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Biased stochastic estimators, such as finite-differences for noisy gradient estimation, often contain parameters

that need to be properly chosen to balance impacts from the bias and the variance. While the optimal

order of these parameters in terms of the simulation budget can be readily established, the precise best

values depend on model characteristics that are typically unknown in advance. We introduce a framework

to construct new classes of estimators, based on judicious combinations of simulation runs on sequences of

tuning parameter values, such that the estimators consistently outperform a given tuning parameter choice

in the conventional approach, regardless of the unknown model characteristics. We argue the outperformance

via what we call the asymptotic minimax risk ratio, obtained by minimizing the worst-case asymptotic ratio

between the mean square errors of our estimators and the conventional one, where the worst case is over any

possible values of the model unknowns. In particular, when the minimax ratio is less than 1, the calibrated

estimator is guaranteed to perform better asymptotically. We identify this minimax ratio for general classes

of weighted estimators, and the regimes where this ratio is less than 1. Moreover, we show that the best

weighting scheme is characterized by a sum of two components with distinct decay rates. We explain how

this arises from bias-variance balancing that combats the adversarial selection of the model constants, which

can be analyzed via a tractable reformulation of a non-convex optimization problem.

Key words : bias-variance tradeoff, minimax analysis, stochastic estimation, finite difference, robust

optimization
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1. Introduction

This paper studies biased stochastic estimators which, in the simplest form, are expressed as

follows. To estimate a target quantity of interest θ0 ∈ R, we use Monte Carlo simulation where each

simulation run outputs

θ (δ) = θ0 + b (δ) + v (δ) (1)

Here v (δ) represents the noise of the simulation and satisfies E[v (δ)] = 0, and b (δ) is the bias given

by E[θ (δ)]− θ0. We obtain the final estimate by averaging n independent runs produced by (1):

1

n

n∑
j=1

θj (δ) (2)

where θj (·) denotes an independent run.

The simulation runs in (1) are specified by a parameter δ that typically impacts the bias and the

variance in an antagonistic fashion. A common example is finite-difference schemes for black-box

or zeroth-order noisy gradient estimation, in which δ is the perturbation size for the function input

of interest. As δ increases, bias increases while variance decreases (and vice versa). To minimize

the mean square error (MSE), the best choice of δ, in terms of the simulation budget, balances

the magnitudes of the two error sources. In central finite-difference for instance, this optimal δ

turns out to be of order n−
1
6 , whereas in forward or backward finite-difference it is of order n−

1
4

(e.g., Glasserman (2013) Chapter 7; Asmussen and Glynn (2007) Chapter 7; Fu (2006); L’Ecuyer

(1991)).

While the above tradeoff and the optimal order of δ in n is well understood in the literature,

the precise best choice of δ depends on other, typically unknown, model characteristics (i.e., the

“constants” inside b (δ) and v (δ)). For example, choosing δ= dn−
1
6 in a central finite-difference, and

considering only the first-order error term, the best choice of d depends on third-order derivative

information and the variance of the noise that are typically unavailable in advance.

Our goal in this paper is to develop a framework that enhances the standard estimator (2)

regarding the choice of δ subject to the ambiguity of the model characteristics. A key idea we will
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undertake is to consider estimators beyond the form of naive sample average, in a way that reduces

the impact of this uncertainty. Under this framework, we derive new estimators that consistently

improve (2) at a given choice of δ, regardless of these unknowns. This improvement is in terms of the

asymptotic MSE as the simulation budget increases. More specifically, we consider the asymptotic

ratio between the MSEs of any proposed estimator and (2):

R= lim sup
n→∞

MSE of a proposed estimator

MSE of the conventional estimator (2)
(3)

The proposed estimator can be parametrized by possibly many tuning parameters. The asymp-

totic ratio R thus contains these parameters, the unknown model characteristics, and the δ in (2).

Regarding (2) and its δ as a “baseline”, we calibrate the tuning parameters in the proposed esti-

mator to minimize the worst-case asymptotic MSE ratio, where the worst case is over all possible

model characteristics and choices of δ. On a high level, this can be expressed as

R∗ = min
calibration

strategy

max
model

characteristics
,δ

R (4)

This minimized worst-case ratio R∗ provides a performance guarantee on our calibrated proposed

estimator relative to (2) – The MSE of our estimator is asymptotically at most R∗ of (2) at the

chosen δ, independent of any possible model specifications. In particular, if R∗ < 1, our estimator

is guaranteed to strictly improve over (2). For convenience, we call R∗ the asymptotic minimax risk

ratio (AMRR).

As our main contributions, we systematically identify the AMRR R∗, achieve R∗ < 1, and con-

struct a scheme that consistently outperforms the conventional choice (2), for the class of weighted

estimators in the form

n∑
j=1

wjθj (δj) (5)

where δj, j = 1, . . . , n is a suitable sequence of tuning parameters, and wj, j = 1, . . . , n is any weight-

ing sequence. For example, when wi’s are the uniform weights, (5) is precisely the so-called recursive
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estimator introduced in Glynn and Whitt (1992). Our main results show that, in general, the

optimal weighting scheme to obtain R∗ is in the form

wj =
λ1

jβ1
+
λ2

jβ2
(6)

where β1, β2 > 0 are two distinct decay rates. The two coefficients λ1, λ2 depend on the budget

n, in a way that none of the two terms in (6) is asymptotically negligible when used in the

weighted estimator. This weighting scheme and an associated transformation from δ to {δj}j give

rise to an explicitly identifiable R∗. This reveals that, for instance, in the central finite-difference

scheme, R∗ is 0.67 when the multiplicative constants in δ and {δj}j are the same. Since R∗ < 1,

the weighted estimator using (6) always outperforms (2) in terms of asymptotic MSE, independent

of the unknown constants in b (δ) and v (δ). In contrast, the corresponding R∗ is 1.08 when the

weights are obtained via the recursive estimator or its immediate generalization, indicating that

such a restriction on the weighting sequence could lead to subpar performance in the MSE.

Our main analyses build on the insight that, to maintain a low worst-case risk ratio, one typically

must calibrate the proposed estimator such that it maintains the relative magnitudes of bias and

variance in a similar manner as the conventional scheme (2). We will show that any distortion away

from such a balancing allows an “adversary” to enlarge the risk ratio, thus leading to suboptimal

outcomes. This balancing requirement generally leads to a non-convex constrained optimization

problem which, upon a reformulation, reveals a tractable structure and solution to the minimax

problem in (4).

Finally, we conduct experiments to test and compare our optimally weighted estimator with the

recursive estimator and sample-average baseline. Our experimental results demonstrate that, when

applied to various models, our optimally weighted estimator exhibits lower MSE than the baseline

when the simulation budget is as low as 20, whereas the optimal recursive estimator has a slightly

higher MSE than the baseline, which match our theoretical predictions. Moreover, we illustrate the

potential of harnessing our optimal weighting scheme in obtaining faster convergence for black-box

stochastic optimization, by incorporating it in the finite difference estimator at each iteration of a
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zeroth-order stochastic gradient descent algorithm (Kushner and Yin (2003)). On the other hand,

we observe some (positive) deviations of our risk ratios from the AMRR, suggesting non-negligible

finite-sample effects, especially when δj differ from δ by a large factor. Nonetheless, a thorough

theoretical understanding of the finite-sample behavior of our weighting scheme is beyond the scope

of this paper and will be left for the future.

The remainder of the paper is as follows. Section 2 first reviews some related works. Section 3

describes the problem settings and reviews some established results on biased estimation. Section

4 presents our minimax framework and investigation on a special class of estimators. Section

5 presents our main results and explains their implications on general weighted estimators and

AMRR. Section 6 discusses how our results carry to multivariate settings. Section 7 reports our

numerical experiments. Section 8 concludes the paper. All proofs and additional numerical results

are provided in the Appendix.

2. Related Literature

Our study is related to several lines of work. The minimax formulation that we use to analyze

and construct estimators resembles robust optimization (e.g., Ben-Tal et al. (2009), Bertsimas

et al. (2011), Ben-Tal and Nemirovski (2002)) and robust control (e.g., Zhou and Doyle (1998))

that advocates decision-making against the worst-case scenario. Such ideas also have roots in

game theory (Cesa-Bianchi and Lugosi (2006)). Related notions have also been used in online

optimization, in which decision is made at each step under a noisily observed dynamical process

(e.g., Flaxman et al. (2005), Shalev-Shwartz (2012), Hazan et al. (2016)). The performance in this

literature is often measured by the regret that indicates the suboptimality of a decision relative

to the best decision assuming complete information (see, e.g., Besbes and Zeevi (2009, 2011) for

applications in revenue management). Instead of using an “oracle” best as the benchmark in our

minimax formulation, we use the sample average as our benchmark, and focus on improving this

conventional estimator by analyzing the risk ratio. In this regard, we note that a ratio formulation

and a non-oracle-best benchmark has been used in Agrawal et al. (2012), but in a different context
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in quantifying the impact of correlation in mean estimation, and their benchmark is an independent

distribution with the worst-case being evaluated over a class of dependent models. Ratios between

MSEs also appear in Pasupathy (2010) in studying the tradeoff between error tolerance and sample

size in so-called retrospective approximation, which is a technique for solving stochastic root-finding

or optimization problems via imposing a sequence of sample average approximation problems.

A main application of our work is finite-difference stochastic gradient estimation (e.g., Glasser-

man (2013) Chapter 7; Asmussen and Glynn (2007) Chapter 7; Fu (2006); L’Ecuyer (1991)),

typically used when there is only a noisy simulation oracle to evaluate the function value or model

output. Variants of the finite-difference method include the central, forward and backward finite-

differences, with different perturbation directions and orders of bias (Zazanis and Suri (1993), Fox

and Glynn (1989)). In contrast to finite-differences are unbiased derivative estimators, which include

the infinitesimal perturbation analysis or pathwise differentiation (Ho et al. (1983), Heidelberger

et al. (1988)), the likelihood ratio or the score function method (Glynn (1990), Rubinstein (1986),

Reiman and Weiss (1989)), measure-valued or weak differentiation (Heidergott and Vázquez-Abad

(2008), Heidergott et al. (2010)), and other variants such as the push-out method (Rubinstein

(1992), L’Ecuyer (1990)), conditional and smoothed perturbation analysis (Gong and Ho (1987),

Hong (2009), Fu and Hu (1992), Glasserman and Gong (1990), Fu et al. (2009)) and the general-

ized likelihood ratio method (Peng et al. (2018)). In multivariate settings, Spall (1992, 1997) study

simultaneous perturbation to estimate gradients used in SA, by randomly generating a pertur-

bation direction vector and properly weighting with the perturbation sizes to control estimation

bias. Nesterov and Spokoiny (2017) proposes Gaussian smoothing with a different adjustment and

investigates finite-sample behaviors in related optimization. Flaxman et al. (2005) suggests uniform

sampling. Our framework can be applied to these procedures, as will be discussed in Section 6.

The main skeleton of our proposed estimators uses a sequentialized choice of the tuning param-

eter, which appears in Glynn and Whitt (1992) in their discussion of subcanonical estimators. A

generalization of this latter scheme, which appeared in Duplay et al. (2018) and discussed in Section
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4, resembles the idea of stochastic approximation (SA) in stochastic optimization and root-finding

that iteratively updates noisy estimates (Kushner and Yin (2003), Borkar (2009), Pasupathy and

Kim (2011), Nemirovski et al. (2009), Polyak and Juditsky (1992), Ruppert (1988)). Our analy-

ses there utilize the classical asymptotic techniques in Fabian (1968) and Chung (1954), and also

Polyak and Juditsky (1992) in the averaging case.

Finally, we compare our work to multi-level Monte Carlo (Giles (2008)). This approach aims

to reduce variance in simulation in the presence of a parameter selection like δ, by stratifying the

simulation budget into different δ values. Of particular relevance is the randomized level selection

(Rhee and Glynn (2015), Blanchet and Glynn (2015), Rychlik (1990), McLeish (2011)) that can

turn biased estimators in the form of (1) into unbiased estimators with possibly canonical square-

root convergences. The approach is generalized in Vihola (2018), which uses further stratification

to obtain an expanded class of unbiased estimators with efficiency matching their biased counter-

parts, thus incurring negligible cost in the debiasing operation. Multi-level Monte Carlo and its

debiased variants have been applied successfully in many stochastic problems including the simu-

lation of stochastic differential equations and nonlinear functions of expectations. However, they

require a probabilistic coupling between simulation runs at consecutive levels to exhibit statisti-

cal advantages. In contrast, the framework studied in this paper consists of black-box simulation

where we assume no internal structure can be leveraged, thus ruling out the possibility of coupling

simulation runs.

3. Background and Problem Setting

We elaborate our problem and notations in the introduction. We are interested in estimating θ0 ∈ R.

Given a tuning parameter δ ∈ R+, we run Monte Carlo simulation where each run outputs (1) with

b (δ) =Bδq1 + o (δq1) as δ→ 0, v (δ) = ε(δ)

δq2
, and q1, q2 > 0. We assume that:

Assumption 1. We have

1. B ∈ R is a non-zero constant.

2. ε (δ)∈ R is a random variable such that Eε (δ) = 0 and σ2 (δ) = V ar (ε (δ))→ σ2 > 0 as δ→ 0.
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The above assumptions dictate that the order of the bias b (δ) is δq1 , while the order of the variance

is δ−2q2 . The former is ensured by the first assumption and the latter by the second one.

As an example, in estimating the derivative of a function f (x) with unbiased noisy function

evaluation, the central finite-difference (CFD) scheme elicits the output

f̂ (x+ δ)− f̂ (x− δ)
2δ

where f̂ (·) is an unbiased evaluation of f (·), and δ > 0 is the perturbation size. Given that f is

thrice continuously differentiable with non-zero f ′′′ (x), the bias term has order q1 = 2. Typically,

the order of the variance is q2 = 1. Suppose we do not apply common random numbers (CRN) in

generating f̂ (x+ δ) and f̂ (x− δ), and that V ar
(
f̂ (x± δ)

)
→ V ar

(
f̂ (x)

)
as δ→ 0. Then σ2 =

1
2
V ar

(
f̂ (x)

)
. Suppose we are able to apply CRN so that Cov

(
f̂ (x+ δ) , f̂ (x− δ)

)
→ V ar

(
f̂ (x)

)
as δ→ 0. Then, under standard assumptions (such as those in equation (2.4) in Glynn (1989)), the

order of the variance becomes q2 = 1
2
.

Similarly, the forward finite-difference (FFD) scheme elicits the output

f̂ (x+ δ)− f̂ (x)

δ

Given that f is twice continuously differentiable with non-zero f ′′ (x), the bias term has order

q1 = 1. Analogous conditions on the noise as above guarantees that q2 = 1 or 1
2
. The same discussion

holds for the backward finite-difference (BFD) scheme.

Given the capability to output independent runs of (1), say θj (δ), the conventional approach

to obtain an estimate of θ0 is to take their sample average. Denote this as θ̄n = 1
n

∑n

j=1 θj (δ). The

MSE of θ̄n, denoted MSE0 =E
(
θ̄n− θ0

)2
, can be expressed as

MSE0 = bias2 + variance =B2δ2q1 +
σ2

nδ2q2
+ higher-order terms (7)

Considering the first order term, the bias increases with δ and the variance decreases with δ.

Minimizing the MSE requires balancing these two errors to the same order, namely by choosing

δ = δn = Θ(n−α) where α= 1
2(q1+q2)

, which solves the equation −2αq1 =−1 + 2αq2. This leads to
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an optimal MSE order n
− q1
q1+q2 . For example, in CFD and under the conditions we discussed above

without CRN, we have δn = Θ
(
n−

1
6

)
, leading to an optimal MSE order n−

2
3 ; in FFD or BFD we

have δn = Θ
(
n−

1
4

)
, leading to an optimal MSE order n−

1
2 .

In order to fully optimize the first-order MSE, including the coefficient, one needs to choose

δn =

(
σ2q2

B2q1

) 1
2(q1+q2)

n
− 1

2(q1+q2)

(e.g., by applying the first-order optimality condition on the leading terms in (7)). This gives an

optimal first-order MSE

B
2q2
q1+q2 σ

2q1
q1+q2

((
q2

q1

) q1
q1+q2

+

(
q1

q2

) q2
q1+q2

)
n
− q1
q1+q2 (8)

The above choice of δn depends on the “constants” in the bias and variance terms, namely B and

σ2. While q1 and q2 are often obtainable, constants like B and σ2 are unknown a priori and can

affect the performance of the simulation estimator, despite choosing an optimal order on n in δn

using the knowledge of q1 and q2. Suppose we choose δn = dn−α for some d> 0, where α= 1
2(q1+q2)

is optimally chosen. Then the first-order MSE is(
B2d2q1 +

σ2

d2q2

)
n
− q1
q1+q2 (9)

which can be arbitrarily suboptimal relative to the best coefficient in (8). Our goal in this paper

is to improve on this suboptimality, by considering estimators beyond the conventional sample

average that consistently outperforms the constant showing up in (9).

The following theorem, which follows straightforwardly from Fox and Glynn (1989), summarizes

the above discussion on the optimal order of the MSE:

Theorem 1. Under Assumption 1, suppose that limn→∞ δnn
α = d, where 0< d<∞, the sample-

average-based estimator θ̄n exhibits the asymptotic MSE

E
(
θ̄n− θ0

)2
= d2q1B2n−2αq1 +

σ2

d2q2
n2αq2−1 + o

(
n−2αq1 +n2αq2−1

)
as n→∞

Choosing α= 1
2(q1+q2)

achieves the optimal MSE order, and the asymptotic MSE is

E
(
θ̄n− θ0

)2
=

(
d2q1B2 +

σ2

d2q2

)
n
− q1
q1+q2 + o

(
n
− q1
q1+q2

)
as n→∞
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Lastly, we mention that, in practice, there are other considerations in obtaining good estimators,

such as issues regarding the finiteness of the sample that can affect the accuracy of the asymp-

totic results. These considerations are beyond the scope of this work, which focuses mainly on a

theoretical framework on improving the asymptotic constant.

4. A Minimax Comparison Framework

We introduce a framework to assess, and calibrate, estimators beyond the sample-average-based

estimator θ̄n. This framework compares the asymptotic MSEs using θ̄n as a baseline based on a

minimax argument. Section 4.1 presents this framework, and Section 4.2 provides an initial study

on a special type of estimators.

4.1. Asymptotic Risk Ratio

Consider an estimator θ̂n for θ0 using n simulation runs in the form (1), where the tuning param-

eter δ in each run can be arbitrarily chosen. Our goal is to calibrate θ̂n that performs well, or

outperforms, θ̄n in the first-order coefficient of the MSE, presuming that both θ̂n and θ̄n have the

optimal order of errors. Let MSE1 denote the MSE of θ̂n for convenience.

The estimator θ̂n can depend on other tuning parameters in addition to the δ in each run. We

denote the collection of all the parameters that θ̂n involves as ν, so that θ̂n = θ̂n (ν). Correspond-

ingly, MSE1 also depends on ν.

We suppose knowledge on the order of the bias and noise, namely q1 and q2 in (1). However, we

do not know the constants B and σ2. To make the discussion more precise, for fixed q1, q2 > 0, we

denote the class of simulation outputs

H = {θ (·) : θ (δ) = θ0 + b (δ) + v (δ) such that

b (δ) =Bδq1 + o (δq1) and v (δ) =
ε (δ)

δq2
where V ar (ε (δ))→ σ2, as δ→ 0,

for arbitrary non-zero B and positive σ2} (10)

In other words, H is the set of outputs with bias of order δq1 and noise of order δ−q2 , with arbitrary

constants B, σ2.
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The MSE of θ̄n, MSE0, depends on θ (·) evaluated at chosen δ. To highlight this dependence, we

write MSE0 = MSE0 (θ (·) , δ), where we make implicit the dependence on n for ease of notation.

Similarly, MSE1 depends on θ (·) and ν, so that MSE1 = MSE1 (θ (·) , ν), where we also make implicit

the dependence on n for ease of notation. We consider the asymptotic risk ratio

R (θ (·) , ν, δ) = limsup
n→∞

MSE1 (θ (·) , ν)

MSE0 (θ (·) , δ)
(11)

that measures the performance of θn relative to θ̄n as a baseline. Since we only know θ (·) is in H

but not its exact forms (i.e., the constants), we consider the worst-case scenario of R, and search

for the best parameters in θ̂n that minimize this worst-case risk. Namely, we aim to solve

min
ν

max
θ(·)∈H

R (θ (·) , ν, δ) (12)

Note that (12), and the best choice of ν, depend on the δ used in θ̄n. We now take a further

viewpoint that an arbitrary user may select any δ, and we look for a strategy to calibrate θ̂n that

is guaranteed to perform well no matter how δ is chosen. To write this more explicitly, we let

ν = ν (δ) be dependent on δ, and we search for the best collection of parameters that is potentially

a function ν (·) on δ:

R∗ = min
ν(·)∈Λ

max
θ(·)∈H,δ∈R+

R (θ (·) , ν (·) , δ) (13)

where Λ denotes a set of functions. This set Λ depends on the class of estimators θ̂n we use, which

will be described in detail. Moreover, as we will see, (12) and (13) are closely related; in fact, under

the settings we consider, solving either of them simultaneously solves another. In the following, we

will focus on (13) and discuss the immediate implications on (12) where appropriate. We shall call

R∗ the asymptotic minimax risk ratio (AMRR).

4.2. An Initial Example: Recursive Estimators

For convenience, let us from now on set δ = d (n+n0)
−α

as the tuning parameter in the sample-

average-based estimator θ̄n, where α = 1
2(q1+q2)

so that it achieves the optimal MSE order. The
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number n0 can be any fixed integer to prevent δ from being too big at the early stage, and does

not affect our asymptotic analyses.

To construct our proposed estimator θ̂n, we will first use the idea of the recursive estimator stud-

ied in Section 5 of Glynn and Whitt (1992). At run j, we simulate θj (δj), where δj = d̃ (j+n0)
−α

for

some constant d̃, and α is the same as in θ̄n, i.e., the parameter is chosen as if the current simulation

run is the last one in the budget if a conventional sample-average-based estimator is used. The

estimator in Glynn and Whitt (1992) uses the average of θj (δj), namely 1
n

∑n

j=1 θj (δj). As shown

in Glynn and Whitt (1992), this estimator exhibits the optimal MSE order like θ̄n. Moreover, as

they have also noted, this estimator admits a recursive representation θ̂n =
(
1− 1

n

)
θ̂n−1 + 1

n
θn (δn),

where each update depends only on the parameter indexed by the current run number, rather

than the budget. Thus, the optimal MSE order is achieved in an “online” fashion as n increases,

independent of the final budget.

The initial class of estimators that we will consider is a generalization of Glynn and Whitt (1992),

which is also considered in Duplay et al. (2018). Specifically, we consider estimators defined via

the recursion

θ̂recn = (1− γn) θ̂recn−1 + γnθn (δn) (14)

where δn = d̃ (n+n0)
−α

is defined as before and α> 0, and γn is in the form c (n+n0)
−β

for some

c > 0 and β > 0. θ̂rec0 can be arbitrary. Moreover, we also consider averaging θ̂recn in the form

θ̂avgn =
1

n

n∑
j=1

θ̂recj (15)

which resembles the standard Polyak-Ruppert averaging in SA (Polyak and Juditsky (1992)).

Our first result is that, in terms of the AMRR, the class of estimators θ̂recn and θ̂avgn are quite

restrictive and cannot bring in much improvement over θ̄n. To elicit this result, we begin with some

consistency properties of θ̂recn :

Proposition 1. Under Assumption 1, we have:
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1. If β ≤ 1 and α< β
2q2

, the estimator θ̂recn is L2-consistent for θ0, i.e.,

lim
n→∞

E
(
θ̂recn − θ0

)2

= 0

2. If β ≤ 1 and α≥ β
2q2

, or if β > 1, the error of θ̂recn in estimating θ0 is bounded away from zero

in L2-norm as n→∞, i.e.,

lim inf
n→∞

E
(
θ̂recn − θ0

)2

> 0

Proposition 1 shows that θ̂recn estimates θ0 sensibly only when β ≤ 1 and α< β
2q2

. We thus focus

on this case subsequently. The following describes the convergence rate:

Theorem 2. Under Assumption 1, the MSE of θ̂recn in estimating θ0 behaves as follows:

1. For β < 1 and α< β
2q2

,

E
(
θ̂recn − θ0

)2
= d2q1B2n−2q1α +

cσ2

2d2q2
n2q2α−β + o

(
n−2q1α +n2q2α−β

)
as n→∞

2. For β = 1, α= 1
2(q1+q2)

and c > q1
2(q1+q2)

,

E
(
θ̂recn − θ0

)2
=

( cdq1

c− q1
2(q1+q2)

)2

B2 +
c2σ2(

2c− q1
q1+q2

)
d2q2

n
− q1

q1+q2 + o
(
n
− q1

q1+q2

)
as n→∞ (16)

3. For β = 1, α= 1
2(q1+q2)

and c≤ q1
2(q1+q2)

, or for β = 1 and α 6= 1
2(q1+q2)

,

limsup
n→∞

n
q1

q1+q2E
(
θ̂recn − θ0

)2

=∞

The proofs of the above results, which are detailed in Appendix B, utilize the classical asymptotic

techniques for recursive sequences in Fabian (1968) and a slight modification of Chung’s lemma

(i.e., Lemma 1 in Appendix B).

We now look at the AMRR for θ̂recn . First, Theorem 2 shows that the choice β = 1, α= 1
2(q1+q2)

is the unique choice that gives rise to the optimal MSE order n
− q1
q1+q2 . Moreover, given this choice

of α, we need c > q1
2(q1+q2)

, in addition to β = 1. We will focus on these configurations for θ̂recn that

achieve the same MSE order as the conventional estimator θ̄n with the same α.

Suppose we set d̃ = d, but allow the free selection of c within the range that gives rise to the

optimal MSE order. We thus can write θ̂recn = θ̂recn (ν) where ν = (d, c) is the collection of all tuning
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parameters that θ̂recn depends on, defined via (14) with γn = c (n+n0)
−1

where c > q1
2(q1+q2)

. The

integer n0 does not affect any asymptotic and can be taken as any given value. The following

characterizes the AMRR and the configuration that attains it:

Theorem 3. Under Assumption 1, let MSErec
1 (θ (·) , d, c) be the MSE of θ̂recn (d, c), and

Rrec (θ (·) , d, c) = lim sup
n→∞

MSErec
1 (θ (·) , d, c)

MSE0 (θ (·) , d)

We have

min
c>

q1
2(q1+q2)

max
θ(·)∈H,d>0

Rrec (θ (·) , d, c) =
q2

1

16 (q1 + q2)
2 +

q1

2 (q1 + q2)
+ 1

which is attained by choosing c= 5q1+4q2
2(q1+q2)

.

Next, we provide more flexibility in the choice of d̃ in θ̂recn (ν), where ν =
(
d̃, c
)

. In particular,

rather than setting d̃= d, we allow d̃ to depend on d in any arbitrary fashion, i.e., d̃= g (d) where

g (·) : R+→ R+ is any function. Let F be the space of any functions from R+ to R+. We have the

following results on the AMRR of this enhanced scheme where. For convenience, we denote

G∗ =

(
q1 + 2q2

4 (q1 + q2)

) 1
2(q1+q2)

(17)

Theorem 4. Under Assumption 1, let MSErec
1

(
θ (·) , d̃, c

)
be the MSE of θ̂recn

(
d̃, c
)

, and

Rrec
(
θ (·) , d, d̃, c

)
= limsup

n→∞

MSErec
1

(
θ (·) , d̃, c

)
MSE0 (θ (·) , d)

We have

min
g(·)∈F,c> q1

2(q1+q2)

max
θ(·)∈H,d>0

Rrec (θ (·) , d, g (d) , c) = 2
2q2
q1+q2

(
q1 + 2q2

q1 + q2

)− q1+2q2
q1+q2

which is attained by choosing g (d) =G∗d and c= 1, where G∗ is defined in (17).

We note that Theorem 4 indicates c= 1 is optimal in this enhanced scheme, while the optimal

d̃ is chosen as a constant factor G∗ of d.

Next we look at θ̂avgn . It turns out that the AMRR depicted for θ̂recn in Theorem 4 applies also

to θ̂avgn . To this end, we first state the MSE of θ̂avgn :
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Theorem 5. Under Assumption 1, the MSE of θ̂avgn in estimating θ0 behaves as follows:

1. For β < 1 and α≤ 1
2(q1+q2)

,

E
(
θ̂avgn − θ0

)2

=

(
dq1

1− q1α

)2

B2n−2q1α +
σ2

(1 + 2q2α)d2q2
n2q2α−1 + o

(
n−2q1α +n2q2α−1

)
as n→∞

(18)

2. For β < 1 and α> 1
2(q1+q2)

,

E
(
θ̂avgn − θ0

)2

=
σ2

(1 + 2q2α)d2q2
n2q2α−1 + o

(
n2q2α−1

)
as n→∞

Comparing Theorem 5 with Theorem 2, we see that, when α= 1
2(q1+q2)

, the first-order MSE of

θ̂avgn in the considered regime (in (18)) exactly equals that of θ̂recn (in (16)) when c= 1 and β = 1.

Like before, α= 1
2(q1+q2)

is the unique choice that optimizes the MSE order for θ̂avgn . Thus, we will

focus on this choice of α in θ̂avgn . Note that then θ̂avgn = θ̂avgn (ν) where ν =
(
d̃, c, β

)
is the collection

of tuning parameters that θ̂avgn depends on. This leads us to the following AMRR:

Theorem 6. Under Assumption 1, let MSEavg
1

(
θ (·) , d̃, c, β

)
be the MSE of θ̂avgn = θ̂avgn

(
d̃, c, β

)
.

Let

Ravg
(
θ (·) , d, d̃, c, β

)
= limsup

n→∞

MSEavg
1

(
θ (·) , d̃, c, β

)
MSE0 (θ (·) , d)

We have

min
g(·)∈F,c>0,0<β<1

max
θ(·)∈H,d>0

Ravg (θ (·) , d, g (d) , c, β) = 2
2q2
q1+q2

(
q1 + 2q2

q1 + q2

)− q1+2q2
q1+q2

which is attained by choosing g (d) = G∗d, and any c > 0 and 0 < β < 1, where G∗ is defined in

(17).

The minimax ratios stated in Theorems 3, 4 and 6 remain the same, in a uniform fashion, when

the parameter d in θ̄n is fixed instead of being chosen by an adversarial user. In other words, the

minimax risk ratio of θ̂recn or θ̂avgn compared to θ̄n would not improve with a finer calibration on

the tuning parameters d̃, c, β catered to each specific d. This is described in the following result:

Theorem 7. We have the following:



Lam, Zhang and Zhang: Enhanced Bias-Variance Balancing: A Minimax Perspective
16 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

1. Under the conditions and notations in Theorem 3, we have, for any fixed d,

min
c>

q1
2(q1+q2)

max
θ(·)∈H

Rrec (θ (·) , d, c) =
q2

1

16 (q1 + q2)
2 +

q1

2 (q1 + q2)
+ 1

which is attained by choosing c= 5q1+4q2
2(q1+q2)

.

2. Under the conditions and notations in Theorem 4, we have, for any fixed d,

min
d̃>0,c>

q1
2(q1+q2)

max
θ(·)∈H

Rrec
(
θ (·) , d, d̃, c

)
= 2

2q2
q1+q2

(
q1 + 2q2

q1 + q2

)− q1+2q2
q1+q2

which is attained by choosing d̃=G∗d and c= 1, where G∗ is defined in (17).

3. Under the conditions and notations in Theorem 6, we have, for any fixed d,

min
d̃>0,c>0,0<β<1

max
θ(·)∈H

Ravg
(
θ (·) , d, d̃, c, β

)
= 2

2q2
q1+q2

(
q1 + 2q2

q1 + q2

)− q1+2q2
q1+q2

which is attained by choosing d̃=G∗d, and any c > 0 and 0<β < 1, where G∗ is defined in (17).

Theorem 7 is consistent with Theorems 3, 4 and 6 in that the optimal strategies to calibrate the

d̃ in θ̂recn and θ̂avgn remain as a constant scaling on d, regardless of what the specific value of d is.

To get a numerical sense of the above results, Tables 1 and 2 show the AMRR and optimal

configurations of θ̂recn and θ̂avgn . Table 1 illustrates the scenario q1 = 2 and q2 = 1 (the CFD case

without CRN). Restricting d̃= d in θ̂recn (i.e., Theorem 3), the AMRR is 1.38, attained by setting

c= 2.33 in θ̂recn . In contrary, if we allow d̃ to arbitrarily depend on d (i.e., Theorem 4), the AMRR

is reduced to 1.08, attained by setting g (d) = 0.83d, and c = 1 in θ̂recn . Similarly, the AMRR for

θ̂avgn (i.e., Theorem 6) is also 1.08, attained again by setting g (d) = 0.83d but now with any c > 0

and 0<β < 1.

Analogously, Table 2 illustrates the scenario q1 = 1 and q2 = 1 (the FFD and BFD cases without

CRN). If we restrict d̃= d in θ̂recn (i.e., Theorem 3), the AMRR becomes 1.27, attained by setting

c= 2.25 in θ̂recn . In contrary, if we allow d̃ to arbitrarily depend on d (i.e., Theorems 4 and 6), the

AMRR is 1.09, attained by setting g (d) = 0.78d, and c= 1 in θ̂recn or c > 0,0<β < 1 in θ̂avgn .

Note that, in all cases considered above, the AMRR is greater than 1, implying that without

knowledge on the model characteristics, the estimators θ̂recn and θ̂avgn can have a higher MSE than

the baseline θ̄n asymptotically.
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θ̂recn (d unadjusted) θ̂recn (d optimized) θ̂avgn

AMRR 1.38 1.08 1.08

Optimal Configuration c= 2.33, β = 1 d̃= 0.83d, c= 1, β = 1 d̃= 0.83d, c > 0,0<β < 1

Table 1 AMRR and optimal configurations for the case q1 = 2, q2 = 1

θ̂recn (d unadjusted) θ̂recn (d optimized) θ̂avgn

AMRR 1.27 1.09 1.09

Optimal Configuration c= 2.25, β = 1 d̃= 0.78d, c= 1, β = 1 d̃= 0.78d, c > 0,0<β < 1

Table 2 AMRR and optimal configurations for the case q1 = 1, q2 = 1

4.3. Maintaining Bias-Variance Balance

We provide an intuitive explanation on the minimax results in Section 4.2. More specifically, we

demonstrate that a key argument to obtain the minimax calibration strategy of a proposed class of

estimators is to balance bias and variance in a similar manner as the baseline estimator, in terms

of the factors multiplying the unknown first-order constants B and σ2. This insight is general and

will be helpful in optimally calibrating wider classes of estimators, such as the general weighted

estimators presented in the next section.

To explain, let us recall the notation in (11) that in general, the asymptotic risk ratio between

a proposed estimator with parameter ν and a baseline estimator (where we hide its parameter for

now) can be expressed as

R (θ (·) , ν) = lim sup
n→∞

MSE1 (θ (·) , ν)

MSE0 (θ (·))

Suppose that both estimators have the same MSE order, which is obtained optimally by balancing

the orders of the bias and variance. Then the limit in the above expression becomes

R (θ (·) , ν) =
bias1 (ν)

2
+ var1 (ν)

bias2
0 + var0

(19)

where bias1 (ν) and var1 (ν) refer to the first-order coefficient in the bias and variance terms of

the proposed estimator, and similarly bias0 and var0 refer to the corresponding quantities of the

baseline estimator. Furthermore, with the model constants B and σ2, we can further write (19) as

R (θ (·) , ν) =
Cbias

1 (ν)B2 +Cvar
1 (ν)σ2

Cbias
0 B2 +Cvar

0 σ2



Lam, Zhang and Zhang: Enhanced Bias-Variance Balancing: A Minimax Perspective
18 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

where Cbias
1 (ν) and Cvar

1 (ν) are the coefficients in front of B2 and σ2 in the first-order MSE of the

proposed estimator, and Cbias
0 and Cvar

0 are the corresponding quantities of the baseline estimator.

Now, given these coefficients, an adversary who attempts to maximize R (θ (·) , ν) would select

either an arbitrarily big B2 or σ2 , depending on which ratio Cbias
1 (ν)/Cbias

0 or Cvar
1 (ν)/Cvar

0

is larger respectively, which leads to a worst-case ratio max{Cbias
1 (ν)/Cbias

0 ,Cvar
1 (ν)/Cvar

0 }. This

forces the minimizer to calibrate ν such that the two ratios are exactly the same, i.e., we choose ν

such that

Cbias
1 (ν)

Cbias
0

=
Cvar

1 (ν)

Cvar
0

= S (20)

for some constant S. With this observation, the solution to solve for AMRR can be formulated as

minimizing S subject to the constraint (20), namely

min
ν

S subject to
Cbias

1 (ν)

Cbias
0

=
Cvar

1 (ν)

Cvar
0

= S (21)

which gives the AMRR R∗, and an optimal solution for (21) is the minimax calibration for the

proposed estimator. This line of analysis applies similarly when the baseline estimator contains its

own tuning parameter δ, and that the proposed estimator is calibrated in a way dependent on δ

(either in formulation (12) or (13)).

Now let us consider θ̂recn in Theorem 3. From Theorems 1 and 2, since we assume both the

parameters of θ̄n and θ̂recn are chosen to exhibit the optimal MSE order, we can write

Rrec (θ (·) , d, c) = limsup
n→∞

MSErec
1 (θ (·) , d, c)

MSE0 (θ (·) , d)

= limsup
n→∞

((
cdq1

c− q1
2(q1+q2)

)2

B2 + c2σ2

2d2q2
(
c− q1

2(q1+q2)

)
)
n
− q1
q1+q2 + o

(
n
− q1
q1+q2

)
(
d2q1B2 + σ2

d2q2

)
n
− q1
q1+q2 + o

(
n
− q1
q1+q2

)

=

(
cdq1

c− q1
2(q1+q2)

)2

B2 + c2

2d2q2
(
c− q1

2(q1+q2)

)σ2

d2q1B2 + 1
d2q2

σ2

We set (
cdq1

c− q1
2(q1+q2)

)2

d2q1
=

c2

2d2q2
(
c− q1

2(q1+q2)

)
1

d2q2
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and notice that d can be all cancelled out, giving(
c

c− q1
2(q1+q2)

)2

=
c2

2
(
c− q1

2(q1+q2)

)
which upon solving leads to c= 5q1+4q2

2(q1+q2)
and both sides of the equation being

q21
16(q1+q2)2

+ q1
2(q1+q2)

+1,

thus giving the corresponding result in Theorem 3. Note that, since d is cancelled out in the above

derivation, the same result in Theorem 7 holds immediately for the setting of any fixed d.

For θ̂recn in Theorem 4, we can write

Rrec
(
θ (·) , d, d̃, c

)
=

(
cd̃q1

c− q1
2(q1+q2)

)2

B2 + c2

2d̃2q2
(
c− q1

2(q1+q2)

)σ2

d2q1B2 + 1
d2q2

σ2

and we set (
cd̃q1

c− q1
2(q1+q2)

)2

d2q1
=

c2

2d̃2q2
(
c− q1

2(q1+q2)

)
1

d2q2

(22)

However, the d is not cancelled out here. Nonetheless, we can rewrite (22) in terms of the ratio d̃
d
,

as (
c

c− q1
2(q1+q2)

)2(
d̃

d

)2q1

=
c2

2
(
c− q1

2(q1+q2)

) 1(
d̃
d

)2q2

Optimizing jointly over c and η = d̃
d

gives c= 1 and η =
(

q1+2q2
4(q1+q2)

) 1
2(q1+q2) , and the value on both

sides of the equation is 2
2q2
q1+q2

(
q1+2q2
q1+q2

)− q1+2q2
q1+q2

. This shows the result for θ̂recn in Theorem 4. More-

over, note that regardless of whether d is chosen by the adversary or fixed in advance, we choose d̃

as ηd, and thus we also show the corresponding results in Theorem 7. Appendix B further details

the above arguments.

5. General Weighted Estimators

We now consider a substantially more general class of estimators than θ̂recn and θ̂avgn . Namely, given

we generate θj (δj) , j = 1, . . . , n where δj = d̃ (j+n0)
−α

with the optimally chosen α= 1
2(q1+q2)

and

n0 is any fixed integer, we consider

θ̂genn =
n∑
j=1

wj,nθj (δj) (23)
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where w(n) = (wj,n)j=1,...,n
is any weighting sequence.

In the following, we will first present our main result on the AMRR of (23) relative to θ̄n with

δ = d (n+n0)
−α

, and the associated characterization of the optimal weighting scheme as a sum of

two distinct decaying components (Section 5.1). Then we will describe the key developments of the

result that relies on analyzing a non-convex constrained optimization (Section 5.2).

5.1. Optimal Weighted Estimators and Two-Decay Characterization

The estimator θ̂genn in (23) contains the tuning parameter d̃ and the weighting sequence w(n).

While d̃ is chosen independent of n in the asymptotic (as it appears in the asymptotic risk ratio

that is independent of n), the sequence {w(n)}n=1,2,... is a triangular array of wj,n as n→∞. For

convenience, we denote W = {w(n)}n=1,2,... as this array. We write MSEgen
1

(
θ (·) , d̃,w(n)

)
as the

MSE of θ̂genn = θ̂genn (ν), where ν =
(
d̃,w(n)

)
is the collection of tuning parameters that θ̂genn depends

on, and recall MSE0 (θ (·) , d) as the MSE of the baseline estimator θ̄n = θ̄n (d). We define

Rgen
(
θ (·) , d, d̃,W

)
= limsup

n→∞

MSEgen
1

(
θ (·) , d̃,w(n)

)
MSE0 (θ (·) , d)

(24)

as the asymptotic risk ratio between θ̂genn and θ̄n.

Moreover, we impose a condition on the magnitude of d̃ relative to d. In particular, we restrict

d̃ to be at most Kd for some constant K > 0. We consider calibration of d̃ as a function g (·) on d.

This is equivalent to requiring g (d)≤Kd for any d, for a maximal inflation factor K > 0. Denote

FK = {g (·) : g (d)≤Kd}

W as the space of any triangular array, and H as in (10). We consider the AMRR

min
g(·)∈FK ,W∈W

max
θ(·)∈H,d>0

Rgen (θ (·) , d, g (d) ,W )

We have the following identification of the AMRR and the characterization of optimal calibration:

Theorem 8. Under Assumption 1, we have the following:



Lam, Zhang and Zhang: Enhanced Bias-Variance Balancing: A Minimax Perspective
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 21

1. The AMRR of θ̂genn satisfies

min
g(·)∈FK ,W∈W

max
θ(·)∈H,d>0

Rgen (θ (·) , d, g (d) ,W ) =
q1

q1 + q2

1

K2q2
(25)

2. The weights W ∗ =
(
w∗j,n

)
j=1,...,n
n=1,2,...

that achieve (25) is given by

w∗j,n =
λ∗1

(j+n0)
q1+2q2
2(q1+q2)

+
λ∗2

(j+n0)
q2

q1+q2

where λ∗1, λ
∗
2 are solved by λ1

λ2

=

 ξ11 ξ12

ξ21 ξ22


 a∗

1

 (26)

and a∗ is an optimal solution to

min
a:(K2(q1+q2)−ξ11)a2−2ξ12a−ξ22≥0

|a|
2q2
q1+q2

(
ξ11a

2 + 2ξ12a+ ξ22

) q1
q1+q2 (27)

where  ξ11 ξ12

ξ21 ξ22

=

 φ (1) φ
(

q1+2q2
2(q1+q2)

)
φ
(

q1+2q2
2(q1+q2)

)
φ
(

q2
q1+q2

)

−1

and φ (κ) =
∑n

j=1 (j+n0)
−κ

. Moreover, g (·) is defined by g (d) =Kd.

Next, we also note the same result if we fix d in the baseline estimator θ̄n, uniformly for any d:

Corollary 1. Under the conditions and notations in Theorem 8, we have, for any fixed d,

min
g(·)∈FK
W∈W

max
θ(·)∈H

Rgen (θ (·) , d, g (d) ,W ) =
q1

q1 + q2

1

K2q2

which is attained by the weights W ∗ =
(
w∗j,n

)
j=1,...,n
n=1,2,...

and setting g (d) =Kd that achieve the AMRR

in part 2 of Theorem 8.

Before we discuss some implications of the results above, we point out that the condition g (d)≤

Kd is imposed to combat the hidden finite-sample impact of our asymptotic calculations. More

precisely, the limiting value in (24) can incur two approximation errors in practice: First, while

we have focused on the asymptotic first-order terms in the biases and variances, the second-order

terms can play a role. Second, even assuming there are no second-order terms, the finiteness of
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sample size could still result in a discrepancy between the worst-case ratio and AMRR. As K

gets larger, the tuning parameter g(d) in our proposed estimator could get proportionately larger,

thus strengthening the finite-sample effects, meaning that more budget n is needed to observe

our asymptotic gain. This strengthening is likewise two-fold: First, the parameters δj’s are larger,

thus increasing the second-order effect. Second, the discrepancy between the first-order terms and

AMRR also increases. Thus, while theoretically the AMRR gradually decays to zero as K→∞,

such an interpretation should be cautioned with care. In our experiments (Section 7), we will

see that simply choosing K = 1 gives numerical results largely coinciding with our theoretical

calculations under reasonable budget (e.g., n= 20), while the results when K = 3 or 4 could deviate

from the theoretical AMRR unless more sample size is used.

We discuss several implications of Theorem 8. First, the optimal weighting sequence w∗j,n com-

prises two components, each with a different decay rate, i.e., q1+2q2
2(q1+q2)

and q2
q1+q2

respectively. The

coefficients in these decays, namely λ∗1 and λ∗2, depend on n that is solved via a linear system of

equations, which ensures that neither of the two components in w∗j,n is asymptotically negligible.

To illustrate the latter point, we demonstrate the asymptotic behaviors of λ∗1, λ
∗
2, which are

revealed by first understanding the behavior of a∗ and using (26). Note that φ (κ)∼ 1
1−κn

1−κ for

κ< 1 and ∼ logn for κ= 1, where an ∼ bn represents asymptotic equivalence between two sequences

{an}∞n=1 and {bn}∞n=1, i.e., limn→∞
an
bn

= 1. Thus, the matrix

 ξ11 ξ12

ξ21 ξ22

=

 φ (1) φ
(

q1+2q2
2(q1+q2)

)
φ
(

q1+2q2
2(q1+q2)

)
φ
(

q2
q1+q2

)

−1

∼

 logn 2(q1+q2)

q1
n

q1
2(q1+q2)

2(q1+q2)

q1
n

q1
2(q1+q2)

q1+q2
q1

n
q1

q1+q2


−1

=
1

q1+q2
q1

n
q1

q1+q2 logn− 4(q1+q2)2

q21
n

q1
q1+q2

 q1+q2
q1

n
q1

q1+q2 − 2(q1+q2)

q1
n

q1
2(q1+q2)

− 2(q1+q2)

q1
n

q1
2(q1+q2) logn

 (28)

where the asymptotic equivalence “∼” is on every entry of the matrix.
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Now, conjecturing that a∗ is of order n
− q1

2(q1+q2) , we write a= ãn
− q1

2(q1+q2) . By plugging in (28),

we have

ξ11a
2 + 2ξ12a+ ξ22 =

[
ã

n
q1

2(q1+q2)

1

] ξ11 ξ12

ξ21 ξ22


 ã

n

q1
2(q1+q2)

1


∼ 1

n
q1

q1+q2

[ã 1]

 0 0

0 q1
q1+q2


 ã

1


=

q1

q1 + q2

1

n
q1

q1+q2

Thus, as n→∞, an “asymptotic” version of (27), when multiplying the objective value by n
q1

q1+q2 ,

becomes

min
ã:K2(q1+q2)ã2≥ q1

q1+q2

|ã|
2q2
q1+q2

(
q1

q1 + q2

) q1
q1+q2

which gives |ã|=
√

q1
q1+q2

1
Kq1+q2

. This implies that

a∗ ∼
√

q1

q1 + q2

1

Kq1+q2
n
− q1

2(q1+q2) (29)

Thus, putting (28) and (29) into (26), we obtain that

λ∗1 ∼
(√

q1

q1 + q2

1

Kq1+q2
− 2

)
1

n
q1

2(q1+q2) logn
(30)

and

λ∗2 ∼
q1

q1 + q2

n
− q1
q1+q2 (31)

We can now see that both terms in w∗j,n, namely
λ∗1

(j+n0)

q1+2q2
2(q1+q2)

and
λ∗2

(j+n0)

q2
q1+q2

, contribute to the

first-order bias. Note that the first-order bias is of order
∑n

j=1wj,nδ
q1
j , where δj = d̃ (j+n0)

−α
and

α= 1
2(q1+q2)

. Thus, using (30), the bias contribution from the first component in w∗j,n gives rise to

an order

1

n
q1

2(q1+q2) logn

n∑
j=1

1

(j+n0)
q1+2q2
2(q1+q2)

1

(j+n0)
q1

2(q1+q2)

=
1

n
q1

2(q1+q2) logn

n∑
j=1

1

j+n0

= Θ
(
n
− q1

2(q1+q2)

)
(32)
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On the other hand, using (31), the bias contribution from the second component in w∗j,n gives rise

to an order

1

n
q1

q1+q2

n∑
j=1

1

(j+n0)
q2

q1+q2

1

(j+n0)
q1

2(q1+q2)

=
1

n
q1

q1+q2

n∑
j=1

1

(j+n0)
q1+2q2
2(q1+q2)

= Θ
(
n
− q1

2(q1+q2)

)
which is the same order as (32). Thus both terms in w∗j,n contribute significantly to the first-order

bias term.

Similarly, the first-order variance is of order
∑n

j=1w
2
j,nδ

−2q2
j . Using (30), the contribution from

the first component in w∗j,n gives rise to an order

1

n
q1

q1+q2 (logn)
2

n∑
j=1

1

(j+n0)
q1+2q2
q1+q2

(j+n0)
q2

q1+q2 =
1

n
q1

q1+q2 (logn)
2

n∑
j=1

1

j+n0

= Θ

(
1

n
q1

q1+q2 logn

)
(33)

and, using (31), the contribution from the second component gives rise to an order

1

n
2q1
q1+q2

n∑
j=1

1

(j+n0)
2q2
q1+q2

(j+n0)
q2

q1+q2 =
1

n
2q1
q1+q2

n∑
j=1

1

(j+n0)
q2

q1+q2

= Θ
(
n
− q1
q1+q2

)
which has an order larger than (33) by a logarithmic factor. Thus, considering also the cross term

between the two components in w∗j,n in the expansion of the variance, the first-order variance is of

order n
− q1
q1+q2 , which is the same as the squared bias.

Next we present some basic numerical values of the AMRR. Table 3 shows the values of the

AMRR for various maximal inflation factor K when q1 = 2 and q2 = 1 (the CFD case without

CRN). The AMRR is non-increasing in K, as advocated in Theorem 8 and attributed to more

optimizing power for the proposed estimator in the asymptotic limit as K increases (however, as

discussed before, we should be cautious about finite-sample distortions). The critical threshold

of K above which θ̂genn is guaranteed to improve over θ̄n is K =
√

2
3

= 0.82. In particular, when
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Figure 1 Distribution of weights, with K = 1, and budget n from 100 to 2000, when q1 = 2, q2 = 1

K = 1 (we only allow choosing d̃ as large as d at most), we have the AMRR equal to 2
3
, which is

strictly less than 1. In other words, no matter what are the values of the model unknowns, the

optimized calibration of θ̂genn , in particular the two-decay weights {w∗j,n}j=1,...,n and setting d̃= d,

would achieve a better MSE than θ̄n asymptotically.

Figures 1 and 2 show the behaviors of the optimal weights for K = 1. Figure 1 shows that in

general the weights range across positive and negative numbers, with higher concentration around

0 as the budget increases. Figure 2 shows that, against the simulation run index, the weight starts

from the most negative and gradually increases to the positive region. Lastly, Table 4 shows the

AMRR when q1 = 1, q2 = 1 (the FFD and BFD cases without CRN) as a comparison. The AMRR

in this case has the same decay rate and is smaller than that for q1 = 2, q2 = 1 across all K.

K 0.5 0.82 1.0 2.0 3.0 4.0

AMRR 2.67 1.00 0.67 0.17 0.07 0.04

Table 3 AMRR for general weighted estimators, against K, when q1 = 2, q2 = 1
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Figure 2 Distribution of weights against simulation step, with K = 1, and budget n= 1000, when q1 = 2, q2 = 1

K 0.5 0.71 1.0 2.0 3.0 4.0

AMRR 2.00 1.00 0.50 0.13 0.06 0.03

Table 4 AMRR for general weighted estimators, against K, when q1 = 1, q2 = 1

5.2. Constrained Optimization for Bias-Variance Balancing

We explain intuitively the key arguments that lead to the optimal two-decay weights w∗j,n and

the identification of the AMRR in the form depicted in Theorem 8. We first note that to avoid

arbitrarily large value of Rgen, the sequence wj,n must sum up to 1 (up to a vanishing error), since

otherwise the scenario where θ (·) has no bias and noise but θ0 is arbitrarily big will blow up Rgen.

Thus, for simplicity let us assume that
∑n

j=1wj,n = 1. Also, for convenience, we shorthand wj

as wj,n, and w as w(n) when no confusion arises. Moreover, without loss of generality, here we

assume n0 = 0 for notational convenience. Considering the bias and variance of
∑n

j=1wjθj (δj), we

can write

MSEgen
1

(
θ (·) , d̃,w

)
=

(
n∑
j=1

wjb (δj)

)2

+
n∑
j=1

w2
jV ar (v (δj))

=

(
n∑
j=1

wj

(
B
d̃q1

jαq1
+ o

(
1

jαq1

)))2

+
n∑
j=1

w2
j

σ2 (1 + o (1)) j2αq2

d̃2q2
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=

(
Bd̃q1

n∑
j=1

wj
jαq1

)2

+
σ2

d̃2q2

n∑
j=1

j2αq2w2
j + error (34)

Recall the discussion in Section 4.3. To control the adversary from increasing Rgen, we attempt

to maintain the relative balance of bias and variance in a similar manner as the baseline. More

specifically, presuming that θ̂genn exhibits the optimal MSE order n
− q1
q1+q2 , we keep the ratios of

the coefficients in front of B2 and σ2 of the first-order MSE terms, between θ̂genn and θ̄n, to be the

same. The coefficient of the squared bias term is roughly

n
q1

q1+q2

(
d̃q1

n∑
j=1

wj
jαq1

)2

while the coefficient of the variance term is roughly

n
q1

q1+q2
1

d̃2q2

n∑
j=1

j2αq2w2
j

Thus, similar to (20), we would like to ensure

n
q1

q1+q2

((
d̃

d

)q1 n∑
j=1

wj
jαq1

)2

= n
q1

q1+q2
1(

d̃
d

)2q2

n∑
j=1

j2αq2w2
j (35)

Denoting η= d̃
d
, and dropping n

q1
q1+q2 on both sides of (35), we consider the optimization problem

minw,η S

subject to S =
(
ηq1
∑n

j=1

wj
jαq1

)2

= 1
η2q2

∑n

j=1 j
2αq2w2

j

η≤K∑n

j=1wj = 1

(36)

Note that the first constraint is the bias-variance-balancing condition as in (21). The second and

third constraints capture the inflation condition g (·) ∈ FK and
∑n

j=1wj = 1. Denote the optimal

value of (36) as S∗n. Then roughly speaking, the AMRR would be limn→∞ n
q1

q1+q2 S∗n. The associated

optimal solution w,η turns out to dominate any other possibilities, in particular those obtained by

allowing any of the bias and variance terms dominate another.

In the rest of this subsection, we will explain how (36) leads to the two-decay representation

of w∗j,n, and leave other details to Appendix C. Note that (36) is non-convex. However, we can
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reformulate it into a convex program together with a simple one-dimensional line search over a

region that consists of at most two intervals.

To this end, first notice that from the first constraint in (36), we have

η=

∑n

j=1 j
2αq2w2

j(∑n

j=1

wj
jαq1

)2


1

2(q1+q2)

(37)

so that the second constraint is equivalent to

n∑
j=1

j2αq2w2
j ≤K2(q1+q2)

(
n∑
j=1

wj
jαq1

)2

Moreover, by plugging in (37) to either expression of S in the first constraint of (36), the objective

function becomes ∣∣∣∣∣
n∑
j=1

wj
jαq1

∣∣∣∣∣
2q2
q1+q2

(
n∑
j=1

j2αq2w2
j

) q1
q1+q2

Therefore, (36) can be rewritten as

minw

∣∣∣∑n

j=1

wj
jαq1

∣∣∣ 2q2
q1+q2

(∑n

j=1 j
2αq2w2

j

) q1
q1+q2

subject to
∑n

j=1 j
2αq2w2

j ≤K2(q1+q2)
(∑n

j=1

wj
jαq1

)2

∑n

j=1wj = 1

(38)

To reduce (38) into a more tractable form, we introduce the variable a=
∑n

j=1

wj
jαq1

, and write

(38) as

minw,a |a|
2q2
q1+q2

(∑n

j=1 j
2αq2w2

j

) q1
q1+q2

subject to
∑n

j=1 j
2αq2w2

j ≤K2(q1+q2)a2

∑n

j=1

wj
jαq1

= a∑n

j=1wj = 1

(39)

Now we decompose the minimization in (39) into two layers, first minimizing w given a, and then

minimizing a. This way, (39) can be rewritten as

min
a
|a|

2q2
q1+q2Z∗n (a)

2q1
q1+q2 (40)
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where

Z∗n (a) = minw

(∑n

j=1 j
2αq2w2

j

) 1
2

subject to
∑n

j=1 j
2αq2w2

j ≤K2(q1+q2)a2

∑n

j=1

wj
jαq1

= a∑n

j=1wj = 1

(41)

Note that (41) is a quadratic program. We write it in a simpler form as

minw ‖Σ 1
2w‖

subject to ‖Σ 1
2w‖2 ≤K2(q1+q2)a2

µ>w= a

1>w= 1

(42)

where Σ = diag (j2αq2)j=1,...,n ∈ Rn×n, µ= (j−αq1)j=1,...,n ∈ Rn, 1 = (1)j ∈ Rn, and ‖·‖ is the L2-norm.

We can further separate out the first constraint in (42) and consider the rest of the optimization.

To this end, denote

Z̃∗n (a) = minw ‖Σ 1
2w‖

subject to µ>w= a

1>w= 1

(43)

If Z̃∗n (a)≤K2(q1+q2)a2, this means the w that solves (43) is a feasible solution to (42) and, since it

is optimal without the first constraint, it then must be optimal too for the entire optimization in

(42). Moreover, in this case Z∗n(a) = Z̃∗n(a). Otherwise, if Z̃∗n (a)>K2(q1+q2)a2, then there is no w

that can satisfy the first constraint in (42) simultaneously with the second and third constraints,

and thus (42) is infeasible. Therefore, we have

Z∗n (a) =


Z̃∗n (a) if Z̃∗n (a)

2
≤K2(q1+q2)a2

∞ otherwise

(44)

Putting in (44), optimization problem (40) becomes

min
a:Z̃∗n(a)

2≤K2(q1+q2)a2
|a|

2q2
q1+q2 Z̃∗n (a)

2q1
q1+q2 (45)
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Thus, our strategy to solve (36) is to first solve for an optimal solution w∗ (a) =
(
w∗j (a∗)

)
j=1,...,n

to (43) and obtain Z̃∗n (a), and then conduct a line search for a in (45). An optimal calibration

configuration is given by the weighting sequence w∗ (a∗), where a∗ is an optimal solution to (45),

and η∗, where

η∗ =

∑n

j=1 j
2αq2w∗j (a∗)

2(∑n

j=1

w∗j (a∗)

jαq1

)2


1

2(q1+q2)

(46)

by using (37).

The two-decay characterization of the weighting sequence arises from the solution to (43). To

illustrate, consider the Lagrangian

‖Σ 1
2w‖−λ1

(
µ>w− a

)
−λ2

(
1>w− 1

)
Differentiating with respect to w and equating to 0, we get

Σw

‖Σ 1
2w‖

−λ1µ−λ21 = 0

which gives

w= Σ−1 (λ1µ+λ21) = λ1Σ−1µ+λ2Σ−11

for some λ1, λ2 (scaled by ‖Σ 1
2w‖ compared to the ones displayed before). Note that this is equiv-

alent to

wj =
λ1

jα(q1+2q2)
+

λ2

j2αq2
(47)

for j = 1, . . . , n. This is precisely the form of w∗j,n in Theorem 8. By identifying λ1 and λ2 using

the constraints in (43), and writing out η∗ and Z̃∗n (a), we arrive at the depicted choices of w and

g (·) in the theorem. The remainder of the argument comprises an analysis to show that no other

choices of w and g (·) can give a better asymptotic minimax ratio, via comparing with an alternate

optimization problem and demonstrating that the residual error induced by w∗j,n and η∗ in (34) is

indeed of higher order. Appendix C shows the details.
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6. Multivariate Generalizations

All results we have presented apply to the multivariate version of (1). For convenience, we adopt

the notations there. We are interested in estimating θ0 ∈ Rp. Given a tuning parameter δ ∈ R+, we

can run Monte Carlo simulation where each simulation run outputs

θ (δ) = θ0 +b (δ) +v (δ) (48)

with b (δ) =Bδq1 + o (δq1) as δ→ 0, v (δ) = ε(δ)

δq2
, and q1, q2 > 0. We assume that:

Assumption 2. We have

1. B∈ Rp is a non-zero constant vector.

2. ε (δ) ∈ Rp is a family of random vectors such that Eε (δ) = 0 and limδ→0Cov (ε (δ)) = Σ for

some positive semidefinite matrix Σ with tr (Σ)> 0.

The constructions of the considered estimators are generalized in a natural manner. Namely,

the sample-average-based estimator θ̄n is obtained by taking the average of n vectors of θ (δ). The

recursive estimator (14) is obtained in a vectorized form, where the step size γn ∈ R+ is still in

the form c (n+n0)
−β

and δn = d̃ (n+n0)
−α

. Similar vectorization holds for the averaging estimator

(15). Lastly, the general weighted estimator in (23) can also be defined in a vectorized form, with

{wj,n}j=1,...,n, n=1,2,... still a triangular array of weights.

To gauge the error of an estimator θ̂n, we use the MSE given by E‖θ̂n − θ0‖2. Note that we

can decompose this into bias and variance in L2, namely ‖Eθ̂n−θ0‖2 + tr
(
Cov

(
θ̂n

))
. With this

definition of MSE, the asymptotic risk ratios (11) and (13) can be similarly defined. Then all the

results in Sections 3, 4 and 5 hold with only cosmetic changes. Appendices A and B show the

multivariate version of the theorems and proofs in Sections 3 and 4, while it will be clear from

the developments in Appendix C that the multivariate analog of Theorem 8 follows from its proof

directly (essentially, by replacing B2 with ‖B‖2 and σ2 with tr (Σ)).

Multivariate estimators in the form (48) arise in, for example, zeroth order gradient estimator

using simultaneous perturbation (Spall (1992)). To estimate ∇f (x), a sample output would involve
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first simulating a random vector, say h= (hi)i=1,...,p ∈ Rp, then generating two unbiased simulation

runs f̂ (x+ δh) and f̂ (x− δh), and finally outputting, for each direction i,

f̂ (x+ δh)− f̂ (x− δh)

2δhi
(49)

where δ > 0 is the perturbation size. This scheme satisfies (48) with q1 = 2, q2 = 1 by choosing h to

have mean-zero, independent components with finite inverse second moments, and under enough

smoothness conditions on f . One can also use several variants of (49) to obtain similar conclusions,

for example the one-sided version 1
δhi
f̂ (x+ δh) (Spall (1997)), or 1

δ
f̂ (x+ δh)hi by choosing h to

satisfy other types of conditions, as in Gaussian smoothing (Nesterov and Spokoiny (2017)) or

uniform sampling (Flaxman et al. (2005)).

Moreover, one important application of the above multivariate estimators concerns input uncer-

tainty quantification (e.g., Barton (2012), Henderson (2003), Chick (2006), Song et al. (2014), Lam

(2016)). In particular, a common estimation target in this problem is the output variance of a

simulation experiment that is contributed from the statistical noises of the input models calibrated

from external data sources, which is typically expressed in the form ∇ψ(x)>Λ∇ψ (x) where Λ is the

sampling covariance of the estimates of the input parameter vector x∈ Rp, ∇ψ (x) is the gradient

of the simulation performance measure with respect to x, and > denotes transpose. Thus, this is in

the form of G (θ0) where θ0 =∇ψ (x) and G (θ0) = θ>0 Λθ0. Our results applies to estimate G (θ0)

with a plug-in of θ0 and a standard application of the delta method to control the inherited error.

7. Numerical Results

We conduct a set of experiments to test the theoretical results derived in this paper. We consider

several variants of an M/M/1 queueing system and target performance measures. Specifically, we

have the following:

• Case 1: Critically loaded queue and transient performance measure. We set the arrival and

service rates to be both 4, so that the system is critically loaded. The queue is initially empty.

We consider a transient performance measure of the expected averaged system time of the first 10
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customers, and are interested in the gradient of this quantity with respect to the arrival and service

rates. Here, the true derivatives with respect to these rates are 0.0946 and −0.2501 respectively,

which are calculated by the likelihood ratio / score function method (e.g., Glynn (1990), Rubinstein

(1986), Reiman and Weiss (1989)) with 1 million simulation repetitions.

• Case 2: Non-critically loaded queue and transient performance measure. We set the arrival

rate to be 3 and the service rate to be 5, so that the system is not critically loaded. The queue

is initially empty. We consider the same performance measure and target gradient as the setting

above. Here, the true derivatives with respect to the arrival and service rates are 0.0676 and −0.1136

respectively.

• Case 3: Non-critically loaded queue and steady-state performance measure. We set the arrival

rate to be 3 and the service rate to be 5, so that the system is not critically loaded. The queue is

initially empty. We consider a steady-state performance measure of the expected averaged system

time of the first 1000 customers, and are interested in the gradient of this quantity with respect

to the arrival and service rates. The true derivatives with respect to these rates are 0.2746 and

−0.2440 respectively.

In our experiments we assume these systems or performance measures can be simulated only

through black box, i.e., we cannot introduce effective coupling among simulation runs that allows

one to use unbiased derivative estimators or multilevel Monte Carlo (however, we use unbiased

derivative estimator, via the likelihood ratio / score function method, to obtain the ground truth

in order to calculate MSEs). For each system and target performance measure above, we consider

two settings. The first setting uses CFD to estimate the derivative with respect to the arrival rate.

The second setting uses simultaneous perturbation (described in Section 6), with the perturbation

vector h having each entry being independent symmetric variable on ±1, to estimate the gradient

with respect to the arrival and service rates simultaneously. In each setting, we consider three

estimators: 1) The conventional sample-average-based estimator θ̄n; 2) the recursive estimator θ̂recn ;

and 3) the general weighted estimator θ̂genn . In θ̄n, we set δ= d (n+n0)
− 1

6 where d= 1. In θ̂recn , we
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set c= 1, δj = d̃ (j+n0)
− 1

6 for the j-th simulation run, where d̃= 3−
1
6d= 0.83d. For θ̂genn , we set

δj = d̃ (j+n0)
− 1

6 where d̃= η∗d, and use weights w∗j,n, with η∗ =K and w∗j,n both chosen according

to Theorem 8. Moreover, we consider values of K ranging from 0.5 to 4 among different settings,

which correspond to the values shown in Table 3. For each experimental setting, we consider

simulation run-lengths n varying between 20 and 1000, with n0 fixed to be 5. We repeat the

simulation for 1000 times to estimate the empirical MSEs. Moreover, we output the 95% confidence

intervals for the risk ratios, which are obtained by a standard application of the delta method.

Tables 5-10 summarize the results for the derivative estimation with respect to the arrival rate

and the two-dimensional gradient estimation with respect to both the arrival and the service rates,

respectively for Cases 1-3 above. Note that in interpreting these tables, one should focus on the

risk ratios instead of the absolute magnitude of the derivatives. This is because we can always

artificially inflate or deflate the values by simply multiplying the considered performance measures

by a scalar. Thus, an appropriate measurement of the estimation error should be the relative error,

namely MSE/ (true value), where the denominator is canceled out in the risk ratio calculation.

We see that, across all estimation settings in Cases 1 and 2 (Tables 5-8), the empirical risk ratios

between the recursive estimator θ̂recn and the baseline θ̄n are stably around 0.96 (n= 700 in Table 6)

to 1.21 (n= 1000 in Table 6) when the budget n is at least 100, while they range from 0.81 (n= 20

in Table 5) to 1.03 (n= 50 in Table 7) when n is 20 or 50. These behave quite consistently with

the theoretical prediction of 1.08. For Case 3, the risk ratios can range from 0.27 to 6.36 (n= 20

in Tables 10 and 9) for small n, but as n increases towards 1000 the ratio appears to converge

to roughly 1.0-1.2 when estimating the derivative with respect to the arrival rate (Table 9), and

to roughly 0.8-1.0 when estimating the gradient with respect to both arrival and service rates

(Table 10). These results also appear to match our AMRR prediction of 1.08.

Next we discuss the general weighted estimator θ̂genn . Its risk ratios vary with K. We first consider

the transient measures in Cases 1 and 2. When K = 0.5, the risk ratios across all estimation settings

lie around 2.34 (n = 700 in Table 6) to 3.38 (n = 100,140 in Table 5), which is roughly around,
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though could be higher than, the theoretical AMRR value of 2.67. When K = 0.82, the ratios

are around 0.93 (n = 500 in Table 7) to 1.31 (n = 100 in Table 5), which become closer to the

theoretical AMRR value of 1. When K = 1, the ratios are around 0.68 (n = 900 in Table 7) to

0.89 (n = 140 in Table 5), again becoming closer to the theoretical AMRR value of 0.67. When

K = 2, we see that in the derivative estimation of arrival rate, the ratios are around 0.15 (n= 120

in Table 5) to 0.21 (n= 50 in Table 7), which match the theoretical AMRR value of 0.17. However,

for the gradient estimation with respect to both rates, the ratios increase to around 0.26 (n= 1000

in Table 8) to 0.45 (n= 20 in Table 6), indicating (positive) deviation away from the theoretical

AMRR. Furthermore, when K = 3 or 4, the risk ratios appear a lot less stable, taking values as

low as 0.04 (n = 50 in Table 5) and as high as 8.59 (n = 100 in Table 6). For the steady-state

performance measure in Case 3 (Tables 9-10), we see that the trends for K = 0.5 to 1 behave

roughly similar to Cases 1 and 2, but with higher variability in general. When K = 0.5, the risk

ratios range between 1.32 (n = 280 in Table 9) and 2.74 (n = 220 in Table 10), which roughly

match the theoretical AMRR of 2.67. However, when K = 0.82, the risk ratios take values as low

as 0.69 (n= 280 in Table 9) and as high as 1.57 (n= 120 in Table 10), indicating more deviations

away from the theoretical AMRR of 1 than Cases 1 and 2. When K = 1, the ratios range from

0.26 (n= 20 in Table 10) to 0.81 (n= 1000 in Table 9), again indicating more fluctuations away

from the theoretical AMRR of 0.67 than Cases 1 and 2 (though the ratios are still lower than 1).

The deviations from the theoretical AMRR suggest our asymptotic characterization in some of

these cases is not accurate enough to capture the statistical behavior under the considered budget.

As described in Section 5.1, these deviations can be attributed to two approximation errors, first

the impact of the second-order terms in the biases and variances of estimators, and second, the

finiteness of sample size for the first-order terms even if there are no second-order terms in the

considered MSE ratio. As K gets larger, these finite-sample effects appear to strengthen and deem

the need of a larger sample size to observe the asymptotic behavior. Moreover, though we have fixed

d= 1 in this set of experiments, the choice of d also appears to have a finite-sample effect, which
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we illustrate with an additional numerical experiment in Appendix D. Precisely understanding

these effects requires analyzing the finite-sample properties of the worst-case risk ratios, which is

beyond the scope of this paper but would constitute important future work. Nonetheless, from our

experiments, we see that simply choosing K = 1 seems to be robust across all of our considered

settings.

We present additional experimental results in Appendix E to illustrate how our optimal weight-

ing scheme can be potentially incorporated in zeroth-order stochastic gradient descent or SA to

obtain faster convergence for black-box stochastic optimization. We also compare our scheme with

some benchmarks. Like the finite-sample investigation, a full study on more efficient stochastic

optimization based on the present framework will be left for future work.

8. Conclusion

We have studied a framework to construct new estimators that, in situations where simulation

runs are biased for a target estimation quantity, consistently outperform baseline estimators as the

sample averages of the simulation runs with a chosen tuning parameter. One challenge in choosing

the latter lies in the often lack of knowledge on the model characteristics that affect the bias-variance

tradeoff. To mitigate the adversarial impact of this ambiguity, we propose a minimax analysis on

the asymptotic risk ratio that compares the mean square errors between proposed estimators and

the baseline. In particular, we identify the asymptotic minimax risk ratio (AMRR) and the optimal

configurations for recursive estimators and their standard averaging versions. We show that, in

typical cases, the AMRR for these estimators are not small enough to justify any outperformance

against the standard baseline. We then consider a more general class of weighted estimators, and

identify the AMRR that can be significantly reduced to a level that implies that the resulting

optimal estimator asymptotically outperforms the baseline, regardless of any realizations of the

unknown model characteristics. Moreover, we provide an explicit characterizations of the optimal

weights in a two-decay-rate form, and argue how this arises from a balancing of bias-variance that

matches the baseline in order to control an adversarial enlargement of the risk ratio.
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n θ̄n θ̂recn θ̂genn ,K = 0.5 θ̂genn ,K = 0.82
20 1.08E-2 7.72E-3 (81± 11%) 3.52E-2 (325± 43%) 1.26E-2 (116± 15%)
50 5.95E-3 5.63E-3 (95± 12%) 1.78E-2 (300± 39%) 6.48E-3 (109± 14%)
100 3.32E-3 3.55E-3 (107± 14%) 1.12E-2 (338± 42%) 4.36E-3 (131± 17%)
120 3.33E-3 3.43E-3 (103± 12%) 8.93E-3 (268± 34%) 3.72E-3 (111± 13%)
140 2.66E-3 2.90E-3 (109± 14%) 9.02E-3 (338± 39%) 3.47E-3 (130± 16%)
160 2.63E-3 2.57E-3 (97± 12%) 7.65E-3 (291± 37%) 2.92E-3 (111± 13%)
180 2.36E-3 2.48E-3 (105± 13%) 6.94E-3 (294± 35%) 2.46E-3 (104± 12%)
200 2.20E-3 2.38E-3 (108± 13%) 6.69E-3 (305± 37%) 2.37E-3 (108± 14%)
220 2.11E-3 2.24E-3 (106± 13%) 6.07E-3 (288± 35%) 2.17E-3 (103± 13%)
240 2.01E-3 2.13E-3 (106± 13%) 5.99E-3 (298± 37%) 2.10E-3 (104± 14%)
260 1.87E-3 2.10E-3 (112± 14%) 5.17E-3 (276± 35%) 2.24E-3 (120± 15%)
280 1.87E-3 1.92E-3 (97± 12%) 5.15E-3 (276± 34%) 1.81E-3 (97± 12%)
300 1.64E-3 1.80E-3 (110± 13%) 4.78E-3 (291± 35%) 1.75E-3 (107± 13%)
400 1.38E-3 1.54E-3 (112± 13%) 4.19E-3 (303± 37%) 1.55E-3 (112± 12%)
500 1.22E-3 1.28E-3 (105± 13%) 3.66E-3 (299± 36%) 1.22E-3 (100± 13%)
600 1.04E-3 1.18E-3 (113± 14%) 3.03E-3 (292± 35%) 1.11E-3 (107± 13%)
700 9.24E-4 9.83E-4 (106± 13%) 2.56E-3 (276± 35%) 9.40E-4 (102± 13%)
800 8.61E-4 9.14E-4 (106± 13%) 2.60E-3 (302± 37%) 9.86E-4 (115± 14%)
900 8.23E-4 8.54E-4 (104± 13%) 2.30E-3 (280± 36%) 9.07E-4 (110± 14%)
1000 7.17E-4 8.12E-4 (113± 14%) 2.03E-3 (283± 36%) 7.66E-4 (107± 13%)

n θ̂genn ,K = 1 θ̂genn ,K = 2 θ̂genn ,K = 3 θ̂genn ,K = 4
20 8.63E-3 (80± 10%) 2.13E-3 (20± 3%) 9.20E-4 (8± 1%) 5.25E-4 (5± 1%)
50 4.67E-3 (79± 10%) 1.03E-3 (17± 2%) 4.36E-4 (7± 1%) 2.56E-4 (4± 1%)
100 2.79E-3 (84± 10%) 6.76E-4 (20± 2%) 2.77E-4 (8± 1%) 1.99E-3 (60± 8%)
120 2.44E-3 (73± 9%) 5.16E-4 (15± 2%) 2.25E-4 (7± 1%) 1.53E-3 (46± 6%)
140 2.36E-3 (89± 11%) 5.31E-4 (20± 3%) 2.11E-4 (8± 1%) 1.32E-3 (49± 6%)
160 1.97E-3 (75± 9%) 4.56E-4 (17± 2%) 2.16E-3 (82± 10%) 1.16E-3 (42± 6%)
180 1.66E-3 (70± 8%) 4.51E-4 (19± 2%) 2.12E-3 (89± 11%) 9.88E-4 (39± 6%)
200 1.67E-3 (76± 9%) 4.14E-4 (19± 2%) 1.78E-3 (81± 10%) 8.55E-4 (33± 5%)
220 1.57E-3 (74± 9%) 3.49E-4 (17± 2%) 1.50E-3 (71± 9%) 6.99E-4 (32± 5%)
240 1.48E-3 (74± 9%) 3.50E-4 (17± 2%) 1.37E-3 (68± 9%) 6.48E-4 (33± 4%)
260 1.40E-3 (75± 9%) 3.02E-4 (16± 2%) 1.26E-3 (67± 9%) 6.26E-4 (31± 4%)
280 1.37E-3 (73± 9%) 3.28E-4 (18± 2%) 1.13E-3 (61± 7%) 5.81E-4 (34± 4%)
300 1.21E-3 (74± 9%) 3.21E-4 (20± 2%) 1.05E-3 (64± 7%) 5.55E-4 (28± 4%)
400 1.03E-3 (75± 9%) 2.62E-4 (19± 2%) 7.89E-4 (57± 7%) 3.82E-4 (26± 4%)
500 9.31E-4 (76± 9%) 2.16E-4 (18± 2%) 6.60E-4 (54± 6%) 3.19E-4 (25± 3%)
600 7.99E-4 (77± 9%) 2.00E-4 (19± 2%) 4.98E-4 (48± 6%) 2.59E-4 (24± 3%)
700 7.48E-4 (81± 10%) 1.68E-4 (18± 2%) 4.02E-4 (43± 5%) 2.26E-4 (24± 3%)
800 6.36E-4 (74± 9%) 1.58E-4 (18± 2%) 3.74E-4 (43± 5%) 1.91E-4 (22± 3%)
900 6.18E-4 (75± 10%) 1.57E-4 (19± 2%) 3.36E-4 (41± 5%) 1.79E-4 (22± 2%)
1000 5.76E-4 (80± 10%) 1.36E-4 (19± 2%) 2.83E-4 (39± 5%) 1.42E-4 (20± 2%)

Table 5 Empirical MSEs among estimators for the derivative with respect to the arrival rate for Case 1.

Bracketed numbers represent the 95% confidence intervals (CIs) for the risk ratios between the considered

estimators and the baseline θ̄n.

Our work opens the door to multiple lines of expansion, in terms of both the formulating frame-

work and the techniques. First is the finite-sample counterpart of our analyses that aims to more

accurately capture the second-order effect of the bias-variance balance. Second, our framework can

be used to find better estimators for problems where simulation runtime is significantly affected

by the tuning parameters, in addition to bias and variance. Third, the statistical inference and

construction of confidence intervals/regions of our weighted estimators, which involves analyzing

central limit behaviors and the proper design of data-driven schemes like sectioning, are also of
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n θ̄n θ̂recn θ̂genn ,K = 0.5 θ̂genn ,K = 0.82
20 2.75E-2 2.32E-2 (85± 7%) 7.99E-2 (291± 27%) 3.56E-2 (130± 12%)
50 1.42E-2 1.34E-2 (95± 8%) 3.94E-2 (278± 25%) 1.68E-2 (119± 11%)
100 8.71E-3 8.81E-3 (101± 9%) 2.19E-2 (251± 22%) 9.52E-3 (109± 9%)
120 7.48E-3 7.53E-3 (101± 9%) 2.01E-2 (268± 23%) 8.85E-3 (118± 10%)
140 6.43E-3 6.59E-3 (102± 9%) 1.81E-2 (280± 24%) 7.46E-3 (116± 10%)
160 5.78E-3 6.02E-3 (104± 9%) 1.51E-2 (261± 22%) 6.75E-3 (117± 10%)
180 5.38E-3 5.66E-3 (105± 9%) 1.52E-2 (282± 25%) 6.33E-3 (103± 10%)
200 5.27E-3 5.28E-3 (100± 9%) 1.37E-2 (261± 23%) 5.45E-3 (108± 9%)
220 4.62E-3 5.00E-3 (108± 10%) 1.21E-2 (262± 24%) 5.00E-3 (108± 10%)
240 4.33E-3 4.64E-3 (107± 9%) 1.20E-2 (276± 24%) 4.69E-3 (107± 9%)
260 4.03E-3 4.40E-3 (109± 9%) 1.09E-2 (270± 23%) 4.31E-3 (107± 9%)
280 3.93E-3 4.17E-3 (106± 9%) 1.07E-2 (272± 23%) 4.25E-3 (108± 9%)
300 3.75E-3 4.04E-3 (108± 9%) 1.04E-2 (277± 24%) 3.82E-3 (102± 9%)
400 3.21E-3 3.46E-3 (108± 9%) 8.52E-3 (265± 23%) 3.22E-3 (100± 9%)
500 2.65E-3 2.71E-3 (102± 9%) 6.68E-3 (252± 22%) 2.83E-3 (106± 10%)
600 2.39E-3 2.44E-3 (102± 9%) 6.28E-3 (263± 23%) 2.42E-3 (101± 9%)
700 2.23E-3 2.13E-3 (96± 8%) 5.20E-3 (234± 20%) 2.26E-3 (102± 9%)
800 2.01E-3 2.08E-3 (103± 9%) 5.15E-3 (256± 22%) 1.97E-3 (98± 9%)
900 1.73E-3 1.88E-3 (109± 10%) 4.57E-3 (264± 23%) 1.85E-3 (107± 9%)
1000 1.55E-3 1.88E-3 (121± 11%) 4.45E-3 (287± 25%) 1.79E-3 (115± 10%)

n θ̂genn ,K = 1 θ̂genn ,K = 2 θ̂genn ,K = 3 θ̂genn ,K = 4
20 2.42E-2 (88± 8%) 1.25E-2 (45± 4%) 1.91E-2 (70± 6%) 5.61E-2 (204± 16%)
50 1.15E-2 (81± 7%) 5.85E-3 (41± 4%) 8.85E-3 (62± 6%) 2.82E-2 (199± 15%)
100 6.52E-3 (75± 7%) 3.04E-3 (35± 3%) 4.78E-3 (54± 5%) 7.49E-2 (859± 85%)
120 5.62E-3 (75± 7%) 2.57E-3 (34± 3%) 4.44E-3 (59± 5%) 5.41E-2 (723± 71%)
140 5.21E-3 (81± 7%) 2.38E-3 (37± 3%) 3.88E-3 (60± 5%) 4.14E-2 (644± 61%)
160 4.58E-3 (79± 7%) 2.18E-3 (38± 3%) 2.44E-2 (423± 40%) 3.47E-2 (601± 58%)
180 4.28E-3 (80± 7%) 1.89E-3 (35± 3%) 2.05E-2 (381± 37%) 2.90E-2 (539± 54%)
200 3.93E-3 (74± 6%) 1.73E-3 (33± 3%) 1.70E-2 (322± 30%) 2.68E-2 (509± 49%)
220 3.62E-3 (78± 7%) 1.50E-3 (33± 3%) 1.52E-2 (330± 32%) 2.40E-2 (520± 51%)
240 3.53E-3 (81± 7%) 1.56E-3 (36± 3%) 1.39E-2 (321± 32%) 2.13E-2 (491± 47%)
260 3.06E-3 (76± 6%) 1.48E-3 (37± 3%) 1.20E-2 (296± 28%) 1.88E-2 (467± 45%)
280 2.96E-3 (75± 7%) 1.40E-3 (36± 3%) 1.03E-2 (261± 23%) 1.80E-2 (456± 43%)
300 2.94E-3 (78± 7%) 1.30E-3 (35± 3%) 1.02E-2 (272± 24%) 1.56E-2 (416± 40%)
400 2.42E-3 (75± 7%) 1.00E-3 (31± 3%) 7.18E-3 (224± 22%) 1.17E-2 (363± 36%)
500 2.04E-3 (77± 7%) 8.31E-4 (31± 3%) 5.23E-3 (197± 19%) 8.77E-3 (331± 31%)
600 1.86E-3 (78± 7%) 6.99E-4 (29± 3%) 4.43E-3 (186± 18%) 6.90E-3 (289± 27%)
700 1.58E-3 (71± 6%) 6.56E-4 (29± 3%) 3.43E-3 (154± 14%) 6.19E-3 (278± 26%)
800 1.52E-3 (76± 6%) 5.97E-4 (30± 3%) 3.16E-3 (157± 14%) 4.89E-3 (243± 23%)
900 1.35E-3 (78± 7%) 5.40E-4 (31± 3%) 2.64E-3 (152± 14%) 4.27E-3 (247± 23%)
1000 1.28E-3 (82± 7%) 5.13E-4 (33± 3%) 2.28E-3 (147± 14%) 4.07E-3 (262± 25%)

Table 6 Empirical MSEs among estimators for the gradient with respect to the arrival and service rates for

Case 1. Bracketed numbers represent the 95% CIs for the risk ratios between the considered estimators and the

baseline θ̄n.

interest. Lastly, we plan to expand the study on using our enhanced estimators in stochastic black-

box optimization where the gradients in a descent algorithm are estimated via finite differences or

zeroth-order schemes.
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n θ̄n θ̂recn θ̂genn ,K = 0.5 θ̂genn ,K = 0.82
20 4.02E-3 3.29E-3 (82± 11%) 1.33E-2 (331± 42%) 4.85E-3 (121± 15%)
50 1.94E-3 1.99E-3 (103± 13%) 5.57E-3 (287± 37%) 2.21E-3 (114± 15%)
100 1.24E-3 1.28E-3 (102± 13%) 3.63E-3 (292± 37%) 1.43E-3 (114± 15%)
120 1.06E-3 1.10E-3 (104± 13%) 2.94E-3 (278± 35%) 1.25E-3 (118± 14%)
140 9.45E-4 1.06E-3 (118± 14%) 2.88E-3 (305± 38%) 1.20E-3 (126± 16%)
160 8.41E-4 9.16E-4 (109± 13%) 2.31E-3 (274± 40%) 1.01E-3 (120± 14%)
180 7.58E-4 9.11E-4 (120± 15%) 2.31E-3 (305± 35%) 9.08E-4 (120± 15%)
200 7.44E-4 8.51E-4 (114± 14%) 2.20E-3 (296± 35%) 7.91E-4 (106± 13%)
220 7.15E-4 7.72E-4 (108± 14%) 1.99E-3 (278± 36%) 8.00E-4 (112± 15%)
240 6.99E-4 7.19E-4 (103± 13%) 2.02E-3 (288± 36%) 7.35E-4 (105± 13%)
260 6.57E-4 7.09E-4 (108± 14%) 1.91E-3 (291± 36%) 6.61E-4 (101± 13%)
280 6.00E-4 6.76E-4 (113± 14%) 1.75E-3 (292± 36%) 6.90E-4 (115± 14%)
300 5.82E-4 6.52E-4 (112± 14%) 1.67E-3 (288± 34%) 6.46E-4 (111± 14%)
400 4.75E-4 5.57E-4 (117± 14%) 1.39E-3 (293± 36%) 5.14E-4 (108± 13%)
500 4.37E-4 4.51E-4 (103± 13%) 1.17E-3 (267± 36%) 4.07E-4 (93± 13%)
600 3.60E-4 3.90E-4 (109± 13%) 1.07E-3 (297± 36%) 3.83E-4 (107± 13%)
700 3.20E-4 3.56E-4 (111± 14%) 8.62E-4 (270± 32%) 3.77E-4 (118± 14%)
800 2.83E-4 3.31E-4 (117± 14%) 8.29E-4 (293± 37%) 3.14E-4 (111± 13%)
900 2.78E-4 3.08E-4 (111± 14%) 7.27E-4 (262± 33%) 3.03E-4 (109± 14%)
1000 2.54E-4 2.84E-4 (112± 13%) 7.36E-4 (289± 35%) 2.77E-4 (109± 13%)

n θ̂genn ,K = 1 θ̂genn ,K = 2 θ̂genn ,K = 3 θ̂genn ,K = 4
20 3.06E-3 (76± 10%) 7.83E-4 (19± 3%) 3.76E-4 (9± 1%) 2.71E-4 (7± 1%)
50 1.51E-3 (78± 10%) 4.03E-4 (21± 3%) 1.86E-4 (10± 1%) 1.46E-4 (8± 1%)
100 8.92E-4 (72± 9%) 2.22E-4 (18± 2%) 1.12E-4 (9± 1%) 8.92E-4 (72± 9%)
120 8.29E-4 (78± 9%) 2.09E-4 (20± 2%) 9.90E-5 (9± 1%) 6.87E-4 (65± 8%)
140 8.01E-4 (84± 10%) 1.93E-4 (20± 3%) 9.58E-5 (10± 1%) 5.44E-4 (58± 7%)
160 6.72E-4 (80± 10%) 1.63E-4 (19± 2%) 8.86E-4 (105± 13%) 5.17E-4 (62± 8%)
180 5.88E-4 (78± 10%) 1.55E-4 (20± 3%) 7.34E-4 (97± 13%) 4.18E-4 (55± 7%)
200 5.64E-4 (76± 9%) 1.42E-4 (19± 2%) 6.64E-4 (89± 11%) 3.41E-4 (46± 6%)
220 5.05E-4 (71± 9%) 1.37E-4 (19± 2%) 5.78E-4 (81± 10%) 3.31E-4 (46± 6%)
240 4.85E-4 (70± 8%) 1.31E-4 (19± 2%) 5.04E-4 (72± 9%) 3.16E-4 (45± 6%)
260 4.55E-4 (70± 8%) 1.17E-4 (18± 2%) 5.09E-4 (78± 10%) 2.60E-4 (40± 5%)
280 4.59E-4 (76± 10%) 1.14E-4 (19± 2%) 4.70E-4 (78± 10%) 2.39E-4 (40± 5%)
300 4.24E-4 (73± 9%) 1.05E-4 (18± 2%) 4.51E-4 (78± 10%) 2.27E-4 (39± 5%)
400 3.55E-4 (75± 9%) 9.06E-5 (19± 2%) 2.90E-4 (61± 10%) 1.63E-4 (34± 4%)
500 3.20E-4 (73± 9%) 7.58E-5 (17± 2%) 2.27E-4 (52± 8%) 1.22E-4 (28± 4%)
600 2.77E-4 (77± 10%) 6.54E-5 (18± 2%) 1.81E-4 (50± 6%) 1.09E-4 (30± 4%)
700 2.39E-4 (75± 9%) 5.87E-5 (18± 2%) 1.68E-4 (52± 6%) 8.84E-5 (28± 3%)
800 2.39E-4 (84± 10%) 5.21E-5 (18± 2%) 1.44E-4 (50± 7%) 7.75E-5 (27± 3%)
900 1.88E-4 (68± 9%) 5.37E-5 (19± 2%) 1.30E-4 (47± 6%) 6.66E-5 (24± 3%)
1000 1.82E-4 (71± 9%) 5.21E-5 (20± 3%) 1.19E-4 (47± 6%) 6.45E-5 (25± 3%)

Table 7 Empirical MSEs among estimators for the derivative with respect to the arrival rate for Case 2.

Bracketed numbers represent the 95% CIs for the risk ratios between the considered estimators and the baseline θ̄n.
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n θ̄n θ̂recn θ̂genn ,K = 0.5 θ̂genn ,K = 0.82
20 9.28E-3 7.62E-3 (82± 8%) 2.60E-2 (280± 28%) 1.11E-2 (119± 12%)
50 4.81E-3 4.62E-3 (96± 9%) 1.31E-2 (273± 25%) 5.37E-3 (112± 10%)
100 2.88E-3 2.88E-3 (100± 9%) 7.68E-3 (266± 24%) 3.13E-3 (109± 10%)
120 2.49E-3 2.48E-3 (100± 9%) 6.35E-3 (255± 23%) 2.87E-3 (115± 11%)
140 2.09E-3 2.21E-3 (106± 9%) 5.66E-3 (271± 25%) 2.72E-3 (130± 12%)
160 2.00E-3 2.25E-3 (113± 10%) 5.45E-3 (273± 24%) 2.21E-3 (111± 10%)
180 1.73E-3 1.83E-3 (106± 9%) 5.03E-3 (292± 25%) 1.92E-3 (105± 10%)
200 1.74E-3 1.78E-3 (102± 10%) 4.60E-3 (265± 24%) 1.82E-3 (105± 10%)
220 1.59E-3 1.76E-3 (111± 10%) 4.26E-3 (268± 24%) 1.79E-3 (107± 9%)
240 1.53E-3 1.50E-3 (98± 9%) 4.16E-3 (272± 24%) 1.69E-3 (110± 10%)
260 1.38E-3 1.47E-3 (106± 9%) 3.79E-3 (274± 25%) 1.53E-3 (111± 10%)
280 1.34E-3 1.37E-3 (102± 9%) 3.31E-3 (246± 21%) 1.36E-3 (101± 9%)
300 1.25E-3 1.28E-3 (102± 9%) 3.29E-3 (262± 23%) 1.43E-3 (114± 10%)
400 1.03E-3 1.08E-3 (106± 9%) 2.75E-3 (268± 22%) 1.13E-3 (111± 9%)
500 8.83E-4 9.89E-4 (112± 10%) 2.47E-3 (280± 25%) 9.73E-4 (110± 10%)
600 7.61E-4 9.00E-4 (118± 10%) 2.13E-3 (280± 24%) 8.31E-4 (109± 9%)
700 7.21E-4 7.46E-4 (105± 9%) 1.93E-3 (267± 24%) 7.33E-4 (102± 9%)
800 6.51E-4 6.89E-4 (106± 9%) 1.75E-3 (269± 23%) 7.26E-4 (112± 10%)
900 6.11E-4 6.27E-4 (102± 9%) 1.70E-3 (277± 25%) 6.28E-4 (103± 9%)
1000 5.62E-4 5.77E-4 (103± 9%) 1.48E-3 (263± 23%) 5.93E-4 (106± 9%)

n θ̂genn ,K = 1 θ̂genn ,K = 2 θ̂genn ,K = 3 θ̂genn ,K = 4
20 7.63E-3 (82± 8%) 3.57E-3 (38± 4%) 4.32E-3 (47± 5%) 8.18E-3 (88± 9%)
50 3.59E-3 (75± 7%) 1.69E-3 (35± 3%) 2.01E-3 (42± 4%) 4.16E-3 (86± 7%)

100 2.13E-3 (74± 7%) 9.09E-4 (32± 3%) 1.17E-3 (40± 4%) 1.22E-2 (424± 44%)
120 1.97E-3 (79± 7%) 8.12E-4 (33± 3%) 1.04E-3 (42± 4%) 9.08E-3 (365± 40%)
140 1.76E-3 (84± 7%) 7.25E-4 (35± 3%) 8.60E-4 (41± 4%) 7.31E-3 (350± 35%)
160 1.44E-3 (72± 7%) 6.86E-4 (34± 3%) 5.64E-3 (282± 27%) 6.16E-3 (309± 33%)
180 1.31E-3 (76± 7%) 5.42E-4 (31± 3%) 5.04E-3 (292± 29%) 5.52E-3 (320± 36%)
200 1.32E-3 (76± 7%) 5.48E-4 (32± 3%) 4.20E-3 (242± 25%) 4.22E-3 (243± 26%)
220 1.22E-3 (77± 7%) 4.80E-4 (30± 3%) 3.85E-3 (242± 24%) 4.29E-3 (270± 28%)
240 1.10E-3 (72± 6%) 4.92E-4 (32± 3%) 3.20E-3 (209± 21%) 3.52E-3 (230± 23%)
260 1.09E-3 (79± 7%) 4.21E-4 (30± 3%) 3.11E-3 (224± 22%) 3.26E-3 (236± 24%)
280 9.89E-4 (74± 7%) 4.21E-4 (32± 3%) 2.90E-3 (215± 21%) 3.11E-3 (232± 25%)
300 1.01E-3 (80± 7%) 3.82E-4 (31± 3%) 2.79E-3 (223± 22%) 2.61E-3 (209± 22%)
400 7.94E-4 (77± 7%) 2.96E-4 (29± 2%) 1.87E-3 (182± 17%) 1.95E-3 (190± 21%)
500 6.85E-4 (78± 7%) 2.61E-4 (30± 3%) 1.46E-3 (165± 17%) 1.37E-3 (156± 16%)
600 6.00E-4 (79± 7%) 2.19E-4 (29± 3%) 1.06E-3 (139± 14%) 1.05E-3 (138± 15%)
700 5.42E-4 (75± 7%) 1.99E-4 (28± 3%) 9.34E-5 (130± 13%) 9.70E-3 (135± 14%)
800 4.82E-4 (74± 6%) 1.78E-4 (27± 2%) 7.96E-4 (122± 11%) 7.96E-3 (122± 12%)
900 4.66E-4 (76± 7%) 1.63E-4 (27± 2%) 7.23E-4 (118± 11%) 7.37E-3 (121± 12%)
1000 4.22E-4 (75± 7%) 1.45E-4 (26± 2%) 5.93E-4 (106± 10%) 6.13E-3 (109± 11%)

Table 8 Empirical MSEs among estimators for the gradient with respect to the arrival and service rates for

Case 2. Bracketed numbers represent the 95% CIs for the risk ratios between the considered estimators and the

baseline θ̄n.
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n θ̄n θ̂recn θ̂genn ,K = 0.5 θ̂genn ,K = 0.82 θ̂genn ,K = 1
20 7.27E-4 4.63E-3 (636± 178%) 1.85E-3 (254± 87%) 9.77E-4 (134± 62%) 5.11E-4 (70± 27%)
50 4.68E-4 1.40E-3 (299± 95%) 9.85E-4 (210± 76%) 4.86E-4 (104± 37%) 2.77E-4 (59± 24%)
100 3.63E-4 9.56E-4 (264± 75%) 7.78E-4 (214± 64%) 3.62E-4 (100± 33%) 2.35E-4 (65± 20%)
120 4.38E-4 8.05E-4 (184± 46%) 6.58E-4 (150± 45%) 4.41E-4 (101± 32%) 2.45E-4 (56± 17%)
140 3.93E-4 8.22E-4 (209± 51%) 7.45E-4 (189± 55%) 4.04E-4 (103± 37%) 2.27E-4 (58± 17%)
160 3.85E-4 7.80E-4 (202± 51%) 7.22E-4 (187± 47%) 3.50E-4 (91± 25%) 2.32E-4 (60± 18%)
180 4.09E-4 6.84E-4 (167± 38%) 8.02E-4 (196± 52%) 4.08E-4 (100± 25%) 2.07E-4 (51± 14%)
200 4.33E-4 6.93E-4 (160± 33%) 7.32E-4 (169± 40%) 3.06E-4 (71± 16%) 2.47E-4 (57± 15%)
220 4.02E-4 5.79E-4 (144± 34%) 7.72E-4 (192± 45%) 3.51E-4 (87± 22%) 2.43E-4 (61± 17%)
240 3.83E-4 6,66E-4 (174± 35%) 6.95E-4 (181± 45%) 3.42E-4 (89± 21%) 2.16E-4 (56± 13%)
260 4.51E-4 5.68E-4 (126± 27%) 7.71E-4 (171± 36%) 3.84E-4 (85± 17%) 2.16E-4 (48± 12%)
280 5.27E-4 5.68E-4 (108± 21%) 6.94E-4 (132± 28%) 3.66E-4 (69± 16%) 2.48E-4 (47± 11%)
300 3.83E-4 6.62E-4 (173± 35%) 9.11E-4 (237± 52%) 4.49E-4 (117± 26%) 2.56E-4 (67± 16%)
400 4.71E-4 5.49E-4 (117± 19%) 7.40E-4 (157± 32%) 4.90E-4 (103± 19%) 2.90E-4 (61± 11%)
500 4.47E-4 5.73E-4 (128± 21%) 7.26E-4 (163± 29%) 4.59E-4 (103± 17%) 3.28E-4 (73± 12%)
600 4.67E-4 5.59E-4 (120± 19%) 7.13E-4 (153± 26%) 4.50E-4 (96± 15%) 3.64E-4 (78± 13%)
700 4.60E-4 5.66E-4 (123± 17%) 7.67E-4 (167± 27%) 4.44E-4 (96± 14%) 3.42E-4 (74± 11%)
800 4.96E-4 5.82E-4 (117± 16%) 6.81E-4 (137± 23%) 4.96E-4 (100± 15%) 3.85E-4 (78± 11%)
900 5.16E-4 5.47E-4 (106± 13%) 6.99E-4 (135± 20%) 4.82E-4 (93± 13%) 3.91E-4 (76± 10%)
1000 5.34E-4 6.10E-4 (114± 15%) 7.09E-4 (133± 20%) 4.92E-4 (92± 12%) 4.34E-4 (81± 11%)

Table 9 Empirical MSEs among estimators for the derivative with respect to the arrival rate for Case 3.

Bracketed numbers represent the 95% CIs for the risk ratios between the considered estimators and the baseline θ̄n.

n θ̄n θ̂recn θ̂genn ,K = 0.5 θ̂genn ,K = 0.82 θ̂genn ,K = 1
20 4.18E-2 1.14E-2 (27± 10%) 7.54E-2 (180± 51%) 3.46E-2 (83± 25%) 1.09E-2 (26± 8%)
50 1.53E-2 7.59E-3 (50± 16%) 3.66E-2 (239± 69%) 1.48E-2 (97± 31%) 4.71E-3 (31± 10%)
100 9.71E-3 5.20E-3 (54± 17%) 2.12E-2 (218± 55%) 1.33E-2 (137± 39%) 3.48E-3 (36± 11%)
120 6.53E-3 4.88E-3 (74± 22%) 1.77E-2 (270± 69%) 1.02E-2 (157± 48%) 2.22E-3 (34± 10%)
140 6.66E-3 3.54E-3 (53± 15%) 1.77E-2 (266± 65%) 8.24E-3 (124± 34%) 2.23E-3 (32± 9%)
160 5.01E-3 3.53E-3 (71± 18%) 1.25E-2 (249± 55%) 5.92E-3 (118± 30%) 1.97E-3 (39± 11%)
180 4.85E-3 3.07E-3 (63± 18%) 1.25E-2 (258± 58%) 5.75E-3 (119± 28%) 1.93E-3 (40± 10%)
200 4.41E-3 3.42E-3 (78± 22%) 9.84E-3 (223± 50%) 5.93E-3 (135± 36%) 1.93E-3 (44± 11%)
220 3.62E-3 3.00E-3 (83± 21%) 9.93E-3 (274± 60%) 5.09E-3 (140± 39%) 1.86E-3 (51± 13%)
240 3.31E-3 2.42E-3 (73± 17%) 8.78E-3 (265± 54%) 4.91E-3 (149± 34%) 1.62E-3 (49± 11%)
260 3.47E-3 2.53E-3 (73± 17%) 9.04E-3 (261± 54%) 3.94E-3 (114± 27%) 1.62E-3 (47± 11%)
280 3.18E-3 2.29E-3 (72± 17%) 7.72E-3 (243± 47%) 3.31E-3 (104± 23%) 1.71E-3 (54± 13%)
300 2.99E-3 2.17E-3 (72± 17%) 7.54E-3 (252± 52%) 3.15E-3 (105± 24%) 1.68E-3 (56± 13%)
400 2.25E-3 2.04E-3 (91± 18%) 5.48E-3 (244± 46%) 2.44E-3 (108± 24%) 1.12E-3 (51± 11%)
500 2.14E-3 1.80E-3 (84± 17%) 4.91E-3 (230± 43%) 2.03E-3 (95± 19%) 9.77E-3 (46± 10%)
600 1.62E-3 1.31E-3 (81± 15%) 3.83E-3 (236± 43%) 1.78E-3 (110± 22%) 9.28E-3 (57± 11%)
700 1.50E-3 1.29E-3 (86± 15%) 3.48E-3 (232± 36%) 1.43E-3 (95± 17%) 1.04E-3 (69± 13%)
800 1.28E-3 1.29E-3 (100± 18%) 2.91E-3 (227± 36%) 1.59E-3 (124± 22%) 8.32E-3 (65± 11%)
900 1.20E-3 1.07E-3 (89± 14%) 2.27E-3 (189± 29%) 1.37E-3 (114± 18%) 8.32E-3 (70± 12%)
1000 1.08E-3 1.07E-3 (99± 16%) 2.13E-3 (197± 30%) 1.26E-3 (116± 20%) 7.74E-3 (72± 12%)

Table 10 Empirical MSEs among estimators for the gradient with respect to the arrival and service rates for

Case 3. Bracketed numbers represent the 95% CIs for the risk ratios between the considered estimators and the

baseline θ̄n.
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Appendix A: Proofs for Section 3

We will prove a multivariate version of Theorem 1.

Theorem 9. Under Assumption 2, suppose that limn→∞ δnn
α = d, where 0< d <∞ the sample-

average-based estimator θ̄n exhibits the asymptotic MSE

E‖θ̄n−θ0‖2 = d2q1‖B‖2n−2αq1 +
tr (Σ)

d2q2
n2αq2−1 + o

(
n−2αq1 +n2αq2−1

)
as n→∞

Choosing α= 1
2(q1+q2)

achieves the optimal MSE order, and the asymptotic MSE is

E‖θ̄n−θ0‖2 =

(
d2q1‖B‖2 +

tr (Σ)

d2q2

)
n
− q1
q1+q2 + o

(
n
− q1
q1+q2

)
as n→∞

Proof of theorem 9. By the bias-variance decomposition, we have

E‖θ̄n−θ0‖2 = ‖Eθ̄n−θ0‖2 + tr
(
Cov

(
θ̄n
))

= ‖b (δn)‖2 +
1

n
tr (Cov (v (δn)))

= ‖B‖2δ2q1
n + o

(
δ2q1
n

)
+

1

n

tr (Σ) + o (1)

δ2q2
n

Setting δn = d+o(1)

nα
, we obtain

E‖θ̄n−θ0‖2 = ‖B‖2 (d+ o (1))
2q1

n2αq1
+ o
(
n−2αq1

)
+
tr (Σ) + o (1)

(d+ o (1))
2q2
n2αq2−1

=
(
‖B‖2d2q1 + o (1)

)
n−2αq1 +

(
tr (Σ)

d2q2
+ o (1)

)
n2αq2−1

To achieve the optimal MSE order, we solve −2αq1 = 2αq2− 1. Thus α= 1
2(q1+q2)

and the optimal

order is n
− q1
q1+q2 .

Proof of Theorem 1. The proof follows immediately by considering dimension 1 in Theorem 9.

�

Appendix B: Proofs for Section 4.2

We provide and prove multivariate versions of the results, from which the ones in Section 4.2 follow

immediately.

Frequently used in the subsequent proofs is the following result adapted from Lemma 4.2, a

version of Chung’s Lemma, in Fabian (1967):

Lemma 1 (Chung’s Lemma). For vn, cn, bn real numbers, and 0< α ≤ 1, suppose limn→∞ cn =

c > 0, and consider the iteration

vn+1 =
(

1− cn
nα

)
vn +

bn
nα

(50)

If bn→ 0, then vn→ 0; if bn→ b > 0, then vn→ b
c
; and if bn→∞, then vn→∞.
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Proof of Lemma 1. Our version of Chung’s lemma is different in appearance from Lemma 4.2

in Fabian (1968), and thus we repeat the proof here. First, if bn→ b where b≥ 0 is a real number,

then for given 0< ε< c, we can choose n1 sufficiently large such that, for all n≥ n1, we have cn
nα
< 1,

bn < b+ ε and c− ε < cn < c+ ε. Now let n≥ n1. If vn ≥ b+2ε
c−ε , then from the iteration (50)

vn+1 ≤ vn−
b+ 2ε

c− ε
(c− ε) 1

nα
+ (b+ ε)

1

nα
≤ vn−

ε

nα

On the other hand, if vn ≤ b+2ε
c−ε , then since the right hand side of the iteration (50) is an increasing

function of vn, we have

vn+1 ≤
b+ 2ε

c− ε
− b+ 2ε

c− ε
(c− ε) 1

nα
+ (b+ ε)

1

nα
≤ b+ 2ε

c− ε

Combined with the fact that
∞∑
n=1

1
nα

diverges, we have limsupn→∞ vn ≤ b+2ε
c−ε . Since ε is arbitrary,

we get

limsup
n→∞

vn ≤
b

c
(51)

If b= 0, vn+1 ≥ vn+ ε
nα

for vn ≤− 2ε
c−ε and vn+1 ≥− 2ε

c−ε for vn ≥− 2ε
c−ε . Therefore we have lim inf

n→∞
vn ≥

0 and limsup
n→∞

vn ≤ 0. We conclude that limn→∞ vn = 0. By the same analysis, if bn→ b > 0, where

b possibly take the value of ∞, we would have

lim inf
n→∞

vn ≥
b

c
(52)

Thus if b=∞, we conclude that limn→∞ vn→∞, and if 0< b <∞, combining (51) and (52), we

get limn→∞ vn = b
c
. �

We now consider multivariate versions of our results and their proofs:

Proposition 2. Under Assumption 2, we have:

1. If β ≤ 1 and α< β
2q2

, the estimator θ̂recn is L2-consistent for θ0, i.e.,

lim
n→∞

E‖θ̂recn −θ0‖2 = 0

2. If β ≤ 1 and α≥ β
2q2

, or if β > 1, the error of θ̂recn in estimating θ0 is bounded away from zero

in L2 norm as n→∞, i.e.,

lim inf
n→∞

E‖θ̂recn −θ0‖2 > 0

Proof of Proposition 2. We first prove the proposition for β ≤ 1. From the recursion

θ̂recn = (1− γn) θ̂recn−1 + γnθ (δn) (53)

we have

Eθ̂recn −θ0 = (1− γn)
(
Eθ̂recn−1−θ0

)
+ γn (Eθ (δn)−θ0)
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Since Eθ (δn)− θ0 = b (δn)→ 0 as n→∞, we have Eθ̂recn − θ0→ 0 by Chung’s lemma. Note that

E‖θ̂recn −θ0‖2 = ‖Eθ̂recn −θ0‖2 + tr
(
Cov

(
θ̂recn

))
. Thus the convergence will depend on the variance

term. Taking covariance of (53), by independence we have

Cov
(
θ̂recn

)
= (1− γn)

2
Cov

(
θ̂recn−1

)
+ γ2

nCov (θ (δn)) (54)

Since

Cov (θ (δn)) =
1

δ2q2
n

Cov (ε (δn))

we have

lim
n→∞

Cov (θ (δn))

n2q2α
=

Σ

d2q2

We now rewrite the iteration (54) as

tr
(
Cov

(
θ̂recn

))
= (1− (2 + o (1))γn) tr

(
Cov

(
θ̂recn−1

))
+ γnsn

where sn = c tr(Σ)

d2q2
n2q2α−β+o (n2q2α−β). We note that limn→∞ sn =∞ if α> β

2q2
, limn→∞ sn = c tr(Σ)

d2q2
>

0 if α= β
2q2

, and limn→∞ sn = 0 if α< β
2q2

. Thus by Chung’s lemma

lim
n→∞

tr
(
Cov

(
θ̂recn

))
→∞ if α>

β

2q2

lim
n→∞

tr
(
Cov

(
θ̂recn

))
= c

tr (Σ)

2d2q2
if α=

β

2q2

and

lim
n→∞

tr
(
Cov

(
θ̂recn

))
= 0 if α<

β

2q2

This completes the proof for β ≤ 1.

Next consider β > 1, we now argue that choosing γn = cn−β does not lead to convergence. We

note that θ̂recn is a linear combination of θ̂rec0 ,θi (δi) , i= 1, · · · , n, i.e.

θ̂recn = a0θ̂
rec
0 +

n∑
i=1

aiθi (δi)

where a0 =
∏n

j=1 (1− γj) and ai = γi
∏n

j=i+1 (1− γj). Since
∑∞

n=1 γn =
∑∞

n=1
c
nβ
<∞, by the relation

between infinite product and infinite sum, we get

lim
n→∞

ai exists and is positive for any i

Since by independence

tr
(
Cov

(
θ̂recn

))
= a2

0tr
(
Cov

(
θ̂rec0

))
+

n∑
i=1

a2
i tr (Cov (θ (δi)))

we have that

lim inf
n→∞

tr
(
Cov

(
θ̂recn

))
> 0

�
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Theorem 10. Under Assumption 2, the MSE of θ̂recn in estimating θ0 behaves as follows:

1. For β < 1 and α< β
2q2

,

E‖θ̂recn −θ0‖2 = d2q1‖B‖2n−2q1α +
c

2d2q2
tr (Σ)n2q2α−β + o

(
n−2q1α +n2q2α−β

)
as n→∞

2. For β = 1, α= 1
2(q1+q2)

and c > q1
2(q1+q2)

,

E‖θ̂recn −θ0‖2 =

( cdq1

c− q1
2(q1+q2)

)2

‖B‖2 +
c2(

2c− q1
q1+q2

)
d2q2

tr (Σ)

n
− q1

q1+q2 + o
(
n
− q1

q1+q2

)
as n→∞

3. For β = 1, α= 1
2(q1+q2)

and c≤ q1
2(q1+q2)

, or for β = 1 and α 6= 1
2(q1+q2)

,

limsup
n→∞

n
q1

q1+q2E‖θ̂recn −θ0‖2 =∞

Proof of Theorem 10. Taking expectation of (53) and rearranging terms, we have

E
(
θ̂recn −θ0

)
= (1− γn)E

(
θ̂recn−1−θ0

)
+γn (Eθ (δn)−θ0) = (1− γn)E

(
θ̂recn−1−θ0

)
+γn (Bδq1n + o (δq1n ))

(55)

If γn = c
n

and α≤ 1
2(q1+q2)

, we multiply (55) by nq1α to get

nq1αE
(
θ̂recn −θ0

)
=

(
n

n− 1

)q1α (
1− c

n

)
(n− 1)

q1αE
(
θ̂recn−1−θ0

)
+
c

n
(Bdq1 + o (1))

=

(
1− c− q1α+ o (1)

n

)
(n− 1)

q1αE
(
θ̂recn−1−θ0

)
+
c

n
(Bdq1 + o (1))

For c > q1α, by Chung’s lemma, limn→∞ n
q1αE

(
θ̂recn −θ0

)
= cdq1

c−q1α
B. Thus

E
(
θ̂recn −θ0

)
=

cdq1

c− q1α
Bn−q1α + o

(
n−q1α

)
If γn = c/n and α> 1

2(q1+q2)
, we multiply (55) by n1/2−q2α to get

n1/2−q2αE
(
θ̂recn −θ0

)
=

(
1− c− 1/2 + q2α+ o (1)

n

)
(n− 1)

1/2−q2αE
(
θ̂recn−1−θ0

)
+ o

(
1

n

)
For c > 1/2− q2α, by Chung’s lemma, limn→∞ n

1/2−q2αE
(
θ̂recn −θ0

)
= 0. Thus

E
(
θ̂recn −θ0

)
= o

(
nq2α−1/2

)
Similarly, if γn = c

nβ
, β < 1, we multiply (55) by nq1α to get

nq1αE
(
θ̂recn −θ0

)
=

(
1− c+ o (1)

nβ

)
(n− 1)

q1αE
(
θ̂recn−1−θ0

)
+

c

nβ
(Bdq1 + o (1))

For c > 0, by Chung’s lemma, limn→∞ n
q1αE

(
θ̂recn −θ0

)
=Bdq1 . Thus

E
(
θ̂recn −θ0

)
=Bdq1n−q1α + o

(
n−q1α

)
(56)



Lam, Zhang and Zhang: Enhanced Bias-Variance Balancing: A Minimax Perspective
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 5

Next we take covariance of (53) and by independence,

Cov
(
θ̂recn

)
= (1− γn)

2
Cov

(
θ̂recn−1

)
+ γ2

nCov (θ (δn))

= (1− γn)
2
Cov

(
θ̂recn−1

)
+ γ2

n

Cov (ε (δn))

δ2q2
n

= (1− γn)
2
Cov

(
θ̂recn−1

)
+ γ2

nn
2q2α

Σ + o (1)

d2q2
(57)

If γn = c
n

and α≥ 1
2(q1+q2)

, we multiply (57) by n1−2q2α and take trace to get

n1−2q2αtr
(
Cov

(
θ̂recn

))
=

(
n

n− 1

)1−2q2α (
1− c

n

)2

(n− 1)
1−2q2α tr

(
Cov

(
θ̂recn−1

))
+
c2

n

tr (Σ) + o (1)

d2q2

=

(
1− 2c+ 2q2α− 1 + o (1)

n

)
(n− 1)

1−2q2α tr
(
Cov

(
θ̂recn−1

))
+
c2

n

tr (Σ) + o (1)

d2q2

(58)

For c > 1/2− q2α, by Chung’s lemma, limn→∞ n
1−2q2αtr

(
Cov

(
θ̂recn

))
= c2tr(Σ)

(2c+2q2α−1)d2q2
. Thus

tr
(
Cov

(
θ̂recn

))
=

c2tr (Σ)

(2c+ 2q2α− 1)d2q2
n2q2α−1 + o

(
n2q2α−1

)
Similarly, if γn = c

nβ
, β < 1, we multiply (57) by nβ−2q2α and take trace to get

nβ−2q2αtr
(
Cov

(
θ̂recn

))
=

(
n

n− 1

)β−2q2α (
1− c

nβ

)2

(n− 1)
β−2q2α tr

(
Cov

(
θ̂recn−1

))
+
c2

nβ
tr (Σ) + o (1)

d2q2

=

(
1− 2c+ o (1)

nβ

)
(n− 1)

β−2q2α tr
(
Cov

(
θ̂recn−1

))
+
c2

nβ
tr (Σ) + o (1)

d2q2

For c > 0, by Chung’s lemma, limn→∞ n
β−2q2αtr

(
Cov

(
θ̂recn

))
= ctr(Σ)

2d2q2
. Thus

tr
(
Cov

(
θ̂recn

))
=
ctr (Σ)

2d2q2
n2q2α−β + o

(
n2q2α−β

)
In conclusion, if γn = c

n
, α= 1

2(q1+q2)
and c > q1

2(q1+q2)
, then

E‖θ̂recn −θ0‖2 = ‖Eθ̂recn −θ0‖2 + tr
(
Cov

(
θ̂recn

))
=

(
cdq1

c− q1α

)2

‖B‖2n−2q1α + o
(
n−2q1α

)
+

c2tr (Σ)

(2c+ 2q2α− 1)d2q2
n2q2α−1 + o

(
n2q2α−1

)
=

((
cdq1

c− q1/ (2 (q1 + q2))

)2

‖B‖2 +
c2

(2c− q1/ (q1 + q2))d2q2
tr (Σ)

)
n−q1/(q1+q2) + o

(
n−q1/(q1+q2)

)
If γn = c

n
, α> 1

2(q1+q2)
and c > 1/2− q2α, then

E‖θ̂recn −θ0‖2 =
c2tr (Σ)

(2c+ 2q2α− 1)d2q2
n2q2α−1 + o

(
n2q2α−1

)
(59)

Similarly, if γn = c
nβ
, β < 1 and c > 0, then

E‖θ̂recn −θ0‖2 = d2q1‖B‖2n−2q1α + o
(
n−2q1α

)
+

c

2d2q2
tr (Σ)n2q2α−β + o

(
n2q2α−β

)
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This completes the proof for part 1 and part 2 of the theorem.

Next we prove part 3 of the theorem. If α> 1
2(q1+q2)

and c > 1/2− q2α, we note from (59) that

lim
n→∞

n
q1

q1+q2E‖θ̂recn −θ0‖2 =∞

If α ≥ 1
2(q1+q2)

and c ≤ 1/2 − q2α, and supposing that the sequence n1−2q2αtr
(
Cov

(
θ̂recn

))
is

bounded, then from (58) we have that

n1−2q2αtr
(
Cov

(
θ̂recn

))
≥ (n− 1)

1−2q2α tr
(
Cov

(
θ̂recn−1

))
+
C1 + o (1)

n

for some C1 > 0, for all large enough n. Since
∑∞

n=1 1/n=∞, we get

n1−2q2αtr
(
Cov

(
θ̂recn

))
→∞ as n→∞

which is a contradiction. Thus

limsup
n→∞

n
q1

q1+q2E‖θ̂recn −θ0‖2 ≥ limsup
n→∞

n1−2q2αtr
(
Cov

(
θ̂recn

))
=∞

If α< 1
2(q1+q2)

, and supposing that the sequence n
q1

2(q1+q2)E
(
θ̂recn −θ0

)
is bounded, we multiply (55)

by n
q1

2(q1+q2) to get

n
q1

2(q1+q2)E
(
θ̂recn −θ0

)
=

(
1− c− q1/ (2 (q1 + q2)) + o (1)

n

)
(n− 1)

q1
2(q1+q2) E

(
θ̂recn−1−θ0

)
+

c

n
1−q1

(
1

2(q1+q2)
−α
) (Bdq1 + o (1))

= (n− 1)
q1

2(q1+q2) E
(
θ̂recn−1−θ0

)
+

cBdq1 + o (1)

n
1−q1

(
1

2(q1+q2)
−α
)

Since
∑∞

n=1 1/n
1−q1

(
1

2(q1+q2)
−α
)

=∞, we get

n
q1

2(q1+q2)E
(
θ̂recn −θ0

)
→∞ as n→∞

which is a contradiction. Thus

limsup
n→∞

n
q1

q1+q2E‖θ̂recn −θ0‖2 ≥ limsup
n→∞

n
q1

q1+q2 ‖Eθ̂recn −θ0‖2 =∞

This completes the proof for part 3 of the theorem. �

Proof of Theorem 2. This follows immediately from Theorem 10 by setting the dimension to 1.

�

Proof of Theorem 3. We have

Rrec (θ (·) , d, c) =

(
cdq1

c− q1
2(q1+q2)

)2

B2 + c2

2d2q2
(
c− q1

2(q1+q2)

)σ2

d2q1B2 + 1
d2q2

σ2
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For any d,B and σ2, we have

Rrec (θ (·) , d, c)≤max


(

cdq1

c− q1
2(q1+q2)

)2

d2q1
,

c2

2d2q2
(
c− q1

2(q1+q2)

)
1

d2q2

= max


(

c

c− q1
2(q1+q2)

)2

,
c2

2
(
c− q1

2(q1+q2)

)


Note that the right hand side above is approachable by choosing B or σ2 to be arbitrarily big.

Therefore

max
θ(·)∈H,d>0

Rrec (θ (·) , d, c) = max


(

c

c− q1
2(q1+q2)

)2

,
c2

2
(
c− q1

2(q1+q2)

)
 (60)

Now suppose that (
c

c− q1
2(q1+q2)

)2

>
c2

2
(
c− q1

2(q1+q2)

)
which is equivalent to c < 5q1+4q2

2(q1+q2)
. Since the function

(
c

c− q1
2(q1+q2)

)2

is monotonically decreasing in

the region q1
2(q1+q2)

< c< 5q1+4q2
2(q1+q2)

, we have

max


(

c

c− q1
2(q1+q2)

)2

,
c2

2
(
c− q1

2(q1+q2)

)
=

(
c

c− q1
2(q1+q2)

)2

≥

(
c

c− q1
2(q1+q2)

)2
c=

5q1+4q2
2(q1+q2)

Similarly, suppose that (
c

c− q1
2(q1+q2)

)2

<
c2

2
(
c− q1

2(q1+q2)

)
which is equivalent to c > 5q1+4q2

2(q1+q2)
. Since the function c2

2
(
c− q1

2(q1+q2)

) is monotonically increasing in

the region c > 5q1+4q2
2(q1+q2)

, we have

max


(

c

c− q1
2(q1+q2)

)2

,
c2

2
(
c− q1

2(q1+q2)

)
=

c2

2
(
c− q1

2(q1+q2)

) ≥ c2

2
(
c− q1

2(q1+q2)

)
c=

5q1+4q2
2(q1+q2)

Thus the minimization of (60) gives us c= 5q1+4q2
2(q1+q2)

, which solves(
c

c− q1
2(q1+q2)

)2

=
c2

2
(
c− q1

2(q1+q2)

)
and we note that both sides of this equation is

q21
16(q1+q2)2

+ q1
2(q1+q2)

+ 1. �

Proof of Theorem 4. We have

Rrec
(
θ (·) , d, d̃, c

)
=

(
cd̃q1

c− q1
2(q1+q2)

)2

B2 + c2

2d̃2q2
(
c− q1

2(q1+q2)

)σ2

d2q1B2 + 1
d2q2

σ2
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For any d, d̃,B and σ2, we have

Rrec
(
θ (·) , d, d̃, c

)
≤max


(

cd̃q1

c− q1
2(q1+q2)

)2

d2q1
,

c2

2d̃2q2
(
c− q1

2(q1+q2)

)
1

d2q2


= max


(

c

c− q1
2(q1+q2)

)2(
d̃

d

)2q1

,
c2

2
(
c− q1

2(q1+q2)

) 1(
d̃
d

)2q2


Note that the right hand side above is approachable by choosing B or σ2 to be arbitrarily big.

Therefore

max
θ(·)∈H,d>0

Rrec
(
θ (·) , d, d̃, c

)
= max

d>0
max


(

c

c− q1
2(q1+q2)

)2

η (d)
2q1 ,

c2

2
(
c− q1

2(q1+q2)

) 1

η (d)
2q2

 (61)

where we let η (d) = d̃
d
, and note that d̃= g (d) is also a function of d. We minimize the right hand

side of (61) via minimizing

max


(

c

c− q1
2(q1+q2)

)2

η (d)
2q1 ,

c2

2
(
c− q1

2(q1+q2)

) 1

η (d)
2q2

 (62)

for each d. With d fixed arbitrarily, first, for any c, since both of the expressions in (62) are

monotonic in η (d), we need(
c

c− q1
2(q1+q2)

)2

η (d)
2q1 =

c2

2
(
c− q1

2(q1+q2)

) 1

η (d)
2q2

which upon solving leads to

η (d) =

(
c− q1

2(q1+q2)

2

)1/(2(q1+q2))

Thus (62) becomes

max


(

c

c− q1
2(q1+q2)

)2

η (d)2q1 ,
c2

2
(
c− q1

2(q1+q2)

) 1

η (d)2q2

=

(
c

c− q1
2(q1+q2)

)2

η (d)2q1 =
1

2q1/(q1+q2)

c2(
c− q1

2(q1+q2)

) q1+2q2
q1+q2

We then optimize c over the region c > q1
2(q1+q2)

, i.e,

c= arg minc> q1
2(q1+q2)

1

2q1/(q1+q2)

c2(
c− q1

2(q1+q2)

) q1+2q2
q1+q2

= 1

This gives η (d) =
(

q1+2q2
4(q1+q2)

) 1
2(q1+q2) and (62) is 2

2q2
q1+q2

(
q1+2q2
q1+q2

)− q1+2q2
q1+q2

. We note that the optimal

c, η (d) are independent of d, and therefore the value of (61) is also 2
2q2
q1+q2

(
q1+2q2
q1+q2

)− q1+2q2
q1+q2

. �
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Next, we consider the uniform-averaging scheme:

Theorem 11. Under Assumption 2, the MSE of θ̂avgn in estimating θ0 behaves as follows:

1. For β < 1 and α≤ 1
2(q1+q2)

,

E‖θ̂avgn −θ0‖2 =

(
dq1

1− q1α

)2

‖B‖2n−2q1α +
1

(1 + 2q2α)d2q2
tr (Σ)n2q2α−1 + o

(
n−2q1α +n2q2α−1

)
as n→∞

2. For β < 1 and α> 1
2(q1+q2)

,

E‖θ̂avgn −θ0‖2 =
1

(1 + 2q2α)d2q2
tr (Σ)n2q2α−1 + o

(
n2q2α−1

)
as n→∞

Proof of Theorem 11. We first analyze Eθ̂avgn − θ0, For 0< α≤ 1
2(q1+q2)

, since −1<−q1α < 0,

we have that ∫ n+1

1

s−q1αds≤
n∑
i=1

i−q1α ≤
∫ n

0

s−q1αds

Thus
n∑
i=1

i−q1α =

∫ n

0

s−q1αds+ o

(∫ n

0

s−q1αds

)
=
n1−q1α

1− q1α
+ o
(
n1−q1α

)
and

1

n

n∑
i=1

i−q1α =
1

1− q1α
n−q1α + o

(
n−q1α

)
From (56) we have E

(
θ̂recn −θ0

)
=Bdq1n−q1α + o (n−q1α). Thus

Eθ̂avgn −θ0 =
1

n

n∑
i=1

E
(
θ̂reci −θ0

)
=

1

n

n∑
i=1

(
Bdq1i−q1α + o

(
i−q1α

))
=

dq1

1− q1α
Bn−q1α + o

(
n−q1α

)
For α> 1

2(q1+q2)
, by a similar analysis we get

Eθ̂avgn −θ0 =
1

n

n∑
i=1

E
(
θ̂reci −θ0

)
=


O
(

1
nq1α

)
if −q1α>−1

O
(
log(n)

n

)
if −q1α=−1

O
(

1
n

)
if −q1α<−1

Since 1/2− q2α< 1 and 1/2− q2α< q1α, we have

n1/2−q2αE
(
θ̂avgn −θ0

)
= o (1)

We then analyze tr
(
Cov

(
θ̂avgn

))
. Rewrite the iteration (53) as

θ̂recn −Eθ̂recn = (1− γn)
(
θ̂recn−1−Eθ̂recn−1

)
+ γn (θ (δn)−Eθ (δn))

Let Un = θ̂recn −Eθ̂recn . Thus

Un = (1− γn)Un−1 + γnv (δn)
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Following Polyak and Juditsky (1992), we can write

Un =
n∏
i=1

(1− γi)U0 +
n∑
i=1

(
n∏

j=i+1

(1− γj)

)
γiv (δi)

Thus θ̂avgn −Eθ̂avgn can be written as

θ̂avgn −Eθ̂avgn =
1

n

n∑
k=1

Uk

=
1

n

n∑
k=1

k∏
i=1

(1− γi)U0 +
1

n

n∑
k=1

k∑
i=1

(
k∏

j=i+1

(1− γj)

)
γiv (δi)

=
1

n

n∑
k=1

k∏
i=1

(1− γi)U0 +
1

n

n∑
i=1

(
n∑
k=i

k∏
j=i+1

(1− γj)

)
γiv (δi)

Let

pn =
n∑
k=1

k∏
i=1

(1− γi)

qin = γi

n∑
k=i

k∏
j=i+1

(1− γj)

and win = qin− 1. Then

θ̂avgn −Eθ̂avgn =
pn
n
U0 +

1

n

n∑
i=1

v (δi) +
1

n

n∑
i=1

winv (δi) (63)

From Lemma 1 and Lemma 2 in Polyak and Juditsky (1992), we have that

lim
n→∞

1

n

n∑
i=1

|win|= 0, and |win| ≤C1, |pn| ≤C1, for some C1 > 0

Multiplying (63) by n1/2−q2α, we have

n1/2−q2α
(
θ̂avgn −Eθ̂avgn

)
=

pn
n1/2+q2α

U0 +
1

n1/2+q2α

n∑
i=1

v (δi) +
1

n1/2+q2α

n∑
i=1

winv (δi)

Since pn is bounded, E‖ pn
n1/2+q2α

U0‖2 = o (1). Besides, by independence,

E‖ 1

n1/2+q2α

n∑
i=1

winv (δi)‖2 =
1

n1+2q2α

n∑
i=1

(
win
)2
E‖v (δi)‖2 ≤

C2

n1+2q2α

n∑
i=1

|win|i2q2α ≤
C2

n

n∑
i=1

|win|

for some C2 > 0. Therefore, E‖ 1

n1/2+q2α

∑n

i=1w
i
nv (δi)‖2 = o (1). Thus

n1−2q2αtr
(
Cov

(
θ̂avgn

))
=

1

n1+2q2α

n∑
i=1

tr (Cov (v (δi))) + o (1)

=
1

n1+2q2α

n∑
i=1

i2q2α
tr (Σ) + o (1)

d2q2
+ o (1)

=
tr (Σ)

(1 + 2q2α)d2q2
+ o (1)
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In conclusion, for α≤ 1
2(q1+q2)

, we have

E‖θ̂avgn −θ0‖2 = ‖Eθ̂avgn −θ0‖2 + tr
(
Cov

(
θ̂avgn

))
=

(
dq1

1− q1α

)2

‖B‖2n−2q1α +
tr (Σ)

(1 + 2q2α)d2q2
n2q2α−1 + o

(
n−2q1α +n2q2α−1

)
and for α> 1

2(q1+q2)
, we have

E‖θ̂avgn −θ0‖2 =
tr (Σ)

(1 + 2q2α)d2q2
n2q2α−1 + o

(
n2q2α−1

)
�

Proof of Theorem 5. This follows immediately from Theorem 11 by setting the dimension to 1.

�

Proof of Theorem 6. The proof follows exactly that of Theorem 4 and setting the dimension to

1, by noting the equivalence between the MSE expressions in Theorem 11 and Theorem 10 with

c= 1, β = 1 and α= 1
2(q1+q2)

. �

Proof of Theorem 7. This follows immediately by noting that the proofs for Theorems 3 and 4

apply exactly the same when d is fixed. �

Appendix C: Proofs in Section 5.2

We prove Theorem 8. Note that part of the proof has been sketched in Section 5.2, and for clarity

we will have slight amount of repetition to make this proof self-contained.

Proof of Theorem 8. Let α= 1
2(q1+q2)

. For convenience, we skip the second subscript of wj,n and

write wj, and denote w = (wj)j=1,...,n
, when no confusion arises. We also assume n0 = 0 without

loss of generality.

First, we argue that
∑n

j=1wj → 1. Suppose not, then there exists a subsequence nk such that∣∣∣∑nk
j=1wj − 1

∣∣∣> ε0 for some ε0 > 0. Assume without loss of generality that
∑nk

j=1wj − 1> ε0. More-

over, suppose the sequence
nk∑
j=1

wj

(
B
g (d)

q1

jαq1
+ o

(
1

jαq1

))
(64)

is bounded. We can choose a sufficiently large θ0 such that

lim inf
k→∞

((
nk∑
j=1

wj − 1

)
θ0 +

nk∑
j=1

wj

(
B
g (d)

q1

jαq1
+ o

(
1

jαq1

)))2

> 0

On the other hand, suppose (64) is unbounded. Then we can choose θ0 = 0 so that

limsup
k→∞

((
nk∑
j=1

wj − 1

)
θ0 +

nk∑
j=1

wj

(
B
g (d)

q1

jαq1
+ o

(
1

jαq1

)))2

=∞

Therefore, either way we would have Rnk→∞.
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Now, we consider a particular scheme w,g (·) such that
∑

j wj = 1 and g (d) = ηd for some η > 0.

Then

MSE1 =

(
Bdq1ηq1

n∑
j=1

wj (1 + o (1))

jαq1

)2

+
σ2

d2q2η2q2

n∑
j=1

j2αq2w2
j (1 + o (1))

=

(
Bdq1ηq1

n∑
j=1

wj
jαq1

)2

+
σ2

d2q2η2q2

n∑
j=1

j2αq2w2
j + εn (65)

where εn is an error term.

As described in Section 5.2, we consider optimization problem (36) to obtain w,η that minimizes

(65) (or (34)) asymptotically. We call S∗n the optimal value of (36). We will show that

max
θ(·)∈H,d>0

Rgen (θ (·) , d, g (d) ,W ) = lim
n→∞

n
q1

q1+q2 S∗n

is the asymptotic minimax risk ratio we seek for, and consequently the solution w,η to (36) is the

optimal configuration. In the following, we first obtain a characterization of the solution to (36),

and then verify that the solution also ensures the error term εn is negligible. Then we argue that

no other configurations, namely w,g (·) such that
∑

j wj→ 1 and g (·)∈FK that can give a better

risk ratio. Although the solution η to (36) may depend on n, we will demonstrate that η converges

to a positive number as n→∞, and it will be clear that substituting η with its limit will not affect

the asymptotic risk ratio.

To solve (36), we follow the derivation in Section 5.2 starting from (37) to obtain the optimal

weights in (47), with λ1, λ2 as the Lagrange multipliers of the two constraints in (43) evaluated at

the solution a∗ of (45), and the optimal η∗ in (46).

Now, for convenience, we write

w=
[
Σ−1µ Σ−11

][λ1

λ2

]
(66)

so that

µ>w=
[
µ>Σ−1µ µ>Σ−11

][λ1

λ2

]
and

1>w=
[
1>Σ−1µ 1>Σ−11

][λ1

λ2

]
Setting µ>w= a and 1>w= 1, we get[

λ1

λ2

]
=

[
µ>Σ−1µ µ>Σ−11
1>Σ−1µ 1>Σ−11

]−1 [
a
1

]



Lam, Zhang and Zhang: Enhanced Bias-Variance Balancing: A Minimax Perspective
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 13

Let φ (κ) =
∑n

j=1 1/jκ. We can write this as[
λ1

λ2

]
=

[
φ (α (2q1 + 2q2)) φ (α (q1 + 2q2))
φ (α (q1 + 2q2)) φ (2αq2)

]−1 [
a
1

]

=

 φ (1) φ
(

q1+2q2
2(q1+q2)

)
φ
(

q1+2q2
2(q1+q2)

)
φ
(

q2
q1+q2

) −1 [
a
1

]
(67)

From (66), we can represent the optimal weights as

w∗ (a) =
[
Σ−1µ Σ−11

][µ>Σ−1µ µ>Σ−11
1>Σ−1µ 1>Σ−11

]−1 [
a
1

]
and write

Z̃∗n (a)
2

= ‖Σ1/2w∗ (a)‖2

= [a 1]

[
µ>Σ−1µ µ>Σ−11
1>Σ−1µ 1>Σ−11

]−1 [
µ′Σ−1

1>Σ−1

]
Σ
[
Σ−1µ Σ−11

][µ>Σ−1µ µ>Σ−11
1>Σ−1µ 1>Σ−11

]−1 [
a
1

]
= [a 1]

[
µ>Σ−1µ µ>Σ−11
1>Σ−1µ 1>Σ−11

]−1 [
µ>Σ−1µ µ>Σ−11
1>Σ−1µ 1>Σ−11

][
µ>Σ−1µ µ>Σ−11
1>Σ−1µ 1>Σ−11

]−1 [
a
1

]
= [a 1]Ξ

[
a
1

]
where

Ξ =

[
ξ11 ξ12

ξ21 ξ22

]
=

[
µ>Σ−1µ µ>Σ−11
1>Σ−1µ 1>Σ−11

]−1

=

 φ (1) φ
(

q1+2q2
2(q1+q2)

)
φ
(

q1+2q2
2(q1+q2)

)
φ
(

q2
q1+q2

) −1

(68)

Thus, (45) can be written as

min
a:(K2(q1+q2)−ξ11)a2−2ξ12a−ξ22≥0

|a|
2q2
q1+q2

(
ξ11a

2 + 2ξ12a+ ξ22

) q1
q1+q2 (69)

We now find the asymptotic limit of (36) scaled by n
q1

q1+q2 . First, we write a as ãn
− q1

2(q1+q2) . Then,

reparametrizing by ã and denoting Z̄∗n (ã) = Z̃∗n

(
ãn
− q1

2(q1+q2)

)
, we have

Z̄∗n (ã)
2

=

[
ã

n
q1

2(q1+q2)

1

]
Ξ

[
ã

n

q1
2(q1+q2)

1

]
Note that φ (1)∼ logn and φ (κ)∼ 1

1−κn
1−κ for κ< 1 as n→∞. Thus,

n
q1

q1+q2 Z̄∗n (ã)
2

= n
q1

q1+q2

[
ã

n
q1

2(q1+q2)

1

][
(1 + o (1)) logn 2(q1+q2)(1+o(1))

q1
n

q1
2(q1+q2)

2(q1+q2)(1+o(1))

q1
n

q1
2(q1+q2)

(q1+q2)(1+o(1))

q1
n

q1
q1+q2

]−1 [
ã

n

q1
2(q1+q2)

1

]

= n
q1

q1+q2

[
ã

n
q1

2(q1+q2)

1

]
[

(q1+q2)(1+o(1))

q1
n

q1
q1+q2 − 2(q1+q2)(1+o(1))

q1
n

q1
2(q1+q2)

− 2(q1+q2)(1+o(1))

q1
n

q1
2(q1+q2) (1 + o (1)) logn

]
(q1+q2)

q1
n

q1
q1+q2 logn (1 + o (1))− 4(q1+q2)2

q21
n

q1
q1+q2 (1 + o (1))

[
ã

n

q1
2(q1+q2)

1

]
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= [ã 1]

[
(q1+q2)(1+o(1))

q1
− 2(q1+q2)(1+o(1))

q1

− 2(q1+q2)(1+o(1))

q1
(1 + o (1)) logn

]
q1+q2
q1

logn (1 + o (1))− 4(q1+q2)2

q21
(1 + o (1))

[
ã
1

]
(70)

= [ã 1]
(

Ξ̃ + o (1)
)[

ã
1

]
where

Ξ̃ =

[
0 0
0 q1
q1+q2

]
Rewriting (45) in terms of ã, we have that (45), when multiplying its objective value by n

q1
q1+q2 ,

becomes

min
ã:n

q1
q1+q2 Z̄∗n(ã)2≤K2(q1+q2)ã2

|ã|
2q2
q1+q2

(
n

q1
q1+q2 Z̄∗n (ã)

2
) q1
q1+q2

(71)

We consider an asymptotic version of (71) given by

min
ã:

q1
q1+q2

≤K2(q1+q2)ã2
|ã|

2q2
q1+q2

(
q1

q1 + q2

) q1
q1+q2

=
q1

q1 + q2

1

K2q2
(72)

We now argue that the absolute value of an optimal solution to (71), denoted ã∗n, converges to√
q1

q1+q2

1
Kq1+q2

, from which it follows immediately that the value of (71) converges to q1
q1+q2

1
K2q2

,

as n→∞. Suppose that
∣∣∣|ã∗nk | −√ q1

q1+q2

1
Kq1+q2

∣∣∣ > ε, for some ε > 0 and subsequence nk →∞. If

for infinitely many k it holds that |ã∗nk |<
√

q1
q1+q2

1
Kq1+q2

− ε, then ã∗nk is excluded from the feasible

region of (71), namely

ã∗nk /∈
{
ã : n

q1/(q1+q2)
k Z̄∗nk (ã)

2 ≤K2(q1+q2)ã2
}

(73)

infinitely often, which is a contradiction by the definition of ã∗n. Therefore we have |ã∗nk | >√
q1

q1+q2

1
Kq1+q2

+ε for all k sufficiently large. Next, from (70), we have that n
q1

q1+q2 Z̄∗n (ã)
2

is bounded

from below uniformly over ã:

min
ã
n

q1
q1+q2 Z̄∗n (ã)

2
= min

ã
[ã 1]

[
(q1+q2)(1+o(1))

q1
− 2(q1+q2)(1+o(1))

q1

− 2(q1+q2)(1+o(1))

q1
(1 + o (1)) logn

]
q1+q2
q1

logn (1 + o (1))− 4(q1+q2)2

q21
(1 + o (1))

[
ã
1

]

=
(1 + o (1))

(
logn− 4(q1+q2)

q1

)
q1+q2
q1

logn (1 + o (1))− 4(q1+q2)2

q21
(1 + o (1))

=
q1

q1 + q2

(1 + o (1))

where in the second equality we have used the property for the minimum of a quadratic function.

Suppose that |ã∗nk | is unbounded, then

limsup
k→∞

|ã∗nk |
2q2
q1+q2

(
n

q1
q1+q2
k Z̄∗nk

(
ã∗nk
)2
) q1
q1+q2

=∞
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which is again a contradiction. Thus we are left with the case where |ã∗nk |>
√

q1
q1+q2

1
Kq1+q2

+ ε and

|ã∗nk | is bounded. Note that since |ã∗nk | is bounded we have∣∣∣∣n q1
q1+q2
k Z̄∗nk

(
ã∗nk
)2− q1

q1 + q2

∣∣∣∣= o (1)

Thus

|ã∗nk |
2q2
q1+q2

(
n

q1
q1+q2
k Z̄∗nk

(
ã∗nk
)2
) q1
q1+q2

≥
(√

q1

q1 + q2

1

Kq1+q2
+ ε

) 2q2
q1+q2

(
q1

q1 + q2

+ o (1)

) q1
q1+q2

(74)

On the other hand, since the feasible region to (71) admits ã such that ã=
√

q1
q1+q2

1
Kq1+q2

+ o (1),

we have for such ã

|ã|
2q2
q1+q2

(
n

q1
q1+q2
k Z̄∗nk (ã)

2

) q1
q1+q2

=
q1

q1 + q2

1

K2q2
+ o (1)

Comparing the above equation to (74), we again have a contradiction. Thus we have shown that

the absolute value of a solution ã∗n to (71) converges to
√

q1
q1+q2

1
Kq1+q2

. Besides, we have

η∗ =

(
Z̃∗n (a∗)

2

a∗2

)1/(2(q1+q2))

→

(
q1

q1+q2
q1

q1+q2

1

K2(q1+q2)

)1/(2(q1+q2))

=K (75)

We now show that the error term in (65) is asymptotically negligible, which is true if

n∑
j=1

w∗j (1 + o (1))

jαq1
=

n∑
j=1

w∗j
jαq1

+ o

(
n∑
j=1

w∗j
jαq1

)
(76)

and
n∑
j=1

j2αq2w∗j
2 (1 + o (1)) =

n∑
j=1

j2αq2w∗j
2 + o

(
n∑
j=1

j2αq2w∗j
2

)
(77)

For (76), let γ =
(
o
(

1
jαq1

))
j=1,··· ,n

∈ Rn. We first show that γ>Σ−1µ= o (µ>Σ−1µ). For any ε > 0,

by the definition of γ we have that |γj| ≤ ε
2
µj for all j > j0, for some j0 = j0 (ε). Thus for all n> j0

γ>Σ−1µ=
n∑
j=1

γjΣ
−1
jj µj =

j0∑
j=1

γjΣ
−1
jj µj +

n∑
j=j0+1

γjΣ
−1
jj µj

where Σ−1
jj denote the jth diagonal element of Σ−1. Since µ>Σ−1µ→∞ as n→∞, we have for all

n large enough

∣∣γ>Σ−1µ
∣∣≤ ∣∣∣∣∣

j0∑
j=1

γjΣ
−1
jj µj

∣∣∣∣∣+
n∑

j=j0+1

|γj|Σ−1
jj µj

≤ ε

2
µ>Σ−1µ+

ε

2

n∑
j=j0+1

µjΣ
−1
jj µj

≤ εµ>Σ−1µ
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Thus γ>Σ−1µ= o (µ>Σ−1µ). Similarly we can show that γ>Σ−11 = o (µ>Σ−11). We note that

n∑
j=1

w∗j o

(
1

jαq1

)

=
[
γ>Σ−1µ γ>Σ−11

] φ (1) φ
(

q1+2q2
2(q1+q2)

)
φ
(

q1+2q2
2(q1+q2)

)
φ
(

q2
q1+q2

)

−1 a∗

1



=
[
o (logn) o

(
n

q1
2(q1+q2)

)]
 (q1+q2)(1+o(1))

q1
n

q1
q1+q2 − 2(q1+q2)(1+o(1))

q1
n

q1
2(q1+q2)

− 2(q1+q2)(1+o(1))

q1
n

q1
2(q1+q2) (1 + o (1)) logn


(q1+q2)

q1
n

q1
q1+q2 logn (1 + o (1))− 4(q1+q2)

2

q21
n

q1
q1+q2 (1 + o (1))

O
(
n

q1
2(q1+q2)

)
1



=
[
o (logn) o

(
n

q1
2(q1+q2)

)]
O

(
n

q1
2(q1+q2)

)
O (logn)


(q1+q2)

q1
n

q1
q1+q2 logn (1 + o (1))− 4(q1+q2)

2

q21
n

q1
q1+q2 (1 + o (1))

=
o
(
n

q1
2(q1+q2) logn

)
(q1+q2)

q1
n

q1
q1+q2 logn (1 + o (1))− 4(q1+q2)

2

q21
n

q1
q1+q2 (1 + o (1))

= o
(
n
− q1

2(q1+q2)

)
= o

(
n∑
j=1

w∗j
jαq1

)
where we have used the expression for w∗. For (77), since

n
q1

q1+q2

n∑
j=1

(
w∗j
)2
o
(
j2αq2

)
→ 0

we also have that
n∑
j=1

(
w∗j
)2
j2αq2o (1) = o

(
n∑
j=1

(
w∗j
)2
j2αq2

)
Next, to show that no other choices of W,g (·) can asymptotically dominate w∗ (a∗) and g (·)

where g (d) =Kd obtained above, we consider a configuration of w,η obtained by solving w in

minw Q= 1
K2q2

∑n

j=1 j
2αq2w2

j

subject to 1
K2q2

∑n

j=1 j
2αq2w2

j >K
2q1

(∑n

j=1

wj
jαq1

)2∑n

j=1wj = 1

(78)

and choosing η =K. Let Q∗n the optimal value of (78). We first solve (78) and show that it does

not give a smaller optimal value than (36) asymptotically. Consider

L̃n (a) = minw ‖Σ1/2w‖
subject to ‖Σ1/2w‖2 >K2(q1+q2)a2

µ>w= a
1>w= 1

(79)
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For any a, if the optimal solution to (43) satisfies

Z̃∗n (a)
2
>K2(q1+q2)a2

then the minimum in definition (79) is attainable and L̃n (a) = Z̃∗n (a). Otherwise, the minimum

is possibly unattainable and L̃n (a) ≥K2(q1+q2)a2. Let a = ãn
− q1

2(q1+q2) . Reparametrizing by ã, we

denote L̄n (ã) = L̃n

(
ãn
− q1

2(q1+q2)

)
. Multiplying the objective value of (78) by n

q1
q1+q2 , we have

n
q1

q1+q2Q∗n = n
q1

q1+q2 inf
ã
L̄n (ã)

2 1

K2q2

regardless of whether the minimum in (78) is attainable. Suppose that n
q1

q1+q2 Z̄∗n (ã)
2
>K2(q1+q2)ã2.

From (70) we have that ã is asymptotically bounded. Thus for some o (1) uniform over such ã, we

have

n
q1

q1+q2 L̄n (ã)
2 1

K2q2
= n

q1
q1+q2 Z̄∗n (ã)

2 1

K2q2
≥ q1

q1 + q2

(1 + o (1))
1

K2q2

On the other hand, suppose that n
q1

q1+q2 Z̄∗n (ã)
2 ≤K2(q1+q2)ã2. Then

n
q1

q1+q2 L̄n (ã)
2 1

K2q2
≥K2(q1+q2)ã2 1

K2q2

≥
(
K2(q1+q2)ã2

) q2
q1+q2

(
n

q1
q1+q2 Z̄∗n (ã)

2
) q1
q1+q2 1

K2q2

≥ min
ã:n

q1
q1+q2 Z̄∗n(ã)2≤K2(q1+q2)ã2

|ã|
2q2
q1+q2

(
n

q1
q1+q2 Z̄∗n (ã)

2
) q1
q1+q2

≥ q1

q1 + q2

1

K2q2
(1 + o (1))

for some o (1) independent of ã. Therefore, we have

lim inf
n→∞

n
q1

q1+q2Q∗n ≥ lim
n→∞

n
q1

q1+q2 S∗n

Using (72) we identify the AMRR in the first part of the theorem. Using (47), (67), (68), (69) and

(75) we identify the solution in the second part of the theorem.

It remains to argue that no other configurations w,g (·) such that
∑n

j wj→ 1 and g (·)∈FK that

can give a better risk ratio. We first note that we can solve the variant of optimization (36)

minw,η T

subject to T =
(
ηq1
∑n

j=1

wj
jαq1

)2

= 1
η2q2

∑n

j=1 j
2αq2w2

j

η≤K∑n

j=1wj = 1 + o (1)

(80)
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via solving (45) like before, but this time with the constraint 1>w = 1 in (43) replaced by 1′w =

1 + o (1). This additional o (1) term can be seen, by following the arguments above, to eventu-

ally be absorbed with no effect on the analysis. This gives an optimal solution T ∗n such that

limn→∞ T
∗
n/S

∗
n = 1. Similarly, the variant of optimization (78)

minw P = 1
K2q2

∑n

j=1 j
2αq2w2

j

subject to 1
K2q2

∑n

j=1 j
2αq2w2

j >K
2q1

(∑n

j=1

wj
jαq1

)2∑n

j=1wj = 1 + o (1)

(81)

gives an optimal value P ∗n such that lim infn→∞ n
q1

q1+q2 P ∗n ≥ limn→∞ n
q1

q1+q2 T ∗n = q1
q1+q2

1
K2q2

.

We aim to find θ (·)∈H and d> 0, such that

Rgen (θ (·) , d, g (d) ,W )≥ q1

q1 + q2

1

K2q2

We will consider θ (·) ∈ H with θ0 = 0 and without the higher order terms in the asymptotic

expansion, i.e. b (δ) =Bδq1 for some B 6= 0 and v (δ) = ε(δ)

δq2
such that V ar (ε (δ)) = σ2 > 0. In this

case

MSE1 =

(
Bdq1

(
g (d)

d

)q1 n∑
j=1

wj
jαq1

)2

+
σ2

d2q2

(
d

g (d)

)2q2 n∑
j=1

j2αq2w2
j

For any W,g (·), we note that two cases can arise:

1. For all large enough n, either(
g (d)

d

)2q1
(

n∑
j=1

wj
jαq1

)2

=

(
d

g (d)

)2q2 n∑
j=1

j2αq2w2
j

or (
g (d)

d

)2q1
(

n∑
j=1

wj
jαq1

)2

6=
(

d

g (d)

)2q2 n∑
j=1

j2αq2w2
j

but there exists η≤K, such that

η2q1

(
n∑
j=1

wj
jαq1

)2

=
1

η2q2

n∑
j=1

j2αq2w2
j

2. There exists a subsequence nk such that

K2q1

(
nk∑
j=1

wj
jαq1

)2

<
1

K2q2

nk∑
j=1

j2αq2w2
j

For case 1, by the definition of T ∗n we have

max{
(
g (d)

d

)2q1
(

n∑
j=1

wj
jαq1

)2

,

(
d

g (d)

)2q2 n∑
j=1

j2αq2w2
jg} ≥ T ∗n
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Thus

max
θ(·)∈H,d>0

Rgen (θ (·) , d, g (d) ,W )

≥ max
B 6=0,σ2>0,d>0

limsup
n→∞

(
Bdq1

(
g(d)

d

)q1∑n

j=1

wj
jαq1

)2

+ σ2

d2q2

(
d
g(d)

)2q2∑n

j=1 j
2αq2w2

j

1

n

q1
q1+q2

(
B2d2q1 + σ2

d2q2

)
+ o

(
1

n

q1
q1+q2

)
≥ lim

n→∞
n

q1
q1+q2 T ∗n

≥ q1

q1 + q2

1

K2q2

For case 2, we have(
g (d)

d

)2q1
(

nk∑
j=1

wj
jαq1

)2

≤K2q1

(
nk∑
j=1

wj
jαq1

)2

<
1

K2q2

nk∑
j=1

j2αq2w2
j ≤

(
d

g (d)

)2q2 nk∑
j=1

j2αq2w2
j

Thus by the definition of P ∗n

max
θ(·)∈H,d>0

Rgen (θ (·) , d, g (d) ,W )

≥ max
B 6=0,σ2>0,d>0

limsup
k→∞

(
Bdq1

(
g(d)

d

)q1∑nk
j=1

wj
jαq1

)2

+ σ2

d2q2

(
d
g(d)

)2q2∑nk
j=1 j

2αq2w2
j

1

nk

q1
q1+q2

(
B2d2q1 + σ2

d2q2

)
+ o

(
1

nk

q1
q1+q2

)

≥ max
B 6=0,σ2>0,d>0

limsup
k→∞

nk
q1

q1+q2
1

K2q2

nk∑
j=1

j2αq2w2
j

B2d2q1

((
g(d)
d

)q1∑nk
j=1

wj
jαq1

)2
1

K2q2

∑nk
j=1 j

2αq2w2
j

+ σ2

d2q2(
B2d2q1 + σ2

d2q2

)
+ o (1)

≥ limsup
k→∞

nk
q1

q1+q2
1

K2q2

nk∑
j=1

j2αq2w2
j (by considering B arbitrarily close to 0)

≥ limsup
k→∞

n
q1

q1+q2
k P ∗nk

≥ q1

q1 + q2

1

K2q2

�

Proof of Corollary 1. This follows immediately by noting that the proof of Theorem 8 applies

exactly the same when d is fixed. �

Appendix D: Finite-sample effect of the choice of d

We investigate the effect of the choice of d on the finite-sample risk ratios between our proposed

estimator θ̂genn and the sample-average-based estimator θ̄n via a simple numerical experiment.

Consider estimating

θ0 =
d

dx
E [1{Z >x}] |x=0 =

d

dx
P (Z >x)|x=0 =−φ(x)|x=0 =−φ(0),
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where Z is a standard normal random variable and φ(·) is the standard normal density. We can

evaluate the simulation outputs where, for δ > 0,

θ(δ) =
1{Z > δ}− 1{Z > 0}

δ
.

In the form of (1), the bias b(δ) is given by

b(δ) =E [θ(δ)]− θ0 =
P (Z > δ)−P (Z > 0)

δ
+φ(0) =

−
∫ δ

0
φ(x)dx

δ
+φ(0)

=−
φ(0)δ+ 1

2
φ
′
(0)δ2 + 1

6
φ
′′
(0)δ3 + o(δ3)

δ
+φ(0) =−1

6
φ
′′
(0)δ2 + o(δ2)

since φ
′
(0) = 0. Similarly, the noise v(δ) is given by v(δ) = θ(δ)−E[θ(δ)] so that

V ar(v(δ)) =
V ar(1{Z > δ}− 1{Z > 0})

δ2
=
V ar(R)

δ2
,

where R takes value −1 with probability P (0< Z ≤ δ) and 0 with probability 1− P (0< Z ≤ δ).

Therefore

V ar(R) = P (0<Z ≤ δ)(1−P (0<Z ≤ δ)) = φ(0)δ+ o(δ).

Therefore, the constants in the set H (in (10)) are B =− 1
6
φ
′′
(0), σ2 = φ(0), q1 = 2, q2 = 1

2
. Table 11

shows the AMRR obtained from Corollary 1.

K 0.5 0.8 1.0 2.0 3.0 4.0

AMRR 1.60 1.00 0.80 0.40 0.27 0.20

Table 11 AMRR for general weighted estimators, against K, when q1 = 2, q2 = 1
2

We fix a budget n= 20, n0 = 5, choose values of K ranging from 0.5 to 4.0, and choose values of

d among {0.5,1, d?,5}, where d? is the optimal choice for the sample-average-based estimator θ̄n,

which can be calculated by

d? =

(
σ2q2

B2q1

) 1
2(q1+q2)

≈ 1.86.

For each configuration of K and d, we repeat the simulation for 1000 times to estimate the empirical

MSEs of θ̄n and θ̂genn . Moreover, we output the 95% confidence intervals for the risk ratios, which

are obtained by a standard application of the delta method. Table 12 summarizes the finite-sample

risk ratios together with the confidence intervals. We see that the choice of d indeed affects the

finite-sample performance of our proposed estimator. When d= 0.5, the finite-sample risk ratios

closely match with the theoretical AMRR for all values of K considered. As d increases, we see

that the finite-sample risk ratios still roughly match the theoretical AMRR for K ranging from
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0.5 to 1, but begin to deviate away from the theoretical AMRR for K ranging from 2 to 4. The

deviation is largest for d= 1.86, which is intuitively unsurprising as this value of d is optimal for

the conventional estimator θ̄n. When d = 5, we see more fluctuations away from the theoretical

AMRR for K ranging from 0.5 to 1. Although some deviations are in our favor, this indicates a

significant finite-sample effect for such a large value of d.

d K = 0.5 K = 0.8 K = 1 K = 2 K = 3 K = 4

0.5 182± 24% 101± 14% 89± 11% 37± 5% 23± 3% 21± 2%

1 229± 30% 107± 13% 91± 11% 51± 6% 71± 7% 129± 11%

1.86 186± 23% 103± 11% 98± 11% 228± 19% 416± 33% 559± 46%

5 37± 3% 87± 3% 112± 4% 217± 6% 255± 6% 272± 7%

Table 12 Finite-sample risk ratios with 95% CIs between θ̂genn and θ̄n.

Appendix E: Further numerical illustrations in the application of stochastic optimization

We further study an incorporation of our enhanced estimators in zeroth-order stochastic gradient

descent or SA for black-box stochastic optimization problem. Here, the gradients in the descent

algorithm are estimated via finite differences. We consider the minimization of f(θ) = E[F (θ, ξ)],

the expected value of a function depending on the random variable ξ and use the iterative algorithm

shown in (82) to obtain solutions, where the gradient is approximated using some weighted finite

difference (83):

θi+1 = θi−αi∇̂f(θi), i= 1, . . . , I (82)

∇̂f(θi) =

nsim∑
j=1

wj
F (θi + δi,j, ξi,j)−F (θi− δi,j, ξ′i,j)

2δi,j
. (83)

where α1, α2, . . . is a sequence of positive step sizes with i as the iteration index, and I is the total

iteration number. {ξi,j}nsimj=1 and {ξ′i,j}
nsim
j=1 are independent realizations of the random variable ξ,

wj is the weight coefficient and δi,j is the perturbation size for each finite difference. Four variants

of finite difference are studied in our experiment:

1. (FP): Fixed perturbation, with δi,j = d

(n0+nsim)1/6
and wj = 1

nsim
;

2. (KW): Kiefer-Wolfowitz, with δi,j = d

(n0+i)1/6
and wj = 1

nsim
;

3. (RE): Recursive estimator, with δi,j = d̃

(n0+j)1/6
, d̃= 0.83d and wj = 1

nsim
;

4. (OW): Optimal weighting, with δi,j = d̃

(n0+j)1/6
, d̃=Kd and wj =wopt

j given by Theorem 8.
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We consider an objective function F expressed as a sum of deterministic and stochastic parts,

i.e., F (θ, ξ) = F1(θ) +F2(ξ). Two experimental sets are considered with different deterministic and

stochastic parts. In the first experimental set, the deterministic part F1(θ) is selected from one

of |θ|, |θ|1.1, |θ|1.2, |θ|1.3, |θ|1.4, and the stochastic part F2(ξ) = ξ ∼N(0, σ2) varies by the choice of

σ to be among 1 to 10. In the second set, F1(θ) is selected from one of (2 − cosθ)1 − 1, (2 −

cosθ)1.1 − 1, (2− cosθ)1.2 − 1, (2− cosθ)1.3 − 1, (2− cosθ)1.4 − 1, and F2(ξ) = ξ ∼N(0, σ2) with σ

chosen among 5 to 10. In both experimental sets, the true optimum is 0. Note that F1 in the

first set may not be (higher-order) differentiable at the optimum 0, and thus does not guarantee

convergence of the standard Kiefer-Wolfowitz algorithm (Kiefer and Wolfowitz (1952)). However,

in our implementation we focus on the early stage of the iterations where the updated solutions

are still far away from the true optimum, and the easy form of F1 facilitates the understanding on

the impacts of curvature on the performances of the tested algorithms. On the other hand, F1 in

the second experimental set is infinitely differentiable everywhere in R and we would see similar

experimental observations as the first set regarding early-iteration behaviors.

We first focus on the first experimental set. There is a combination of 50 (= 5× 10) possible

objective functions to be considered in total. We vary the simulation run-length per iteration nsim to

be among 100,150,200, and step size αi among 0.2,0.2 · i− 6
7 ,0.2 · i− 7

8 ,0.2 · i−1. Also we set I = nsim.

This is because we would like the order of δi,j among the four methods to be close to each other

at the end of the iteration, in order to avoid significant impacts on the solution quality due to

huge discrepancies in the magnitude of δi,j (note that KW has decreasing δi,j in i while the other

three methods do not). We set d= 1,K = 1, n0 = 50, θ1 = 5. Our performance metric is the MSE of

the obtained solution at the last iteration, i.e., θI+1 against the ground-truth optimal solution. We

repeat the experiment 200 times to estimate the empirical MSEs.

Tables 13-16 summarize the results, where Table 13 shows the performance for fixed step size and

Tables 14, 15 and 16 show those for varying step sizes 0.2 ·i− 6
7 , 0.2 ·i− 7

8 and 0.2 ·i−1 respectively. The

varying step sizes all satisfy the typical requirement needed for convergence of the Kiefer-Wolfowitz

algorithm. However, as noted earlier, in this experimental set differentiability at the optimum does

not hold, while in our next experimental set differentiability would hold so that the algorithm

asymptotically converges. Moreover, note that, as in Section 7, to interpret these tables, one should

focus on the ratios of MSEs instead of the absolute magnitude of the MSE. This is because one

can always arbitrarily inflate or deflate MSEs by simple scalar multiplication adjustments. Thus,

an appropriate measurement of the estimation error is the ratio between the MSEs of two different

algorithms (i.e., in the form MSE1/MSE2 where 1 and 2 represent some algorithms). Figure 3 gives

one typical numerical trajectory when setting the objective function as |θ|1.4 +ξ, ξ ∼N(0,102), and

nsim = 200 and αi = 0.2 · i−1. In this setting, the empirical MSE given by OW gradually shrinks as
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shown in Figure 3a, and the effectiveness of OW is further demonstrated by the MSE ratio curves

in Figure 3b, where the ratios are well below the value 1 (dashed horizontal line) throughout the

200 update steps. Note that the solution at the 200-th step is still quite far away from the true

optimum, hinted by the MSE being noticeably far away from 0 (as mentioned before, we focus on

the early stage of iterations in this experimental set).

0 50 100 150 200

6

8

10

12

14

16

18

20

(a) MSE via OW against iteration number

0 50 100 150

0.97

0.975

0.98

0.985

0.99

0.995

1
OW/FP:|x|^1.4+N(0,10^2)
OW/KW:|x|^1.4+N(0,10^2)
OW/RE:|x|^1.4+N(0,10^2)

(b) MSE ratio against iteration number

Figure 3 Performance trajectories for F (θ, ξ) = |θ|1.4 + ξ, ξ ∼N(0,102) and nsim = 200, αi = 0.2 · i−1

We make several observations from Tables 13-16. First, throughout all the experiment settings,

the empirical MSE ratios (MSEOW
MSEFP

/MSEOW
MSEKW

/MSEOW
MSERE

) are all strictly less than 1. These ratios can

reach as low as 0.66, 0.72 and 0.64 (in Table 13) respectively, implying a closer solution to the

ground-truth optimal in using OW than other benchmark methods given the same total number

of update steps. Note that, for more statistical preciseness, we can construct the 95% confidence

intervals for these empirical ratios, where most of them would be seen to still lie strictly less than

1, but for ease of presentation we do not show these intervals in the tables.

Another noticeable pattern is observed along the choice of the stochastic part. The empirical

MSE ratios all decrease as the variance parameter σ increases, indicating that OW gives a relatively

smaller MSE when the function evaluation bears a higher variance. For example, for MSEOW
MSEKW

, the

ratio monotonically decreases from 0.87 to 0.78 as σ increases from 1 to 10 under the setting of

F1(θ) = |θ|1.4, αk = 0.2 and nsim = 100 in Table 13. Similar patterns can be found across different

choices of nsim and update step size. These observations hint that the bias-variance balancing using

OW is more effective when the objective function evaluation is subject to a higher noise.

We notice that a larger nsim may not necessarily lead to a greater improvement in term of MSE

ratios. This could be due to several factors, including the step-size-sensitive behavior of the descent

algorithm and the approximation errors in the bias-variance balancing analysis for finite-difference
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estimators mentioned in Sections 5.1 and 7. In addition, compared to Tables 14, 15 and 16 where

we set varying update sizes, greater improvements are observed under the scenario of fixed step

size shown in Table 13. This could be because during the early iterations accurate estimation

of gradients obtained by OW has a larger influence on the solution update under the fixed-step

scheme, while such influence is smaller for the other three schemes as their update sizes shrink

along the iterations.

In the second experimental set, we again vary the simulation run-length per iteration nsim to be

among 100,150,200. We vary the step size αi among 0.1 · i−6/7, 0.1 · i−7/8, 0.1 · i−1, and again set

I = nsim. We set d= 1, K = 1, n0 = 50, θ1 = 2. We use the same criterion of MSE as in the first

experimental set, and repeat the experiment 200 times to estimate the empirical MSEs.

Results are given in Tables 17-19. We observe similar patterns as in the first experimental set.

OW obtains the smallest empirical MSE among the four methods in all cases. Moreover, when the

objective function is subject to a larger variance of noise, i.e., larger σ, a larger outperformance

of OW over other methods is observed as exhibited by smaller MSE ratios. Here, like in the first

experimental set, we have focused on the early iterations and the solutions obtained are still far

away from the optimum. Thus, the outperformance of OW can be attributed to a faster decay

of the objective function brought by more accurate gradient estimation in the early stage of the

descent algorithm.
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nsim σ |θ|1 |θ|1.1 |θ|1.2 |θ|1.3 |θ|1.4

100

1 0.818/0.885/0.773 0.815/0.882/0.776 0.812/0.878/0.777 0.807/0.873/0.778 0.802/0.868/0.777

2 0.818/0.885/0.773 0.815/0.882/0.776 0.811/0.877/0.777 0.806/0.873/0.777 0.801/0.867/0.777

3 0.818/0.885/0.773 0.814/0.881/0.775 0.810/0.876/0.776 0.804/0.871/0.777 0.799/0.866/0.776

4 0.817/0.884/0.773 0.812/0.879/0.774 0.806/0.873/0.775 0.800/0.868/0.775 0.795/0.862/0.774

5 0.798/0.874/0.769 0.795/0.869/0.770 0.791/0.864/0.771 0.787/0.859/0.771 0.783/0.854/0.770

6 0.765/0.848/0.754 0.766/0.847/0.758 0.767/0.845/0.760 0.767/0.843/0.762 0.766/0.840/0.763

7 0.735/0.813/0.739 0.740/0.818/0.745 0.744/0.821/0.749 0.748/0.823/0.753 0.750/0.824/0.755

8 0.710/0.774/0.715 0.720/0.785/0.727 0.727/0.794/0.735 0.733/0.801/0.742 0.738/0.807/0.746

9 0.685/0.741/0.684 0.699/0.756/0.705 0.710/0.769/0.719 0.719/0.780/0.729 0.727/0.790/0.737

10 0.663/0.715/0.655 0.682/0.733/0.682 0.695/0.748/0.703 0.707/0.762/0.717 0.717/0.775/0.727

150

1 0.774/0.820/0.972 0.769/0.814/0.973 0.764/0.809/0.974 0.759/0.804/0.974 0.755/0.800/0.973

2 0.774/0.820/0.972 0.769/0.814/0.973 0.764/0.809/0.974 0.759/0.804/0.974 0.755/0.800/0.973

3 0.774/0.820/0.972 0.769/0.814/0.973 0.763/0.809/0.973 0.759/0.804/0.973 0.754/0.800/0.972

4 0.774/0.820/0.972 0.768/0.814/0.973 0.763/0.808/0.973 0.758/0.804/0.972 0.754/0.799/0.971

5 0.772/0.819/0.970 0.766/0.812/0.971 0.761/0.807/0.971 0.756/0.802/0.970 0.752/0.798/0.969

6 0.765/0.816/0.964 0.760/0.809/0.966 0.755/0.804/0.966 0.751/0.800/0.967 0.748/0.796/0.966

7 0.757/0.810/0.968 0.753/0.805/0.967 0.750/0.800/0.967 0.747/0.796/0.966 0.744/0.793/0.966

8 0.751/0.802/0.972 0.748/0.799/0.970 0.746/0.795/0.969 0.743/0.793/0.967 0.741/0.790/0.965

9 0.746/0.797/0.963 0.741/0.796/0.964 0.739/0.794/0.965 0.738/0.792/0.965 0.737/0.790/0.963

10 0.746/0.798/0.952 0.741/0.801/0.957 0.737/0.799/0.959 0.735/0.795/0.959 0.735/0.792/0.960

200

1 0.821/0.852/0.746 0.816/0.847/0.747 0.811/0.841/0.747 0.807/0.835/0.747 0.803/0.828/0.745

2 0.821/0.852/0.746 0.816/0.847/0.747 0.811/0.841/0.747 0.807/0.834/0.747 0.803/0.827/0.745

3 0.821/0.852/0.746 0.816/0.846/0.747 0.811/0.840/0.747 0.807/0.833/0.746 0.803/0.825/0.745

4 0.821/0.850/0.744 0.816/0.843/0.745 0.811/0.836/0.745 0.807/0.829/0.744 0.803/0.822/0.743

5 0.821/0.837/0.735 0.816/0.831/0.738 0.811/0.825/0.739 0.806/0.819/0.740 0.802/0.813/0.739

6 0.816/0.822/0.724 0.811/0.817/0.728 0.807/0.812/0.731 0.803/0.807/0.733 0.800/0.802/0.734

7 0.813/0.792/0.709 0.808/0.792/0.716 0.804/0.790/0.721 0.801/0.789/0.724 0.798/0.787/0.727

8 0.801/0.768/0.685 0.799/0.771/0.699 0.798/0.772/0.708 0.796/0.773/0.715 0.794/0.774/0.719

9 0.789/0.742/0.659 0.790/0.748/0.678 0.791/0.754/0.692 0.790/0.758/0.703 0.790/0.761/0.711

10 0.781/0.718/0.638 0.783/0.727/0.660 0.785/0.735/0.678 0.787/0.743/0.692 0.787/0.749/0.703

Table 13 Ratios of empirical MSEs for our first experimental set for αi = 0.2. 200 replications to estimate

empirical MSEs. Each entry reads MSEOW
MSEFP

/MSEOW
MSEKW

/MSEOW
MSERE

.
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nsim σ |θ|1 |θ|1.1 |θ|1.2 |θ|1.3 |θ|1.4

100

1 1.000/0.997/0.998 1.000/0.997/0.998 1.000/0.997/0.998 1.000/0.996/0.998 1.000/0.996/0.997

2 1.000/0.994/0.996 1.000/0.994/0.996 1.000/0.993/0.996 0.999/0.992/0.995 0.999/0.991/0.995

3 0.999/0.992/0.995 0.999/0.991/0.994 0.999/0.990/0.994 0.999/0.989/0.993 0.999/0.988/0.992

4 0.999/0.989/0.993 0.999/0.988/0.992 0.999/0.987/0.992 0.999/0.986/0.991 0.999/0.984/0.990

5 0.999/0.987/0.991 0.999/0.986/0.990 0.999/0.984/0.990 0.999/0.983/0.989 0.998/0.981/0.987

6 0.999/0.984/0.989 0.999/0.983/0.989 0.999/0.982/0.988 0.999/0.980/0.987 0.998/0.978/0.985

7 0.999/0.982/0.988 0.999/0.981/0.987 0.999/0.979/0.986 0.998/0.977/0.985 0.998/0.975/0.983

8 0.999/0.980/0.986 0.999/0.978/0.985 0.999/0.977/0.984 0.998/0.975/0.983 0.998/0.972/0.981

9 0.999/0.978/0.985 0.999/0.976/0.984 0.999/0.975/0.982 0.998/0.972/0.981 0.998/0.970/0.979

10 0.999/0.976/0.983 0.999/0.974/0.982 0.999/0.972/0.981 0.999/0.970/0.979 0.998/0.968/0.977

150

1 0.999/0.998/0.999 0.999/0.998/0.999 0.999/0.998/0.999 0.999/0.997/0.999 0.999/0.997/0.999

2 0.998/0.996/0.999 0.998/0.996/0.999 0.998/0.996/0.998 0.998/0.995/0.998 0.998/0.994/0.998

3 0.997/0.995/0.998 0.997/0.994/0.998 0.997/0.993/0.998 0.997/0.993/0.997 0.996/0.992/0.997

4 0.996/0.993/0.997 0.996/0.992/0.997 0.996/0.991/0.997 0.995/0.990/0.996 0.994/0.989/0.996

5 0.995/0.991/0.996 0.995/0.990/0.996 0.994/0.989/0.996 0.993/0.988/0.995 0.992/0.987/0.995

6 0.994/0.989/0.996 0.994/0.988/0.995 0.993/0.987/0.995 0.991/0.986/0.994 0.990/0.984/0.993

7 0.993/0.988/0.995 0.992/0.987/0.994 0.991/0.985/0.994 0.989/0.984/0.993 0.987/0.982/0.992

8 0.992/0.986/0.994 0.991/0.985/0.993 0.989/0.983/0.992 0.987/0.981/0.991 0.985/0.979/0.990

9 0.990/0.984/0.993 0.989/0.983/0.992 0.987/0.981/0.991 0.985/0.979/0.990 0.982/0.977/0.989

10 0.989/0.983/0.992 0.987/0.981/0.991 0.985/0.980/0.990 0.982/0.977/0.989 0.979/0.975/0.987

200

1 0.998/0.996/0.999 0.997/0.996/0.999 0.997/0.995/0.999 0.997/0.995/0.998 0.997/0.994/0.998

2 0.995/0.993/0.998 0.995/0.992/0.997 0.994/0.991/0.997 0.993/0.990/0.997 0.993/0.988/0.997

3 0.992/0.989/0.996 0.992/0.988/0.996 0.991/0.987/0.996 0.989/0.985/0.995 0.988/0.983/0.995

4 0.990/0.986/0.995 0.989/0.985/0.995 0.987/0.983/0.994 0.985/0.981/0.994 0.983/0.978/0.993

5 0.987/0.983/0.994 0.986/0.981/0.993 0.984/0.979/0.993 0.981/0.976/0.992 0.978/0.973/0.992

6 0.984/0.980/0.993 0.982/0.978/0.992 0.980/0.975/0.992 0.977/0.972/0.991 0.973/0.969/0.990

7 0.981/0.977/0.992 0.979/0.974/0.991 0.976/0.972/0.990 0.972/0.969/0.989 0.967/0.965/0.989

8 0.978/0.974/0.991 0.976/0.971/0.990 0.972/0.968/0.989 0.968/0.965/0.988 0.962/0.961/0.987

9 0.975/0.971/0.989 0.972/0.968/0.989 0.968/0.965/0.988 0.963/0.962/0.987 0.956/0.958/0.986

10 0.972/0.968/0.988 0.969/0.965/0.987 0.964/0.962/0.986 0.958/0.958/0.985 0.950/0.954/0.984

Table 14 Ratios of empirical MSEs for our first experimental set for αi = 0.2 · i−6/7. 200 replications to estimate

empirical MSEs. Each entry reads MSEOW
MSEFP

/MSEOW
MSEKW

/MSEOW
MSERE

.
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nsim σ |θ|1 |θ|1.1 |θ|1.2 |θ|1.3 |θ|1.4

100

1 1.000/0.997/0.998 1.000/0.997/0.998 1.000/0.997/0.998 1.000/0.996/0.998 1.000/0.996/0.997

2 1.000/0.995/0.996 1.000/0.994/0.996 1.000/0.994/0.996 1.000/0.993/0.995 1.000/0.992/0.995

3 1.000/0.992/0.995 1.000/0.991/0.994 0.999/0.991/0.994 0.999/0.990/0.993 0.999/0.988/0.993

4 0.999/0.989/0.993 0.999/0.989/0.993 0.999/0.988/0.992 0.999/0.986/0.991 0.999/0.985/0.990

5 0.999/0.987/0.991 0.999/0.986/0.991 0.999/0.985/0.990 0.999/0.984/0.989 0.999/0.982/0.988

6 0.999/0.985/0.990 0.999/0.984/0.989 0.999/0.982/0.988 0.999/0.981/0.987 0.999/0.979/0.986

7 0.999/0.983/0.988 0.999/0.981/0.987 0.999/0.980/0.986 0.999/0.978/0.985 0.998/0.976/0.984

8 0.999/0.980/0.987 0.999/0.979/0.986 0.999/0.978/0.985 0.999/0.976/0.983 0.998/0.974/0.982

9 0.999/0.978/0.985 0.999/0.977/0.984 0.999/0.975/0.983 0.999/0.974/0.981 0.998/0.971/0.980

10 0.999/0.977/0.984 0.999/0.975/0.983 0.999/0.973/0.981 0.999/0.972/0.980 0.999/0.969/0.978

150

1 0.999/0.998/0.999 0.999/0.998/0.999 0.999/0.998/0.999 0.999/0.998/0.999 0.999/0.997/0.999

2 0.998/0.997/0.999 0.998/0.996/0.999 0.998/0.996/0.998 0.998/0.995/0.998 0.998/0.995/0.998

3 0.998/0.995/0.998 0.997/0.994/0.998 0.997/0.994/0.998 0.997/0.993/0.997 0.997/0.992/0.997

4 0.997/0.993/0.997 0.996/0.992/0.997 0.996/0.992/0.997 0.995/0.991/0.996 0.995/0.990/0.996

5 0.996/0.991/0.996 0.995/0.991/0.996 0.995/0.990/0.996 0.994/0.989/0.995 0.993/0.987/0.995

6 0.994/0.990/0.996 0.994/0.989/0.995 0.993/0.988/0.995 0.992/0.987/0.994 0.991/0.985/0.994

7 0.993/0.988/0.995 0.993/0.987/0.994 0.992/0.986/0.994 0.990/0.984/0.993 0.989/0.983/0.992

8 0.992/0.987/0.994 0.991/0.985/0.993 0.990/0.984/0.993 0.988/0.982/0.992 0.986/0.980/0.991

9 0.991/0.985/0.993 0.990/0.984/0.992 0.988/0.982/0.991 0.986/0.980/0.990 0.983/0.978/0.989

10 0.989/0.984/0.992 0.988/0.982/0.991 0.986/0.981/0.990 0.984/0.979/0.989 0.981/0.976/0.988

200

1 0.998/0.997/0.999 0.998/0.996/0.999 0.997/0.996/0.999 0.997/0.995/0.998 0.997/0.994/0.998

2 0.995/0.993/0.998 0.995/0.992/0.997 0.994/0.992/0.997 0.994/0.990/0.997 0.993/0.989/0.997

3 0.993/0.990/0.996 0.992/0.989/0.996 0.991/0.988/0.996 0.990/0.986/0.995 0.989/0.984/0.995

4 0.990/0.987/0.995 0.989/0.985/0.995 0.988/0.984/0.994 0.986/0.982/0.994 0.985/0.980/0.993

5 0.988/0.983/0.994 0.986/0.982/0.994 0.985/0.980/0.993 0.983/0.978/0.992 0.980/0.975/0.992

6 0.985/0.980/0.993 0.983/0.979/0.992 0.981/0.977/0.992 0.979/0.974/0.991 0.975/0.971/0.990

7 0.982/0.977/0.992 0.980/0.976/0.991 0.978/0.973/0.990 0.975/0.970/0.990 0.970/0.967/0.989

8 0.980/0.975/0.991 0.977/0.973/0.990 0.974/0.970/0.989 0.970/0.967/0.988 0.965/0.963/0.987

9 0.977/0.972/0.990 0.974/0.970/0.989 0.971/0.967/0.988 0.966/0.964/0.987 0.960/0.960/0.986

10 0.974/0.969/0.988 0.971/0.967/0.988 0.967/0.964/0.987 0.962/0.961/0.986 0.955/0.957/0.985

Table 15 Ratios of empirical MSEs for our first experimental set for αi = 0.2 · i−7/8. 200 replications to estimate

empirical MSEs. Each entry reads MSEOW
MSEFP

/MSEOW
MSEKW

/MSEOW
MSERE

.
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nsim σ |θ|1 |θ|1.1 |θ|1.2 |θ|1.3 |θ|1.4

100

1 1.000/0.997/0.998 1.000/0.997/0.998 1.000/0.997/0.998 1.000/0.997/0.998 1.000/0.996/0.998

2 0.999/0.995/0.997 0.999/0.994/0.997 0.999/0.994/0.996 1.000/0.994/0.996 1.000/0.993/0.996

3 0.999/0.992/0.995 0.999/0.992/0.995 0.999/0.991/0.995 0.999/0.990/0.994 0.999/0.990/0.994

4 0.999/0.989/0.993 0.999/0.989/0.993 0.999/0.988/0.993 0.999/0.987/0.992 0.999/0.986/0.992

5 0.999/0.987/0.992 0.999/0.986/0.991 0.999/0.985/0.991 0.999/0.984/0.990 0.999/0.983/0.990

6 0.998/0.984/0.990 0.998/0.984/0.990 0.998/0.983/0.989 0.999/0.982/0.988 0.999/0.980/0.988

7 0.998/0.982/0.988 0.998/0.981/0.988 0.998/0.980/0.987 0.998/0.979/0.986 0.998/0.977/0.986

8 0.998/0.980/0.987 0.998/0.979/0.986 0.998/0.977/0.985 0.998/0.976/0.984 0.998/0.975/0.984

9 0.998/0.977/0.985 0.998/0.976/0.984 0.998/0.975/0.983 0.998/0.973/0.983 0.998/0.972/0.982

10 0.997/0.975/0.983 0.997/0.974/0.983 0.997/0.972/0.982 0.998/0.971/0.981 0.998/0.969/0.980

150

1 0.999/0.999/0.999 0.999/0.998/0.999 0.999/0.998/0.999 0.999/0.998/0.999 0.999/0.998/0.999

2 0.999/0.997/0.999 0.999/0.997/0.998 0.999/0.997/0.998 0.999/0.996/0.998 0.999/0.996/0.998

3 0.998/0.996/0.998 0.998/0.995/0.998 0.998/0.995/0.998 0.998/0.995/0.997 0.998/0.994/0.997

4 0.997/0.994/0.997 0.997/0.994/0.997 0.997/0.994/0.997 0.997/0.993/0.996 0.997/0.993/0.996

5 0.997/0.993/0.996 0.996/0.993/0.996 0.996/0.992/0.996 0.996/0.991/0.995 0.995/0.991/0.995

6 0.996/0.992/0.995 0.995/0.991/0.995 0.995/0.991/0.995 0.995/0.990/0.994 0.994/0.989/0.994

7 0.995/0.990/0.995 0.995/0.990/0.994 0.994/0.989/0.994 0.994/0.988/0.993 0.993/0.987/0.993

8 0.994/0.989/0.994 0.994/0.988/0.993 0.993/0.988/0.993 0.992/0.987/0.992 0.992/0.986/0.992

9 0.993/0.988/0.993 0.993/0.987/0.992 0.992/0.986/0.992 0.991/0.985/0.991 0.990/0.984/0.991

10 0.992/0.986/0.992 0.992/0.986/0.991 0.991/0.985/0.991 0.990/0.984/0.990 0.989/0.983/0.990

200

1 0.998/0.997/0.999 0.998/0.997/0.999 0.998/0.997/0.999 0.998/0.996/0.999 0.998/0.996/0.999

2 0.997/0.994/0.998 0.996/0.994/0.998 0.996/0.994/0.997 0.996/0.993/0.997 0.996/0.993/0.997

3 0.995/0.992/0.997 0.994/0.991/0.996 0.994/0.991/0.996 0.994/0.990/0.996 0.993/0.989/0.996

4 0.993/0.989/0.995 0.992/0.989/0.995 0.992/0.988/0.995 0.991/0.987/0.995 0.990/0.986/0.994

5 0.991/0.987/0.994 0.990/0.986/0.994 0.990/0.985/0.994 0.989/0.984/0.993 0.988/0.982/0.993

6 0.989/0.984/0.993 0.988/0.983/0.993 0.987/0.982/0.992 0.986/0.981/0.992 0.985/0.979/0.992

7 0.987/0.982/0.992 0.986/0.981/0.992 0.985/0.979/0.991 0.984/0.978/0.991 0.982/0.976/0.990

8 0.985/0.979/0.991 0.984/0.978/0.991 0.982/0.977/0.990 0.981/0.975/0.989 0.979/0.973/0.989

9 0.983/0.977/0.990 0.982/0.976/0.989 0.980/0.974/0.989 0.978/0.973/0.988 0.976/0.971/0.987

10 0.981/0.975/0.989 0.979/0.973/0.988 0.977/0.972/0.988 0.975/0.970/0.987 0.973/0.968/0.986

Table 16 Ratios of empirical MSEs for our first experimental set for αi = 0.2 · i−1. 200 replications to estimate

empirical MSEs. Each entry reads MSEOW
MSEFP

/MSEOW
MSEKW

/MSEOW
MSERE

.
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nsim σ (2− cosθ)1− 1 (2− cosθ)1.1− 1 (2− cosθ)1.2− 1 (2− cosθ)1.3− 1 (2− cosθ)1.4− 1

100

5 0.964/0.979/0.969 0.964/0.977/0.968 0.964/0.976/0.967 0.965/0.975/0.967 0.966/0.974/0.967

6 0.956/0.976/0.962 0.955/0.974/0.961 0.955/0.973/0.960 0.956/0.972/0.960 0.956/0.971/0.960

7 0.947/0.973/0.956 0.946/0.972/0.954 0.946/0.970/0.953 0.946/0.969/0.953 0.947/0.968/0.953

8 0.938/0.970/0.949 0.937/0.969/0.948 0.936/0.968/0.946 0.937/0.967/0.946 0.937/0.966/0.946

9 0.930/0.968/0.943 0.928/0.967/0.941 0.927/0.966/0.939 0.927/0.965/0.939 0.928/0.964/0.939

10 0.921/0.966/0.936 0.919/0.965/0.934 0.917/0.964/0.932 0.917/0.963/0.931 0.918/0.962/0.932

150

5 0.988/0.968/0.998 0.990/0.966/0.998 0.992/0.965/0.998 0.993/0.963/0.998 0.995/0.962/0.999

6 0.984/0.964/0.997 0.986/0.962/0.998 0.988/0.960/0.998 0.990/0.959/0.998 0.991/0.958/0.999

7 0.980/0.959/0.997 0.982/0.957/0.997 0.984/0.955/0.998 0.986/0.954/0.998 0.988/0.953/0.998

8 0.976/0.954/0.997 0.978/0.952/0.997 0.980/0.950/0.997 0.982/0.949/0.998 0.984/0.949/0.998

9 0.972/0.950/0.997 0.974/0.948/0.997 0.975/0.946/0.997 0.978/0.945/0.998 0.980/0.944/0.998

10 0.968/0.945/0.996 0.969/0.943/0.997 0.971/0.942/0.997 0.974/0.941/0.998 0.976/0.940/0.998

200

5 0.988/0.989/0.993 0.989/0.986/0.993 0.991/0.984/0.994 0.991/0.982/0.994 0.992/0.979/0.995

6 0.984/0.988/0.992 0.985/0.986/0.992 0.986/0.984/0.992 0.987/0.981/0.993 0.987/0.979/0.994

7 0.979/0.988/0.990 0.980/0.986/0.990 0.981/0.983/0.990 0.982/0.981/0.991 0.982/0.978/0.992

8 0.975/0.987/0.988 0.975/0.985/0.988 0.976/0.983/0.989 0.977/0.980/0.990 0.977/0.978/0.991

9 0.970/0.987/0.987 0.971/0.985/0.987 0.971/0.983/0.987 0.972/0.980/0.988 0.972/0.977/0.989

10 0.965/0.987/0.985 0.966/0.985/0.985 0.966/0.983/0.985 0.967/0.980/0.986 0.967/0.977/0.988

Table 17 Ratios of empirical MSEs for our second experimental set for αi = 0.1 · i−6/7. 200 replications to

estimate empirical MSEs. Each entry reads MSEOW
MSEFP

/MSEOW
MSEKW

/MSEOW
MSERE

.
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nsim σ (2− cosθ)1− 1 (2− cosθ)1.1− 1 (2− cosθ)1.2− 1 (2− cosθ)1.3− 1 (2− cosθ)1.4− 1

100

5 0.965/0.979/0.970 0.965/0.978/0.969 0.965/0.976/0.968 0.966/0.975/0.968 0.967/0.974/0.968

6 0.957/0.976/0.963 0.957/0.975/0.962 0.957/0.973/0.961 0.957/0.972/0.961 0.958/0.971/0.961

7 0.949/0.973/0.957 0.948/0.972/0.956 0.948/0.971/0.955 0.948/0.970/0.954 0.949/0.969/0.954

8 0.941/0.971/0.951 0.939/0.969/0.949 0.939/0.968/0.948 0.939/0.967/0.947 0.940/0.966/0.948

9 0.932/0.968/0.945 0.930/0.967/0.943 0.930/0.966/0.941 0.929/0.965/0.940 0.930/0.964/0.941

10 0.924/0.966/0.938 0.922/0.965/0.936 0.920/0.964/0.934 0.920/0.963/0.933 0.920/0.962/0.933

150

5 0.988/0.969/0.998 0.989/0.967/0.998 0.991/0.966/0.998 0.993/0.964/0.998 0.994/0.963/0.999

6 0.984/0.965/0.997 0.985/0.963/0.997 0.987/0.961/0.998 0.989/0.960/0.998 0.991/0.959/0.998

7 0.980/0.960/0.997 0.981/0.958/0.997 0.983/0.956/0.997 0.985/0.955/0.998 0.987/0.954/0.998

8 0.976/0.956/0.996 0.977/0.953/0.997 0.979/0.952/0.997 0.981/0.950/0.998 0.983/0.950/0.998

9 0.972/0.951/0.996 0.973/0.949/0.997 0.975/0.947/0.997 0.977/0.946/0.997 0.979/0.945/0.998

10 0.968/0.947/0.996 0.969/0.945/0.996 0.971/0.943/0.997 0.973/0.942/0.997 0.976/0.941/0.998

200

5 0.989/0.989/0.993 0.990/0.987/0.993 0.991/0.985/0.993 0.992/0.982/0.994 0.992/0.980/0.995

6 0.985/0.989/0.992 0.986/0.987/0.992 0.987/0.984/0.992 0.987/0.982/0.992 0.988/0.980/0.993

7 0.980/0.988/0.990 0.981/0.986/0.990 0.982/0.984/0.990 0.983/0.981/0.991 0.983/0.979/0.992

8 0.976/0.988/0.988 0.976/0.986/0.988 0.977/0.984/0.989 0.978/0.981/0.989 0.979/0.979/0.990

9 0.971/0.988/0.987 0.972/0.986/0.987 0.973/0.984/0.987 0.973/0.981/0.988 0.974/0.978/0.989

10 0.967/0.988/0.985 0.967/0.986/0.985 0.968/0.984/0.985 0.968/0.981/0.986 0.969/0.978/0.988

Table 18 Ratios of empirical MSEs for our second experimental set for αi = 0.1 · i−7/8. 200 replications to

estimate empirical MSEs. Each entry reads MSEOW
MSEFP

/MSEOW
MSEKW

/MSEOW
MSERE

.
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nsim σ (2− cosθ)1− 1 (2− cosθ)1.1− 1 (2− cosθ)1.2− 1 (2− cosθ)1.3− 1 (2− cosθ)1.4− 1

100

5 0.972/0.982/0.975 0.972/0.980/0.974 0.972/0.979/0.973 0.972/0.978/0.973 0.973/0.977/0.973

6 0.966/0.979/0.970 0.965/0.978/0.969 0.965/0.976/0.968 0.965/0.975/0.967 0.966/0.974/0.967

7 0.959/0.976/0.965 0.958/0.975/0.963 0.958/0.974/0.962 0.958/0.972/0.962 0.958/0.971/0.961

8 0.953/0.974/0.959 0.952/0.972/0.958 0.951/0.971/0.957 0.951/0.970/0.956 0.951/0.969/0.955

9 0.946/0.971/0.954 0.945/0.970/0.952 0.944/0.969/0.951 0.943/0.967/0.950 0.943/0.966/0.949

10 0.940/0.969/0.949 0.938/0.968/0.947 0.937/0.966/0.945 0.936/0.965/0.944 0.936/0.964/0.943

150

5 0.987/0.975/0.997 0.987/0.973/0.997 0.988/0.971/0.997 0.990/0.970/0.997 0.991/0.968/0.997

6 0.983/0.971/0.996 0.984/0.969/0.996 0.984/0.967/0.997 0.986/0.966/0.997 0.987/0.964/0.997

7 0.979/0.967/0.996 0.980/0.965/0.996 0.981/0.964/0.996 0.982/0.962/0.996 0.983/0.960/0.996

8 0.976/0.964/0.995 0.976/0.962/0.995 0.977/0.960/0.996 0.978/0.958/0.996 0.979/0.956/0.996

9 0.972/0.960/0.995 0.972/0.958/0.995 0.973/0.956/0.995 0.974/0.954/0.995 0.976/0.953/0.996

10 0.968/0.956/0.994 0.968/0.954/0.995 0.969/0.952/0.995 0.970/0.951/0.995 0.972/0.949/0.995

200

5 0.991/0.992/0.993 0.992/0.990/0.993 0.993/0.988/0.993 0.994/0.987/0.993 0.995/0.985/0.993

6 0.988/0.992/0.991 0.989/0.990/0.991 0.989/0.988/0.991 0.990/0.986/0.991 0.991/0.984/0.992

7 0.985/0.991/0.990 0.985/0.990/0.990 0.986/0.988/0.990 0.987/0.986/0.990 0.988/0.984/0.990

8 0.982/0.991/0.988 0.982/0.989/0.988 0.983/0.988/0.988 0.983/0.986/0.988 0.984/0.984/0.989

9 0.978/0.991/0.987 0.979/0.989/0.987 0.979/0.988/0.987 0.980/0.986/0.987 0.981/0.984/0.987

10 0.975/0.991/0.985 0.975/0.989/0.985 0.975/0.987/0.985 0.976/0.986/0.985 0.977/0.984/0.986

Table 19 Ratios of empirical MSEs for our second experimental set for αi = 0.1 · i−1. 200 replications to

estimate empirical MSEs. Each entry reads MSEOW
MSEFP

/MSEOW
MSEKW

/MSEOW
MSERE

.


