/0.814/0.973
0.768,/0.814/0.973
0.766,0.812/0.971
0.760,/0.809/0.966
0.753,/0.805/0.967
0.748,/0.799/0.970
0.741,/0.796,/0.964

0.741/0.801/0.957

0.764,/0.809/0.974
0.764,/0.809/0.974
0.763,/0.809/0.973
0.763,/0.808,/0.973
0.761,/0.807/0.971
0.755,/0.804,/0.966
0.750,/0.800/0.967
0.746,/0.795/0.969
0.739/0.794/0.965

0.737/0.799/0.959

0.759,/0.804/0.974
0.759,/0.804/0.974
0.759,/0.804/0.973
0.758,/0.804/0.972
0.756,/0.802/0.970
0.751,/0.800/0.967
0.747/0.796,/0.966
0.743/0.793/0.967
0.738,/0.792/0.965

0.735/0.795,/0.959

0.755,/0.800/0.973
0.755,/0.800/0.973
0.754/0.800,/0.972
0.754/0.799/0.971
0.752/0.798,/0.969
0.748,/0.796,/0.966
0.744/0.793/0.966
0.741/0.790/0.965
0.737/0.790/0.963

0.735/0.792/0.960

200

9

10

0.821,/0.852/0.746
0.821,/0.852/0.746
0.821,/0.852/0.746
0.821,/0.850,/0.744
0.821,/0.837/0.735
0.816,/0.822/0.724
0.813,/0.792/0.709
0.801,/0.768,/0.685
0.789/0.742/0.659

0.781/0.718,/0.638

0.816,/0.847/0.747
0.816,/0.847/0.747
0.816,/0.846/0.747
0.816,/0.843/0.745
0.816,/0.831,/0.738
0.811/0.817/0.728
0.808,/0.792/0.716
0.799/0.771/0.699
0.790,/0.748,/0.678

0.783/0.727/0.660

0.811/0.841/0.747
0.811/0.841/0.747
0.811/0.840/0.747
0.811/0.836/0.745
0.811/0.825/0.739
0.807/0.812/0.731
0.804,/0.790/0.721
0.798,/0.772/0.708
0.791,/0.754/0.692

0.785/0.735/0.678

0.807/0.835/0.747
0.807/0.834/0.747
0.807/0.833/0.746
0.807/0.829/0.744
0.806,/0.819/0.740
0.803,/0.807/0.733
0.801,/0.789/0.724
0.796,/0.773/0.715
0.790,/0.758,/0.703

0.787/0.743/0.692

0.803,/0.828/0.745
0.803,/0.827/0.745
0.803,/0.825/0.745
0.803,/0.822/0.743
0.802/0.813/0.739
0.800,/0.802/0.734
0.798,/0.787/0.727
0.794/0.774/0.719
0.790/0.761/0.711

0.787/0.749/0.703

Table 13 Ratios of empirical MSEs for our first experimental set for a; = 0.2. 200 replications to estimate

MSEow / MSEow / MSEow

empirical MSEs. Each entry reads MsEen / MSEyew / MSFpy
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MNsim

o[

o1t

|9|1‘2

|0‘143

|9‘144

100

1.000/0.997/0.998
1.000/0.994,/0.996
0.999,/0.992/0.995
0.999,/0.989,/0.993
0.999,/0.987/0.991
0.999,/0.984,/0.989
0.999,/0.982,/0.988
0.999,/0.980,/0.986
0.999/0.978,/0.985

0.999/0.976,/0.983

1.000/0.997/0.998
1.000/0.994,/0.996
0.999,/0.991,/0.994
0.999,/0.988,/0.992
0.999,/0.986,/0.990
0.999,/0.983,/0.989
0.999/0.981/0.987
0.999,/0.978,/0.985
0.999/0.976,/0.984

0.999,/0.974,0.982

1.000/0.997/0.998
1.000/0.993/0.996
0.999,/0.990,/0.994
0.999,/0.987/0.992
0.999,/0.984,/0.990
0.999,/0.982,/0.988
0.999/0.979/0.986
0.999/0.977/0.984
0.999/0.975,/0.982

0.999/0.972/0.981

1.000/0.996,/0.998
0.999,/0.992/0.995
0.999,/0.989/0.993
0.999/0.986/0.991
0.999,/0.983,/0.989
0.999,/0.980/0.987
0.998,/0.977/0.985
0.998,/0.975,/0.983
0.998,/0.972/0.981

0.999,/0.970,/0.979

1.000/0.996/0.997
0.999,/0.991/0.995
0.999,/0.988,/0.992
0.999,/0.984,/0.990
0.998,/0.981/0.987
0.998,/0.978/0.985
0.998,/0.975,/0.983
0.998,/0.972/0.981
0.998,/0.970/0.979

0.998,/0.968/0.977

150

0.999,/0.998,/0.999
0.998,/0.996,/0.999
0.997/0.995,0.998
0.996,/0.993/0.997
0.995,/0.991,/0.996
0.994,/0.989/0.996
0.993,/0.988,/0.995
0.992,/0.986,/0.994
0.990,/0.984,/0.993

0.989,/0.983,/0.992

0.999,/0.998,/0.999
0.998,/0.996,/0.999
0.997/0.994,/0.998
0.996,/0.992/0.997
0.995,/0.990,/0.996
0.994,/0.988,/0.995
0.992,/0.987/0.994
0.991,/0.985,/0.993
0.989/0.983,/0.992

0.987/0.981/0.991

0.999,/0.998,/0.999
0.998,/0.996,/0.998
0.997/0.993,/0.998
0.996,/0.991/0.997
0.994,/0.989,/0.996
0.993,/0.987/0.995
0.991,/0.985,/0.994
0.989/0.983,/0.992
0.987/0.981/0.991

0.985,/0.980,/0.990

0.999,/0.997/0.999
0.998,/0.995,/0.998
0.997/0.993/0.997
0.995,/0.990,/0.996
0.993,/0.988,/0.995
0.991,/0.986,/0.994
0.989,/0.984,/0.993
0.987/0.981/0.991
0.985,/0.979,/0.990

0.982,/0.977/0.989

0.999,/0.997/0.999
0.998,/0.994,/0.998
0.996,/0.992/0.997
0.994,/0.989/0.996
0.992/0.987/0.995
0.990,/0.984,/0.993
0.987/0.982/0.992
0.985,/0.979,/0.990
0.982,/0.977/0.989

0.979/0.975/0.987

200

9

10

0.998,/0.996,/0.999
0.995,/0.993,/0.998
0.992,/0.989,/0.996
0.990,/0.986,/0.995
0.987/0.983,/0.994
0.984,/0.980,/0.993
0.981,/0.977/0.992
0.978,/0.974/0.991
0.975,/0.971,/0.989

0.972/0.968,/0.988

0.997/0.996,/0.999
0.995,/0.992/0.997
0.992,/0.988,/0.996
0.989,/0.985,/0.995
0.986,/0.981,/0.993
0.982,/0.978,/0.992
0.979/0.974/0.991
0.976,/0.971,/0.990
0.972,/0.968,/0.989

0.969/0.965,/0.987

0.997/0.995,0.999
0.994,/0.991/0.997
0.991,/0.987/0.996
0.987/0.983,/0.994
0.984/0.979/0.993
0.980,/0.975,0.992
0.976,/0.972/0.990
0.972,/0.968,/0.989
0.968,/0.965,0.988

0.964,/0.962/0.986

0.997/0.995,/0.998
0.993,/0.990/0.997
0.989,/0.985/0.995
0.985,/0.981,/0.994
0.981,/0.976,0.992
0.977/0.972/0.991
0.972,/0.969,/0.989
0.968,/0.965,/0.988

0.963,/0.962/0.987

0.958/0.958,/0.985

0.997/0.994,/0.998
0.993,/0.988/0.997
0.988,/0.983/0.995
0.983,/0.978,/0.993
0.978,/0.973/0.992
0.973,/0.969,/0.990
0.967/0.965,/0.989
0.962,/0.961/0.987
0.956,/0.958,/0.986

0.950/0.954,/0.984

Table 14

Ratios of empirical MSEs for our first experimental set for a; =0.2 -4

empirical MSEs. Each entry reads

MSEow /

6/7

MSEow / MSEow

MSEpp

MSExw / MSERg °

. 200 replications to estimate
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o[

o1t

|9|1‘2

|0‘143

|9‘144

100

1.000/0.997/0.998
1.000/0.995/0.996
1.000/0.992/0.995
0.999,/0.989,/0.993
0.999,/0.987/0.991
0.999,/0.985,/0.990
0.999,/0.983,/0.988
0.999,/0.980/0.987
0.999/0.978,/0.985

0.999/0.977/0.984

1.000/0.997/0.998
1.000/0.994,/0.996
1.000/0.991,/0.994
0.999,/0.989,/0.993
0.999,/0.986/0.991
0.999,/0.984,/0.989
0.999/0.981/0.987
0.999,/0.979/0.986
0.999/0.977/0.984

0.999/0.975,/0.983

1.000/0.997/0.998
1.000/0.994,/0.996
0.999,/0.991,/0.994
0.999,/0.988,/0.992
0.999,/0.985,/0.990
0.999,/0.982,/0.988
0.999,/0.980,/0.986
0.999/0.978,/0.985
0.999/0.975,/0.983

0.999/0.973/0.981

1.000/0.996,/0.998
1.000/0.993/0.995
0.999,/0.990,/0.993
0.999/0.986/0.991
0.999,/0.984,/0.989
0.999,/0.981/0.987
0.999,/0.978/0.985
0.999,/0.976,0.983
0.999/0.974/0.981

0.999,/0.972/0.980

1.000/0.996/0.997
1.000/0.992/0.995
0.999,/0.988,/0.993
0.999,/0.985,/0.990
0.999,/0.982/0.988
0.999,/0.979/0.986
0.998,/0.976,/0.984
0.998,/0.974/0.982
0.998,/0.971/0.980

0.999,/0.969/0.978

150

0.999,/0.998,/0.999
0.998,/0.997/0.999
0.998,/0.995,0.998
0.997/0.993/0.997
0.996,/0.991,/0.996
0.994,/0.990,/0.996
0.993,/0.988,/0.995
0.992,/0.987/0.994
0.991,/0.985,/0.993

0.989/0.984,/0.992

0.999,/0.998,/0.999
0.998,/0.996,/0.999
0.997/0.994,/0.998
0.996,/0.992/0.997
0.995,/0.991/0.996
0.994,/0.989/0.995
0.993,/0.987/0.994
0.991,/0.985,/0.993
0.990,/0.984,0.992

0.988,/0.982/0.991

0.999,/0.998,/0.999
0.998,/0.996,/0.998
0.997/0.994,/0.998
0.996,/0.992/0.997
0.995,/0.990,/0.996
0.993,/0.988,/0.995
0.992,/0.986,/0.994
0.990,/0.984,/0.993
0.988,/0.982/0.991

0.986,/0.981/0.990

0.999,/0.998,/0.999
0.998,/0.995,/0.998
0.997/0.993/0.997
0.995,/0.991/0.996
0.994,/0.989/0.995
0.992,/0.987/0.994
0.990,/0.984,/0.993
0.988,/0.982/0.992
0.986,/0.980,/0.990

0.984,/0.979/0.989

0.999,/0.997/0.999
0.998,/0.995,/0.998
0.997/0.992/0.997
0.995,/0.990,/0.996
0.993,/0.987/0.995
0.991,/0.985,/0.994
0.989,/0.983/0.992
0.986,/0.980/0.991
0.983,/0.978,/0.989

0.981/0.976,/0.988

200

9

10

0.998,/0.997/0.999
0.995,/0.993,/0.998
0.993,/0.990,/0.996
0.990,/0.987/0.995
0.988,/0.983,/0.994
0.985,/0.980,/0.993
0.982,/0.977/0.992
0.980,/0.975/0.991
0.977/0.972/0.990

0.974/0.969/0.988

0.998,/0.996,/0.999
0.995,/0.992/0.997
0.992,/0.989,/0.996
0.989,/0.985,/0.995
0.986,/0.982,/0.994
0.983,/0.979,/0.992
0.980,/0.976/0.991
0.977/0.973,/0.990
0.974,/0.970,/0.989

0.971/0.967/0.988

0.997/0.996,/0.999
0.994,/0.992/0.997
0.991,/0.988,/0.996
0.988,/0.984,/0.994
0.985,/0.980,/0.993
0.981,/0.977/0.992
0.978,/0.973/0.990
0.974/0.970,/0.989
0.971,/0.967/0.988

0.967/0.964,/0.987

0.997/0.995,/0.998
0.994,/0.990/0.997
0.990,/0.986,/0.995
0.986,/0.982,/0.994
0.983,/0.978/0.992
0.979/0.974/0.991
0.975,/0.970,/0.990
0.970,/0.967/0.988

0.966,/0.964/0.987

0.962/0.961/0.986

0.997/0.994,/0.998
0.993,/0.989/0.997
0.989,/0.984/0.995
0.985,/0.980,/0.993
0.980,/0.975/0.992
0.975/0.971,/0.990
0.970,/0.967/0.989
0.965,0.963/0.987
0.960,/0.960,/0.986

0.955/0.957/0.985

Table 15

Ratios of empirical MSEs for our first experimental set for a; =0.2 -4

empirical MSEs. Each entry reads

MSEow /

778

MSEow / MSEow

MSEpp

MSExw / MSERg °

. 200 replications to estimate
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o[

o1t

|9|1‘2

|0‘143

|9‘144

100

1.000/0.997/0.998
0.999,/0.995/0.997
0.999,/0.992/0.995
0.999,/0.989,/0.993
0.999,/0.987/0.992
0.998,/0.984,/0.990
0.998,/0.982,/0.988
0.998,/0.980/0.987
0.998,/0.977/0.985

0.997/0.975,/0.983

1.000/0.997/0.998
0.999,/0.994/0.997
0.999,/0.992/0.995
0.999,/0.989,/0.993
0.999,/0.986/0.991
0.998,/0.984,/0.990
0.998,/0.981,/0.988
0.998,/0.979/0.986
0.998,/0.976,/0.984

0.997/0.974/0.983

1.000/0.997/0.998
0.999,/0.994,/0.996
0.999,/0.991/0.995
0.999,/0.988,/0.993
0.999/0.985/0.991
0.998,/0.983,/0.989
0.998,/0.980/0.987
0.998,/0.977/0.985
0.998,/0.975,/0.983

0.997/0.972/0.982

1.000/0.997,/0.998
1.000/0.994,/0.996
0.999,/0.990,/0.994
0.999,/0.987/0.992
0.999,/0.984,/0.990
0.999,/0.982/0.988
0.998,/0.979/0.986
0.998,/0.976,/0.984
0.998,/0.973/0.983

0.998,/0.971/0.981

1.000/0.996,/0.998
1.000/0.993/0.996
0.999,/0.990,/0.994
0.999,/0.986,/0.992
0.999,/0.983,/0.990
0.999,/0.980,/0.988
0.998,/0.977/0.986
0.998,/0.975,/0.984
0.998,/0.972/0.982

0.998,/0.969/0.980

150

0.999,/0.999,/0.999
0.999,/0.997/0.999
0.998,/0.996,/0.998
0.997/0.994/0.997
0.997/0.993,/0.996
0.996,/0.992/0.995
0.995,/0.990,/0.995
0.994,/0.989/0.994
0.993,/0.988,/0.993

0.992,/0.986,/0.992

0.999,/0.998,/0.999
0.999,/0.997/0.998
0.998,/0.995,/0.998
0.997/0.994/0.997
0.996,/0.993,/0.996
0.995,/0.991/0.995
0.995,/0.990,/0.994
0.994,/0.988,/0.993
0.993,/0.987/0.992

0.992/0.986/0.991

0.999,/0.998,/0.999
0.999,/0.997/0.998
0.998,/0.995,/0.998
0.997/0.994/0.997
0.996,/0.992/0.996
0.995,/0.991/0.995
0.994,/0.989,/0.994
0.993,/0.988,/0.993
0.992,/0.986,/0.992

0.991/0.985/0.991

0.999,/0.998,/0.999
0.999,/0.996,/0.998
0.998,/0.995/0.997
0.997/0.993,/0.996
0.996,/0.991/0.995
0.995,/0.990,/0.994
0.994,/0.988,/0.993
0.992,/0.987/0.992
0.991/0.985/0.991

0.990,/0.984,/0.990

0.999,/0.998,/0.999
0.999,/0.996,/0.998
0.998,/0.994/0.997
0.997/0.993,/0.996
0.995,/0.991/0.995
0.994,/0.989/0.994
0.993,/0.987/0.993
0.992/0.986,/0.992
0.990,/0.984/0.991

0.989,/0.983,/0.990

200

9

10

0.998,/0.997/0.999
0.997/0.994,/0.998
0.995,/0.992/0.997
0.993,/0.989,/0.995
0.991,/0.987/0.994
0.989,/0.984,/0.993
0.987/0.982/0.992
0.985,/0.979/0.991
0.983,/0.977/0.990

0.981/0.975/0.989

0.998,/0.997/0.999
0.996,/0.994,/0.998
0.994,/0.991/0.996
0.992,/0.989/0.995
0.990,/0.986,/0.994
0.988,/0.983,/0.993
0.986,/0.981/0.992
0.984,/0.978/0.991
0.982,/0.976,/0.989

0.979/0.973,/0.988

0.998,/0.997/0.999
0.996,/0.994,/0.997
0.994,/0.991/0.996
0.992,/0.988,/0.995
0.990,/0.985,0.994
0.987/0.982/0.992
0.985,/0.979/0.991
0.982,/0.977/0.990
0.980,/0.974,/0.989

0.977/0.972/0.988

0.998,/0.996,/0.999
0.996,/0.993/0.997
0.994,/0.990,/0.996
0.991,/0.987/0.995
0.989,/0.984,/0.993
0.986,/0.981,/0.992
0.984,/0.978/0.991
0.981,/0.975,/0.989

0.978,/0.973/0.988

0.975/0.970/0.987

0.998,/0.996,/0.999
0.996,/0.993/0.997
0.993,/0.989,/0.996
0.990,/0.986,/0.994
0.988,/0.982/0.993
0.985,/0.979/0.992
0.982,/0.976,/0.990
0.979,/0.973,/0.989
0.976,/0.971/0.987

0.973/0.968,/0.986

Table 16

Ratios of empirical MSEs for our first experimental set for o; =0.2-37 1. 200 replications to estimate

empirical MSEs. Each entry reads

MSEow /

MSEow / MSEow

MSEpp

MSExw / MSERg °
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(2—cosf) —1

(2—cos®)*! —1

(2—cos@)t? —1

(2—cos@)t® —1

(2—cos@)t* —1

100

0.964/0.979,/0.969
0.956/0.976,/0.962
0.947/0.973,/0.956
0.938/0.970,/0.949
0.930/0.968,/0.943

0.921/0.966,/0.936

0.964/0.977/0.968
0.955/0.974/0.961
0.946/0.972,/0.954
0.937/0.969,/0.948
0.928/0.967/0.941

0.919/0.965,0.934

0.964/0.976,/0.967
0.955,/0.973,/0.960
0.946/0.970,/0.953
0.936/0.968,/0.946
0.927/0.966,/0.939

0.917/0.964,/0.932

0.965,/0.975/0.967
0.956/0.972,/0.960
0.946/0.969,/0.953
0.937/0.967/0.946
0.927/0.965,0.939

0.917/0.963,/0.931

0.966/0.974/0.967
0.956/0.971,/0.960
0.947/0.968,/0.953
0.937/0.966,/0.946
0.928/0.964,/0.939

0.918/0.962/0.932

150

0.988,/0.968,/0.998
0.984/0.964,/0.997
0.980,/0.959/0.997
0.976/0.954/0.997
0.972/0.950,/0.997

0.968/0.945/0.996

0.990/0.966,/0.998
0.986/0.962/0.998
0.982/0.957/0.997
0.978/0.952/0.997
0.974/0.948,/0.997

0.969/0.943/0.997

0.992/0.965,/0.998
0.988,/0.960,/0.998
0.984/0.955,/0.998
0.980,/0.950,0.997
0.975/0.946,/0.997

0.971/0.942/0.997

0.993/0.963,/0.998
0.990/0.959,/0.998
0.986/0.954/0.998
0.982/0.949/0.998
0.978/0.945/0.998

0.974/0.941/0.998

0.995/0.962,/0.999
0.991/0.958/0.999
0.988/0.953,/0.998
0.984/0.949/0.998
0.980/0.944/0.998

0.976/0.940/0.998

200

9

10

0.988,/0.989,/0.993
0.984,/0.988,/0.992
0.979,/0.988,/0.990
0.975/0.987/0.988
0.970,/0.987/0.987

0.965,/0.987/0.985

0.989,/0.986,/0.993
0.985,/0.986,/0.992
0.980,/0.986,/0.990
0.975/0.985,0.938
0.971,/0.985/0.987

0.966,/0.985/0.985

0.991,/0.984,/0.994
0.986,/0.984,/0.992
0.981,/0.983,/0.990
0.976,/0.983,/0.989
0.971,/0.983/0.987

0.966,/0.983,/0.985

0.991,/0.982/0.994
0.987/0.981,/0.993
0.982/0.981/0.991
0.977/0.980,/0.990
0.972,/0.980,/0.988

0.967/0.980/0.986

0.992/0.979/0.995
0.987/0.979/0.994
0.982/0.978/0.992
0.977/0.978,/0.991
0.972/0.977/0.989

0.967/0.977/0.988

Table 17

Ratios of empirical MSEs for our second experimental set for cc; =0.1-14

estimate empirical MSEs. Each entry reads

—6/7

MSEow / MSEow / MSEow

MSEpp

MSEkw / MSERg °

200 replications to
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Neim| 0 || (2—cosf)! —1 (2—cos®)! —1 (2—cosf)* -1 (2—cosf)® -1 (2—cos®)'* —1
5 || 0.965/0.979/0.970 | 0.965/0.978,/0.969 | 0.965/0.976/0.968 | 0.966,/0.975/0.968 | 0.967/0.974,/0.968
6 || 0.957/0.976/0.963 | 0.957/0.975/0.962 | 0.957/0.973/0.961 | 0.957/0.972/0.961 | 0.958/0.971/0.961
7 1| 0.949/0.973/0.957 | 0.948/0.972/0.956 | 0.948/0.971/0.955 | 0.948/0.970/0.954 | 0.949/0.969/0.954
10 8 1/ 0.941/0.971/0.951 | 0.939/0.969/0.949 | 0.939/0.968/0.948 | 0.939/0.967/0.947 | 0.940/0.966,/0.948
9 1| 0.932/0.968/0.945 | 0.930/0.967/0.943 | 0.930/0.966/0.941 | 0.929/0.965/0.940 | 0.930/0.964,/0.941
10|| 0.924/0.966/0.938 | 0.922/0.965/0.936 | 0.920/0.964,/0.934 | 0.920/0.963/0.933 | 0.920/0.962/0.933
5 || 0.988/0.969/0.998 | 0.989/0.967/0.998 | 0.991/0.966/0.998 | 0.993/0.964/0.998 | 0.994,/0.963/0.999
6 || 0.984/0.965/0.997 | 0.985/0.963/0.997 | 0.987/0.961/0.998 | 0.989/0.960/0.998 | 0.991,/0.959,/0.998
7 || 0.980/0.960/0.997 | 0.981/0.958,/0.997 | 0.983/0.956/0.997 | 0.985/0.955/0.998 | 0.987,/0.954,/0.998
10 8 1| 0.976/0.956,/0.996 | 0.977/0.953/0.997 | 0.979/0.952/0.997 | 0.981/0.950/0.998 | 0.983,/0.950,/0.998
9 1/ 0.972/0.951/0.996 | 0.973/0.949/0.997 | 0.975/0.947/0.997 | 0.977/0.946/0.997 | 0.979/0.945/0.998
10|| 0.968/0.947/0.996 | 0.969,/0.945/0.996 | 0.971/0.943/0.997 | 0.973/0.942/0.997 | 0.976/0.941/0.998
5 || 0.989/0.989/0.993 | 0.990,/0.987/0.993 | 0.991/0.985/0.993 | 0.992/0.982/0.994 | 0.992/0.980,/0.995
6 || 0.985/0.989/0.992 | 0.986,/0.987/0.992 | 0.987/0.984/0.992 | 0.987/0.982/0.992 | 0.988/0.980,/0.993
7 || 0.980/0.988/0.990 | 0.981,/0.986,/0.990 | 0.982/0.984/0.990 | 0.983/0.981/0.991 | 0.983/0.979/0.992
0 8 || 0.976/0.988,/0.988 | 0.976/0.986,/0.988 | 0.977/0.984/0.989 | 0.978,/0.981/0.989 | 0.979/0.979/0.990
9 1/ 0.971/0.988,/0.987 | 0.972/0.986,/0.987 | 0.973/0.984/0.987 | 0.973/0.981/0.988 | 0.974,/0.978,/0.989
10|| 0.967,/0.988/0.985 | 0.967,/0.986,/0.985 | 0.968,/0.984,/0.985 | 0.968/0.981/0.986 | 0.969/0.978/0.988
Table 18 Ratios of empirical MSEs for our second experimental set for ai; = 0.1-3~7/%. 200 replications to

MSEow / MSEow / MSEow

estimate empirical MSEs. Each entry reads MSErp / MSEpw / MSEnp -
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(2—cos®)! —1

(2—cosf)* -1

(2—cosf)® -1

(2—cos®)'* —1

0.972/0.980,/0.974
0.965,/0.978/0.969
0.958,/0.975/0.963
0.952/0.972/0.958
0.945/0.970,/0.952

0.938/0.968,/0.947

0.972/0.979/0.973
0.965,/0.976,/0.968
0.958/0.974/0.962
0.951/0.971/0.957
0.944/0.969/0.951

0.937/0.966,/0.945

0.972/0.978,/0.973
0.965,/0.975/0.967
0.958/0.972/0.962
0.951,/0.970,/0.956
0.943/0.967/0.950

0.936/0.965/0.944

0.973/0.977/0.973
0.966/0.974/0.967
0.958,/0.971,/0.961
0.951/0.969,/0.955
0.943/0.966,/0.949

0.936/0.964,/0.943

0.987/0.973/0.997
0.984/0.969,/0.996
0.980/0.965,/0.996
0.976,/0.962/0.995
0.972/0.958/0.995

0.968/0.954,/0.995

0.988/0.971,/0.997
0.984/0.967/0.997
0.981/0.964,/0.996
0.977/0.960,/0.996
0.973/0.956,/0.995

0.969/0.952/0.995

0.990,/0.970,/0.997
0.986,/0.966,/0.997
0.982/0.962,/0.996
0.978,/0.958,/0.996
0.974/0.954/0.995

0.970/0.951/0.995

0.991/0.968,/0.997
0.987/0.964,/0.997
0.983,/0.960,/0.996
0.979/0.956,/0.996
0.976,/0.953,/0.996

0.972/0.949/0.995

0.992/0.990/0.993
0.989/0.990/0.991
0.985,/0.990/0.990
0.982/0.989/0.988
0.979/0.989/0.987

0.975/0.989/0.985

0.993,/0.988,/0.993
0.989,/0.988,/0.991
0.986,/0.988,/0.990
0.983,/0.988,/0.938
0.979,/0.988,/0.987

0.975/0.987/0.985

0.994/0.987/0.993
0.990,/0.986,/0.991
0.987/0.986,/0.990
0.983,/0.986,/0.938
0.980,/0.986,/0.987

0.976/0.986,/0.985

0.995,/0.985,/0.993
0.991,/0.984,/0.992
0.988,/0.984,/0.990
0.984,/0.984,/0.989
0.981,/0.984,0.987

0.977/0.984,/0.986

Nsim| 7 || (2—cos@)' —1
5 {1 0.972/0.982/0.975
6 || 0.966/0.979/0.970
7 1/ 0.959/0.976,/0.965
100
8 | 0.953/0.974/0.959
9 | 0.946/0.971/0.954
10| 0.940/0.969/0.949
5 || 0.987/0.975/0.997
6 || 0.983/0.971/0.996
7 1| 0.979/0.967,/0.996
150
8 [/ 0.976/0.964,/0.995
9 | 0.972/0.960/0.995
10| 0.968/0.956,/0.994
5 {1 0.991/0.992/0.993
6 || 0.988/0.992/0.991
7 || 0.985/0.991/0.990
200
8 || 0.982/0.991/0.988
9 [ 0.978/0.991,/0.987
10|| 0.975/0.991/0.985
Table 19

estimate empirical MSEs. Each entry reads

MSEow

/ MSEow / MSEow

MSEpp

MSEkw / MSERg °

Ratios of empirical MSEs for our second experimental set for o; = 0.1-i71. 200 replications to



