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ABSTRACT

Spherical harmonics, one of the most widely used basis functions for shape description, rely heavily
on a spherical parameterization of the given surface. Additionally, spherical harmonics based 3D mod-
eling works well only for closed surfaces, while many anatomical structures are hemisphere-like open
objects. Therefore, it is more natural to have a hemisphere-based approach for their shape description.
In this work, we propose a novel framework for the shape description of open and closed hemisphere-
like surfaces. We first develop two hemispherical area-preserving parameterization methods for simply-
connected open and closed surfaces respectively, and then utilize the hemispherical harmonics basis func-
tions to yield an accurate representation of hemisphere-like anatomical surfaces. We assess the perfor-
mance of the proposed framework for the shape description of human head. In particular, 60 hemispher-
ical anatomical surfaces (20 closed brain surfaces, 20 closed skull surfaces, and 20 open scalp surfaces)
constructed from human head MRI scans are utilized for this purpose. For the three types of surfaces,
our framework achieves a significant improvement in the surface reconstruction accuracy by 75%, 80%
and 50% respectively when compared to the spherical harmonics based approach. This suggests that our
new shape description framework can facilitate the biomedical analysis of hemisphere-like anatomical

objects.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

An accurate representation of a three-dimensional (3D) ge-
ometry is crucial for structural analysis in many biomedical ap-
plications such as molecular recognition [1], detection of neu-
rological disability [2,3], dipole localization accuracy improve-
ment [4,5] and human body anatomical structure description [6].
Spherical harmonics (SH), a set of basis functions defined on the
unit sphere S2, are widely used for shape modeling and analy-
sis, including the development of rotation independent represen-
tations [7] and Shannon-type entropy-based reconstruction meth-
ods [8], the large-scale modeling of parametric surfaces [9], the
modeling of complex morphological structures from continuous
surface maps [10], the statistical analysis of brain structures [11,12],
and the development of surface filters [13-16]. Because of their
promising mathematical properties, SH have also been commonly
applied in computer graphics for the modeling of bidirectional re-
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flectance distribution functions (BRDFs) [17], image-based render-
ing and relighting [18], BRDF shading [19], distant lighting [20,21],
lighting-invariant object recognition [22] and irradiance environ-
ment maps [23].

However, in medical shape analysis, there exists a wide range
of hemisphere-like anatomical structures such as brain, skull and
scalp, which are naturally parameterized using the upper hemi-
sphere S§>o only [24]. The representation of such hemispherical
objects using basis functions defined over the full spherical domain
$? introduces discontinuities at the boundary of the hemisphere
and requires a large number of coefficients [25]. Also, the tradi-
tional SH methods work efficiently only for closed surfaces as open
surfaces are not topologically equivalent to the sphere [26,27].
However, many hemisphere-like anatomical structures such as ven-
tricles and atriums are open objects, for which the conventional
closed shape descriptions introduce errors in their 3D reconstruc-
tion [28]. Therefore, it is more preferable to have a shape descrip-
tion framework that works for both open and closed hemispherical
anatomical structures.

In [25], Gautron et al. developed the hemispherical harmon-
ics (HSH) basis functions, which are derived from SH and defined
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on the upper unit hemisphere S?>0. In recent years, HSH have
been applied to surface reconstruction [28], brain source localiza-
tion [24], Helmholtz bidirectional reflectance basis [29] and detec-
tion of morphological changes [30].

A standard approach for 3D shape description via basis func-
tions is to make use of surface parameterizations [31], which re-
fer to the process of mapping a complicated surface in R3 onto
a standardized parameter domain. It is well-known that in gen-
eral any surface parameterization unavoidably induces distortions
in either angle or area, or both [32,33]. A major class of sur-
face parameterization methods are the conformal parameteriza-
tions, which aim at preserving the angles and hence the lo-
cal geometry of the surfaces [34-37]. In particular, it is com-
mon to parameterize genus-0 closed surfaces onto the unit
sphere [38-43], and simply-connected open surfaces onto the unit
disk [44-48]. However, as mentioned in [31], it is more desir-
able to have a uniform parameterization for 3D surface reconstruc-
tion. While the above-mentioned conformal parameterization ap-
proaches are angle-preserving, they usually produce a large area
distortion, making the parameterization results highly nonuniform
and thereby hindering the surface reconstruction. In recent years,
more efforts have been devoted to the development of area-
preserving parameterization methods using Lie advection [49],
optimal mass transport (OMT) [50-53], density-equalizing map
(DEM) [54,55], and stretch energy minimization (SEM) [56]. How-
ever, the target parameter domains of these approaches are ei-
ther the unit sphere or the unit disk. To utilize HSH for 3D shape
description, it is necessary to have a method that parameterizes
any given (open or closed) hemisphere-like surfaces onto the unit
hemisphere.

In this work, we propose a novel framework for the surface
description of both open and closed hemisphere-like anatomical
surfaces via hemispherical area-preserving parameterizations and
the HSH basis functions. We first develop two hemispherical area-
preserving parameterization methods for simply-connected open
and closed surfaces (which are topologically equivalent to the open
hemisphere and the closed hemisphere) respectively, and then uti-
lize the parameterization methods and the HSH basis functions to
achieve an effective surface description. We apply the proposed
framework for the reconstruction of closed brain surfaces, closed
skull surfaces and open scalp surfaces, and compare our approach
with the traditional SH approaches in terms of the reconstruction
accuracy.
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Fig. 1. A flow chart illustrating the process of constructing brain, skull and scalp surface from human head MRI scans. Subsequently, open (skull) and closed (brain and
scalp) object surfaces are parameterized onto the unit hemisphere for the HSH shape description.
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The rest of the paper is organized as follows. The anatomical
dataset used in our work is introduced in Section 2. The back-
ground of the SH and HSH basis functions is provided in Section 3.
In Section 4, we describe our proposed framework for open and
closed anatomical surface reconstruction via hemispherical area-
preserving parameterization. Experimental results are presented in
Section 5. In Section 6, we discuss the significance of the results
and possible future works. We conclude the paper in Section 7.

2. Dataset

60 hemispherical anatomical surfaces (20 closed brain surfaces,
20 closed skull surfaces, and 20 open scalp surfaces) are con-
structed using MRI scans from the Open Access Series of Imaging
Studies (OASIS) human head MRI dataset [57] (see Fig. 1 for the
procedure), with the MATLAB FieldTrip toolbox utilized [58]. The
voxels of the MRI scans are first segmented into the three differ-
ent tissues (brain, skull and scalp) using the £t_volumesegment
function, which constructs a binary mask of each tissue type such
that the voxels that belong to the tissue type are represented by
1 and all other voxels by 0 (see Fig. 1, second column). Then, we
use the ft_prepare_mesh function to create surfaces based on
the segmentation results of three tissue types (see Fig. 1, third col-
umn). The output surfaces are in the form of triangular meshes,
each consisting of approximately 1500 vertices. All three types of
open and closed surfaces are desired to be parameterized onto the
unit hemisphere for achieving the HSH shape description.

3. Background

In this section, we introduce the traditional SH basis functions,
followed by the HSH basis functions.

3.1. Spherical harmonics (SH)

Let 2 =1[0,7] x [-m, ] be the space of spherical coordinates
for S2, where [0, 7] is the range for the elevation angle 6 and
[—m, ] is the range for the azimuth angle ¢. The real-valued SH
functions Y7 : 2 — R of order n and degree m are defined as fol-
lows [59]:

(=1)Im/2Km sin(|m|¢)P" (cosf) :m <0,
Y70, ¢) = { (=1)IM2K™ cos(me) P (cos 6) :m>0, (1)
K9P?(cosf) :m=0,
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where K" is a normalization constant given by

m_ | @n+1)(n—|m])!
K = 4w (n+ |mp)t (2)

and P" are the associated Legendre polynomials (ALPs):
(_1 )m dn+m
2mn! dxn+m
The ALPs for the same degree m and different orders n are or-

thogonal over the entire elevation range 6 < [0, r]. The orthogo-
nality relation is given as

R'(x) = (1-x*)m? ** - D" 3)

2(n+m)!
@n+1)(n—myl ™"

where x = cos6 € [-1,1], and § is the Kronecker delta. Under the
assumption of finite order, n takes value from 0 to N, where N is
the prescribed maximum order, and the degree m varies from —n
to n. Thus, there are in total (N + 1)2 distinct orthonormal sets of
basis functions.

fVmeww= (4)
-1

3.2. Hemispherical harmonics (HSH)

The HSH basis functions are derived from SH for hemisphere-
like objects, for which half of the sphere is unused. As an adapted
version of the SH basis functions, the HSH basis functions are for-
mulated by suitably shifting the ALPs such that they remain or-
thonormal but with a different normalization constant. The orthog-
onality relation in Eq. (4) is defined for a new range of elevation
angles corresponding to the upper unit hemisphere S§>0.

If the polynomials P"(x) are orthogonal over [a, b], with w(x)
as a weighting function, then the polynomials P"(q1x + q) with
a—q b—qy

a1’ 4
q>) as a weighting function and q; # 0 [60]. For a sector defined
by 6 € [61,6;], q; and g, can be obtained by solving the following
system of equations:

qicos(62) +q =a,
qi1cos(61) +q2 =b.

g1 # 0 are orthogonal over an interval , with w(qix +

(5)
In particular, for S§>O, the elevation angle takes value in [0, 5 ].
Solutions to Eq. (5) for this new elevation range are utilized to ex-
press the shifted ALPs as 13,1m (x) = P (2x — 1). The resultant shifted
ALPs are now orthogonal over the interval [0, 1], with the orthog-
onality relation given by

(n+m)!
@n+1)y(n—my! "

Note that the ALPs are utilized for constructing the SH basis
functions over the unit sphere. Analogously, the shifted ALPs are
utilized herein for constructing the HSH basis functions over the
upper unit hemisphere S§>0. The real-valued HSH functions HJ' :
[0,7/2] x [-m, 7] — R are defined as

f@m@mw= (6)
0

(=1)m/2Km sin(|m|¢p)P™ (cos@) :m <0,
HI'0, ¢) = { (=1)Im/2K™ cos(m¢) P (cos ) cm>0, (7)
KOP0(cosh) :m=0,
where E,T is a normalization constant given by
~ _ I
R — 2n+1)(n |m|).. (8)

2w (n+ |m|)!

Similar to the SH basis functions, the HSH functions also form
an orthonormal set of basis functions. The 3D plots of the HSH ba-
sis functions up to the second order (N = 2) are shown in Fig. 2.
The distance between each surface point and origin indicates the
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magnitude of H]', and the color represents the actual value of HJJ".
The HSH basis functions can be used for the surface reconstruc-
tion of objects that are effectively parameterized onto S§>o- Given
the hemispherical coordinates (9, ¢) of an object surface, we can
reconstruct the surface using an appropriate number of HSH ba-
sis functions H', with n € [0, N] and m € [—n, n]. For an error free
representation of any object surface, the number of spatial sam-
pling points k should be at least (N + 1)% [61], which implies that
N < vk —1. In our work, N is chosen to be in the range of [1,25].

4. Proposed framework

In this section, we present a novel framework for efficient sur-
face description via hemispherical area-preserving parameteriza-
tion. To utilize the HSH basis functions, it is necessary to associate
the hemispherical coordinates (@, ¢) with every point of the object
surface. In other words, we need to establish a correspondence be-
tween the given surface and the upper unit hemisphere S§>O. To
achieve this, we propose two methods for computing the hemi-
spherical area-preserving parameterizations for closed and open
surfaces. The goal of the area-preserving parameterizations is to
preserve the area of every triangular face as much as possible.
Every object region is mapped to a region of proportional area
in the parameter space, thereby yielding a homogeneous param-
eter distribution for the hemispherical shape description. The two
proposed parameterization methods are outlined in Fig. 3. In both
methods, the overall strategy is to flatten the input surface for re-
ducing the 3D mapping problem to a 2D mapping problem, which
is much easier to solve. The inverse stereographic projection is uti-
lized as it provides a simple way for projecting a planar shape
lying in the unit disk onto the upper unit hemisphere. Moreover,
since the inverse stereographic projection has an explicit formula,
we can easily take the area distortion induced by it into consid-
eration when solving the 2D mapping problem. This ensures that
we can obtain an area-preserving parameterization onto the hemi-
sphere without dealing with a 3D mapping problem directly.

4.1. Hemispherical area-preserving parameterization for closed
surfaces

Let S be a genus-0 closed surface discretized in the form of a
triangulated mesh (V¢, 7¢), where Ve = {vq, v, ..., 14} is the vertex
set and F; is the face set (see Fig. 4(a)). We consider parameteriz-
ing S¢ onto the closed unit hemisphere.

4.1.1. Choosing four base vertices

Note that a genus-0 closed surface is topologically equivalent
to a closed hemisphere with the bottom plane included. Therefore,
some points on the object surface will be mapped to the bottom
plane of the hemisphere under a hemispherical parameterization
in general. However, as the HSH basis functions are only defined
on the curved part S2_;, we need to ensure that no vertices will be
mapped to the bottom plane. To achieve this, we start by choosing
a pair of triangular faces Ty = [vp, Vg, Vr], To = [Vp, Vg, Us] € F¢ that
share a common edge [vp, V4] at the bottommost part of Sc. Our
goal is to map the four vertices vp, vq, Vr, Vs €V onto the equa-
tor z=0 of the unit hemisphere, and all other vertices onto the
curved hemispherical surface. The bottom part of the hemisphere
will then consist of the pair of triangular faces T, T, only. This spe-
cific setup ensures that none of the vertices lies at the bottom part
of the closed unit hemisphere and hence the HSH basis functions
are well-defined everywhere.

For the case of spherical parameterization, it was shown
in [42] that choosing a triangular face as regular as possible is ad-
vantageous for getting a good parameterization onto a planar do-
main. For our case of hemispherical parameterization, we adopt
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Fig. 2. The HSH basis functions up to the second order. (a) n = 0. (b)-(d) n = 1. (e)-(i) n = 2. The distance between each surface point and origin indicates the magnitude of
H]", and the color represents the actual value of HJ.
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Fig. 3. The procedure of the proposed hemispherical area-preserving parameterization method for open and closed surfaces.

(a)
S
Z CEREEAARRRR
O LRSI,
A SO
AR SIERRRPEEER N
L Z KERERRRSKISORIN AN
ARSI
e s Sl
= v
e
O

Fig. 4. An illustration of the hemispherical area-preserving parameterization for closed surfaces. (a) An input closed surface. (b) The initial flattening map obtained using
the stretch energy minimization (SEM) method [56] combined with the quasi-conformal composition [42]. (c) The 2D optimal mass transport mapping result. (d) The final
hemispherical parameterization result obtained using the inverse stereographic projection.
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a similar strategy and choose the four vertices vp,vq, vr, Vs at
the bottommost part of S¢ that yield a quadrilateral (formed by
T;, T,) that is as close to a square as possible. More specifically,
we first sort all edges according to the distance between their
midpoints and the center of the bottom part of the surface (de-
note the sorted edges by eq,e,, ..., with e; being the one clos-
est to the center). Starting from i =1, we consider the two tri-
angles [vp,, vg;. Ur,], [Vp;, Vg;» Us;] with e; being their common edge.
We then evaluate the regularity of the quadrilateral formed by the
four vertices vp,, vg,, vy, Us; by considering the ratio of the maxi-
mum side length to the minimum side length of the quadrilateral
(denoted by rg;4e) and the ratio of the length of the longer diagonal
to the length of the shorter diagonal of the quadrilateral (denoted
by Tgiagonat)- If both rgge and Tgiagonal are less than certain thresh-
olds (which we set as 1.2 and 1.5 in practice), the four vertices are
chosen as the base vertices. If not, we repeat the above process for
the next e; and so on. This automatic process ensures that the four
vertices chosen are close to the center of the bottom part of the
surface and yield a quadrilateral as regular as possible.

4.1.2. Initial flattening map

Consider S; with the two chosen triangles Ty, T, punctured.
The punctured surface is topologically equivalent to the plane
and hence we can construct an initial flattening map of it onto
a planar quadrilateral domain with the four corners correspond-
ing to vp, Vg, Vr, V5. To reduce the area distortion of the flattening
procedure, we first apply the stretch energy minimization (SEM)
method [56], which looks for a map g: S\ {T;, L} — D c C that
minimizes the stretch energy

1
Esgm = ig*ng’ (9)

where g = [g(v1),8(12), ..., gy, g* is the conjugate transpose
of g, and Lg is the following modified Laplacian matrix:

—Wj if [v;, v;] is an edge in &,
Leij=1 Zawa ifj=i (10)
0 otherwise,
with
1 (8(wi) —gWi)) (g(v;) —g(Wi))
Wij = 1 Z Area([v,-, vj, Vk]) ’ (11)

[vi.vj, v ]eFe

In particular, the four vertices vy, vq, vy, vs are mapped onto
the unit circle. To reduce the occurrence of highly skinny trian-
gles in the mapping result, we compute the Beltrami coefficient
of g, which is a complex-valued function that encodes the quasi-
conformal distortion of the mapping [42]. The modulus of u re-
flects the angular distortion of the mapping. In particular, a smaller
|p| indicates a smaller angle distortion. We then use the idea of
quasi-conformal composition [42] and reconstruct a map with Bel-
trami coefficient Au, where A € [0, 1] is a balancing factor for con-
trolling the conformality. This results in an initial flattening map
g:8:\ {T1, T,} - R? with both area and angle distortion reduced
(see Fig. 4(b)).

4.1.3. Optimal mass transport map

After obtaining the initial flattening map g we compute a
hemispherical area-preserving map using the optimal mass trans-
port (OMT) mapping method. The OMT map requires setting the
source and target area measures. As for the source measure, since
the target domain is the unit hemisphere, it is necessary to take
the conformal factor of the stereographic projection into consider-
ation. Therefore, we set the source measure o as follows [51]:

4 dx dy

027(14_)(2_”)2)2, (12)
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where (x,y) are the Cartesian coordinates of the plane. Since an
area-preserving map is desired, we set the target measure 7 at ev-
ery vertex to be the normalized vertex area of S; [51]:

YK Az /(1 +18W)]?)

(V) = Ay, (13)
1 Ay
where
1
Ay, = 3 > Area(T) (14)

TeN (v;)

is the vertex area of v; given by the area sum of all triangles T in
the one-ring neighborhood N (v;) of v; divided by 3, and Az 1s
the vertex area of g(v;) defined analogously. Here, the normaliza-
K ap. 1418w |2
-1 *g;f/:ﬂg(ul)l ) is used to appropriately rescale Ay,
i=110;

so that the target measilre is independent of the size of the input
surface Sc. This gives us an OMT map h : §(Sc \ {T;. T,}) — R? with
the source measure o and target measure t (see Fig. 4(c)).

tion factor

4.14. Inverse stereographic projection
By applying the inverse stereographic projection

2x 2y —14+x24y?
1+X2+y2"1+X2+y2’ ]+X2+y2 ’

el (xy) = ( (15)

we obtain the composition map f=¢ !ohog. Since the OMT
map h has taken the conformal factor of the stereographic pro-
jection into consideration, the mapping f is an area-preserving
map of S\ {Ty, T} onto the unit hemisphere S2_,. Finally, the two
punctured triangles Ty, T, can be added back to the hemispherical
parameterization result, thereby producing a closed hemispherical
parameterization for S. (see Fig. 4(d)). In particular, only the four
vertices Vp, Vg, Ur, Us lie on the equator z= 0, and all other vertices

; 2
lie on S7_.

4.2. Hemispherical area-preserving parameterization for open
surfaces

Let S, be a simply-connected open surface discretized in the
form of a triangulated mesh (V,, ), where V, is the vertex set
and F, is the face set (see Fig. 5(a)). In this case, our goal is to
compute an area-preserving map of S, onto the unit hemisphere
S2_, with a hollow bottom part.

4.2.1. Initial flattening map

Since S, is an open surface, we can directly compute an ini-
tial flattening map of it onto a planar domain without puncturing
any triangles. Here, we apply the disk conformal parameterization
method [46] to obtain a map §: S, — D (see Fig. 5(b)). Note that
the flattening procedure here is simpler than the one described
above for the closed surface case. The reason is that for the closed
surface case, the punctured surface only contains four boundary
vertices, which unavoidably leads to a large distortion in the flat-
tened domain and hence requires extra efforts to handle. By con-
trast, in the open surface case, the boundary vertices of S, can be
naturally mapped onto the boundary of the unit disk without pro-
ducing a large distortion, and hence a simple procedure is suffi-
cient for constructing a good initial flattening map. It may be noted
that the initial flattening map in Fig. 5(b) is much less distorted
when compared to the initial flattening map used in the closed
surface case shown in Fig. 4(b) qualitatively. Employing the more
complicated initial mapping procedure used in the closed surface
case has little effect on the final parameterization result here.



A. Giri, G.PT. Choi and L. Kumar

(@) (b)

s
=

B

o

=

,

,;s»'

s
&

<

W

Signal Processing 180 (2021) 107867

Fig. 5. An illustration of the hemispherical area-preserving parameterization for open surfaces. (a) An input open surface. (b) The initial flattening map obtained using the
disk conformal parameterization method [46]. (c) The 2D optimal mass transport mapping result. (d) The final hemispherical parameterization result obtained using the

inverse stereographic projection.

4.2.2. Optimal mass transport map

Once we have obtained the initial flattening map g, we simply
follow the same approach as described in the closed surface case
to construct an OMT map h : §(S,) — R? with the source measure
o given by Eq. (12) and the target measure t given by Eq. (13) (see
Fig. 5(c)).

4.2.3. Inverse stereographic projection

By applying the inverse stereographic projection ¢~! given by
Eq. (15), we obtain the composition map f=¢ 'ohog Again,
since the OMT map in the last step has taken the conformal factor
of the stereographic projection into consideration, f : S, — S§>o is
an area-preserving map of the input open surface S, onto the unit
hemisphere S2_ (see Fig. 5(d)).

z>0

4.3. Hemispherical shape description

Let S be an open or closed hemisphere-like anatomical sur-
face with k vertices, and V = (v1,...,vk)T be a k x 3 matrix of
the vertex coordinates. Under the hemispherical area-preserving
map f, each vertex v= (x,y,z) on S is mapped to a point f(v) =
(X7, y5,2p) onto the unit hemisphere Sf The spherical coordi-
nates (6, ¢) of f(v) are given by

[ — ¢ =tan! Ir (16)
The parameterization defines the object surface through the

mapping

V(0. @) = (x(0.¢). y(0,¢), z(0,9)). (17)

The object surface can be expressed using the HSH basis func-
tions as follows:

vO.0) =Y Y CIHI (0. ¢). (18)

n=0 m=-n

>0°

6 = cos™

where CF' = [(GOR, (G, ()R] is a 3-dimensional coefficient
vector. Under the finite order assumption, n takes value from 0 to
N and hence we have the following approximation:

N n
v(O.¢)~) " Y CIHO.¢). (19)

n=0 m=-—n

Eq. (19) can be written as

V = HC, (20)
where € = (C3.C; 1.0, ... CN)T is the HSH coefficient matrix, and
H is a k x (N + 1)2 matrix whose ith row is defined as

(H); = [H3 (6, ), H{ ' (01, 1), - HN (6r, 90)]. (21)

The HSH coefficients provide a measure of spatial frequencies
constituting the object surface, with the higher frequency com-
ponents containing more detailed attributes of the object surface.

Theoretically, the coefficients are given by

cn :/”/2/2” (@, $)H™ (0, ) sinBdOdp. (22)
0 0

In practice, if only samples of the underlying continuous spa-
tial function are available, we can estimate the coefficient matrix C
in Eq. (20) by finding the unique least squares estimate using the
Moore-Penrose pseudo-inverse:

C=HH'HV. (23)

Using the estimated HSH coefficients and the HSH basis func-
tions, we can effectively reconstruct the object surface.

5. Experimental results

The proposed hemispherical area-preserving parameterization
and HSH reconstruction methods are implemented in MATLAB. We
compute the hemispherical area-preserving parameterizations of
the 20 brain, 20 skull and 20 scalp surfaces, initialized with the
balancing factor A = 0.2. Each mapping takes 2 seconds on average
on a PC with an Intel i7-6700K CPU and 16 GB RAM.

5.1. Hemispherical parameterization and surface reconstruction

Figs. 6, 7 and 8 show three examples of closed brain, closed
skull and open scalp surfaces (top left) and their hemispherical

Input closed brain surface Hemispherical parameterization
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Fig. 6. A closed brain surface (top left), the hemispherical area-preserving pa-
rameterization (top right), and the HSH reconstructions with maximum order N =
1,4,9,16, 25 (bottom).
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Input closed skull surface Hemispherical parameterization parameterization together with the HSH basis functions and the
traditional SH basis functions for different maximum order N. The
reconstruction error e is defined as the Euclidean 2-norm of the
difference between the original vertices and the reconstructed ver-
tices:

€= ”vreconstructed - v”Zs (24)

where Vieconstructed 1S the coordinate matrix of all vertices of the
reconstructed surface. Fig. 9 shows the plots of e versus N for the
brain, skull and scalp surfaces. It can be observed that for all three
types of open and closed hemisphere-like surfaces, the reconstruc-
tion error can be effectively reduced using our HSH approach as
N increases. On the contrary, the traditional SH basis functions
lead to fluctuating reconstruction results and hence are less use-
ful for handling these surfaces. In particular, we observe that the
large surface reconstruction errors by SH correspond to globally
distorted results instead of localized distortions (see Fig. 10 for an
example). A possible explanation is that for the SH reconstruction,
artificial oscillations start to appear when higher order basis func-
tions are incorporated. At higher frequencies, the number of mea-
surements may be insufficient, thereby leading to spatial aliasing
errors [62]. When compared to HSH, the SH reconstruction error is
much more significant at high frequencies, with higher order coef-
Fig. 7. A closed skull surface (top left), the hemispherical area-preserving param- ficients being aliased to lower order.

eterization (top right), and the HSH reconstructions with maximum order N =
1,4,9, 16,25 (bottom).
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5.3. Statistical analysis
Inputiopeniscalp surface Hemispherical parametorization We further compare the reconstruction errors achieved by our
HSH approach and the SH approach with the maximum order
N = 25 in more details. For the 20 closed brain surfaces, 20 closed
skull surfaces and 20 open scalp surfaces, the mean reconstruction
error by our HSH approach is lower than that by the SH approach
by 75%, 80% and 50% respectively as presented in Table 1. We apply
the two-sample t-test on the two sets of error values for each type
of surface and find that the improvements are statistically signif-
icant for all three types of surfaces. The relatively small improve-
ment for the open surface case can possibly be explained by the
fact that the boundary of the hemispherical parameterization is
smoother when compared to that for the closed surface case, and
hence the problem of discontinuities at the hemisphere bound-
ary for SH [25] is less severe. Overall, the results suggest that our
N=16 s N=25 ’ proposed HSH approach outperforms the traditional SH approach
for the shape description of both open and closed hemisphere-like
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For the open scalp surfaces, there are three prominent anatom-
ical landmarks commonly used in electroencephalography (EEG),
Fig. 8. An open scalp surface (top left), the hemispherical area-preserving param- namely the nasion point, the left pre-auricular (LPA) point, and the
eterization (top right), and the HSH reconstructions with maximum order N = right pre-auricular (RPA) point [63] (see Fig. 11(a)). As the pro-
1,4,9, 16,25 (bottom). posed method is landmark-free, the three anatomical landmarks
can be used for the external validation of our method. For each
of the 20 scalp surfaces, we evaluate the mismatch error between
the position of each landmark on the original surface and the es-
timated position of it obtained by the HSH or SH representation,
with the maximum order N = 25. From the box plots of the land-
mark mismatch errors (Fig. 11(b)), it can be observed that the HSH
approach achieves a smaller error for all three landmarks. This ex-
ternal validation experiment again demonstrates the advantage of
our approach over the traditional SH approach.
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area-preserving parameterizations (top right). As the parameteri-
zations are area-preserving, it can be observed that the vertices
are homogeneously distributed on the surfaces, thereby facilitating
the hemispherical shape description. From the HSH reconstruction
results with different maximum order N = 1,4, 9, 16, 25 (bottom),
it can be observed that our proposed framework effectively recon-
structs all three types of hemisphere-like anatomical surfaces.

5.2. Reconstruction error 5.5. Evaluation as a statistical shape model

For a more quantitative analysis, we compare the surface recon- To evaluate the proposed HSH approach as a statistical shape
struction errors obtained using the hemispherical area-preserving model, we consider performing a binary classification experiment
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Closed brain reconstruction using SH
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Fig. 9. The surface reconstruction error by the HSH basis functions and the SH basis functions with varying maximum order N. In each plot, each curve corresponds to one

surface.

for distinguishing between the closed brain/skull surfaces and the
open scalp surfaces using the HSH/SH representations. More specif-
ically, given the maximum order N, we compute the (N+1)2 x
3 HSH/SH coefficient matrix for each of the 60 surfaces in the
dataset. We then use the 2-norm of the difference between the co-
efficient matrices as a measure of the shape dissimilarity to clas-
sify the 60 surfaces. For each trial (i=1,2,...,60), we leave the
i-th surface out and use the remaining 59 surfaces as training data
for determining the label (open/closed) of the left-out surface. We
then use the result of the 60 trials to determine the overall clas-
sification accuracy. Even for N = 3 (i.e. only the first 3 +1)2 =16
basis functions are used), the HSH approach achieves a classifica-
tion accuracy of 82%, while the traditional SH approach yields 53%
only. For N =5, the HSH approach achieves an accuracy of 91%
while the SH approach yields 61% only. This shows that the pro-
posed HSH approach is more effective in capturing the shape dif-
ference between the surfaces using a small number of coefficients.

5.6. Comparison with the SH approach via spherical parameterization

For the case of closed surfaces, one may also be interested in
further comparing our proposed HSH reconstruction approach with
a more conventional SH reconstruction method based on spheri-
cal parameterization. Here we use the spherical parameterization
method [39] to parameterize the closed brain surface in Fig. 6 and
then compute the reconstruction using the SH basis functions.
From Fig. 12, it can be observed that the combination of spheri-
cal parameterization together with the SH basis functions does not
lead to a good reconstruction result. In particular, the reconstruc-
tion of the bottom part of the brain surface is poor even if a large
N is used, which can possibly be explained by the non-spherical
geometry of the input brain surface. Comparing the results with
the ones produced by our hemispherical approach shown in Fig. 6,
it can be observed that our method produces more accurate re-
construction results. For a more quantitative comparison, we eval-
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N SIS dataset [57] using the open source reconstruction software
Q\\\ FreeSurfer. As shown in Fig. 14, even for the highly convoluted cor-
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6. Discussion

While genus-0 surfaces are topologically equivalent to the
sphere, a spherical parameter domain may not be the most nat-
ural one for many anatomical surfaces with a hemispherical shape.
The combination of the proposed hemispherical area-preserving
parameterization methods and the HSH basis functions provides
an effective way for handling hemisphere-like surfaces. Moreover,
while most of the prior approaches have only focused on closed
surfaces, our approach is capable of handling both open and closed
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Fig. 10. The scalp surface reconstruction using SH of maximum order N = 19 shows

global distortion. surfaces. .

Although we have only applied our proposed framework for
Table 1 brain, skull and scalp surfaces in our experiments, our method may
Statistical analysis of the average reconstruction error (mean e) achieved by the also be advantageous for handling other anatomical structures such
HSH approach and the SH approach with the maximum order N = 25. as hippocampus, bone and atrium. As these structures do not have
Surface Mean e Improvement Two-sample a spherical shape, the proposed HSH approach may be more suit-
P TR by HSH r-test able than the traditional SH approach fqr the shape descrlptlon and
reconstruction of them. We plan to validate this hypothesis by ap-

Brain 88.6 209 75% P<0.01 ; ;
Skull 1263 540 803 P 001 plying our method on datasets of these structures in future works.

Scalp 514 258 509 P=0015 As we have demonstrated in our experiments, the HSH repre-
sentations produce accurate reconstruction results for both open
and closed hemisphere-like structures. Therefore, the proposed
method can be effectively applied to the rendering, remeshing, and
multiresolution modeling of hemisphere-like surfaces. Our method
also provides a convenient way for analyzing the shape dissimilar-
ities of hemisphere-like surfaces via their HSH representations.
Similar to other parameterization-based shape description ap-
proaches, our method relies on a pairwise mapping to a hemi-
sphere primitive which treats each surface separately and does not
incorporate information from the entire population. This limitation
in ignoring the population-level statistics may lead to suboptimal
models in certain statistical modeling and analysis tasks [64]. In
our future work, we plan to explore methods for overcoming this

uate the reconstruction error produced by the SH approach via the
spherical parameterization for the 20 closed brain surfaces and the
20 closed skull surfaces (see the error plots in Fig. 13). The mean
reconstruction error by our HSH approach is lower than that by the
SH approach via the spherical parameterization by 70% and 65%
for the brain and skull surfaces respectively. The two-sample t-
test shows that the improvements are statistically significant (both
with P < 0.01). This suggests that our proposed method is more
suitable for hemisphere-like surface description.

5.7. Handling more complicated surfaces limitation, possibly by incorporating certain population-level infor-
mation in the computation of the hemispherical parameterization,
One may wonder whether our proposed framework is appli- and compare the result with the existing non-parameterization-
cable to more complicated surfaces. Here we consider a brain based representations such as the deformation-based representa-
cortical surface reconstructed from MRI images in the OA- tion [65] and the particle system-based representation [66].
a b
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Fig. 11. (a) The three anatomical landmarks (the nasion point, the left pre-auricular point, and the right pre-auricular point) on each of the 20 open scalp surfaces. (b) The
box plots of the landmark mismatch errors produced by the HSH approach and the SH approach with the maximum order N = 25 (right). For each approach and each of the
three landmarks, the box plot shows the minimum, first quartile, median, third quartile, and the maximum of the 20 error values.
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Fig. 12. The surface reconstruction of the closed brain surface in Fig. 6 achieved using the spherical parameterization [39] and the SH basis functions, with varying maximum

order N.
Fig. 13. The surface reconstruction error obtained by the SH approach via the spherical parameterization with varying maximum order N for the 20 closed brain surfaces

and the 20 closed skull surfaces. In each plot, each curve corresponds to one surface. For comparison, see the error achieved by the proposed HSH approach in Fig. 9.

Fig. 14. A closed brain cortical surface (top left), the hemispherical area-preserving parameterization (top right), and the HSH reconstructions with maximum order N
10

1,4,9, 16,25 (bottom).
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7. Conclusions

In this work, we have proposed a novel framework for the 3D
shape description of open and closed hemisphere-like anatomical
surfaces. The key idea of our approach is to compute a hemi-
spherical area-preserving parameterization of any input surface
onto the unit hemisphere, which allows us to utilize the HSH
basis functions for the shape description and reconstruction. We
have demonstrated the effectiveness of our proposed framework
using 60 hemispherical anatomical surfaces (20 closed brain sur-
faces, 20 closed skull surfaces, and 20 open scalp surfaces) con-
structed from human head MRI scans. For all the three types of
surfaces, our framework achieves a significant improvement in the
surface reconstruction accuracy by 75%, 80% and 50% respectively
when compared to the SH based approach. Therefore, our proposed
framework may serve as a useful tool for the biomedical analysis
of hemisphere-like anatomical objects.
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