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Abstract. We investigate the feasibility of sample average approximation (SAA) for general sto-
chastic optimization problems, including two-stage stochastic programs without relatively complete
recourse. We utilize results from the Vapnik–Chervonenkis (VC) dimension and probably approx-
imately correct learning to provide a general framework to construct feasibility bounds for SAA
solutions under minimal structural or distributional assumption. We show that, as long as the
hypothesis class formed by the feasible region has a finite VC dimension, the infeasibility of SAA
solutions decreases exponentially with computable rates and explicitly identifiable accompanying
constants. We demonstrate how our bounds apply more generally and competitively compared to
existing results.
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1. Introduction. Consider the stochastic optimization problem

(1.1) inf
x∈X

F (x) , E[f(ξ, x)],

where X , the space for decision variables, is a nonempty closed subset of a Polish
space, i.e., a complete, separable, metric space (e.g., X ⊆ Rn or Rn−p × Zp for
mixed-integer decision sets, with Euclidean metric) equipped with the Borel σ-algebra
B and ξ : Ω → Ξ ⊆ Rr is some random vector on a complete probability space
(Ω,F ,P). For each realization of ξ(ω) ∈ Ξ (henceforth, we suppress the dependence
of ξ on ω ∈ Ω), we assume f(ξ, ·) : X → R ∪ {+∞} is a lower semicontinuous
function mapping to the extended real line and the function f(ξ, x) is measurable
with resepct to the completion of product σ-algebra F ⊗B. We also assume the set
{x : x ∈ X and F (x) < +∞} is nonempty. Moreover, we assume all quantities of
interest are measurable and defer the technical arguments on measurability to the
appendix.

The class of problems under (1.1) is difficult to evaluate in general, especially
for high–dimensional ξ. As a popular tractable approximation, the sample average
approximation (SAA) method [46] solves the sampling-based counterpart of (1.1):

(1.2) inf
x∈X

F̂N (x) ,
1

N

N∑
i=1

f(ξi, x),

where ξ[N ] , (ξ1, ξ2, ..., ξN ) are independent and identically distributed (IID) samples
drawn from P. An optimal solution of the SAA depends on the realization of ξ[N ] and
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shall be denoted x?(ξ[N ]). Theoretical properties and numerical performances of SAA
have been extensively studied in, e.g., [32, 46, 24], and its applications in stochastic
optimization and chance-constrained programming can be found in, e.g., [27, 44, 54].
As an important class of (1.1), two-stage stochastic programming has applications in
transportation planning [5, 33], disaster management [41], water recourse management
[25], and inventory management [19]. Most of these studies rely on the assumption
that f(ξ, x) < +∞ with probability 1 for all x ∈ X , which is called the relatively
complete recourse condition. However, in many real-world applications, this condition
is restrictive and there has been a growing literature studying two-stage stochastic
programming without this assumption, i.e., P({ξ ∈ Ξ : f(ξ, x) = +∞}) > 0 for some
x ∈ X (see [15, 16, 37]). In such a setting, the SAA solution x?(ξ[N ]) is not necessarily
feasible for the original problem (1.1) and it would be desirable to quantify the level
of infeasibility for the SAA solution.

As nicely discussed in the recent works of [15, 37], the feasibility issue of SAA
arises when f(ξ, ·) maps to the extended real line. Following the notations in [37], we
define dom fξ , {x ∈ X : f(ξ, x) < +∞}. Then by solving (1.2) we would obtain an

optimal solution x?(ξ[N ]) ∈ dom F̂N ,
⋂N
i=1 dom fξi where dom F̂N is the feasible

region for the SAA. As we have assumed the set {x : x ∈ X and F (x) < +∞} is
nonempty, the SAA feasible region is nonempty with probability 1 (since F (x) < +∞
implies P(f(x, ξ) = +∞) = 0 and in turn x ∈ dom F̂N with probability 1). However,
x?(ξ[N ]) may not be feasible for the original problem (1.1), i.e., x?(ξ[N ]) /∈ dom F ,
{x ∈ X : F (x) < +∞}. In other words, defining the violation probability V (x) for
x ∈ X as

(1.3) V (x) , P(ξ ∈ Ξ : x /∈ dom fξ),

we could have V (x?(ξ[N ])) > 0 with positive probability.
In this paper, we utilize a framework based on the Vapnik–Chervonenkis (VC)

dimension to analyze the feasibility of SAA solutions, including two-stage stochastic
programming. Following [15, 37], we focus on showing the exponential decrease of
V (x?(ξ[N ])) as N grows. Specifically, letting PN denote the sampling measure gov-
erning the generation of IID samples ξ[N ] (notice the feasibility of x?(ξ[N ]) is random
depending on ξ[N ]), we derive exponential bounds for V (x?(ξ[N ])) under PN . As a
key contribution, we show that, when the VC dimension of the feasible domain is
finite, our framework produces feasibility bounds that are both general and explicit.
In particular, the constants in the bounds are computable with respect to problem
parameters. Moreover, aside from the finite VC dimension of the feasible domain,
we impose no additional requirement on the geometric or distributional properties of
(1.1) (i.e., whether the problem is convex or linear, whether the optimal solution is in
the interior or on the boundary of dom F , whether X is finite or functions {f(ξ, ·)}ξ∈Ξ

have a chain-constrained domain, as in [37]), or specific regularity conditions on f(ξ, x)
(i.e., Lipschitz continuity or the existence of certain moment generating functions, as
in [15, 37]). Consequently, the analysis is widely applicable in both scenarios where
some of the best-known results on SAA feasibility have been presented, and other
scenarios where no related results have been established. Furthermore, the feasibility
result under this framework is not restricted to the optimal solution of SAA, but any
generic point within the SAA feasible region with probability 1. As a result, when the
SAA problem is nonconvex and solvable only up to a local optimum, or when approx-
imate algorithms are required, our feasibility guarantee would still hold. Finally, we
show that the generality of this framework does not come at a cost of worse sample
complexity as our bounds are comparable to, if not better than, existing ones.
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There exists a large body of literature which leverages techniques from statisti-
cal/computational learning theory and empirical process theory to analyze the per-
formance of SAA, including the (asymptotic) convergence rate of optimal solution,
and (non asymptotic) concentration inequalities. The seminal work of [47] surveys
the sample complexity of two-stage stochastic (linear) programming in obtaining so-
called ε-optimal solutions using large deviations theory or the uniform law of large
numbers. In [42, 43], Talagrand’s “generic chaining” tail bounds and “localization”
techniques for sub-Gaussian processes (see also [49]) are used to derive nonasymp-
totic risk bounds for the SAA optimal solution. Moreover, in [22], the Rademacher
averages of functional class, a concept closely related to the VC dimension, is used to
established convergence results for SAA in general compound stochastic optimization
problems. As we can see, the concept of using statistical learning theory/complexity
to analyze SAA is not entirely new. However, these results largely focus on the opti-
mization accuracy of SAA as in [47], or the convergence rate of optimal SAA solution.
In contrast, our paper provides a first application of the VC dimension and PAC learn-
ing in analyzing the feasibility of SAA solutions (optimal or otherwise). To this end, a
related application is studied in [18, 21] under the context of chance-constrained pro-
gramming, where the feasibility of constraint sampling is analyzed. It is worth noting
that, the Rademacher complexity theory, as an alternative to the VC theory, typically
obtains tighter (usually by a logarithmic factor) generalization error bounds which in
fact subsume bounds provided by the VC theory [28]. However, the standard method
for evaluating Rademacher complexity relies on a certain empirical risk minimization
algorithm (ERM) [28] which may not be tractable, and one common way to bound
the data-dependent Rademacher complexity is directly by the VC dimension. On the
other hand, for the purpose of analyzing SAA feasibility, VC bounds are sufficient
to establish results that are either new or comparable/superior to known ones. More
importantly, the bounds we achieve do not depend on any data distribution, and carry
explicit constants rather than a standalone big-O notation as in typical prior results
on SAA feasibility or learning theory analysis. Thus, in this paper we focus on VC
bounds which, although not the tightest possible (we do remark on where the bounds
can be improved when appropriate), offer a great generality and a wide applicability,
while maintaining a relatively simple, concise appeal.

Finally, we mention a growing body of literature exploiting low-dimensional struc-
tures (i.e., sparsity or low rankness) in high-dimensional problems to achieve a sample
complexity that is logarithmic-in-dimension, instead of the usual linear-in-dimension
sample complexity for the optimality of SAA solutions [10, 34, 35]. As we shall see,
these improvements correspond to reduced VC dimensions for low-dimensional struc-
tures and also apply to our analysis of SAA feasibility.

The rest of the paper is organized as follows. In Section 2, we review the recent
papers with closely related results, especially [15, 37]. In Section 3, we present the
concepts of our framework and main result. Section 4 focuses on the applications
of our main result. In the first part of this section, we present three novel results
on the feasibility of two-stage stochastic programs: First, a general feasibility result
(not limited to linear ones); Second, a feasibility bound for mixed-integer recourse,
and third an exploitation of low-dimensional structures to obtain a logarithmic-in-
dimension sample complexity in high-dimensional two-stage stochastic programs. In
the second part of Section 4, we consider two special structures used to provide fea-
sibility results in the existing literature with which we compare our results. The first
is the chain-constrained domain considered in [37]. The second is a finite feasible do-
main considered in [15]. Finally, in the appendix, we provide a specially constructed
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example that allows a direct verification of our feasibility results.

2. Review of Related Results. We discuss the existing results on SAA feasi-
bility in [15, 37]. A considerable part of [15] discusses how to solve a so-called padded,
modified version of SAA to obtain a complete feasible solution (i.e., V (x) = 0) with
high confidence, which is somewhat different from the perspectives of our paper and
[37]. In particular, we consider the feasibility for SAA in its original form and do
not restrict our attention to completely feasible solutions. Both [15] and [37] discuss
results of the form

(2.1) PN (V (x?(ξ[N ])) > ε) ≤ δ,

referred to as high recourse likelihood solution in [15]. In particular, [15] presents
these bounds in two cases, one for finite X and another for two-stage stochastic linear
programs. We shall discuss them in detail in Section 4 when we compare them with
our results. On the other hand, the feasibility results in [37] are more general and can
be summarized into three different scenarios.

• Scenario 1 : In the presence of the so-called chain-constrained domain of order
m (to be explained later) on dom fξ, [37] shows

PN (V (x?(ξ[N ])) > ε) ≤
m−1∑
k=0

(
N

k

)
εk(1− ε)N−k

≤ exp

{
− (Nε−m+ 1)2

2Nε

}
.

The second inequality is given by the Chernoff bound, also shown in [13] and
[37].

• Scenario 2 : In the context of convexity, meaning X is closed and convex
and the set of optimal solutions X ? is nonempty, and f(ξ, ·) is convex for
all ξ ∈ Ξ, along with additional regularity conditions on f(ξ, ·) and X (e.g.,
finite moment generating function for f(ξ, x)), [37] shows that for X ? in the
interior of dom F ,

PN (V (x?(ξ[N ])) > 0) ≤ Ce−Nβ ,

where C and β are unknown constants.
• Scenario 3 : In the context of convexity, if dom fξ is a chain-constrained

domain as in Scenario 1, along with the additional regularity conditions, [37]
shows that for X ? which may have nonempty intersection with the boundary
of dom F , one can still guarantee

PN (V (x?(ξ[N ])) > ε) ≤ Ce−Nβ +

|J |−1∑
k=0

(
N

k

)
εk(1− ε)N−k

≤ Ce−Nβ + exp

{
− (Nε− |J |+ 1)2

2Nε

}
,

where C and β are again unknown constants as in Scenario 2 and J is the
index set of active constraints at X ? with the boundary of dom F . Notice
it is shown in [12] that |J | is bounded by n, the dimension of the decision
variable, which yields a useful upper bound regardless of the behavior of J
(also note that in this case the order of the chain-constrained domain does
not show up explicitly in the bound).
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In all scenarios, a desirable exponential decrease of V (·) as N grows can be shown.
However, there are several potential limitations. First, there exist hidden constants in
the feasibility bound: In Scenarios 2 and 3, which are of great importance in stochastic
convex programming, the rate of exponential decrease is established but governed by
unknown constants C and, more importantly β which directly dictates the rate of
exponential decrease. Second, the dependence of the bound on m, the order of the
chain-constrained structure, can become potentially restrictive asm gets large (or even
infinite) in many cases, a challenge that is also mentioned in [15]. Furthermore, even
though it is motivated from practical examples in [37], the chain-constrained structure
can be difficult to verify in general. Notably, the feasibility bound derived in Scenario
3 (the optimal solution of (1.1) intersects the boundary of dom F ) is not explicitly
dependent on the chain order m, but the chain-constrained structure is still required
for the analysis in [37]. Finally, note that while an explicit bound (all constants known
or verifiable) is presented in Scenario 1, it is a feasibility bound on the entire dom F̂N
instead of just x?(ξ[N ]), and is still under the chain-constrained domain assumption.
Due to all these limitations, it is desirable to generalize the feasibility bound beyond
the chain-constrained domain setting and with explicit constants.

3. Framework and Main Results. In this section we review the VC dimension
framework and introduce our main results. In particular, we are interested in the VC
dimension of a collection of subsets on Ξ. This approach gives bounds for any generic
point in dom F̂N , the feasible region of the SAA, which in particular implies bounds
for x?(ξ[N ]). Moreover, instead of looking at dom fξ = {x ∈ X : f(ξ, x) < +∞}, we
investigate

(3.1) Hx , {ξ ∈ Ξ : f(ξ, x) < +∞} for x ∈ X

and define the class of subsets

H , {Hx}x∈X ∪ {Ξ}.

Consider the VC dimension ofH. The VC dimension is commonly used to describe
the complexity of a collection of sets or functions [4, 29, 53], which is also known as
the “hypothesis space” in computational learning theory. The concept applies to a
class of subsets H (see [51]), and can be naturally generalized to binary functions. To
define the VC dimension of a class of subsets H, first we say a set of points {x1, ..., xd}
is “shattered” by H if any subset of {x1, ..., xd} can be “picked out” by some element
C ∈ H, meaning that for any subset D ⊆ {x1, ..., xd}, there is a set C ∈ H such
that D ⊆ C and ({x1, ..., xd} \D) ∩ C = ∅. The VC dimension of H is defined to be
the maximal cardinality of the sets it can shatter, denoted by dV C(H). For example,
some classical results on the VC dimensions are the following:

• Positive intervals: If H =
{{
x ∈ R : x ∈ [a, b]

}
|0 ≤ a ≤ b

}
, we have

dV C(H) = 2.
• Affine hyperplanes (perceptrons): If

H =
{{
x ∈ Rd : aTx+ b ≥ 0

}
|a ∈ Rd, b ∈ R

}
,

we have dV C(H) = d+ 1. If b is fixed to be 0, then dV C(H) = d.
• Convex sets: If H =

{
C : C ⊆ Rd and C is convex

}
and d ≥ 2, then

dV C(H) = +∞.
An important concept in computational learning theory tightly related to the VC
dimension is probably approximately correct learning (PAC) (see, e.g., [29]). In this
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context, the VC dimension of H can be used to derive bounds on the sample com-
plexity needed to achieve a desired level of accuracy between “in-sample-error” and
“generalization error” within class H (see, e.g. [4, 8, 29]). As it turns out, this type
of result can transfer towards sample complexity results on the feasibility of SAA
solutions.

Moreover, we note that the Ξ in (3.1) can be reparametrized and does not have
to be viewed in Rr for fixed r defined in (1.1). For illustration, consider the following
example.

Example 3.1. Suppose x ∈ X ⊆ R and ξ is a random vector defined on Rr for
some r > 0. Let g(·) : Rr → R be a given function. Then, suppose f(ξ, x) < +∞ if
and only if g(ξ) · x ≥ 1. Then, Hx in (3.1) becomes

Hx = {ξ : g(ξ) · x ≥ 1} ⊆ Rr ∀x ∈ X .

On the other hand, if we define random variable ξ′ = g(ξ) on R, then we can alterna-
tively define

H ′x = {ξ′ : ξ′ · x ≥ 1} ⊆ R ∀x ∈ X .

Consequently, instead of fixing a canonical representation of ξ in (1.1), we sometimes
utilize this flexibility to change representations for convenience.

Finally, we clarify the use of notation [·]. For a positive integer q, [q] denotes the
set {1, ..., q}. For a vector v ∈ Rq, [v]j denotes the jth component of v for j ∈ [q],
and ‖v‖0 denotes the number of nonzero entries of v.

3.1. Main Result. We now present our main theorem on SAA feasibility and
its proof.

Theorem 3.2. Let H , {Hx}x∈X ∪ {Ξ} be the class of subsets defined in (3.1)
and ξ[N ] = {ξ1, ..., ξN} be IID samples from P (consequently ξ[N ] ∼ PN ). Assume H
has finite VC dimension d (i.e., dV C(H) = d < +∞). Moreover, assume the feasible
region of SAA (i.e., dom F̂N = ∩Ni=1{x ∈ X : f(ξi, x) < +∞}) is nonempty with
probability 1 and x?(ξ[N ]) ∈ X is the output of any algorithm that is guaranteed to be
within the feasible region of SAA. Then, if

(3.2) N ≥ 4

ε

(
d log

(
12

ε

)
+ log

(
2

δ

))
,

we have, for any 0 < δ, ε < 1,

(3.3) PN
(

sup
x∈dom F̂N

V (x) > ε

)
≤ δ,

1 and consequently

(3.4) PN
(
V (x?(ξ[N ])) > ε

)
≤ δ.

1The measurability of (3.3) and (3.4) is discussed in the appendix.
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Proof. We first adopt the following notations from [4]. For x ∈ X , define hx :
Ξ→ {0, 1} as

hx(ξ) , 1Hx(ξ) =

{
1 when f(ξ, x) < +∞,
0 when f(ξ, x) = +∞,

and denote

H , {hx}x∈X ∪ {1Ξ(·)}

to be a hypothesis space as in the PAC learning context. Now, given a “target concept”
t ∈ H, the error of a hypothesis h ∈ H is defined in [4] as

(3.5) erP(h) , P({ξ ∈ Ξ : h(ξ) 6= t(ξ)}).

Building on (3.5), [4] further defines

H[ξ[N ]] = {h ∈ H | h(ξi) = t(ξi) ∀i ∈ [N ]},
Bε = {h ∈ H | erP(h) ≥ ε}.(3.6)

It is straightforward to see that H has the same VC dimension as H (dV C(H) = d).
Thus, given H with VC dimension d < +∞ and let the target function be

(3.7) t(·) = 1Ξ(·) ∈ H,

Theorem 8.4.1 in [4] states that if

N ≥ 4

ε

(
d log

(
12

ε

)
+ log

(
2

δ

))
,

we have

(3.8) PN ({ξ[N ] | H[ξ[N ]] ∩Bε 6= ∅}) < δ.

Given samples ξ[N ], we know from (3.6) and (3.7) that the feasible region of SAA is

dom F̂N = ∩Ni=1 {x ∈ X | f(ξi, x) < +∞}
= {x ∈ X | hx(ξi) = 1, ∀i ∈ [N ]}
= {x ∈ X | hx ∈ H[ξ[N ]]}(3.9)

and we also know from (3.5) and (3.6) that,

V (x) ≥ ε ⇐⇒ erP(hx) ≥ ε ⇐⇒ hx ∈ Bε(3.10)

for any x ∈ X . It then follows from (3.9) and (3.10) that, given samples ξ[N ],

(3.11) {x ∈ dom F̂N | V (x) ≥ ε} 6= ∅ =⇒ H[ξ[N ]] ∩Bε 6= ∅.

Thus, if x?(ξ[N ]) ∈ dom F̂N with probability 1, it follows from (3.8) and (3.11) that

PN
(

H[ξ[N ]] ∩Bε = ∅
)
> 1− δ =⇒ PN

(
{x ∈ dom F̂N | V (x) ≥ ε} = ∅

)
> 1− δ

=⇒ PN
(

sup
x∈dom F̂N

V (x) ≤ ε
)
> 1− δ

=⇒ PN
(
V (x?(ξ[N ])) ≤ ε

)
> 1− δ

which concludes the proof.
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Remark 3.3. First, in the proof of Theorem 3.2, the sample complexity in (3.2)
comes from Theorem 8.4.1 of [4] and provides an O(dε log( 1

ε ) + 1
ε log( 1

δ )) bound. It is

worth noting that a better sample complexity of O(dε + 1
ε log( 1

δ )) can be achieved by
recent breakthroughs of [23, 48]. We choose to present the result from Theorem 8.4.1
in [4] because it is more concise and explicit. Nevertheless, under our framework, a
better bound is indeed obtainable. Second, as shown in the proof, the feasibility result
of the theorem holds not just for the optimal solution of SAA, but also for any generic
point within the feasible region of SAA. In other words, Theorem 3.2 holds for any
algorithm that can output a solution x?(ξ[N ]) (not necessarily the optimal solution
of the SAA) in the feasible region of SAA with probability 1. This observation is
particularly important when the considered SAA problem is nonconvex (i.e., mixed-
integer programming), solvable up to a local optimum, or requires approximations
algorithms.

There are several advantages when applying Theorem 3.2 to bound the feasibility
of SAA solutions: (1) Other than a finite VC dimension, it does not rely on specific as-
sumptions regarding the structures of (1.1) and (1.2). As we shall see later, even when
the chain-constrained domain condition in [37] becomes restrictive, our analysis based
on VC dimension would remain effective. (2) Our bound is explicit and computable
with no hidden constants. (3) One might argue the generality of Theorem 3.2 would
come at a cost of higher sample complexity. However, as we shall see, this is not the
case even when we compare our bounds with some of the best-known ones. Moreover,
thanks to (1) above, Theorem 3.2 yields some previously unattainable results.

While Theorem 3.2 is a result on sample complexity, it is convenient to convert it
into an asymptotic rate of convergence with N . The infeasibility of the SAA solution
still decreases exponentially as in [37], except the rate is now explicit. We summarize
it in a corollary.

Corollary 3.4. Under the same conditions as Theorem 3.2,

PN (V (x?(ξ[N ])) > ε) ≤ 2 exp

(
−Nε

4

)(
12

ε

)d
.

To compare with the existing results in [37], we note that direct comparisons on
sample complexity are possible only when the rate of convergence is explicit, which
only applies to Scenario 1 in [37] (summarized in Section 2). Moreover, it is shown in
[14] that a relatively tight sufficient condition for N to satisfy

m−1∑
k=0

(
N

k

)
εi(1− ε)N−i ≤ δ,

is

(3.12) N ≥ e

e− 1

1

ε

(
m− 1 + log

(
1

δ

))
,

which provides a tight bound on sample complexity and we shall make use of it later.

4. Applications. In this section, we apply Theorem 3.2 in several problems of
practical interests and compare with established results. For the examples formulated
in this section, one can check that f(ξ, x) satisfies the general conditions imposed in
the introductory section (below (1.1)). Throughout the proofs, we make use of the
following lemmas.
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Lemma 4.1 (Theorem 1.1 from [51]). Given classes of subsets C1, C2,..., Cm with
dV C(Cj) = dj < +∞, define

umj=1Cj , {∩mj=1Cj : Cj ∈ Cj , j = 1, ...,m},
tmj=1Cj , {∪mj=1Cj : Cj ∈ Cj , j = 1, ...,m},

and d =
∑m
j=1 dj. Then,

max(dV C(umj=1Cj), dV C(tmj=1Cj)) ≤
e

(e− 1) log 2
d log

( e

log 2
m
)
.

We also use a key result on the upper bound of the VC dimension for sets de-
termined by finite-dimensional function spaces. Recall that G is a vector space of
functions if a1f1 + a2f2 ∈ G for any a1, a2 ∈ R and f1, f2 ∈ G. The lemma below
comes directly from [20]. For a more concise proof, one is also referred to Lemma
2.6.15 in [52].

Lemma 4.2. Given arbitrary space S, let G be a finite-dimensional vector space
of functions g(·) : S → R with dim G < +∞. Then, the class of sets

H = {{s ∈ S : g(s) ≥ 0}}g∈G

has VC dimension at most dim G.

Note that since G is a vector space, H can then also be characterized as

{{s ∈ S : g(s) ≤ 0}}g∈G .

The following example will be used later.

Example 4.3. According to Lemma 4.2, U = {{(y, z) ∈ Rd × R : yTx ≤ z}}x∈Rd
has VC dimension at most d. In fact, the VC dimension for U is equal to d (see [18]
or [20]).

Finally, related to the reparametrization discussion in Example 3.1, we have the
following result.

Lemma 4.4. Suppose H = {Hx}x∈X is a collection of subsets on Ξ. Given f(·) :
Ξ′ → Ξ and H ⊆ Ξ, define

f−1(H) , {ξ′ ∈ Ξ′, f(ξ′) ∈ H}

with the convention f−1(∅) = ∅ and define

H′ , {f−1(Hx)}x∈X .

Then, we have dV C(H′) ≤ dV C(H).

Proof. For any set of points {ξ′i}i∈[n] ⊆ Ξ′ shattered by H′, let ξi = f(ξ′i) and
consider {ξi}i∈[n]. If we can show {ξi}i∈[n] is shattered by H, then we must have
n ≤ dV C(H). Since n is arbitrary, we have

sup{n | H ′ ⊆ Ξ′, |H ′| = n and H ′ is shattered by H′} ≤ dV C(H)

and consequently dV C(H′) ≤ dV C(H).
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To show {ξ}i∈[n] is shattered by H, pick any I ⊆ [n], and we want to show
there exists x ∈ X such that {ξi}i∈I ⊆ Hx and {ξi}i∈[n]∩Ic ∩ Hx = ∅. Now, recall
{ξ′}i∈[n] is shattered by H′, so there exists x ∈ X such that {ξ′i}i∈I ⊆ f−1(Hx) and
{ξ′i}i∈[n]∩Ic ∩ f−1(Hx) = ∅. This concludes the proof, since for such x ∈ X , we have{

ξ′i ∈ f−1(Hx) =⇒ ξi = f(ξ′i) ∈ Hx for i ∈ I,
ξ′i /∈ f−1(Hx) =⇒ ξi = f(ξ′i) /∈ Hx for i ∈ [n] ∩ Ic.

4.1. Two-Stage Stochastic Programming. One of the main motivating ex-
amples in studying SAA feasibility, mentioned in [15, 36, 37], is the two-stage sto-
chastic program without relatively complete recourse ([15, 36, 37] focus on the linear
recourse). This section is divided into three subsections to discuss feasibility in two-
stage stochastic programming. The first subsection considers the general case with
only continuous variables, the second subsection considers mixed-integer variables,
and the third subsection considers low-dimensional structures. Finally, we note that,
while we focus on two-stage stochastic programming, these feasibility results can be
generalized to multistage stochastic programs using stagewise independence of the
data process. For a detailed discussion, see Section 4 of [37].

4.1.1. General Case. We first consider the following general case. For clarity
and generality, we rewrite (1.1) to define f(ξ, x) as follows:

(4.1) inf
x∈X

F (x) , f0(x) + E[f(ξ, x)]

with f0(x) being a deterministic function and

f(ξ, x) , inf
y
g(ξ, y)

s.t. Wξy + Tξx = hξ,

y ≥ 0,

(4.2)

where we only assume g(ξ, ·) is convex and finite everywhere, almost surely ∀ξ ∈ Ξ.
Typical classes of problems that fall under this formulation include (see [36])

• two-stage stochastic linear programming: f0(x) = cTx is linear, X = {x ∈
Rn : Ax ≤ b} is polyhedral, and g(ξ, y) = q(ξ)T y is linear in y;

• two-stage stochastic quadratic-linear programming: f0(x) = 1
2x

TQx+ cTx is
quadratic in x, X = {x ∈ Rn : Ax ≤ b} is polyhedral, and g(ξ, y) = q(ξ)T y is
linear in y;

• two-stage stochastic quadratic-quadratic programming: f0(x) = 1
2x

TQx +
cTx is quadratic in x, X = {x ∈ Rn : Ax ≤ b} is polyhedral, and g(ξ, y) =
1
2y
TP (ξ)y + q(ξ)T y is quadratic in y.

Suppose g(ξ, y) takes the general form above. To derive feasibility results on
the SAA solution, [37] assumes there are only finitely many distinct values for Wξ

or Tξ, i.e., |{Wξ}| = p and |{Tξ}| = q, where {p, q} ⊆ Z+. By Farkas’ lemma, we
have {y ≥ 0 : Wξy + Tξx = hξ} is nonempty (i.e., f(ξ, x) < +∞) if and only if
aT (hξ − Tξx) ≥ 0 for all a such that aTWξ ≥ 0. Consequently, as shown in [37],
suppose we let Wi, i ∈ [p], be the ith distinct element in {Wξ}, let {aij}j∈Ji be the
set of nonequivalent extreme rays of polyhedral cone Ci = {a : aTWi ≥ 0} with Ji
being the index set for these extreme rays of Ci, and let I(·) : Ξ→ [p] be the indexing
function such that I(ξ) = i when Wξ = Wi. Then, we have

(4.3) dom fξ = {x ∈ X | aTI(ξ)jTξx ≤ a
T
I(ξ)jhξ,∀j ∈ JI(ξ)},
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where we assume the cones Ci are pointed, so they can be minimally generated by
a unique set of nonequivalent extreme rays. Otherwise, a general polyhedral cone is
still finitely generated according to Weyl–Minkowski’s theorem, but the minimal set
of generators may not be unique. Without of loss of generality (as in most linear
programming problems), we assume the rows of Wi are linearly independent, which
implies the cone Ci is pointed (see, e.g., [50]). Now, note that (4.3) allows [37] to use
the so-called chain-constrained domain structure. Here, a chain-constrained domain
is defined as follows.

Definition 4.5. A collection of functions {f(ξ, ·)}ξ∈Ξ has a chain-constrained

domain of order m if there exist m chains {Uξk}ξ∈Ξ and

dom fξ =

m⋂
k=1

Uξk ,

where a collection of sets {Uω}ω∈I is a chain if for any ω1, ω2 ∈ I, we have either
Uω1
⊆ Uω2

or Uω2
⊆ Uω1

.

It is shown in [37] that dom fξ in (4.3) is a chain-constrained domain of order
m = q

∑p
i=1 |Ji|. Consequently, Scenario 1 in [37] can be applied to show that

PN (V (x?(ξ[N ])) > ε) ≤
m−1∑
k=0

(
N

k

)
εk(1− ε)N−k,

which has a sample complexity

(4.4)
e

e− 1

1

ε

(
m− 1 + log

(
1

δ

))
for achieving PN (V (x?(ξ[N ])) > ε) ≤ δ according to (3.12).

Notice a necessary assumption made in [37] is that only finitely many distinct
values for Wξ or Tξ are allowed. However, using Theorem 3.2, we can get a different
sample complexity and concentration bounds, even when the cardinalities of |{Wξ}|
and |{Tξ}| are infinite. In particular, we first show feasibility results on (4.2) when
|{Wξ}| and |{Tξ}| are finite in Corollary 4.6. Then, we extend the result to the case
when |{Wξ}| and |{Tξ}| are infinite in Corollary 4.7.

Corollary 4.6. Consider (4.2) and assume there are only finitely many distinct
values for Wξ or Tξ , i.e., |{Wξ}| = p and |{Tξ}| = q, where {p, q} ⊆ Z+. Let
ξ[N ] = {ξ1, ..., ξN} be IID samples from P (consequently ξ[N ] ∼ PN ), and x?(ξ[N ]) be
the output of any algorithm that is guaranteed to be within the feasible region of SAA.
Then, if

(4.5) N ≥ 4

ε

(
dV C log

(
12

ε

)
+ log

(
2

δ

))
,

where |J | = maxi∈[p] |Ji| and

(4.6) dV C =

(
e

(e− 1) log 2
|J |(n+ 1) log

(
e

log 2
· |J |

))
,

we have

PN (V (x?(ξ[N ])) > ε) ≤ δ
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for any 0 < δ, ε < 1. Equivalently, in terms of convergence rate, we have

(4.7) PN (V (x?(ξ[N ])) > ε) ≤ 2 exp

(
−Nε

4

)(
12

ε

)dV C
.

Proof. Define I(·) : Ξ → [p] as the indexing function such that I(ξ) = i when
Wξ = Wi. Then, it follows that H , {Hx}x∈X ∪ {Ξ} defined in (3.1) consists of

Hx = {ξ : aTI(ξ)jTξx ≤ a
T
I(ξ)jhξ,∀j ∈ JI(ξ)},

where {aij}j∈Ji is the set of nonequivalent extreme rays of the polyhedral cone

{a : aTWi ≥ 0}.

Define |J | = maxi∈[q] |Ji| and, given ξ ∈ Ξ, define {(yξj , zξj)}j∈|J| ⊆ Rn × R to be

yTξj ,

{
aTI(ξ)jTξ for 1 ≤ j ≤ |JI(ξ)|,
0 for |JI(ξ)| < j ≤ |J |,

zξj ,

{
aTI(ξ)jhξ for 1 ≤ j ≤ |JI(ξ)|,
0, for |JI(ξ)| < j ≤ |J |.

Then, define yTξ = (yTξ1, y
T
ξ2, ..., y

T
ξ|J|) ∈ R|J|n and zξ = (zξ1, zξ2, ..., zξ|J|) ∈ R|J|.

Moreover, for j ∈ [|J |], define vj(·) : Rn → R|J|n to be

[vj(x)]i =

{
[x]i for (j − 1)n+ 1 ≤ i ≤ jn,

0, otherwise.

Then, we can redefine

(4.8) Hx =

|J|⋂
j=1

{(yξ, zξ) : yTξ vj(x) ≤ [zξ]j}.

Fix j ∈ [|J |], let ej ∈ R|J| be the vector with 1 in the jth component and 0 otherwise.
Define a class of function Gj = {g(x,c)(·)}(x,c)∈Rn×R on R|J|(n+1) such that, given

(y, z) ∈ R|J|n × R|J|,

g(x,c)((y, z)) = [y, z]T
[
−vj(x)
c · ej

]
.

It is straightforward to check Gj is a finite-dimensional vector space of functions with
dim Gj ≤ n+ 1. Then, according to Lemma 4.2, the VC dimension of

{{(y, z) ∈ R|J|n × R|J| : gx,c((y, z)) ≥ 0}}(x,c)∈Rn×R

is at most n + 1. Moreover, by letting (x, c) = 0, it can be seen that the above
collection of sets includes the set R|J|n × R|J|. Consequently, as a smaller collection
of sets, the VC dimension of

{{(y, z) ∈ R|J|n × R|J| : gx,1((y, z)) ≥ 0}}x∈X ∪ {R|J|n × R|J|}
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is at most n + 1. Thus, for each j ∈ [|J |], it follows from Lemma 4.4 that the VC
dimension of

Uj = {{(yξ, zξ) : yTξ vj(x) ≤ [zξ]j}}x∈X ∪ {Ξ}

is at most n+ 1. Finally, it follows from Lemma 4.1 and (4.8) that

dV C(H) ≤ dV C(u|J|j=1Uj) ≤
e

(e− 1) log 2
|J |(n+ 1) log

(
e

log 2
· |J |

)
.

The analogous sample complexity and convergence rate follow from Theorem 3.2.

Note that Corollary 4.6 does not require a convexity assumption on gξ or distri-
butional assumptions on the random variables Wξ and Tξ. In fact, we can further
extend our result to the case when |{Wξ}| and |{Tξ}| are infinite. In particular, the
same proof can be applied as long as

|J | = max
ξ∈Ξ
{ # of extreme rays for the cone {a : aTWξ ≥ 0}}

is finite. However, it is known that the number of nonequivalent extreme rays of a
polyhedral cone {a : aTW ≥ 0} is finite and can be bounded by a term

(
n1

m1−1

)
, which

only involves parameters m1 and n1 for W ∈ Rm1×n1 (similarly to the bound on the
number of extreme points, m1 − 1 linearly independent “constraints” are chosen; for
details see [26, 45, 50]). Thus, as long as {Wξ} ⊆ Rm1×n1 and m1, n1 are bounded al-
most surely, we have |J | < +∞ regardless of the cardinalities of {Wξ}. We summarize
this in another corollary.

Corollary 4.7. Consider (4.2) and assume |J | <∞, where

|J | = max
ξ∈Ξ
{ # of extreme rays for the cone {a : aTWξ ≥ 0}}.

Let ξ[N ] = {ξ1, ..., ξN} be IID samples from P (consequently ξ[N ] ∼ PN ), and x?(ξ[N ])
be the output of any algorithm that is guaranteed to be within the feasible region of
SAA. Then the result of Corollary 4.6 still holds.

Proof. Let Aξ be the set of nonequivalent extreme rays of the polyhedral cone

{a : aTWξ ≥ 0}.

Observe H , {Hx}x∈X ∪ {Ξ} defined in (3.1) consists of

(4.9) Hx = {ξ : aTTξx ≤ aThξ,∀a ∈ Aξ}.

For all ξ ∈ Ξ, since |Aξ| ≤ |J | < +∞, we can label the elements in Aξ by {aξj}j∈[|Aξ|].
Then, define {(yξj , zξj)}j∈|J| as

yTξj =

{
aTξjTξ for 1 ≤ j ≤ |Aξ|,
0 for |Aξ| < j ≤ |J |,

zξj =

{
aTξjhξ for 1 ≤ j ≤ |Aξ|,
0 for |Aξ| < j ≤ |J |.

The rest of the proof follows exactly as in Corollary 4.6.
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Compared with our bound (4.5), the chain-constrained bound (4.4) relies on the
order of the chain m = q

∑p
i=1 |Ji|. If the cardinality of {Wξ} or {Tξ} gets large

(i.e., qp � n), or potentially infinite (for a continuous random variable), then the

bound in (4.4) with a sample complexity of O( qp|J|ε + 1
ε log( 1

δ )) becomes loose or
even inapplicable. On the other hand, the VC bound (4.5) with a sample complexity

O( |J|nε log |J | log( 1
ε ) + 1

ε log( 1
δ )) maintains the same dependence on the dimension n

regardless of the support of Wξ or Tξ. Moreover, if we use the PAC bound from [23, 48]

as mentioned in Remark 3.3, the bound can be improved to O( |J|nε log |J |+ 1
ε log( 1

δ )).
Finally, in both bounds, the term |J | appears. However, as mentioned previously, an
explicit bound for |J | in terms of m1, n1 can be obtained, where {Wξ} ⊆ Rm1×n1 . We
omit it here as it is not essential for our comparison. Finally, the bound in Scenario
3 of [37] also applies to (4.2) and is not limited by the order of the chain structure.
However, the bound there is not explicitly computable due to the hidden term β.

The dependence on the order of the chain m is also discussed in [15]. Using
ideas similar to the scenario approximation of chance-constrained problems in [11,
40, 12], as well as specific properties of linear programming (e.g., existence of basic
optimal solutions), [15] is able to provide a sample complexity for two-stage stochastic
linear programming independent of the cardinalities of {Wξ} or the order of the
chain. Nonetheless, the derivation of our bound in (4.5) does not depend on the
linearity of the optimization problem and hence is not limited to two-stage stochastic
programming with linear recourse. More specifically, in [15], the first stage X is defined
by linear constraints Ax = b for some A ∈ Rm×n and the second-stage problem bears
a linear objective q(ξ)T y. In contrast, our bound is valid for general X in the first
stage and g(ξ, y) in the second-stage problem in (4.2). That being said, the bound
derived in [15] has notable strengths in the linear case, in terms of the dependence on
problem parameters, gained via a more efficient exploitation of the linear structure.
Specifically, the sample complexity in [15] is (adapted to the notation in this paper)

(4.10) O

(
1

ε

(
nn1

(
log

(
m1

n1 + 1

)
+1

)
+n

(
log

(
m

n
+2

)
+log

(
1

ε

)
+1

)
+log(

1

δ
)

))
,

which has better dependence on m1, n1, as the dependence on |J | in (4.5) is
(

n1

m1−1

)
in the worst case. Nonetheless, (4.5) has a similar dependence on n as the bound in
(4.10), and does not depend on m in (4.10) at all. Omitting the dependence on these
problem size parameters (e.g., constants based on n,m,m1, n1, and |J |), the bound
derived in [15] is of order O( 1

ε log( 1
δ )+ 1

ε log( 1
ε )), which of the same order as the bound

(4.5). Moreover, (4.5) can be slightly improved to be of order O( 1
ε log( 1

δ ) + 1
ε ) bound

based on Remark 3.3.

4.1.2. Mixed-Integer Programming. The SAA method has also been ap-
plied in two-stage stochastic programming with mixed-integer recourse [2, 3, 31, 7].
However, due to the presence of an integer variable, currently known results based
on (4.1) regarding the feasibility of SAA solutions do not apply. In this section, we
provide an original feasibility bound in this case. We consider the following two-stage
stochastic mixed-integer programming where X ⊆ Rn−p × Zp is allowed to contain
integer components in the first stage,

inf
x∈X

F (x) , f0(x) + E[f(ξ, x)],
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and the second stage is a mixed-integer program (MIP),

(4.11)

f(ξ, x) , inf
y

g(ξ, y, y0)

s.t. Wξy +W 0
ξ y0 + Tξx = hξ,

y ∈ Rn
′

+ , y0 ∈ Z ⊆ Zp
′

+ ,

for given n′, p′ ∈ Z+. Here g(ξ, y, y0) can be a general function as in (4.2), although
for much of theoretical and practical interest (also applicability), it is assumed to be
in linear form g(ξ, y, y0) = q(ξ)T y+ q0(ξ)T y0. Moreover, most literature also assumes
relatively complete recourse by fixing a deterministic recourse matrix (i.e., Wξ = W

and W 0
ξ = W 0 with probability 1) such that {v ∈ Rn′+ × Zp

′

+ : [W |W 0]v = w} is
nonempty for all relevant w. Consequently, the feasibility of the SAA solution for two-
stage stochastic integer programming without relatively complete recourse has rarely
been considered. In fact, due to the general nonconvex and discontinuous nature of
MIPs, specialized approximation or iterative algorithms are usually required and the
solutions are no longer guaranteed to be optimal. However, even without relatively
complete recourse or optimality guarantee, as mentioned in Remark 3.3, as long as
the solutions output from such algorithms are within the SAA feasible region with
probability 1, the feasibility result from Theorem 3.2 still holds. Recall we have
assumed the set {x : x ∈ X and F (x) < +∞} is nonempty and the SAA feasible
region is nonempty with probability 1.

Under the setting of Theorem 3.2, it is possible to provide a feasibility bound for
(4.11) when |Z| < +∞. This condition is satisfied when y0 is restricted to be binary

as in [7] (i.e., y0 ∈ {0, 1}p
′
). On the other hand, if the solutions are polynomially

bounded by the size of data (e.g., integer linear programming [9]), then it is also
possible to consider solving (4.11) in a finite, although possibly large bounded set

Z ⊆ Zp
′

+ , thus satisfying |Z| < +∞.

Corollary 4.8. Consider (4.11). Suppose |Z| < +∞ and |J | < +∞, where

|J | = max
ξ∈Ξ
{ # of extreme rays for the cone {a : aTWξ ≥ 0}}.

Then, let ξ[N ] = {ξ1, ..., ξN} be IID samples from P (consequently ξ[N ] ∼ PN ), and
x?(ξ[N ]) be the output of any algorithm that is guaranteed to be within the feasible
region of SAA. Then, if

(4.12) N ≥ 4

ε

(
dV C log

(
12

ε

)
+ log

(
2

δ

))
,

where

dV C =
( e

(e− 1) log 2

)2

|Z||J |(n+ 2) log
( e|J |

log 2

)
log
( e|Z|

log 2

)
,

then we have PN (V (x?(ξ[N ])) > ε) ≤ δ for any 0 < δ, ε < 1. Equivalently, in terms of
convergence rate, we have

(4.13) PN (V (x?(ξ[N ])) > ε) ≤ 2 exp

(
−Nε

4

)(
12

ε

)dV C
.
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Proof. Let Aξ be the set of nonequivalent extreme rays of the polyhedral cone

{a : aTWξ ≥ 0}.

Using Farkas’ lemma as in (4.9), we construct elements of H , {Hx}x∈X ∪{Ξ} defined
in (3.1) as

Hx =
⋃
y0∈Z
{ξ : aT (Tξx+W 0

ξ y0) ≤ aThξ ∀a ∈ Aξ}

for (x, y0) ∈ X × Z. For all ξ ∈ Ξ, since |Aξ| ≤ |J | < +∞, we can label the elements

in Aξ by {aξj}j∈[|Aξ|]. Then, given ξ ∈ Ξ, define {(yξj , zξj , wξj)}j∈|J| ⊆ Rn×R×Rp′

as

yTξj =

{
aTξjTξ for 1 ≤ j ≤ |Aξ|,
0 for |Aξ| < j ≤ |J |,

zξj =

{
aTξjhξ for 1 ≤ j ≤ |Aξ|,
0 for |Aξ| < j ≤ |J |,

wTξj =

{
aTξjW

0
ξ for 1 ≤ j ≤ |Aξ|,

0, for |Aξ| < j ≤ |J |.

Define yTξ = (yTξ1, y
T
ξ2, ..., y

T
ξ|J|) ∈ R|J|n, zξ = (zξ1, zξ2, ..., zξ|J|) ∈ R|J| and wTξ =

(wTξ1, w
T
ξ2, ..., w

T
ξ|J|) ∈ R|J|p′ . Moreover, for j ∈ [|J |], define vj(·) : Rn → R|J|n,

uj : Zp′ → Z|J|p′ so that

[vj(x)]i =

{
[x]i for (j − 1)n+ 1 ≤ i ≤ jn ,
0 otherwise,

[uj(x)]i =

{
[y0]i for (j − 1)p′ + 1 ≤ i ≤ jp′,
0 otherwise.

Then, we can redefine

(4.14) Hx =
⋃
y0∈Z

|J|⋂
j=1

{(yξ, zξ, wξ) : yTξ vj(x) + wTξ uj(y0) ≤ [zξ]j}.

Given j ∈ [|J |] and y0 ∈ Z, let ej ∈ R|J| be the vector with 1 in the jth component
and 0 otherwise. Define a class of functions G = {g(x,c1,c2)(·)}(x,c1,c2)∈Rn×R×R on

R|J|(n+1+p′) such that, given (y, z, w) ∈ R|J|n × R|J| × R|J|p′ ,

g(x,c1,c2)((y, z, w)) = [y, z, w]T

 −vj(x)
c1 · ej

−c2 · uj(y0)

 .
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It is straightforward to check G is a finite-dimensional vector space of functions with
dim G ≤ n+ 2. Then, according to Lemma 4.2, the VC dimension of

{{(y, z, w) ∈ R|J|n × R|J| × R|J|p
′

: g(x,c1,c2)((y, z, w)) ≥ 0}}(x,c1,c2)∈Rn×R×R

is at most n + 2. Moreover, by letting (x, c1, c2) = 0, it can be seen that the above
collection of sets includes the set R|J|n × R|J| × R|J|p′ . Consequently, as a smaller
collection of sets, the VC dimension of

{{(y, z, w) ∈ R|J|n×R|J|×R|J|p
′

: g(x,1,1)((y, z, w)) ≥ 0}}x∈X ∪{R|J|n×R|J|×R|J|p
′
}

is also at most n+ 2. Thus, for each j ∈ [|J |], it follows from Lemma 4.4 that the VC
dimension of

Uy0j = {{(yξ, zξ, wξ) : yTξ vj(x) + wTξ uj(y0) ≤ [zξ]j}}x∈X ∪ {Ξ}

is at most n+ 2. Consequently, given y0 ∈ Z, it follows from Lemma 4.1 that

dV C(u|J|j=1U
y0
j ) ≤ e

(e− 1) log 2
|J |(n+ 2) log

( e

log 2
|J |
)

and then

dV C

(
ty0∈Z

(
u|J|j=1 U

y0
j

))
≤
( e

(e− 1) log 2

)2

|Z||J |(n+ 2) log
( e|J |

log 2

)
log
( e|Z|

log 2

)
.

Thus, for H defined in (4.14), we have

dV C(H) ≤
( e

(e− 1) log 2

)2

|Z||J |(n+ 2) log
( e|J |

log 2

)
log
( e|Z|

log 2

)
.

The rest of the proof follows as in Corollary 4.6.

As we can see, the portion of infeasible SAA solutions (not necessarily optimal) still
decreases exponentially as the sample size N increases, although it is worth noting
that the rate now depends on |Z| as well.

4.1.3. Low-Dimensional Models. There has been a growing literature of ap-
plying and analyzing SAA in high-dimensional stochastic programming by leveraging
low-dimensional structures, e.g., sparsity, low-rankness [10, 34, 35]. Most of these
results focus on the optimization accuracy of SAA as in [47], which compute a sample
complexity of

(4.15) N = O

(
n

ε2
log

1

ε
+

1

ε2
log

1

δ

)
to guarantee

(4.16) PN
(
F (x?(ξ[N ])− inf

x∈X
F (x) > ε

)
≤ δ.

Typical results exploring low-dimensional structure aim to reduce the dependence of
(4.15) on n, especially for n � 1

ε . For example, the main result on sample com-
plexity in [35] trades a worse dependence on ε for a better dependence on n in high-
dimensional problems to obtain

(4.17) N = O

(
n0

ε3

(
log

n

ε

)1.5

+
1

ε2
log

1

δ

)
,
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through certain sparse modifications of SAA, where n0 is the number of nonzero
entries for the optimal solution of (1.1) with n0 � n. Compared to (4.15), the sample
complexity (4.17) depends polynomially on n0 and log n, instead of n which could
become prohibitively large in high-dimensional problems.

As we shall see, this type of trade-off in sample complexity is typical and it also
applies to the feasibility guarantee. In this section, we illustrate how low-dimensional
modeling assumptions can allow alternative feasibility bounds for two-stage stochastic
programming, especially in high-dimensional settings similar to (4.17). In particular,
we still consider (4.2), but focus on the setting where the optimal solution of (1.1)
(i.e., argmin F (x)) and the solution output of SAA (i.e., x?(ξ[N ])) are both sparse,

X ⊆ {x ∈ Rn : ‖x‖0 ≤ n0}

with n0 � n. As before, we do not require x?(ξ[N ]) to be optimal for SAA, but only
to be within the feasible domain of SAA with probability 1.

The sparsity of the solution is usually achieved by a regularization penalty which
includes convex penalty, i.e., `1-norm (lasso), `2-norm (ridge) or `p-norm (1 ≤ p ≤
+∞), and nonconvex penalty, i.e., folded concave penalty (see, e.g., [35]) or `0-norm
(subset selection with mixed-integer programming; see, e.g., [6]). While the level of
sparsity of x?(ξ[N ]) can be controlled by hyperparameters, we do not generally know
the true value of ‖argmin F (x)‖0. In practice, the choice of n0 is chosen either by
model selection techniques or fixed beforehand based on domain-specific knowledge.
To simplify the problem, we assume the choice of n0, the level of sparsity for the
candidate solutions, is preset. Ideally, we have ‖argmin F (x)‖0 ≤ n0 � n so that
the space of candidate solutions is rich enough to include the true sparse solution,
but still highly sparse compared to problem dimension n. To provide our alternative
feasibility bound, we first present the following lemma on the VC dimensions of sparse
linear classifiers.

Lemma 4.9. Let U = {{(y, z) ∈ Rd × R : yTx ≤ z}}x∈Rd,‖x‖0≤d0 . Then

dV C(U ∪ {Rd × R}) ≤ 2(d0 + 1) log2

(de+ e

d0 + 1

)
.

Proof. It follows from Lemma 1 in [1] that the VC dimension of

U ′ , {{(y, z) ∈ Rd × R : yTx+ z · c ≤ 0}}(x,c)∈Rd×R,‖x‖0+‖c‖0≤d0+1

satisfies dV C(U ′) ≤ 2(d0 + 1) log2

(
de+e
d0+1

)
. Now notice U ⊆ U ′, since we can rewrite

U = {{(y, z) ∈ Rd × R : yTx+ z · c ≤ 0}}x∈Rd,c=−1,‖x‖0≤d0 .

On the other hand, Rd × R ∈ U ′ by picking (x, c) = 0. Consequently,

dV C(U ∪ {Rd × R}) ≤ dV C(U ′) ≤ 2(d0 + 1) log2

(de+ e

d0 + 1

)
.

Now we present the alternative version of Corollary 4.7 under sparsity.

Corollary 4.10. Consider (4.2). Suppose X ⊆ {x ∈ Rn : ‖x‖0 ≤ n0} and
|J | < +∞, where

|J | = max
ξ∈Ξ
{ # of extreme rays for the cone {a : aTWξ ≥ 0}}.
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Then, let ξ[N ] = {ξ1, ..., ξN} be IID samples from P (consequently ξ[N ] ∼ PN ), and
x?(ξ[N ]) be the output of any algorithm that is guaranteed to be within the feasible
region of SAA. Then, if

(4.18) N ≥ 4

ε

(
dV C log

(
12

ε

)
+ log

(
2

δ

))
,

where

dV C =

(
e

(e− 1) log 2
|J |
(

2(n0 + 1) log2

(ne+ e

n0 + 1

))
· log

( e

log 2
· |J |

))
,

then we have PN (V (x?(ξ[N ])) > ε) ≤ δ for any 0 < δ, ε < 1. Equivalently, in terms of
convergence rate, we have

(4.19) PN (V (x?(ξ[N ])) > ε) ≤ 2 exp

(
−Nε

4

)(
12

ε

)dV C
.

Proof. As in Corollary 4.7, let Aξ be the set of nonequivalent extreme rays of

polyhedral cone {a : aTWξ ≥ 0}. Observe H , {Hx}x∈X ∪ {Ξ} defined in (3.1)
consists of

Hx = {ξ : aTTξx ≤ aThξ,∀a ∈ Aξ}.

For all ξ ∈ Ξ, since |Aξ| ≤ |J | < +∞, we can label the elements in Aξ by
{aξj}j∈[|Aξ|]. Then, define {(yξj , zξj)}j∈|J| as

yTξj =

{
aTξjTξ for 1 ≤ j ≤ |Aξ|,
0 for |Aξ| < j ≤ |J |,

zξj =

{
aTξjhξ for 1 ≤ j ≤ |Aξ|,
0 for |Aξ| < j ≤ |J |.

Then, we can redefine

(4.20) Hx =

|J|⋂
j=1

{ξ : yTξjx ≤ zξj}.

Since X ⊆ {x ∈ Rn : ‖x‖0 ≤ n0}, it follows from Lemmas 4.1, 4.4, and 4.9 that

dV C(H) ≤
(

e

(e− 1) log 2
|J |
(

2(n0 + 1) log2

(ne+ e

n0 + 1

))
· log

( e

log 2
· |J |

))
.

The rest of the proof follows from Theorem 3.2.

As we can see, by leveraging the sparsity of the solutions, the sample complexity
in Corollary 4.10 is improved to N = O

(
n0 logn

ε log 1
ε + 1

ε log 1
δ

)
versus the N =

O
(
n
ε log 1

ε + 1
ε log 1

δ

)
in Corollary 4.6, similar to the trade-off in high-dimensional

SAA between (4.15) and (4.17).
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4.2. Special Structures. In this section, we consider two special structures.
The first one is the chain-constrained domain considered in [37]. The second one is a
finite feasible domain considered in [15].

4.2.1. Chain-Constrained Domain. In previous sections, Theorem 3.2 is used
to analyze example (4.2) without using the chain-constrained structure as in [37].
However, it is worth noting that Theorem 3.2 still offers an explicit bound on the
feasibility of x?(ξ[N ]) based solely on the chain-constrained structure, although at a
slightly worse sample complexity than [37]. To see this, notice the VC dimension of
any chain-constrained domain can be directly bounded.

Lemma 4.11. If dom fξ has a chain-constrained domain of order m, then the VC
dimension of H = {Hx}x∈X ∪ {Ξ} in (3.1) satisfies

dV C(H) ≤ e

(e− 1) log 2
m log

(
e

log 2
·m
)

= O(m logm).

Proof. Recall Definition 4.5. Since dom fξ is a chain-constrained domain of order

m, we can write dom fξ =
⋂m
k=1 U

ξ
k , where each Uξk ∈ {U

ξ′

k }ξ′∈Ξ is a chain on X ⊆ Rn

indexed by ξ ∈ Rr. Now, for k ∈ [m], define W x
k , {ξ : x ∈ Uξk}, and we have from

(3.1) that Hx = {ξ : x ∈ domfξ} = {ξ : x ∈
⋂m
k=1 U

ξ
k} =

⋂m
k=1W

x
k . We show, for

each k ∈ [m], {W x
k }x∈X is a chain as well. Suppose this is not the case, then there

exists x1, x2 ∈ X such that W x1

k 6⊆ W x2

k and W x2

k 6⊆ W x1

k . This implies there exist
ξ1 ∈ W x1

k and ξ2 ∈ W x2

k such that ξ1 /∈ W x2

k and ξ2 /∈ W x1

k . This further implies

x1 ∈ Uξ1k , x2 /∈ Uξ1k and x2 ∈ Uξ2k , x1 /∈ Uξ2k . Consequently, neither Uξ1k ⊆ Uξ2k nor

Uξ2k ⊆ Uξ1k is true, contradicting the assumption that {Uξk}ξ∈Ξ is a chain. Thus,
{W x

k }x∈X is a chain on Ξ for each k ∈ [m]. It then follows trivially {W x
k }x∈X ∪ {Ξ}

is also a chain on Ξ for each k ∈ [m]. Consequently, H = {Hx}x∈X ∪ {Ξ} is a
chain-constrained domain of order m.

On the other hand, the VC dimensions of chains {Uω}ω∈I are at most 1 because
they cannot shatter any two points. In particular, if {x1, x2} are two points living on
the same space as {Uω}ω∈I , the shattering of {x1, x2} requires x1 ∈ Uω1 , x2 /∈ Uω1

and x2 ∈ Uω2 , x1 /∈ Uω2 for some Uω1 , Uω2 ∈ {Uω}ω∈I . If this were to happen, then
neither Uω1 ⊆ Uω2 nor Uω2 ⊆ Uω1 would be true, contradicting the definition of a
chain. Then, if {Uk}k∈[m] are the m chains consisting of a chain-constrained domain
U of order m where each U ∈ U is of the form U =

⋂m
k=1 Uk for some Uk ∈ Uk, it

again follows from Theorem 1.1 in [51] that

dV C(U) ≤ dV C(umk=1Uk) ≤ e

(e− 1) log 2
m log

( e

log 2
·m
)
,

where umk=1Uk ,

{⋂m
k=1 Uk : Uk ∈ Uk, k ∈ [m]

}
. The result follows now from the

fact that H is a chain of order m.

Lemma 4.11 combined with Theorem 3.2 can provide an explicit sample complexity
for feasibility.

Corollary 4.12. If dom fξ has a chain-constrained domain of order m, then
Theorem 3.2 guarantees that for

(4.21) N ≥ 4

ε

(( e

(e− 1) log 2
m log

( e

log 2
·m
))

log
(12

ε

)
+ log

(2

δ

))
,
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we have

PN (V (x?(ξ[N ])) > ε) ≤ δ

for any 0 < δ, ε < 1.

Corollary 4.12 provides a sample complexity O(mε logm log( 1
ε ) + 1

ε log( 1
δ )) for

chain-constrained domains, or O(mε logm + 1
ε log( 1

δ )) using the PAC bounds from
[23, 48], while Scenario 1 in [37] provides an O(mε + 1

ε log( 1
δ )) bound according to

(3.12). As we can see, the more refined analysis on the chain-constrained structure in
[37] leads to a better rate over Corollary 4.12 by log factors. However, the generality
offered by Theorem 3.2 is still noteworthy, since its applicability in most situations
does not hinge on the chain-constrained domain.

4.2.2. Finite Feasible Region. In this subsection, we apply Theorem 3.2 to
the case where the decision set X is finite.

Corollary 4.13. Suppose |X | < +∞ and let ξ[N ] = {ξ1, ..., ξN} be IID samples
from P (consequently ξ[N ] ∼ PN ). Then, if

(4.22) N ≥ 4

ε

(
log2(|X |+ 1) · log

(12

ε

)
+ log

(2

δ

))
,

we have

PN (V (x?(ξ[N ])) > ε) ≤ δ

for any 0 < δ, ε < 1.

Proof. Let H , {Hx}x∈X ∪{Ξ} be the class of subsets defined in (3.1). It follows
that |H| ≤ |X | + 1 < +∞. It is known that if |H| < +∞, then dV C(H) ≤ log2 |H|
(by definition of the VC dimension or see [4]). The result follows from Theorem 3.2.

Note that since the VC dimension of a finite hypothesis class is bounded by the
logarithm of its cardinality, we get the results in Corollary 4.13 for free. In Section 4
of [15], the case of finite feasible region X is also discussed, with a slightly different
focus. In particular, with assumptions on the moment generating functions, [15]
proves the exponential convergence of a δ-optimal set towards an ε-optimal set using
large deviations (LD) theory. The rate of convergence also depends on constants from
the LD analysis. However, [15] also offers a more direct analysis on the feasibility
of SAA solution x?(ξ[N ]) when |X | < +∞ which does not rely on distributional
assumptions of f(ξ, x). To be specific, Lemma 9 of [15] states

(4.23) PN (F̂N (x) < +∞) ≤ (1− η)N for x ∈ X Infea,

where X Infea = {x : x ∈ X and V (x) > 0} and η = min{V (x) : x ∈ X Infea}.
Building on (4.23), we can deduce the following direct bound regarding x?(ξ[N ]):

PN (V (x?(ξ[N ])) > η) = PN (x?(ξ[N ]) ∈ X Infea)

≤ PN
( ⋃
x∈X Infea

{F̂N (x) < +∞}
)

≤
∑

x∈X Infea
PN (F̂N (x) < +∞) ≤ |X Infea|(1− η)N ,(4.24)
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which leads to an O( 1
η log(|X |) + 1

η log( 1
β )) sample complexity, comparable to the

O( 1
η log( 1

η ) log2(|X |) + 1
η log( 1

β )) complexity in (4.22). Moreover, if we utilize the

PAC bound from Remark 3.3, the bound in (4.22) could be improved to

O(
1

η
log2(|X |) +

1

η
log(

1

β
))

which is of the same order as (4.24).

Appendix A. A Verifiable Example. In this section, we validate the result
of Corollary 4.7 on an artificial example that is specially constructed so that the opti-
mal SAA solution x?(ξ[N ]) and its violation probability V (x?(ξ[N ])) can be calculated
analytically. This then allows us to directly check the validity of our bound in Corol-
lary 4.7. Note that bounds obtained from computational learning theory and the VC
dimension can be crude for small or midsize problems, and they become more inter-
esting when N,n are large and ε is tiny. However, in the latter large-scale setting,
it can be difficult to verify experimentally the quality of the bounds since an accu-
rate estimation of the violation probability is costly or even infeasible. To overcome
this difficulty, we build this example that exhibits a closed form so that we can di-
rectly check our bound’s validity for any combination of N,n (arbitrarily large), and
ε (arbitrarily small).

Our example is a modification of the two-stage resource planning problem in [15]
(see also [38, 39]). The example has the form

(A.1) inf
x≥0,x∈Rn

F (x) , cTx+ E[f(ξ, x)],

where c > 0 ∈ Rn and

f(ξ, x) , inf
y∈Rn

qT y

s.t. y ≤ x− ξ,
y ≥ 0,

(A.2)

where q > 0 ∈ Rn and ξ ∈ Rn with each entry [ξ]i independently and uniformly
distributed on [0, 1]. We summarize our results in the following corollary.

Corollary A.1. Let ξ[N ] = {ξ1, ..., ξN} be IID samples from P (consequently
ξ[N ] ∼ PN ). Then the optimal SAA solution of the example in (A.1) satisfies

(A.3) PN (V (x?(ξ[N ]) > ε) =

n−1∑
i=0

(N log( 1
1−ε ))

i

i!
e−N log( 1

1−ε ).

Moreover, compared with the bound in Corollary 4.7, we have

(A.4)

n−1∑
k=0

(N log( 1
1−ε ))

k

k!
e−N log( 1

1−ε ) ≤ 2 exp

(
−Nε

4

)(
12

ε

)dV C
for any integer N,n ≥ 1 and ε ∈ (0, 1).

Proof. It is straightforward to check that the optimal solution of the SAA problem
satisfies

(A.5) [x?(ξ[N ])]i = max
j∈[N ]

[ξj ]i,
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where i ∈ [n]. Moreover, given 0 ≤ x ≤ 1 ∈ Rn, since each entry of ξ is independently
and uniformly distributed on [0, 1], we have

V (x) = P(∪i∈[n] [ξ]i > [x]i)

= 1− P(∩i∈[n] [ξ]i ≤ [x]i)

= 1−
∏
i∈[n]

[x]i.(A.6)

On the other hand, it is known that if U is a uniform random variable on [0, 1], then
− log(U) ∼ exp(1) follows an exponential distribution with parameter 1. Moreover,
it is known that the minimum of a series of independent exponential distributions
{Vj ∼ exp(λj)}j∈[N ] follows another exponential distribution exp(

∑
j∈[N ] λj). Thus,

if {Uj}j∈[N ] is a series of independent and uniform random variables on [0, 1], then

(A.7) − log(max
j∈[N ]

Uj) = min
j∈[N ]

− logUj ∼ exp(N)

follows an exponential distribution with parameter N . Finally, it is also known that
if we have n independent exponential random variables {Wi}i∈[n] with parameter N ,
then their sum,

(A.8)
∑
i∈[n]

Wi ∼ gamma(n,N),

follows a gamma distribution with parameter (n,N) and cumulative distribution func-
tion,

(A.9) F (x;n,N) = 1−
n−1∑
i=0

(Nx)i

i!
e−Nx.

Now, it follows from (A.5) and (A.6) that

PN (V (x?(ξ[N ])) > ε) = PN (1−
∏
i∈[n]

max
j∈[N ]

[ξj ]i > ε)

= PN
( ∑
i∈[n]

− log(max
j∈[N ]

[ξj ]) > log
( 1

1− ε

))

=

n−1∑
i=0

(N log( 1
1−ε ))

i

i!
e−N log( 1

1−ε ).

This proves (A.3). To prove (A.4), note that since log( 1
1−ε ) > ε for ε ∈ (0, 1), it

follows from (A.7), (A.8), and (A.9) that

PN (V (x?(ξ[N ])) > ε) = PN
( ∑
i∈[n]

− log(max
j∈[N ]

[ξj ]) > log
( 1

1− ε

))
≤ PN

( ∑
i∈[n]

− log(max
j∈[N ]

[ξj ]) > ε
)

= 1− F (ε;n,N)

=

n−1∑
i=0

(Nε)i

i!
e−Nε.
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Now, to prove (A.4), it suffices to prove

2 exp

(
−Nε

4

)(
12

ε

)dV C
≥
n−1∑
i=0

(Nε)i

i!
e−Nε.

First note from the formulations (A.2) and (4.6) that dV C ≥ n. Then, if we define
θ , Nε, it suffices to show

(A.10) 2

(
12

ε

)n
≥ h(θ;n) ,

n−1∑
i=0

(θ)i

i!
e−

3
4 θ

for any integer n ≥ 1, θ ≥ 0, and ε ∈ (0, 1). We prove (A.10) by contradiction. First
note (A.10) is trivially true when n = 1. Suppose (A.10) is not true, then there exists
n ≥ 2 and ε ∈ (0, 1) such that

(A.11) sup
θ≥0

h(θ;n) > 2

(
12

ε

)n
However, when θ ∈ [0, 1], it is clear that

sup
θ≥0

h(θ;n) ≤
n−1∑
i=0

1

i!
e0 ≤ e < 2

(
12

ε

)
≤ 2

(
12

ε

)n
.

On the other hand, when θ → ∞, the exponential decay dominates and we have
limθ→∞ h(θ;n)→ 0. Consequently, there must exists some θu such that

sup
θ≥θu

h(θ;n) ≤ 2

(
12

ε

)n
.

Combined with (A.11), the above inequalities imply sup1≤θ≤θu h(θ;n) > 2
(

12
ε

)n
. By

the extreme value theorem, there exists a local maximum θ? ∈ [1, θu] such that

(A.12) h(θ?;n) > 2

(
12

ε

)n
,

and h′(θ?;n) = 0. Solving for h′(θ?;n) = 0, we obtain that

n−2∑
i=0

(θ?)i

i!
=

3(θ?)n−1

(n− 1)!
and h(θ?;n) =

4(θ?)n−1

(n− 1)!
e−

3
4 θ
?

.

However, it can be checked that, for any integer m ≥ 1,

max
θ≥0

4θm

m!
e−

3
4 θ = 4

(4

3

)mmm

m!
e−m.

Then, using Stirling’s formula (see [17]) we have m! ≥ mme−m
√

2πm and

(A.13) max
θ≥0

4θm

m!
e−

3
4 θ ≤ 2

(
4

3

)m
< 2

(
12

ε

)m
.

Now, using the result in (A.13), we have

h(θ?;n) ≤ max
θ≥0

4θn−1

(n− 1)!
e−

3
4 θ < 2

(
12

ε

)n−1

< 2

(
12

ε

)n
which contradicts (A.12). This concludes the proof.
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Appendix B. Technical Discussion on Measurability. As discussed in [30]
or [46], an extended real valued function f(ξ(ω), x) : Ω × X → R ∪ {∞} defined on
Ω × X equipped with a P-complete measure and σ-algebra F ⊗ B, where X is a
Polish space (a complete, separable, metric space) is a random lower semicontinuous
function if and only if

1. f is F ⊗B-measurable;
2. for every ω ∈ Ω, f(ξ(ω), ·) is lower semicontinuous (i.e., lim infx→x0

f(ξ, x) ≥
f(ξ, x0) for all x0 ∈ X ),

which is the condition specified in the introduction following (1.1). Note that when
f : X → R, a notable class of random lower semicontinuous functions is given by the
Carathéodory functions (also a standard setup in SAA literature [46]), which simply
requires f ’s continuity in x and measurability in ξ. However, for f : X → R ∪ {∞},
lower semicontinuity in x and measurability in ξ are not enough for f to be random
lower semicontinuous. One must also require f to be F ⊗B-measurable [46, 30].

Given some N ≥ 1 and the random lower semicontinuous function f , the sum of
lower semicontinuous F̂N is also random lower semicontinuous since the sum is always
well-defined (there is no indeterminate form −∞ +∞). Consequently, as shown in
Theorems 7.36 and 7.37 of [46], the optimal solution x?(ξ[N ]) is measurable. On the
other hand, fixing any x0 ∈ X , by Fatou’s lemma

lim inf
x→x0

V (x) = lim inf
x→x0

E1{f(ξ, x) =∞} ≥ E lim inf
x→x0

1{f(ξ, x) =∞}

≥ E1{f(ξ, x0) =∞} = V (x0),

where the last inequality follows from the lower semicontinuity of 1{f(ξ, ·) =∞} due
to the lower semicontinuity of f(ξ, ·) and the nonnegativity of the indicator function.
Thus, V (·) is a lower semicontinuous thus B-measurable function on X . It then
follows V (x?(ξ[N ])) is F-measurable, suggesting (3.4) is well-defined.

For (3.3), we first note that for any ε > 0, the set {supx∈dom F̂N
V (x) > ε} is a.e.

equivalent to
{

supx∈X
(
V (x) ·

∏N
i=1 1{f(ξi, x) <∞}

)
> ε
}

. It follows from the F⊗B
measurability of f and the fact that the product of nonnegative lower semicontinuous
functions (i.e., 1{f(ξ, ·) =∞}) is also lower semicontinuous, that

(B.1) V (x) ·
N∏
i=1

1{f(ξi, x) <∞}

is a random lower semicontinuous function. Thus, fixing any x ∈ X , the set

{(
V (x) ·

N∏
i=1

1{f(ξi, x) <∞}
)
> ε
}

is P-measurable. Now, letting {xj}j∈N be a countable dense subset of X , the lower
semicontinuity of (B.1) implies

{
sup
x∈X

(
V (x) ·

N∏
i=1

1{f(ξi, x) <∞}
)
> ε
}

is a.e. equivalent to

{
sup
j∈N

(
V (xj) ·

N∏
i=1

1{f(ξi, xj) <∞}
)
> ε
}

=
⋃
j∈N

{(
V (xj) ·

N∏
i=1

1{f(ξi, xj) <∞}
)
> ε
}
,
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which is P-measurable. The completeness of P now suggests the measurability of
(3.3).
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