
Journal of Scientific Computing           (2021) 87:70 

https://doi.org/10.1007/s10915-021-01479-y

Efficient Conformal Parameterization of Multiply-Connected
Surfaces Using Quasi-Conformal Theory

Gary P. T. Choi1

Received: 10 September 2020 / Revised: 16 February 2021 / Accepted: 10 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

Conformal mapping, a classical topic in complex analysis and differential geometry, has
become a subject of great interest in the area of surface parameterization in recent decades
with various applications in science and engineering. However, most of the existing con-
formal parameterization algorithms only focus on simply-connected surfaces and cannot be
directly applied to surfaces with holes. In this work, we propose two novel algorithms for
computing the conformal parameterization of multiply-connected surfaces. We first develop
an efficient method for conformally parameterizing an open surface with one hole to an annu-
lus on the plane. Based on this method, we then develop an efficient method for conformally
parameterizing an open surface with k holes onto a unit disk with k circular holes. The con-
formality and bijectivity of the mappings are ensured by quasi-conformal theory. Numerical
experiments and applications are presented to demonstrate the effectiveness of the proposed
methods.

Keywords Surface parameterization · Conformal mapping · Quasi-conformal theory ·

Multiply-connected surfaces · Annulus · Poly-annulus

Mathematics Subject Classification 65D18 · 68U05 · 52C26 · 30C20

1 Introduction

The goal of surface parameterization is to map a surface in R
3 onto a simple stan-

dardized domain. Over the past few decades, surface parameterization algorithms have
been extensively studied [1–3]. In general, any parameterization will unavoidably induce
angle and/or area distortions. Therefore, it is common to consider conformal parameter-

izations, which preserve angles and hence the local geometry of the surfaces. Existing
conformal parameterization methods include harmonic energy minimization [4,5] and its
linearizations [6–8], least-square conformal map (LSCM) [9], discrete natural conformal
parameterization (DNCP) [10], holomorphic 1-form [11], Yamabe flow [12], angle-based
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Fig. 1 Conformal parameterizations of multiply-connected surfaces achieved by our proposed methods.
(Left) The conformal parameterization of an open surface with one hole onto an annulus by our Annulus
Conformal Map (ACM) algorithm. (Right) The conformal parameterization of a multiply-connected open
surface onto a unit disk with circular holes by our Poly-Annulus Conformal Map (PACM) algorithm

flattening (ABF) [13,14], circle patterns [15], discrete conformal equivalence [16], Ricci
flow [17–20], spectral conformal map [21], curvature prescription [22], zipper algo-
rithms [23,24], boundary first flattening [25], conformal energy minimization [26] etc. In
recent years, quasi-conformal theory has emerged as a useful tool for the development of
surface parameterization methods [27,28] with applications to image and video process-
ing [29,30], geometry processing and graphics [31–35], metamaterial design [36], medical
visualization [37,38] and biological shape analysis [39–41]. However, most of the above-
mentioned conformal parameterization methods only work for simply-connected surfaces,
which do not contain any holes.

For multiply-connected surfaces with annulus or poly-annulus topology, the computation
of conformal maps is more complicated. Some earlier works have considered mapping a
multiply-connected open surface onto a circular domain with concentric circular slits [42,43].
Also, by the Koebe’s uniformization theorem, any multiply-connected open surface with k

holes can be conformally mapped to a unit disk with k circular holes [44]. Based on this
remarkable result, a few parameterization algorithms have been developed for multiply-
connected open surfaces using Ricci flow [17], holomorphic 1-form [45], Laurent series [46],
Beltrami energy minimization [47], discrete conformal equivalence [48] etc.

In this work, we propose two novel algorithms for computing the conformal parameter-
ization of multiply-connected surfaces using quasi-conformal theory. We first propose an
efficient method for conformally mapping an open surface with one hole (i.e. a topological
annulus) to an annulus domain with unit outer radius (Fig. 1, left). We then utilize this method
to develop another fast algorithm for conformally mapping a multiply-connected open sur-
face with k holes (i.e. a topological poly-annulus) to a unit disk with k circular holes (Fig. 1,
right). With the aid of quasi-conformal theory, we can effectively achieve the conformality
and bijectivity of the parameterizations.

The rest of the paper is organized as follows. In Sect. 2, we review the concepts of
conformal and quasi-conformal maps. In Sect. 3, we describe our proposed methods for the
conformal parameterization of multiply-connected surfaces. In Sect. 4, we demonstrate the
effectiveness of our parameterization methods using numerical experiments. Applications of
the proposed methods are explored in Sect. 5. We conclude the paper and discuss possible
future directions in Sect. 6.
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2 Mathematical Background

In this section, we review some mathematical concepts related to our work. Readers are
referred to [49–51] for more details.

2.1 Conformal Map

Let f : C → C be a map with f (z) = f (x, y) = u(x, y) + iv(x, y), where u, v are
real-valued functions. f is said to be a conformal map if it satisfies the Cauchy–Riemann
equations:

⎧

⎪

⎨

⎪

⎩

∂u

∂x
=

∂v

∂ y
,

∂u

∂ y
= −

∂v

∂x
.

(1)

Möbius transformations are a special class of conformal maps on the complex plane.
Mathematically, a Möbius transformation f : C → C is in the form

f (z) =
az + b

cz + d
, (2)

with a, b, c, d ∈ C satisfying ad − bc �= 0.

2.2 Quasi-Conformal Map

Quasi-conformal maps are a generalization of conformal maps. Mathematically, a mapping
f : C → C is said to be a quasi-conformal map if it satisfies the Beltrami equation

∂ f

∂ z̄
= µ f (z)

∂ f

∂z
(3)

for some complex-valued function µ f with ‖µ f ‖∞ < 1, where the complex derivatives are
given by

∂ f

∂ z̄
= f z̄ =

1

2

(

∂ f

∂x
+ i

∂ f

∂ y

)

and
∂ f

∂z
= fz =

1

2

(

∂ f

∂x
− i

∂ f

∂ y

)

. (4)

Here, µ f is called the Beltrami coefficient of f . Note that if µ f ≡ 0, then Eq. (3) becomes
the Cauchy–Riemann equations (1) and hence f is conformal.

Intuitively, conformal mappings map infinitesimal circles to infinitesimal circles, while
quasi-conformal mappings map infinitesimal circles to infinitesimal ellipses with bounded
eccentricity. To see this, consider the first order approximation of f around a point z0 ∈ C:

f (z) ≈ f (z0) + fz (z0) (z − z0) + fz (z0) z − z0 = f (z0) + fz (z0)
(

z − z0 + µ f (z0) z − z0
)

.

(5)
This indicates that an infinitesimal circle centered at z0 is mapped to an infinitesimal ellipse
centered at f (z0), with the maximum magnification | fz(z0)|(1+|µ f (z0)|) and the maximum
shrinkage | fz(z0)|(1 − |µ f (z0)|) (see Fig. 2 for an illustration). The aspect ratio of the

ellipse is then given by
1+|µ f (z0)|

1−|µ f (z0)|
. Therefore, the Beltrami coefficient effectively captures

the conformal distortion of its associated mapping.
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Fig. 2 An illustration of quasi-conformal maps. Under a quasi-conformal map f , an infinitesimal circle is
mapped to an infinitesimal ellipse with the maximum magnification | fz |(1+|µ f |) and the maximum shrinkage
| fz |(1 − |µ f |)

The Beltrami coefficient is also closely related to the bijectivity of the mapping. Note that
if f (x, y) = u(x, y) + iv(x, y), then the Jacobian J f of f is given by

J f = uxvy − vx u y

=
1

4

(

(

ux + vy

)2
+

(

vx − u y

)2
−

(

ux − vy

)2
−

(

vx + u y

)2
)

=
1

4

(

| (ux + ivx ) − i
(

u y + ivy

)

|2 − | (ux + ivx ) + i
(

u y + ivy

)

|2
)

= | fz |
2 − | f z̄ |

2

= | fz |
2 (

1 − |µ f |
2) .

(6)

Therefore, we have the following result:

Theorem 1 If f is a C1 map satisfying ‖µ f ‖∞ < 1, then f is bijective.

Besides, the Beltrami coefficient of a composition of two quasi-conformal maps can be
expressed explicitly. Let f : Ω1 → Ω2 and g : Ω2 → Ω3 be two quasi-conformal maps.
The Beltrami coefficient of the composition map g ◦ f is given by

µg◦ f =
µ f +

(

fz/ fz

) (

µg ◦ f
)

1 +
(

fz/ fz

)

µ f

(

µg ◦ f
) . (7)

In particular, if µ f −1 ≡ µg , we have

µg ◦ f = µ f −1 ◦ f = −
(

fz/ fz

)

µ f (8)

and hence

µg◦ f ≡
µ f +

(

fz/ fz

) ((

− fz/ fz

)

µ f

)

1 +
(

fz/ fz

)

µ f

((

− fz/ fz

)

µ f

) ≡ 0, (9)

which implies that the composition map g ◦ f is conformal. This suggests that one can
eliminate the conformal distortion of a quasi-conformal map by composing it with another
quasi-conformal map with the same Beltrami coefficient, provided that the boundary con-
straint is admissible. This idea of quasi-conformal composition [6] will be used in our
proposed methods for the computation of conformal parameterizations.

While the above concepts are introduced in terms of mappings on the complex plane, they
can be naturally extended for Riemann surfaces with the aid of local charts.
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2.3 Linear Beltrami Solver (LBS)

Lui et al. [29] developed a linear method called the Linear Beltrami Solver (LBS) for com-
puting a quasi-conformal map f (x, y) = u(x, y)+iv(x, y) with a given Beltrami coefficient
µ(x, y) = ρ(x, y) + iη(x, y). The idea is to consider the real and imaginary parts in the
Beltrami Eq. (3) separately:

ρ(x, y) + iη(x, y) = µ(x, y) =

(

ux − vy

)

+ i
(

vx + u y

)

(

ux + vy

)

+ i
(

vx − u y

) , (10)

from which we can express vx and vy as linear combinations of ux and u y :
{

vy = α1ux + α2u y,

−vx = α2ux + α3u y,
(11)

where

α1 =
(ρ − 1)2 + η2

1 − ρ2 − η2
, α2 = −

2η

1 − ρ2 − η2
, α3 =

(ρ + 1)2 + η2

1 − ρ2 − η2
. (12)

Similarly, we can express ux and u y as linear combinations of vx and vy :
{

−u y = α1vx + α2vy,

ux = α2vx + α3vy .
(13)

Since (vy)x + (−vx )y = 0 and (−u y)x + (ux )y = 0, from Eq. (11) and Eq. (13) we have

∇ ·

(

A

(

ux

u y

))

= 0 and ∇ ·

(

A

(

vx

vy

))

= 0, (14)

where A =

(

α1 α2

α2 α3

)

. In the discrete case, Eq. (14) can be discretized as two sparse sym-

metric positive definite linear systems. Therefore, one can easily obtain ux , u y, vx , vy (and
hence the quasi-conformal map f ) for any given µ by solving two linear systems with certain
boundary constraints (see [29] for details). We denote the above procedure by f = LBS(µ).

3 ProposedMethods

Below, we first develop an efficient algorithm for conformally parameterizing an open surface
with one hole onto a planar annulus. We then utilize this algorithm to develop another efficient
method for conformally parameterizing a multiply-connected open surface with k holes onto
a unit disk with k circular holes.

3.1 Annulus Conformal Map for Open Surfaces with One Hole

Let S be an open surface in R
3 with one hole, i.e. a topological annulus. Denote the surface

boundary as ∂S = γ0 − γ1, where γ0 is the outer boundary and γ1 is the inner boundary. Our
goal is to find a conformal parameterization f : S → C that maps S to an annulus on the
plane with unit outer radius. The proposed method is outlined in Fig. 3.

To begin, we take an arbitrary vertex at the inner boundary γ1 and find a shortest path
from it to the outer boundary γ0. By slicing S along the path, we obtain a simply-connected
open surface S̃ (see the red curve in Fig. 3, second left). Due to the change in the surface
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Fig. 3 An illustration of the proposed annulus conformal map (ACM) method for open surfaces with one hole.
We first slice the mesh along a path (highlighted in red) from the inner boundary to the outer boundary to
make the surface open. We then map it onto a rectangle with an optimal length L and unit width. The rectangle
is subsequently mapped to an annulus using an exponential map. Finally, we identify the cut vertices and
compose the map with another quasi-conformal map to achieve a conformal parameterization. (Color figure
online)

topology, it is possible to map S̃ onto a planar domain without holes. As for the reason of
using a shortest path, note that the cut path between the two vertices corresponds to the two
boundary edges connecting the left and right corners of the rectangle as illustrated in Fig. 3.
Since the two edges are the geodesics between the corners, the shortest path between the
two corresponding vertices in the input mesh is a natural choice for the cut path. Also, as the
corners of the rectangle are enforced to be with angle = π/2, using a shortest path can help
reduce the angular distortion there in the discrete case.

Now, we consider mapping S̃ onto a strip conformally (see Fig. 3, middle). Meng
et al. [28] developed an efficient rectangular conformal mapping algorithm based on the
LBS method [29]. The algorithm first computes an initial flattening map of the input surface
onto the unit disk. It then maps the disk to the unit square using the LBS method. In particular,
four boundary vertices are chosen as the four corners of a unit square, and an optimal quasi-
conformal map is computed for mapping the remaining vertices onto the square domain.
Finally, it keeps the length of the square domain fixed and optimally rescale the width of it so
as to achieve a rectangular conformal map. Here, we follow the approach in [28] with some
modifications for obtaining the conformal map onto a strip.

We first compute a disk harmonic map φ : S̃ → D by solving the following Laplace
equation

{

∆φ = 0,

φ(∂ S̃) = ∂D,
(15)

where the boundary constraint is given by the arc-length parameterization. More explicitly,
denote {pi }

n
i=1 as the boundary vertices of S̃ in anti-clockwise order. For every i , we map pi

to a point (cos θi , sin θi ) on the unit circle, where θ1 = 0, and θ2, θ3, . . . , θn are determined
using the boundary edge lengths:

θi =
2π

∑i−1
j=1 l[p j ,p j+1]

∑n
j=1 l[p j ,p j+1]

, i = 2, 3, . . . , n. (16)

Here, l[p j ,p j+1] is the length of the edge [p j , p j+1], and pn+1 = p0. The Laplacian ∆ is

the Laplace–Beltrami operator on S̃, which can be easily discretized using the cotangent
formulation [4]. After flattening the sliced surface onto the unit disk, we compute a quasi-
conformal map ψ : D → R = [0, L] × [0, 1] from the unit disk to a rectangular domain
with length L and unit width, where L is to be determined. In particular, we use the LBS
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method with the target Beltrami coefficient being µψ = µφ−1 :

ψ = LBS
(

µφ−1

)

, (17)

where the four vertices on ∂ S̃ that correspond to the endpoints of the cut path are set to be
the four corners of the target rectangular domain. More explicitly, denote p, p′ as the two
vertices on ∂ S̃ that correspond to the endpoint at the inner boundary γ1, and q, q ′ as the two
vertices on ∂ S̃ that correspond to the endpoint at the outer boundary γ0. The four corners of
R are set as follows (see Fig. 3):

ψ(φ(p)) = (0, 0), ψ(φ(q)) = (L, 0), ψ(φ(q ′)) = (L, 1), ψ(φ(p′)) = (0, 1). (18)

Note that by Eq. (9), the conformal distortion of the quasi-conformal composition ψ ◦ φ can
be significantly reduced given an appropriate boundary constraint. In the original formula-
tion [28], the boundary vertices are allowed to freely slice along the sides of the rectangular
domain to achieve conformality. However, in our case, the top and bottom sides of R cor-
respond to the cut path and are with equal number of corresponding vertices (see the two
red curves in Fig. 3, middle). To enforce their positional consistency, we impose a periodic
boundary constraint on the x-coordinates of the top and bottom boundary vertices. As for
the choice of L , we start with an initial guess L = 1 and compute the map ψ using Eq. (17).
Then, we search for the optimal L which minimizes the norm of the Beltrami coefficient of
ψ ◦ φ to further reduce the conformal distortion.

Here we remark that one may look for an extra shear transformation

(

x

y

)

�→

(

1 0
a 1

)(

x

y

)

to transform R into a parallelogram, such that the two bottom corner points do not necessarily
have the same y-coordinates. Theoretically, this can help further reduce the conformal distor-
tion of the mapping. However, as the cut path is chosen to be a shortest path, we find that the
optimal a is usually very small (with |a| ∼ 10−4) in our experiments and the improvement
in the conformality is negligible. Therefore, this step can be skipped in practice.

After getting the rectangular parameterization ψ ◦ φ, we apply the exponential map

η(z) = e2π(z−L), (19)

which maps the rectangular domain [0, L] × [0, 1] to an annulus with inner radius e−2π L

and outer radius 1. Because of the periodicity imposed in the computation of the rectangular
parameterization, the top and bottom boundaries (i.e. the cut path vertices) are mapped to
consistent locations on the annulus domain. We can then identify every pair of them and
obtain a seamless mapping result (see Fig. 3, second right).

Finally, we use the quasi-conformal composition to further improve the conformality of
the annulus map. Specifically, we compute an automorphism ζ on the annulus (η ◦ψ ◦φ)(S)

with
ζ = LBS

(

µ(η◦ψ◦φ)−1

)

, (20)

where all boundary vertices are fixed. This results in the final annulus conformal parameter-
ization f = ζ ◦ η ◦ ψ ◦ φ (see Fig. 3, rightmost). We remark that by the quasi-conformal
composition, the Beltrami coefficient of the resulting map is with supremum norm less than
1 and hence is bijective.

The proposed annulus conformal map (ACM) algorithm is summarized in Algorithm 1.
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Algorithm 1: Annulus conformal map (ACM) for open surfaces with one hole.
Input: An open surface S with annulus topology.
Output: A conformal parameterization f : S → C onto an annulus with unit outer radius.

1 Compute a shortest path from an arbitrary vertex at the inner boundary to the outer boundary. Slice the
mesh along the path;

2 Compute the disk harmonic map φ for initialization;
3 Compute the rectangular conformal map ψ with a periodic boundary constraint, where the four corners

correspond to the endpoints of the cut path;
4 Apply the exponential map η to obtain an annulus with unit outer radius;
5 Compose the map with another quasi-conformal map ζ to further improve the conformality;
6 The resulting conformal parameterization is given by f = ζ ◦ η ◦ ψ ◦ φ;

Fig. 4 An illustration of the proposed poly-annulus conformal map (PACM) method for multiply-connected
open surfaces. We first repeatedly apply Algorithm 1 (without the quasi-conformal composition step) with
all but one holes filled. After handling all holes, we compute an optimal Möbius transformation to adjust the
location of the holes. Note that the holes are all close to circles but may not be perfectly circular in practice.
Finally, we further apply a projection step for enforcing the circularity of the holes and then compose the map
with another quasi-conformal map to achieve a conformal parameterization

3.2 Poly-annulus Conformal Parameterization of Multiply-Connected Open Surfaces

with kHoles

Let S be a multiply-connected open surface in R
3 with k holes, i.e. a topological poly-annulus.

Denote the surface boundary as ∂S = γ0 −γ1 −γ2 −· · ·−γk , where γ0 is the outer boundary
and γ1, · · · , γk are the inner boundaries. Our goal is to find a conformal parameterization
f : S → D that maps S to the unit disk with k circular holes. The proposed method is
outlined in Fig. 4.

Analogous to the Koebe’s iteration method [44,45], our method handles the k holes of
the surface S one by one. We first fill all but the first holes to get a surface S1 with annulus
topology. In practice, one can simply fill a hole by adding a new vertex at the center of
the hole and including its one-ring neighborhood of triangular faces. We can then apply
the proposed ACM method (Algorithm 1) with the the quasi-conformal composition step
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w'j+1
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Fig. 5 For a hole which has already been mapped to a circle at a previous step (left), the newly added vertex O at
the center of the hole at the next hole filling step is equidistant from all the boundary vertices w1, w2, . . . , wn

and hence we have ∠Ow j w j+1 = ∠Ow j+1w j for all j . Under the next annulus map, the angles in the

ring of triangles remain largely unchanged (right), i.e. ∠O ′w′
j
w′

j+1 ≈ ∠Ow j w j+1 = ∠Ow j+1w j ≈

∠O ′w′
j+1w′

j
for all j . Hence O ′ is approximately equidistant from all w′

j
, which indicates that the hole

remains to be close to a circle under the mapping

(Line 5 in Algorithm 1) skipped to obtain an annulus map g1 : S1 → C, with γ0 and γ1

mapped to the outer circle and the inner circle respectively. After that, we remove all filled
regions to restore the surface topology. Here, we remark that the quasi-conformal composition
step is skipped for simplifying the computational procedure. As shown in Fig. 3, the quasi-
conformal composition primarily improves the conformality near the cut path, while the
conformality of all other regions is largely unaffected. Therefore, we can leave the quasi-
conformal composition step to the last part of the poly-annulus parameterization, which
allows us to correct the conformal distortion in one solve instead of k solves.

By repeating the above process for handling all the remaining holes, we obtain the com-
position map gk ◦ gk−1 ◦ · · · ◦ g1. Here, note that each time one new hole is enforced to
be a perfect circle, and in fact the circularity of the previously handled holes is also largely
preserved. The reason is that the hole filling procedure involves adding a new vertex at the
center of those holes together with a ring of triangles, and hence each of the subsequent
annulus maps (which is highly conformal at most places even without the quasi-conformal
composition step) will preserve the angles in the entirely filled shape including those in the
filled holes as much as possible, thereby effectively preventing the previously handled holes
from being largely distorted in circularity.

More specifically, consider a hole which has been mapped to a small circle and denote
its vertices as w1, w2, . . . , wn . Since the hole is circular, the new vertex added to that hole
in the next hole filling procedure (denoted as O) is the center of the small circle (see Fig. 5,
left), which implies that O is equidistant from all w j :

l[O,w1] = l[O,w2] = · · · = l[O,wn ]. (21)

It is then straightforward to see that ∠Ow jw j+1 = ∠Ow j+1w j for all j in the newly added
ring of triangles. Now, suppose the vertices are mapped to w′

1, w
′
2, . . . , w

′
n, O ′ under the

next annulus map (see Fig. 5, right). As the annulus map is highly conformal, for every j we
should have

∠O ′w′
jw

′
j+1 ≈ ∠Ow jw j+1 = ∠Ow j+1w j ≈ ∠O ′w′

j+1w
′
j , (22)
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and hence l[O ′,w′
j ]

≈ l[O ′,w′
j+1]

for all j . It follows that O ′ is approximately equidistant from

all w′
j , which implies that the hole formed by w′

1, w
′
2, . . . , w

′
n is close to a circle. One can

then repeat the above argument at all subsequent steps to show that the hole will continue to
be approximately circular. In other words, by the property of the hole filling procedure and
the annulus map, every hole will remain approximately circular once it has been enforced to
be a circle at a certain step. While the holes may not all be perfectly circular as numerical
errors may accumulate throughout the entire process, an extra step of further enforcing the
circularity will be added later.

Now, note that the k-th hole of S is mapped to the center of the unit disk. Since this may
not follow the distribution of the holes on S well, the area distortion of the map may be
large. To alleviate this issue, we use the Möbius area correction scheme [24] to reduce the
area distortion of the map while preserving conformality, thereby ensuring that the holes
are at appropriate locations on the planar domain. More explicitly, we search for an optimal
automorphism τα on the unit disk in the following form:

τα(z) =
z − α

1 − αz
, (23)

where α ∈ C with |α| < 1, such that the composition τα ◦ gk ◦ gk−1 ◦ · · · ◦ g1 minimizes the
area distortion of the parameterization with respect to the input surface.

As discussed above, all the k holes become close to circles under the annulus mapping steps
but they may not all be perfectly circular. Also, while Möbius transformations map circles and
straight lines to circles and straight lines in theory, in the discrete case they may cause a small
distortion in the circularity of the holes. Therefore, we add a step of enforcing the circularity
of the holes via projections. More specifically, for each hole (τα ◦ gk ◦ gk−1 ◦ · · · ◦ g1)(γi ),
we find the maximum inscribed circle of it and project all boundary vertices onto this circle.
After performing this operation for all k holes, we obtain a unit disk with k circular holes.
We denote the process by ρ : D → D.

Finally, we use the quasi-conformal composition to further reduce the conformal distortion
caused by the annulus mapping steps and the projection step. We compute an automor-
phism h on the unit disk with the Beltrami coefficient µ(ρ◦τα◦gk◦gk−1◦···◦g1)

−1 using the LBS
method [29]:

h = LBS
(

µ(ρ◦τα◦gk◦gk−1◦···◦g1)
−1

)

, (24)

where all boundary vertices are fixed. By the composition formula in Eq. (9), the composition
f = h ◦ ρ ◦ τα ◦ gk ◦ gk−1 ◦ · · · ◦ g1 gives a conformal parameterization of S onto the unit
disk with exactly k circular holes. Similar to Algorithm 1, the quasi-conformal composition
here also ensures that the Beltrami coefficient of the resulting map is with supremum norm
less than 1 and hence is bijective.

The proposed conformal parameterization method for poly-annulus surfaces is summa-
rized in Algorithm 2.

4 Experimental Results

The proposed conformal parameterization algorithms are implemented in MATLAB. The
linear systems are solved using the backslash operator (\) in MATLAB. For the step of mesh
slicing in Algorithm 1, we use the MATLAB function graphshortestpath to compute
a shortest path between the arbitrary vertex at the inner boundary γ1 and the closest vertex
at the outer boundary γ0 of the input triangular mesh. For the rectangular conformal map
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Algorithm 2: Poly-annulus conformal map (PACM) for multiply-connected open sur-
faces.

Input: A multiply-connected open surface S with k ≥ 1 holes.
Output: A conformal parameterization f : S → C onto a unit disk with k circular holes.

1 for i = 1, . . . , k do

2 Fill all but the i-th holes;
3 Solve for an annulus map gi using Algorithm 1 with the quasi-conformal composition step skipped;
4 Remove all filled regions;

5 Search for an optimal Möbius transformation τα for reducing the area distortion;
6 Enforce the circularity of the holes by a projection step ρ : D → D;
7 Compose the map with another quasi-conformal map h to improve the conformality;
8 The resulting parameterization is given by f = h ◦ ρ ◦ τα ◦ gk ◦ gk−1 ◦ · · · ◦ g1;

in Algorithm 1, we use the MATLAB function fminbnd to search for the optimal length
L of the rectangular domain. For the Möbius transformation in Eq. (23) in Algorithm 2,
we write α = reiθ and use the MATLAB function fmincon to search for the optimal
parameters (r , θ) ∈ [0, 1] × [0, 2π ]. For the step of finding maximum inscribed circles of
the holes, we use the function find_inner_circle available in the MATLAB Central
FileExchange [52]. All experiments are performed on a PC with a 4.0 GHz quad core CPU and
16 GB RAM. To assess the conformality of a parameterization f : S → C, we consider the
angular distortion of every angle [vi , v j , vk] on the surface mesh under the parameterization:

d
([

vi , v j , vk

])

= ∠
[

f (vi ) , f
(

v j

)

, f (vk)
]

− ∠
[

vi , v j , vk

]

. (25)

For an ideal conformal map, we should have d = 0 for all angles.
Figure 6 shows several surfaces with annulus topology and the annulus conformal param-

eterizations achieved by our proposed ACM method. Note that our method is capable of
handling surfaces with a highly non-convex hole (see the top example) as well as surfaces
with a highly tubular geometry (see the bottom example). From the histograms of the angular
distortion d , it can be observed that the parameterizations are highly conformal. For com-
parison, we consider the Ricci flow (RF) method [17] with implementation available in the
RiemannMapper toolbox [53]. Table 1 records the computation time and the conformal dis-
tortion of our proposed ACM method and the RF method, from which it can be observed that
our method outperforms the RF method in both the conformality and efficiency. The improve-
ment in the conformality can be explained by that the RF method is based on the circle packing
metric, which is highly dependent on the quality of the triangulations. For surface meshes
with coarse or irregular triangulations, the approximation of the metric may be inaccurate,
thereby yielding a large conformal distortion in the parameterization results. By contrast,
our method effectively reduces the conformal distortion using the idea of quasi-conformal
composition. As for the improvement in the efficiency, note that the RF method uses a gra-
dient descent approach for minimizing the Ricci energy and hence is time-consuming, while
our method only involves solving a few linear systems and a one-dimensional optimization
problem.

Figure 7 shows the poly-annulus conformal parameterizations of several multiply-
connected open surfaces achieved by our proposed PACM method. It can be observed that
our method works well for surfaces with different size, shape, and number of holes. For a
more quantitative analysis, we again compare our method with the RF method in terms of
the computation time and the angular distortion. As shown in Table 2, our method achieves
a significant improvement in both the efficiency and conformality when compared to the RF
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Fig. 6 Examples of the annulus conformal parameterization achieved by our proposed ACM method (Algo-
rithm 1). Left: The input open surfaces with annulus topology. Middle: The annulus conformal parameterization
results. Right: The histograms of the angular distortion d

Table 1 Performance of the proposed ACM method (Algorithm 1) and the Ricci flow (RF) method [17] for
the annulus conformal parameterization of open surfaces with annulus topology

Surface # Vertices ACM RF [17]

Time (s) Mean(|d|) Time (s) Mean(|d|)

Amoeba1 (Fig. 3) 7 K 0.3 1.1 4.7 21.5

Amoeba2 (Fig. 6) 7 K 0.3 4.0 4.5 21.6

Niccolò (Fig. 6) 10 K 0.3 1.5 5.9 18.6

Sophie (Fig. 1) 21 K 1.0 0.6 15.3 9.5

Lion vase (Fig. 6) 25 K 1.1 3.2 17.0 26.3

Here, the angular distortion d is evaluated using Eq. (25)
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Fig. 7 Examples of the poly-annulus conformal parameterization achieved by our proposed PACM method
(Algorithm 2). Left: The input multiply-connected open surfaces with k holes. Middle: The poly-annulus
conformal parameterization results. Right: The histograms of the angular distortion d

Table 2 Performance of the proposed PACM method (Algorithm 2) and the Ricci flow (RF) method [17] for
the poly-annulus conformal parameterization of multiply-connected open surfaces

Surface # Holes # Vertices PACM RF [17]

Time (s) Mean(|d|) Time (s) Mean(|d|)

David (Fig. 8) 2 25 K 2.6 0.8 16.6 13.8

Alex (Fig. 1) 3 14 K 2.0 1.3 10.5 13.1

Face (Fig. 9) 3 1 K 0.2 4.4 0.8 14.1

Lion (Fig. 7) 5 17 K 3.5 6.8 12.4 10.2

Peaks (Fig. 7) 7 2 K 0.4 5.1 1.4 15.8

Twisted hemisphere (Fig. 8) 8 25K 8.8 7.6 22.0 9.1

Amoeba (Fig. 7) 10 7 K 2.0 4.3 5.8 21.7

Here, the angular distortion d is evaluated using Eq. (25)
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Fig. 8 Texture mapping for multiply-connected surfaces achieved by our proposed conformal parameterization
methods. We first compute the conformal parameterization of an input multiply-connected surface onto a planar
domain using our proposed methods. Then, we can design textures on the planar domain and map them back
onto the input surface with the local geometry well-preserved

method. Therefore, our method is more advantageous for the computation of the poly-annulus
conformal parameterization.

5 Applications

5.1 Texture Mapping

The proposed conformal parameterization methods can be effectively applied to texture
mapping. Using our methods, any multiply-connected open surface in R

3 can be conformally
mapped onto a unit disk with circular holes. Textures can then be designed on the plane
and mapped back onto the surface easily. As our methods are angle-preserving, the local
geometry of the designed textures will be well-preserved. Also, as our methods produce global
parameterizations of the surfaces, the texture mapping results will be seamless. Figure 8 shows
two texture mapping results produced using our parameterization methods. The orthogonality
of the checkerboard patterns on the surfaces indicates that our parameterizations are highly
conformal.

5.2 Surface Remeshing

The proposed conformal parameterization methods can also be applied to surface remeshing.
Suppose we would like to improve the mesh quality of a given multiply-connected surface.
A simple way is to map it onto the unit disk with circular holes using our parameterization
methods, and then perform the remeshing process on the plane.

In particular, DistMesh [54] is a powerful toolbox for generating triangular meshes, which
uses signed distance functions to specify the geometry of the domain and control the mesh
quality. In our case, the disk domain with circular holes can be easily expressed as a differ-
ence between signed distance functions for several circles using the ddiff and dcircle
functions in DistMesh. The target mesh quality is set using a scaled edge length function in
DistMesh, which can also be easily controlled using the signed distance functions for circles.
Therefore, our parameterization methods can be naturally combined with DistMesh for the
remeshing task. Once a new planar mesh is generated, we can map it back to the surface
via the parameterization. Figure 9 shows two examples of remeshing a multiply-connected
human face surface, from which it can be observed that different remeshing effects can be
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Fig. 9 Remeshing a multiply-connected open surface via our proposed conformal parameterization methods.
Given a multiply-connected open surface (top left), we first compute the poly-annulus conformal parameteri-
zation using our proposed methods (bottom left). We can then generate triangular meshes on the poly-annulus
domain using DistMesh [54] with different desired effects, such as having finer triangulations at the central
part (bottom middle) or around one of the holes (bottom right). The new planar meshes can then be mapped
back onto the given surface via the parameterization (top middle and top right)

Fig. 10 Registration of multiply-connected surfaces via the proposed conformal parameterization methods.
Given two multiply-connected surfaces with the same topology, we can first conformally parameterize them
onto two unit disk domains with the same number of circular holes. We can then compute a quasi-conformal
map between the two planar domains, with all corresponding holes exactly matched. Finally, we can map the
planar mapping result back onto the target surface to obtain the final registration result
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easily achieved. As the parameterization is angle-preserving, the regularity of the triangles
in the new planar meshes is well-preserved in the final remeshed surfaces.

5.3 Surface Registration

Another possible application of the proposed conformal parameterization methods is
multiply-connected surface registration [55]. As shown in Fig. 10, given two multiply-
connected open surfaces (denoted as S1 and S2) with the same topology, we can first compute
the poly-annulus conformal parameterizations (denoted as f1 and f2) of them using our pro-
posed methods. Then, we can compute a quasi-conformal map g between the two planar
domains f1(S1) and f2(S2) with all corresponding holes exactly matched using the LBS
method. The composition f −1

2 ◦ g ◦ f1 then gives a registration mapping between the sur-
faces S1 and S2. From the final registration result in Fig. 10, it can be observed that the two
multiply-connected surfaces are matched very well.

6 Discussion

With the advancement in computer technology, there has been a surge of interest in the devel-
opment of conformal parameterization algorithms for science and engineering applications
in recent decades. However, most of the existing methods only work for simply-connected
surfaces. In this work, we have proposed two novel algorithms for the conformal parame-
terization of multiply-connected surfaces onto either an annulus or a unit disk with circular
holes using quasi-conformal theory. As there are a vast number of analytical and numerical
conformal mapping methods for multiply-connected planar domains [56–60], the proposed
parameterization algorithms pave the way for applying these methods to multiply-connected
surfaces. For instance, the prime function has been used for solving various applied and
natural science problems on multiply-connected planar domains [61]. With the aid of our
proposed parameterization algorithms, it may be possible to extend the method to Riemann
surfaces.

Besides the applications discussed in this work, it is natural to explore the use of the
proposed conformal parameterization methods for shape analysis [62,63], greedy routing in
sensor networks [64] etc. Also, note that both the proposed poly-annulus conformal parame-
terization method in this work and the conventional Koebe’s iteration method rely on a series
of annulus mappings for producing the final result. Alternatively, as shown in the recent
discrete conformal equivalence approach [48], the poly-annulus parameterization can be
achieved by gluing faces to all but one boundary component and constructing a discrete con-
formal map using discrete conformal equivalence of cyclic polyhedral surfaces. A possible
future direction would be to adopt a similar strategy to further simplify the computational pro-
cedure of our method. Another possible future direction is to combine the proposed methods
with the optimal mass transport (OMT) [65–68] or the density-equaling map (DEM) [69,70]
for efficiently computing area-preserving parameterizations of multiply-connected surfaces.
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