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a b s t r a c t 

Spherical harmonics, one of the most widely used basis functions for shape description, rely heavily 

on a spherical parameterization of the given surface. Additionally, spherical harmonics based 3D mod- 

eling works well only for closed surfaces, while many anatomical structures are hemisphere-like open 

objects. Therefore, it is more natural to have a hemisphere-based approach for their shape description. 

In this work, we propose a novel framework for the shape description of open and closed hemisphere- 

like surfaces. We first develop two hemispherical area-preserving parameterization methods for simply- 

connected open and closed surfaces respectively, and then utilize the hemispherical harmonics basis func- 

tions to yield an accurate representation of hemisphere-like anatomical surfaces. We assess the perfor- 

mance of the proposed framework for the shape description of human head. In particular, 60 hemispher- 

ical anatomical surfaces (20 closed brain surfaces, 20 closed skull surfaces, and 20 open scalp surfaces) 

constructed from human head MRI scans are utilized for this purpose. For the three types of surfaces, 

our framework achieves a significant improvement in the surface reconstruction accuracy by 75%, 80% 

and 50% respectively when compared to the spherical harmonics based approach. This suggests that our 

new shape description framework can facilitate the biomedical analysis of hemisphere-like anatomical 

objects. 

© 2020 Elsevier B.V. All rights reserved. 

1. Introduction 

An accurate representation of a three-dimensional (3D) ge- 

ometry is crucial for structural analysis in many biomedical ap- 

plications such as molecular recognition [1] , detection of neu- 

rological disability [2,3] , dipole localization accuracy improve- 

ment [4,5] and human body anatomical structure description [6] . 

Spherical harmonics (SH), a set of basis functions defined on the 

unit sphere S 2 , are widely used for shape modeling and analy- 

sis, including the development of rotation independent represen- 

tations [7] and Shannon-type entropy-based reconstruction meth- 

ods [8] , the large-scale modeling of parametric surfaces [9] , the 

modeling of complex morphological structures from continuous 

surface maps [10] , the statistical analysis of brain structures [11,12] , 

and the development of surface filters [13–16] . Because of their 

promising mathematical properties, SH have also been commonly 

applied in computer graphics for the modeling of bidirectional re- 
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flectance distribution functions (BRDFs) [17] , image-based render- 

ing and relighting [18] , BRDF shading [19] , distant lighting [20,21] , 

lighting-invariant object recognition [22] and irradiance environ- 

ment maps [23] . 

However, in medical shape analysis, there exists a wide range 

of hemisphere-like anatomical structures such as brain, skull and 

scalp, which are naturally parameterized using the upper hemi- 

sphere S 2 
z≥0 only [24] . The representation of such hemispherical 

objects using basis functions defined over the full spherical domain 

S 2 introduces discontinuities at the boundary of the hemisphere 

and requires a large number of coefficients [25] . Also, the tradi- 

tional SH methods work efficiently only for closed surfaces as open 

surfaces are not topologically equivalent to the sphere [26,27] . 

However, many hemisphere-like anatomical structures such as ven- 

tricles and atriums are open objects, for which the conventional 

closed shape descriptions introduce errors in their 3D reconstruc- 

tion [28] . Therefore, it is more preferable to have a shape descrip- 

tion framework that works for both open and closed hemispherical 

anatomical structures. 

In [25] , Gautron et al. developed the hemispherical harmon- 

ics (HSH) basis functions, which are derived from SH and defined 

https://doi.org/10.1016/j.sigpro.2020.107867 
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on the upper unit hemisphere S 2 
z≥0 . In recent years, HSH have 

been applied to surface reconstruction [28] , brain source localiza- 

tion [24] , Helmholtz bidirectional reflectance basis [29] and detec- 

tion of morphological changes [30] . 

A standard approach for 3D shape description via basis func- 

tions is to make use of surface parameterizations [31] , which re- 

fer to the process of mapping a complicated surface in R 3 onto 

a standardized parameter domain. It is well-known that in gen- 

eral any surface parameterization unavoidably induces distortions 

in either angle or area, or both [32,33] . A major class of sur- 

face parameterization methods are the conformal parameteriza- 

tions, which aim at preserving the angles and hence the lo- 

cal geometry of the surfaces [34–37] . In particular, it is com- 

mon to parameterize genus-0 closed surfaces onto the unit 

sphere [38–43] , and simply-connected open surfaces onto the unit 

disk [44–48] . However, as mentioned in [31] , it is more desir- 

able to have a uniform parameterization for 3D surface reconstruc- 

tion. While the above-mentioned conformal parameterization ap- 

proaches are angle-preserving, they usually produce a large area 

distortion, making the parameterization results highly nonuniform 

and thereby hindering the surface reconstruction. In recent years, 

more efforts have been devoted to the development of area- 

preserving parameterization methods using Lie advection [49] , 

optimal mass transport (OMT) [50–53] , density-equalizing map 

(DEM) [54,55] , and stretch energy minimization (SEM) [56] . How- 

ever, the target parameter domains of these approaches are ei- 

ther the unit sphere or the unit disk. To utilize HSH for 3D shape 

description, it is necessary to have a method that parameterizes 

any given (open or closed) hemisphere-like surfaces onto the unit 

hemisphere. 

In this work, we propose a novel framework for the surface 

description of both open and closed hemisphere-like anatomical 

surfaces via hemispherical area-preserving parameterizations and 

the HSH basis functions. We first develop two hemispherical area- 

preserving parameterization methods for simply-connected open 

and closed surfaces (which are topologically equivalent to the open 

hemisphere and the closed hemisphere) respectively, and then uti- 

lize the parameterization methods and the HSH basis functions to 

achieve an effective surface description. We apply the proposed 

framework for the reconstruction of closed brain surfaces, closed 

skull surfaces and open scalp surfaces, and compare our approach 

with the traditional SH approaches in terms of the reconstruction 

accuracy. 

The rest of the paper is organized as follows. The anatomical 

dataset used in our work is introduced in Section 2 . The back- 

ground of the SH and HSH basis functions is provided in Section 3 . 

In Section 4 , we describe our proposed framework for open and 

closed anatomical surface reconstruction via hemispherical area- 

preserving parameterization. Experimental results are presented in 

Section 5 . In Section 6 , we discuss the significance of the results 

and possible future works. We conclude the paper in Section 7 . 

2. Dataset 

60 hemispherical anatomical surfaces (20 closed brain surfaces, 

20 closed skull surfaces, and 20 open scalp surfaces) are con- 

structed using MRI scans from the Open Access Series of Imaging 

Studies (OASIS) human head MRI dataset [57] (see Fig. 1 for the 

procedure), with the MATLAB FieldTrip toolbox utilized [58] . The 

voxels of the MRI scans are first segmented into the three differ- 

ent tissues (brain, skull and scalp) using the ft_volumesegment 

function, which constructs a binary mask of each tissue type such 

that the voxels that belong to the tissue type are represented by 

1 and all other voxels by 0 (see Fig. 1 , second column). Then, we 

use the ft_prepare_mesh function to create surfaces based on 

the segmentation results of three tissue types (see Fig. 1 , third col- 

umn). The output surfaces are in the form of triangular meshes, 

each consisting of approximately 1500 vertices. All three types of 

open and closed surfaces are desired to be parameterized onto the 

unit hemisphere for achieving the HSH shape description. 

3. Background 

In this section, we introduce the traditional SH basis functions, 

followed by the HSH basis functions. 

3.1. Spherical harmonics (SH) 

Let � = [0 , π ] × [ −π , π ] be the space of spherical coordinates 

for S 2 , where [0 , π ] is the range for the elevation angle θ and 

[ −π , π ] is the range for the azimuth angle φ. The real-valued SH 

functions Y m 
n : � → R of order n and degree m are defined as fol- 

lows [59] : 

Y m 
n (θ , φ) = 

⎧ 

⎨ 

⎩ 

(−1) | m | √ 
2 K m 

n sin (| m | φ) P | m | 
n ( cos θ ) : m < 0 , 

(−1) | m | √ 
2 K m 

n cos (mφ) P m 
n ( cos θ ) : m > 0 , 

K 0 n P 
0 
n ( cos θ ) : m = 0 , 

(1) 

Fig. 1. A flow chart illustrating the process of constructing brain, skull and scalp surface from human head MRI scans. Subsequently, open (skull) and closed (brain and 

scalp) object surfaces are parameterized onto the unit hemisphere for the HSH shape description. 
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where K m 
n is a normalization constant given by 

K m 
n = 

√ 

(2 n + 1)(n − | m | )! 
4 π (n + | m | )! , (2) 

and P m 
n are the associated Legendre polynomials (ALPs): 

P m 
n (x ) = 

(−1) m 

2 n n ! 
(1 − x 2 ) m/ 2 d 

n + m 

d x n + m 
(x 2 − 1) n . (3) 

The ALPs for the same degree m and different orders n are or- 

thogonal over the entire elevation range θ ∈ [0 , π ] . The orthogo- 

nality relation is given as 
∫ 1 

−1 
P m 
n (x ) P 

m 
n ′ 

(x ) dx = 
2 ( n + m ) ! 

( 2 n + 1 ) ( n − m ) ! 
δnn ′ , (4) 

where x = cos θ ∈ [ −1 , 1] , and δ is the Kronecker delta. Under the 

assumption of finite order, n takes value from 0 to N, where N is 

the prescribed maximum order, and the degree m varies from −n 

to n . Thus, there are in total (N + 1) 2 distinct orthonormal sets of 

basis functions. 

3.2. Hemispherical harmonics (HSH) 

The HSH basis functions are derived from SH for hemisphere- 

like objects, for which half of the sphere is unused. As an adapted 

version of the SH basis functions, the HSH basis functions are for- 

mulated by suitably shifting the ALPs such that they remain or- 

thonormal but with a different normalization constant. The orthog- 

onality relation in Eq. (4) is defined for a new range of elevation 

angles corresponding to the upper unit hemisphere S 2 
z≥0 . 

If the polynomials P m 
n (x ) are orthogonal over [ a, b] , with w (x ) 

as a weighting function, then the polynomials P m 
n (q 1 x + q 2 ) with 

q 1 � = 0 are orthogonal over an interval 
[ 
a −q 2 
q 1 

, 
b−q 2 
q 1 

] 
, with w (q 1 x + 

q 2 ) as a weighting function and q 1 � = 0 [60] . For a sector defined 

by θ ∈ [ θ1 , θ2 ] , q 1 and q 2 can be obtained by solving the following 

system of equations: 
{
q 1 cos (θ2 ) + q 2 = a, 

q 1 cos (θ1 ) + q 2 = b. 
(5) 

In particular, for S 2 z≥0 , the elevation angle takes value in [0 , 
π
2 ] . 

Solutions to Eq. (5) for this new elevation range are utilized to ex- 

press the shifted ALPs as ˜ P m 
n (x ) = P m 

n (2 x − 1) . The resultant shifted 

ALPs are now orthogonal over the interval [0 , 1] , with the orthog- 

onality relation given by 
∫ 1 

0 

˜ P m 
n (x ) ̃

 P m 
n ′ 

(x ) dx = 
( n + m ) ! 

( 2 n + 1 ) ( n − m ) ! 
δnn ′ . (6) 

Note that the ALPs are utilized for constructing the SH basis 

functions over the unit sphere. Analogously, the shifted ALPs are 

utilized herein for constructing the HSH basis functions over the 

upper unit hemisphere S 2 
z≥0 . The real-valued HSH functions H m 

n : 

[0 , π/ 2] × [ −π , π ] → R are defined as 

H 
m 
n (θ , φ) = 

⎧ 

⎪ ⎨ 

⎪ ⎩ 

(−1) | m | √ 
2 ̃  K m 

n sin (| m | φ) ̃  P 
| m | 
n ( cos θ ) : m < 0 , 

(−1) | m | √ 
2 ̃  K m 

n cos (mφ) ̃  P m 
n ( cos θ ) : m > 0 , 

˜ K 0 n ̃
 P 0 n ( cos θ ) : m = 0 , 

(7) 

where ˜ K m 
n is a normalization constant given by 

˜ K m 
n = 

√ 

(2 n + 1)(n − | m | )! 
2 π (n + | m | )! . (8) 

Similar to the SH basis functions, the HSH functions also form 

an orthonormal set of basis functions. The 3D plots of the HSH ba- 

sis functions up to the second order ( N = 2 ) are shown in Fig. 2 . 

The distance between each surface point and origin indicates the 

magnitude of H m 
n , and the color represents the actual value of H m 

n . 

The HSH basis functions can be used for the surface reconstruc- 

tion of objects that are effectively parameterized onto S 2 
z≥0 . Given 

the hemispherical coordinates (θ , φ) of an object surface, we can 

reconstruct the surface using an appropriate number of HSH ba- 

sis functions H m 
n , with n ∈ [0 , N] and m ∈ [ −n, n ] . For an error free 

representation of any object surface, the number of spatial sam- 

pling points k should be at least (N + 1) 2 [61] , which implies that 

N ≤
√ 
k − 1 . In our work, N is chosen to be in the range of [1,25]. 

4. Proposed framework 

In this section, we present a novel framework for efficient sur- 

face description via hemispherical area-preserving parameteriza- 

tion. To utilize the HSH basis functions, it is necessary to associate 

the hemispherical coordinates (θ , φ) with every point of the object 

surface. In other words, we need to establish a correspondence be- 

tween the given surface and the upper unit hemisphere S 2 
z≥0 . To 

achieve this, we propose two methods for computing the hemi- 

spherical area-preserving parameterizations for closed and open 

surfaces. The goal of the area-preserving parameterizations is to 

preserve the area of every triangular face as much as possible. 

Every object region is mapped to a region of proportional area 

in the parameter space, thereby yielding a homogeneous param- 

eter distribution for the hemispherical shape description. The two 

proposed parameterization methods are outlined in Fig. 3 . In both 

methods, the overall strategy is to flatten the input surface for re- 

ducing the 3D mapping problem to a 2D mapping problem, which 

is much easier to solve. The inverse stereographic projection is uti- 

lized as it provides a simple way for projecting a planar shape 

lying in the unit disk onto the upper unit hemisphere. Moreover, 

since the inverse stereographic projection has an explicit formula, 

we can easily take the area distortion induced by it into consid- 

eration when solving the 2D mapping problem. This ensures that 

we can obtain an area-preserving parameterization onto the hemi- 

sphere without dealing with a 3D mapping problem directly. 

4.1. Hemispherical area-preserving parameterization for closed 

surfaces 

Let S c be a genus-0 closed surface discretized in the form of a 

triangulated mesh (V c , F c ) , where V c = { v 1 , v 2 , . . . , v k } is the vertex 
set and F c is the face set (see Fig. 4 (a)). We consider parameteriz- 

ing S c onto the closed unit hemisphere. 

4.1.1. Choosing four base vertices 

Note that a genus-0 closed surface is topologically equivalent 

to a closed hemisphere with the bottom plane included. Therefore, 

some points on the object surface will be mapped to the bottom 

plane of the hemisphere under a hemispherical parameterization 

in general. However, as the HSH basis functions are only defined 

on the curved part S 2 z≥0 , we need to ensure that no vertices will be 

mapped to the bottom plane. To achieve this, we start by choosing 

a pair of triangular faces T 1 = [ v p , v q , v r ] , T 2 = [ v p , v q , v s ] ∈ F c that 

share a common edge [ v p , v q ] at the bottommost part of S c . Our 

goal is to map the four vertices v p , v q , v r , v s ∈ V c onto the equa- 

tor z = 0 of the unit hemisphere, and all other vertices onto the 

curved hemispherical surface. The bottom part of the hemisphere 

will then consist of the pair of triangular faces T 1 , T 2 only. This spe- 

cific setup ensures that none of the vertices lies at the bottom part 

of the closed unit hemisphere and hence the HSH basis functions 

are well-defined everywhere. 

For the case of spherical parameterization, it was shown 

in [42] that choosing a triangular face as regular as possible is ad- 

vantageous for getting a good parameterization onto a planar do- 

main. For our case of hemispherical parameterization, we adopt 

3 
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Fig. 2. The HSH basis functions up to the second order. (a) n = 0 . (b)-(d) n = 1 . (e)-(i) n = 2 . The distance between each surface point and origin indicates the magnitude of 

H m n , and the color represents the actual value of H 
m 
n . 

Fig. 3. The procedure of the proposed hemispherical area-preserving parameterization method for open and closed surfaces. 

Fig. 4. An illustration of the hemispherical area-preserving parameterization for closed surfaces. (a) An input closed surface. (b) The initial flattening map obtained using 

the stretch energy minimization (SEM) method [56] combined with the quasi-conformal composition [42] . (c) The 2D optimal mass transport mapping result. (d) The final 

hemispherical parameterization result obtained using the inverse stereographic projection. 

4 



A. Giri, G.P.T. Choi and L. Kumar Signal Processing 180 (2021) 107867 

a similar strategy and choose the four vertices v p , v q , v r , v s at 

the bottommost part of S c that yield a quadrilateral (formed by 

T 1 , T 2 ) that is as close to a square as possible. More specifically, 

we first sort all edges according to the distance between their 

midpoints and the center of the bottom part of the surface (de- 

note the sorted edges by e 1 , e 2 , . . . , with e 1 being the one clos- 

est to the center). Starting from i = 1 , we consider the two tri- 

angles [ v p i , v q i , v r i ] , [ v p i , v q i , v s i ] with e i being their common edge. 

We then evaluate the regularity of the quadrilateral formed by the 

four vertices v p i , v q i , v r i , v s i by considering the ratio of the maxi- 

mum side length to the minimum side length of the quadrilateral 

(denoted by r side ) and the ratio of the length of the longer diagonal 

to the length of the shorter diagonal of the quadrilateral (denoted 

by r diagonal ). If both r side and r diagonal are less than certain thresh- 

olds (which we set as 1.2 and 1.5 in practice), the four vertices are 

chosen as the base vertices. If not, we repeat the above process for 

the next e i and so on. This automatic process ensures that the four 

vertices chosen are close to the center of the bottom part of the 

surface and yield a quadrilateral as regular as possible. 

4.1.2. Initial flattening map 

Consider S c with the two chosen triangles T 1 , T 2 punctured. 

The punctured surface is topologically equivalent to the plane 

and hence we can construct an initial flattening map of it onto 

a planar quadrilateral domain with the four corners correspond- 

ing to v p , v q , v r , v s . To reduce the area distortion of the flattening 

procedure, we first apply the stretch energy minimization (SEM) 

method [56] , which looks for a map g : S c \ { T 1 , T 2 } → D ⊂ C that 

minimizes the stretch energy 

E SEM = 
1 

2 
g ∗L g g , (9) 

where g = [ g(v 1 ) , g(v 2 ) , . . . , g(v d )] 
t , g ∗ is the conjugate transpose 

of g , and L g is the following modified Laplacian matrix: 

(L g ) i j = 

{ 
−w i j if [ v i , v j ] is an edge in S c , ∑ 

l � = i w il if j = i, 

0 otherwise, 
(10) 

with 

w i j = 
1 

4 

∑ 

[ v i , v j , v k ] ∈F c 

(g(v i ) − g(v k )) (g(v j ) − g(v k )) 

Area ([ v i , v j , v k ]) 
. (11) 

In particular, the four vertices v p , v q , v r , v s are mapped onto 

the unit circle. To reduce the occurrence of highly skinny trian- 

gles in the mapping result, we compute the Beltrami coefficient μ
of g, which is a complex-valued function that encodes the quasi- 

conformal distortion of the mapping [42] . The modulus of μ re- 

flects the angular distortion of the mapping. In particular, a smaller 

| μ| indicates a smaller angle distortion. We then use the idea of 

quasi-conformal composition [42] and reconstruct a map with Bel- 

trami coefficient λμ, where λ ∈ [0 , 1] is a balancing factor for con- 

trolling the conformality. This results in an initial flattening map 

˜ g : S c \ { T 1 , T 2 } → R 2 with both area and angle distortion reduced 

(see Fig. 4 (b)). 

4.1.3. Optimal mass transport map 

After obtaining the initial flattening map ˜ g , we compute a 

hemispherical area-preserving map using the optimal mass trans- 

port (OMT) mapping method. The OMT map requires setting the 

source and target area measures. As for the source measure, since 

the target domain is the unit hemisphere, it is necessary to take 

the conformal factor of the stereographic projection into consider- 

ation. Therefore, we set the source measure σ as follows [51] : 

σ = 
4 dx dy 

(1 + x 2 + y 2 ) 2 
, (12) 

where (x, y ) are the Cartesian coordinates of the plane. Since an 

area-preserving map is desired, we set the target measure τ at ev- 

ery vertex to be the normalized vertex area of S c [51] : 

τ (v i ) = 

∑ k 
i =1 4 A ̃ g (v i ) / (1 + | ̃  g (v i ) | 2 ) 

∑ k 
i =1 A v i 

A v i , (13) 

where 

A v i = 
1 

3 

∑ 

T ∈N (v i ) 

Area (T ) (14) 

is the vertex area of v i given by the area sum of all triangles T in 

the one-ring neighborhood N (v i ) of v i divided by 3, and A ̃ g (v i ) is 

the vertex area of ˜ g (v i ) defined analogously. Here, the normaliza- 

tion factor 

∑ k 
i =1 4 A ̃ g (v i ) 

/ (1+ | ̃ g (v i ) | 2 ) 
∑ k 

i =1 A v i 

is used to appropriately rescale A v i 

so that the target measure is independent of the size of the input 

surface S c . This gives us an OMT map h : ˜ g (S c \ { T 1 , T 2 } ) → R 2 with 

the source measure σ and target measure τ (see Fig. 4 (c)). 

4.1.4. Inverse stereographic projection 

By applying the inverse stereographic projection 

ϕ 
−1 (x, y ) = 

(
2 x 

1 + x 2 + y 2 
, 

2 y 

1 + x 2 + y 2 
, 
−1 + x 2 + y 2 

1 + x 2 + y 2 

)
, (15) 

we obtain the composition map f = ϕ −1 ◦ h ◦ ˜ g . Since the OMT 

map h has taken the conformal factor of the stereographic pro- 

jection into consideration, the mapping f is an area-preserving 

map of S c \ { T 1 , T 2 } onto the unit hemisphere S 2 
z≥0 . Finally, the two 

punctured triangles T 1 , T 2 can be added back to the hemispherical 

parameterization result, thereby producing a closed hemispherical 

parameterization for S c (see Fig. 4 (d)). In particular, only the four 

vertices v p , v q , v r , v s lie on the equator z = 0 , and all other vertices 

lie on S 2 z> 0 . 

4.2. Hemispherical area-preserving parameterization for open 

surfaces 

Let S o be a simply-connected open surface discretized in the 

form of a triangulated mesh (V o , F o ) , where V o is the vertex set 

and F o is the face set (see Fig. 5 (a)). In this case, our goal is to 

compute an area-preserving map of S o onto the unit hemisphere 

S 2 
z≥0 with a hollow bottom part. 

4.2.1. Initial flattening map 

Since S o is an open surface, we can directly compute an ini- 

tial flattening map of it onto a planar domain without puncturing 

any triangles. Here, we apply the disk conformal parameterization 

method [46] to obtain a map ˜ g : S o → D (see Fig. 5 (b)). Note that 

the flattening procedure here is simpler than the one described 

above for the closed surface case. The reason is that for the closed 

surface case, the punctured surface only contains four boundary 

vertices, which unavoidably leads to a large distortion in the flat- 

tened domain and hence requires extra effort s to handle. By con- 

trast, in the open surface case, the boundary vertices of S o can be 

naturally mapped onto the boundary of the unit disk without pro- 

ducing a large distortion, and hence a simple procedure is suffi- 

cient for constructing a good initial flattening map. It may be noted 

that the initial flattening map in Fig. 5 (b) is much less distorted 

when compared to the initial flattening map used in the closed 

surface case shown in Fig. 4 (b) qualitatively. Employing the more 

complicated initial mapping procedure used in the closed surface 

case has little effect on the final parameterization result here. 

5 
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Fig. 5. An illustration of the hemispherical area-preserving parameterization for open surfaces. (a) An input open surface. (b) The initial flattening map obtained using the 

disk conformal parameterization method [46] . (c) The 2D optimal mass transport mapping result. (d) The final hemispherical parameterization result obtained using the 

inverse stereographic projection. 

4.2.2. Optimal mass transport map 

Once we have obtained the initial flattening map ˜ g , we simply 

follow the same approach as described in the closed surface case 

to construct an OMT map h : ˜ g (S o ) → R 2 with the source measure 

σ given by Eq. (12) and the target measure τ given by Eq. (13) (see 

Fig. 5 (c)). 

4.2.3. Inverse stereographic projection 

By applying the inverse stereographic projection ϕ −1 given by 

Eq. (15) , we obtain the composition map f = ϕ −1 ◦ h ◦ ˜ g . Again, 

since the OMT map in the last step has taken the conformal factor 

of the stereographic projection into consideration, f : S o → S 2 
z≥0 is 

an area-preserving map of the input open surface S o onto the unit 

hemisphere S 2 
z≥0 (see Fig. 5 (d)). 

4.3. Hemispherical shape description 

Let S be an open or closed hemisphere-like anatomical sur- 

face with k vertices, and V = ( v 1 , . . . , v k ) 
T be a k × 3 matrix of 

the vertex coordinates. Under the hemispherical area-preserving 

map f, each vertex v = (x, y, z) on S is mapped to a point f (v ) = 

(x f , y f , z f ) onto the unit hemisphere S 2 
z≥0 . The spherical coordi- 

nates (θ , φ) of f (v ) are given by 

θ = cos −1 z f √ 

x 2 
f 
+ y 2 

f 
+ z 2 

f 

and φ = tan −1 y f 

x f 
. (16) 

The parameterization defines the object surface through the 

mapping 

v (θ , φ) = (x (θ , φ) , y (θ , φ) , z(θ , φ)) . (17) 

The object surface can be expressed using the HSH basis func- 

tions as follows: 

v (θ , φ) = 

∞ ∑ 

n =0 

n ∑ 

m = −n 

C m 
n H 

m 
n (θ , φ) , (18) 

where C m 
n = [(C x ) m 

n , (C y ) 
m 
n , (C z ) 

m 
n ] is a 3-dimensional coefficient 

vector. Under the finite order assumption, n takes value from 0 to 

N and hence we have the following approximation: 

v (θ , φ) ≈
N ∑ 

n =0 

n ∑ 

m = −n 

C m 
n H 

m 
n (θ , φ) . (19) 

Eq. (19) can be written as 

V = HC , (20) 

where C = (C 0 0 , C 
−1 
1 , C 0 1 , · · · , C N N ) 

T is the HSH coefficient matrix, and 

H is a k × (N + 1) 2 matrix whose i th row is defined as 

(H ) i = [ H 
0 
0 (θi , φi ) , H 

−1 
1 (θi , φi ) , · · · , H 

N 
N (θi , φi )] . (21) 

The HSH coefficients provide a measure of spatial frequencies 

constituting the object surface, with the higher frequency com- 

ponents containing more detailed attributes of the object surface. 

Theoretically, the coefficients are given by 

C m 
n = 

∫ π/ 2 

0 

∫ 2 π

0 
v (θ , φ) H 

m 
n (θ , φ) sin θd θd φ. (22) 

In practice, if only samples of the underlying continuous spa- 

tial function are available, we can estimate the coefficient matrix C 

in Eq. (20) by finding the unique least squares estimate using the 

Moore-Penrose pseudo-inverse: 

C = (H 
T H ) −1 H 

T V . (23) 

Using the estimated HSH coefficients and the HSH basis func- 

tions, we can effectively reconstruct the object surface. 

5. Experimental results 

The proposed hemispherical area-preserving parameterization 

and HSH reconstruction methods are implemented in MATLAB. We 

compute the hemispherical area-preserving parameterizations of 

the 20 brain, 20 skull and 20 scalp surfaces, initialized with the 

balancing factor λ = 0 . 2 . Each mapping takes 2 seconds on average 

on a PC with an Intel i7-6700K CPU and 16 GB RAM. 

5.1. Hemispherical parameterization and surface reconstruction 

Figs. 6, 7 and 8 show three examples of closed brain, closed 

skull and open scalp surfaces (top left) and their hemispherical 

Fig. 6. A closed brain surface (top left), the hemispherical area-preserving pa- 

rameterization (top right), and the HSH reconstructions with maximum order N = 

1 , 4 , 9 , 16 , 25 (bottom). 
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Fig. 7. A closed skull surface (top left), the hemispherical area-preserving param- 

eterization (top right), and the HSH reconstructions with maximum order N = 

1 , 4 , 9 , 16 , 25 (bottom). 

Fig. 8. An open scalp surface (top left), the hemispherical area-preserving param- 

eterization (top right), and the HSH reconstructions with maximum order N = 

1 , 4 , 9 , 16 , 25 (bottom). 

area-preserving parameterizations (top right). As the parameteri- 

zations are area-preserving, it can be observed that the vertices 

are homogeneously distributed on the surfaces, thereby facilitating 

the hemispherical shape description. From the HSH reconstruction 

results with different maximum order N = 1 , 4 , 9 , 16 , 25 (bottom), 

it can be observed that our proposed framework effectively recon- 

structs all three types of hemisphere-like anatomical surfaces. 

5.2. Reconstruction error 

For a more quantitative analysis, we compare the surface recon- 

struction errors obtained using the hemispherical area-preserving 

parameterization together with the HSH basis functions and the 

traditional SH basis functions for different maximum order N. The 

reconstruction error e is defined as the Euclidean 2-norm of the 

difference between the original vertices and the reconstructed ver- 

tices: 

e = ‖ V reconstructed − V ‖ 2 , (24) 

where V reconstructed is the coordinate matrix of all vertices of the 

reconstructed surface. Fig. 9 shows the plots of e versus N for the 

brain, skull and scalp surfaces. It can be observed that for all three 

types of open and closed hemisphere-like surfaces, the reconstruc- 

tion error can be effectively reduced using our HSH approach as 

N increases. On the contrary, the traditional SH basis functions 

lead to fluctuating reconstruction results and hence are less use- 

ful for handling these surfaces. In particular, we observe that the 

large surface reconstruction errors by SH correspond to globally 

distorted results instead of localized distortions (see Fig. 10 for an 

example). A possible explanation is that for the SH reconstruction, 

artificial oscillations start to appear when higher order basis func- 

tions are incorporated. At higher frequencies, the number of mea- 

surements may be insufficient, thereby leading to spatial aliasing 

errors [62]. When compared to HSH, the SH reconstruction error is 

much more significant at high frequencies, with higher order coef- 

ficients being aliased to lower order. 

5.3. Statistical analysis 

We further compare the reconstruction errors achieved by our 

HSH approach and the SH approach with the maximum order 

N = 25 in more details. For the 20 closed brain surfaces, 20 closed 

skull surfaces and 20 open scalp surfaces, the mean reconstruction 

error by our HSH approach is lower than that by the SH approach 

by 75% , 80% and 50% respectively as presented in Table 1 . We apply 

the two-sample t-test on the two sets of error values for each type 

of surface and find that the improvements are statistically signif- 

icant for all three types of surfaces. The relatively small improve- 

ment for the open surface case can possibly be explained by the 

fact that the boundary of the hemispherical parameterization is 

smoother when compared to that for the closed surface case, and 

hence the problem of discontinuities at the hemisphere bound- 

ary for SH [25] is less severe. Overall, the results suggest that our 

proposed HSH approach outperforms the traditional SH approach 

for the shape description of both open and closed hemisphere-like 

anatomical surfaces. 

5.4. External validation using anatomical landmarks 

For the open scalp surfaces, there are three prominent anatom- 

ical landmarks commonly used in electroencephalography (EEG), 

namely the nasion point, the left pre-auricular (LPA) point, and the 

right pre-auricular (RPA) point [63] (see Fig. 11 (a)). As the pro- 

posed method is landmark-free, the three anatomical landmarks 

can be used for the external validation of our method. For each 

of the 20 scalp surfaces, we evaluate the mismatch error between 

the position of each landmark on the original surface and the es- 

timated position of it obtained by the HSH or SH representation, 

with the maximum order N = 25 . From the box plots of the land- 

mark mismatch errors ( Fig. 11 (b)), it can be observed that the HSH 

approach achieves a smaller error for all three landmarks. This ex- 

ternal validation experiment again demonstrates the advantage of 

our approach over the traditional SH approach. 

5.5. Evaluation as a statistical shape model 

To evaluate the proposed HSH approach as a statistical shape 

model, we consider performing a binary classification experiment 

7 
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Fig. 9. The surface reconstruction error by the HSH basis functions and the SH basis functions with varying maximum order N. In each plot, each curve corresponds to one 

surface. 

for distinguishing between the closed brain/skull surfaces and the 

open scalp surfaces using the HSH/SH representations. More specif- 

ically, given the maximum order N, we compute the (N + 1) 2 ×
3 HSH/SH coefficient matrix for each of the 60 surfaces in the 

dataset. We then use the 2-norm of the difference between the co- 

efficient matrices as a measure of the shape dissimilarity to clas- 

sify the 60 surfaces. For each trial ( i = 1 , 2 , . . . , 60 ), we leave the 

i -th surface out and use the remaining 59 surfaces as training data 

for determining the label (open/closed) of the left-out surface. We 

then use the result of the 60 trials to determine the overall clas- 

sification accuracy. Even for N = 3 (i.e. only the first (3 + 1) 2 = 16 

basis functions are used), the HSH approach achieves a classifica- 

tion accuracy of 82%, while the traditional SH approach yields 53% 

only. For N = 5 , the HSH approach achieves an accuracy of 91% 

while the SH approach yields 61% only. This shows that the pro- 

posed HSH approach is more effective in capturing the shape dif- 

ference between the surfaces using a small number of coefficients. 

5.6. Comparison with the SH approach via spherical parameterization 

For the case of closed surfaces, one may also be interested in 

further comparing our proposed HSH reconstruction approach with 

a more conventional SH reconstruction method based on spheri- 

cal parameterization. Here we use the spherical parameterization 

method [39] to parameterize the closed brain surface in Fig. 6 and 

then compute the reconstruction using the SH basis functions. 

From Fig. 12 , it can be observed that the combination of spheri- 

cal parameterization together with the SH basis functions does not 

lead to a good reconstruction result. In particular, the reconstruc- 

tion of the bottom part of the brain surface is poor even if a large 

N is used, which can possibly be explained by the non-spherical 

geometry of the input brain surface. Comparing the results with 

the ones produced by our hemispherical approach shown in Fig. 6 , 

it can be observed that our method produces more accurate re- 

construction results. For a more quantitative comparison, we eval- 
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Fig. 10. The scalp surface reconstruction using SH of maximum order N = 19 shows 

global distortion. 

Table 1 

Statistical analysis of the average reconstruction error (mean e ) achieved by the 

HSH approach and the SH approach with the maximum order N = 25 . 

Surface Mean e Improvement Two-sample 

SH HSH by HSH t-test 

Brain 88.6 20.9 75% P < 0 . 01 

Skull 126.3 24.0 80% P < 0 . 01 

Scalp 51.4 25.8 50% P = 0 . 015 

uate the reconstruction error produced by the SH approach via the 

spherical parameterization for the 20 closed brain surfaces and the 

20 closed skull surfaces (see the error plots in Fig. 13 ). The mean 

reconstruction error by our HSH approach is lower than that by the 

SH approach via the spherical parameterization by 70% and 65% 

for the brain and skull surfaces respectively. The two-sample t- 

test shows that the improvements are statistically significant (both 

with P < 0 . 01 ). This suggests that our proposed method is more 

suitable for hemisphere-like surface description. 

5.7. Handling more complicated surfaces 

One may wonder whether our proposed framework is appli- 

cable to more complicated surfaces. Here we consider a brain 

cortical surface reconstructed from MRI images in the OA- 

SIS dataset [57] using the open source reconstruction software 

FreeSurfer. As shown in Fig. 14 , even for the highly convoluted cor- 

tical surface with deep sulci and gyri, our proposed method is ca- 

pable of producing very accurate reconstruction results. We remark 

that for surfaces with a more complex shape, more iterations may 

be needed in the optimal mass transport step for correcting the 

area distortion produced by the initial flattening map. 

6. Discussion 

While genus-0 surfaces are topologically equivalent to the 

sphere, a spherical parameter domain may not be the most nat- 

ural one for many anatomical surfaces with a hemispherical shape. 

The combination of the proposed hemispherical area-preserving 

parameterization methods and the HSH basis functions provides 

an effective way for handling hemisphere-like surfaces. Moreover, 

while most of the prior approaches have only focused on closed 

surfaces, our approach is capable of handling both open and closed 

surfaces. 

Although we have only applied our proposed framework for 

brain, skull and scalp surfaces in our experiments, our method may 

also be advantageous for handling other anatomical structures such 

as hippocampus, bone and atrium. As these structures do not have 

a spherical shape, the proposed HSH approach may be more suit- 

able than the traditional SH approach for the shape description and 

reconstruction of them. We plan to validate this hypothesis by ap- 

plying our method on datasets of these structures in future works. 

As we have demonstrated in our experiments, the HSH repre- 

sentations produce accurate reconstruction results for both open 

and closed hemisphere-like structures. Therefore, the proposed 

method can be effectively applied to the rendering, remeshing, and 

multiresolution modeling of hemisphere-like surfaces. Our method 

also provides a convenient way for analyzing the shape dissimilar- 

ities of hemisphere-like surfaces via their HSH representations. 

Similar to other parameterization-based shape description ap- 

proaches, our method relies on a pairwise mapping to a hemi- 

sphere primitive which treats each surface separately and does not 

incorporate information from the entire population. This limitation 

in ignoring the population-level statistics may lead to suboptimal 

models in certain statistical modeling and analysis tasks [64] . In 

our future work, we plan to explore methods for overcoming this 

limitation, possibly by incorporating certain population-level infor- 

mation in the computation of the hemispherical parameterization, 

and compare the result with the existing non-parameterization- 

based representations such as the deformation-based representa- 

tion [65] and the particle system-based representation [66] . 

Fig. 11. (a) The three anatomical landmarks (the nasion point, the left pre-auricular point, and the right pre-auricular point) on each of the 20 open scalp surfaces. (b) The 

box plots of the landmark mismatch errors produced by the HSH approach and the SH approach with the maximum order N = 25 (right). For each approach and each of the 

three landmarks, the box plot shows the minimum, first quartile, median, third quartile, and the maximum of the 20 error values. 
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Fig. 12. The surface reconstruction of the closed brain surface in Fig. 6 achieved using the spherical parameterization [39] and the SH basis functions, with varying maximum 

order N. 

Fig. 13. The surface reconstruction error obtained by the SH approach via the spherical parameterization with varying maximum order N for the 20 closed brain surfaces 

and the 20 closed skull surfaces. In each plot, each curve corresponds to one surface. For comparison, see the error achieved by the proposed HSH approach in Fig. 9 . 

Fig. 14. A closed brain cortical surface (top left), the hemispherical area-preserving parameterization (top right), and the HSH reconstructions with maximum order N = 

1 , 4 , 9 , 16 , 25 (bottom). 

10 
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7. Conclusions 

In this work, we have proposed a novel framework for the 3D 

shape description of open and closed hemisphere-like anatomical 

surfaces. The key idea of our approach is to compute a hemi- 

spherical area-preserving parameterization of any input surface 

onto the unit hemisphere, which allows us to utilize the HSH 

basis functions for the shape description and reconstruction. We 

have demonstrated the effectiveness of our proposed framework 

using 60 hemispherical anatomical surfaces (20 closed brain sur- 

faces, 20 closed skull surfaces, and 20 open scalp surfaces) con- 

structed from human head MRI scans. For all the three types of 

surfaces, our framework achieves a significant improvement in the 

surface reconstruction accuracy by 75%, 80% and 50% respectively 

when compared to the SH based approach. Therefore, our proposed 

framework may serve as a useful tool for the biomedical analysis 

of hemisphere-like anatomical objects. 
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