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Darwin’s finches are a classic example of adaptive radiation, ex-

emplified by their adaptive and functional beak morphologies.

To quantify their form, we carry out a morphometric analysis of

the three-dimensional beak shapes of all of Darwin’s finches and

find that they can be fit by a transverse parabolic shape with

a curvature that increases linearly from the base toward the tip

of the beak. The morphological variation of beak orientation,

aspect ratios, and curvatures allows us to quantify beak func-

tion in terms of the elementary theory of machines, consistent

with the dietary variations across finches. Finally, to explain the

origin of the evolutionary morphometry and the developmental

morphogenesis of the finch beak, we propose an experimentally

motivated growth law at the cellular level that simplifies to a vari-

ant of curvature-driven flow at the tissue level and captures the

range of observed beak shapes in terms of a simple morphospace.

Altogether, our study illuminates how a minimal combination of

geometry and dynamics allows for functional form to develop and

evolve.

beaks | morphology | Darwin’s finches | evo–devo

Darwin’s finches, a family of 14 to 16 bird species (Fig. 1)
that likely evolved from a common ancestor arriving in the

Galàpagos 2 to 3 Ma, form a classic example of adaptive radi-
ation (1). This group has an extremely high diversification rate
when compared with other birds including related species on the
mainland and all other avian inhabitants of Galàpagos (2). The
evolutionary and ecological success of Darwin’s finches is closely
associated with the disparity and diversity of beak morphology (3,
4), ranging from the broad, blunt beak of the large ground finch
Geospiza magnirostris to the thin and pointed beak of the warbler
finch Certhidea olivacea (5). Each species of Darwin’s finches
has a unique beak shape, which affords them distinct strategies
for both exploration and exploitation of different types of di-
ets (e.g., G. magnirostris: seeds; C. olivacea: insects) (Fig. 1A).
This morphological diversity is generated by modifications to
an otherwise conserved beak developmental program (6–9). To
fully explain the observed diversity of beak shapes in Darwin’s
finches and other birds, we need to integrate perspectives from
evolutionary biology and developmental genetics with mathe-
matical morphometry, the biophysics of morphogenesis, and the
biomechanics of beak function, unifying the study of growth,
form, and function.

Here, we quantify the diversity of all finch beaks using
three-dimensional (3D) morphometry (10, 11). This leads to
a minimal morphospace that allows us to quantify the beak’s
mechanical function as a machine (12–14) and show how beak
angle relative to the skull, aspect ratios, and curvatures affect
the ability of the bird to apply and withstand biting forces. To
explain this evolutionary variation across species along with
the observed dynamics of beak development in zebra finches
(6, 9, 15), we propose an experimentally motivated simple
biophysical law for beak morphogenesis that links growth to
surface curvature and yields a morphospace consistent with
observations.

Evolutionary Morphospace of Beaks

To quantify the 3D shape of beaks, we used high-resolution 3D
computed tomography (CT) scans (16) of the skulls and used
a smoothing algorithm (SI Appendix has details) to obtain the
3D surface of the upper beak, as shown in Fig. 1B (Movie S1),
moving away from previous morphological analyses based either
on discrete metrics such as length, width, and depth (10, 11) or
on two-dimensional approaches (15). In Fig. 1C, we show the
result of 59 micro-CT (µCT) scans of upper beaks from 15 dif-
ferent species in the genera Geospiza, Camarhynchus, Certhidea,
Pinaroloxias, Platyspiza, and Tiaris along with their phylogenetic
relationships.

Denoting the origin at the tip of the beak, with axes oriented
to correspond to the principal axes of the beak (Fig. 2A), we find
that the following paraboloidal profile captures the surface of the
upper beak (Fig. 2B and SI Appendix, Figs. S1–S4):

z (x , y) =
D + κx L2

L
x − κx x

2 − (κtip − S x ) y
2, [1]

where L,W ,D are the length, width, and depth, respectively;
κx is the curvature of the midsagittal section; κtip is the cur-
vature in the transverse direction at the tip; and S represents
the “sharpening rate” of the beak curvature toward the tip.
Since the size of the cross-section shrinks to zero at the tip, the
parameter κtip is extracted from the linear fit of the transverse
curvature κy ≡ κtip − S x . This allows us to represent each beak
as a point in a 3D morphospace with coordinates (κx ,κtip ,S)
as shown in Fig. 2C. To compare beak shape across species, we
remove the effect of scale and consider the dimensionless shape

variables κ̃x ≡ L2

D
κx , κ̃tip ≡ W 2

D
κtip , and S̃ ≡ L W 2

D
S (Eq. 2).

Further noting that the beak is cut by the plane z = 0, we have
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Fig. 1. Beak morphology and phylogeny of Darwin’s finches. (A) Adaptive radiation of Darwin’s finches is reflected in the diversity of beak sizes and

shapes associated with specialized diets, including (from top to bottom) drawing blood, drinking nectar, crushing seeds, and catching insects. Image credit

(Fig. 1A, from Top to Bottom): Daniel Baldassarre (State University of New York at Oswego, Oswego, NY); Jamie Krupka (Macaulay Library at the Cornell

Lab of Ornithology, Ithaca, NY); Arhat Abzhanov; and Richard Thunen (Macaulay Library at the Cornell Lab of Ornithology, Ithaca, NY). (B) Protocols for

shape extraction used in the analysis of the beak µCT scans. The orange line in I represents the cutting (transverse) plane drawn through the basal end of

the beak; the beak is then digitally meshed, and its profile is smoothed (SI Appendix has details). I: Full “Geospiza septentrionalist” skull. II: Upper beak cut.

III: Smoothed upper beak. IV : Upper beak surface. (C) Molecular phylogeny of Darwin’s finches over the past 2 to 3 My (represented by the dashed line).

Shown are Tiaris bicolor, Certhidea fusca, C. olivacea, Geospiza difficilis, P. crassirostris, Platyspiza inornate, C. psittacula, Camarhynchus parvulus, C. pallidus,

G. septentrionalist, G. scandens, Geospiza conirostris, G. magnirostris, Geospiza fortis, and Geospiza fuliginosa.

the additional relation z (L,W /2) = 0, which yields the identity

κ̃tip = 4 + S̃ (the Pearson correlation coefficient between the

two quantities across our 59 samples is Cor [S̃ , κ̃tip ]≈ 0.995)
(Fig. 2D). This reduces the entire morphospace of beak shapes

to an overall size
√
L2 +W 2 +D2, two aspect ratios associated

with the relative depth D/L and width W /L, and two scaled

curvature parameters κ̃x , S̃ .
Looking for patterns across beaks after alignment according

to their principal directions (PDs), the depth to length ratio is
nearly constant across all samples when measured along the PD
of the beak but varies by a factor of seven when measured along
the PD of the entire skull (SI Appendix, Fig. S5). This observation
may appear to be in contradiction with the known fact that G.
magnirostris beaks have larger depth to length ratios compared
with Geospiza scandens. However, as can be seen in Fig. 1A, the
different orientations of the beaks relative to the head explain a
large part of the apparent variation in aspect ratios.

Form and Mechanical Function of Beaks

While several factors can influence beak shape evolution (17–19),
feeding ecology is thought to play a primary role in selection
pressure on the beaks of Darwin’s finches (20, 21) and other
birds (22). Indeed, the morphological patterns of variation
(SI Appendix, Fig. S6) in beak shape are correlated strongly with
beak function as a mechanical tool. For example, beaks of the
large tree finch, the large ground finch, and the vegetarian finch
have larger curvature and sharpening rate (SI Appendix, Fig. S5)
and are associated with large biting forces. In particular, the large

tree finch has the largest sagittal curvature κ̃x , the large ground

finch has the highest sharpening rate S̃ , and the vegetarian finch
is the second highest on both dimensions. In contrast, insect
eating and probing beaks, such as those of warbler and cactus
finches, have relatively lower curvature and sharpening rate.
Compared with birds with strong bite force, the beak to skull
angle is much smaller in this case as well.

In order to quantify the mechanical performance for each spec-
imen in Dataset S1, we use the mechanical advantage M, which
gives the ratio of input to output forces. The full mechanical
advantage can be expressed as the product of factors coming
from the different force-propagating structures (23, 24). Here,
we focus on factors affected by beak shape. Specifically, M is the
ratio of the input moment arm [d1 sin(θ)] to the output moment
arm [d2 sin(φ)] (25), which is illustrated in Fig. 3A. The longer the
output lever, which corresponds to a smaller M, the faster the
closing speed at the tip for a given rotational velocity at the joint
(19, 26) (indicated as the orange triangle in Fig. 3A). However,
smaller lengths of an output lever result in higher forces at the tip
for the same input force. Therefore, we expect M to be highest
among species that rely on tip biting such as Camarhynchus psit-
tacula and Platyspiza crassirostris (SI Appendix, Figs. S7 and S8).
Species that rely on strong bite forces, such as G. magnirostris,
also score high on this measure. On the other hand, insect eaters
such as C. olivacea that require a faster bite at the tip will score
lower on this scale, as will species with probing beaks, such as G.
scandens and Camarhynchus pallidus.

To understand the role that beak shape plays in force genera-
tion, we consider a simple mechanical analog of the beak shown
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Fig. 2. Evolutionary morphospace of beaks. (A) Digitally extracting the upper beak from the skull (Left) of G. septentrionalist and aligning the result with

its PDs (Fig. 1B) yield the smoothed shape (Right). The midsagittal curve (yellow), y = 0, is fit well with a parabolic form, z = (D+ κx L
2)(x/L) − κx x

2. The

transverse sections, shown in red, at the basal end can be fit well with parabolas whose curvatures vary linearly with distance from the tip, κy(x) = κtip − S x.

Here, κtip ≡ κy(0). (B) The horizontal cross-section z = 0 (light blue) as predicted from Eq. 1 agrees well with the actual cut beak (red points). (C) The 59

finch beak samples in the morphospace defined by
(

κx ,κtip, S
)

in units of (mm−1, mm−1, mm−2) are color coded according to genus. (D) Multiple views of

the morphospace characterized by the dimensionless parameters κ̃x = L2 κx/D, κ̃tip =W2 κtip/D, and S̃ = L W2 S/D. The fact that points lie on a plane is

confirmation of the parabolic nature of the basal transverse cross-section (SI Appendix, Fig. S5).

in Fig. 3A (SI Appendix, Fig. S9). Here, the blue circles represent
the biting point, which in seed-cracking birds, is in the back of
the beak as shown in refs. 12 and 14. Using the arrangement
shown in the figure, we can calculate the mechanical advantage
as a function of the two aspect ratios W /D and D/L. The result,
shown in Fig. 3B, shows that the mechanical advantage is highly
sensitive to D/L and weakly dependent on W /D . The strong
D/L dependence is due to the fact that high values of this aspect

ratio lead to a decrease in both the angle φ and the distance from
the joint to the point of force application d2 (Fig. 3A). Indeed,
we see that for G. magnirostris, D/L≈ 2, which is just enough
to maximize the value of the mechanical advantage (Fig. 3C).
The weak dependence of the mechanical advantage on W /D is
consistent with the fact that this aspect ratio is nearly constant
across all our samples (with the exception of the insect eater C.
olivacea) (Fig. 3B).

Fig. 3. Functional mechanics of beaks. (A) Using a G. magnirostris beak sample (Upper), we calculate the mechanical advantage of the beak, M ≡

|Fout|/|Fin|, in terms of the input and output forces on the beak (see text). A simplified model of the beak (Lower) aids in visualizing the mechanical

advantage; the parameter μ characterizes the position of seed placement (blue dot), and σ characterizes the point of application of the input force (red

dots). (B) The geometric ratios D/L and W/D are color coded as in Fig. 1C. The gray scale of the density plot shows the scaled mechanical advantage,

M̃ ≡ M/Mmax . As can be seen from the plot, the dependence of M̃ on W/D is weak. (C) The dependence of M̃ on D/L for W/D= 0.6, corresponding

to the dashed line in B. Note how G. magnirostris samples have the highest values of D/L in part due to the large beak angle relative to the skull, thus

maximizing their mechanical advantage, M̃ ∼ 1.
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Additionally, it is well known that stiffness of a mechanical
structure can increase with its curvature. In our samples, we
see strong correlation between the mechanical advantage, which
gives a measure of the forces experienced by the beak and cur-
vature: Cor [M, κ̃tip × κ̃x ] = 0.65 (SI Appendix, Fig. S10). Our
mechanical analysis based on the geometry of the beak correlates
with the observed morphometry and raises the question of how
evolvable these shapes are based on our knowledge of the under-
lying developmental programs.

Generative Models for Beak Growth and Form

To glean information about the growth patterns that give rise
to the range of beak shapes, we consider the developmental
dynamics of beak growth and form in the zebra finch (27).
Experimentally, beak size and shape are known to depend
on the initial orientation of beak growth relative to the skull
(28–30). Furthermore, growth occurs only in a primordial group
of dividing cells localized near the tip of the developing beak, and
the number of dividing cells in the growth zone diminishes over
time (9) (Fig. 4A and SI Appendix, Fig. S11). Then, the initial
size, shape, orientation, and dynamics of the extrusion rate of
the growth zone along the proximal–distal axis, denoted as U,
determine the size and shape of the beak (Fig. 4B). Quantifying
this can be done using either a cellular model that accounts for
cell proliferation and movement patterns in space–time or a
coarse-grained tissue-level model for the evolution of the beak
treated as a continuum.

Cellular Model for Growth. We start with a minimal cellular model
capable of approximating the actual beak cross-sections. We
assume that cell proliferation is controlled by the concentration
of a morphogen such as FgF or Bmp4, produced by cells in the
growth zone, that is approximated by a narrow slice of tissue
along the proximal–distal axis. When the concentration of the
morphogen at some position drops below a threshold, cells stop
dividing there. The morphogen diffuses to the surrounding cells
with diffusion constantDc and degrades at a rateΓ (Materials and

Methods). This limits the efficacy of the morphogen produced by

a cell to a region of size λ∼
√

Dc/Γ (the white circle in Fig. 4C).
Furthermore, since only cells in the growth zone produce this
morphogen, a gradient will be established along the proximal–
distal axis from which cells can generate a stable growth in the
distal direction.

Through this morphogen, each cell can also sense how far
it is from a boundary; cells whose distance from the boundary
is smaller than λ will receive morphogen signals from fewer
cells (Fig. 4C). This naturally implies an effect of the boundary
curvature as well; cells proliferate less in more curved regions. A
comparison of the shapes generated from this model with param-
eters fit to match a C. pallidus sample is shown in Fig. 4C. As the
figure shows, such a minimal model is able to recover the shapes
generated by beak developmental mechanisms (Movie S2).

Modified Mean Curvature Flow Approximates Beak Development.

From the cellular model described above, a simple geometry-
driven growth law emerges on the tissue scale (31–34). Intuitively,
the shrinkage of the primordial mass of dividing cells suggests
a simple geometric rule that the surface of the beak shrinks
at a constant rate even as it extrudes distally. Furthermore,
since cells near a highly curved part of the boundary have
fewer neighbors and therefore, are more likely to stop dividing,
the envelope of the growth zone will shrink faster in that
region. By looking at transverse sections of the adult beaks
(SI Appendix, Fig. S13 and Table S1), we observe that regions
of higher curvature, which correspond to the midsagittal section
(y = 0) in Eq. 1, do in fact shrink faster as one moves closer
toward the tip. The combination of experimental observations of
the developing finch beak, the range of beak morphologies, and
our cellular model suggests that the boundary of the growth
zone evolves with a velocity that depends on the local (arc)
curvature through the relation v =−(a + bκ)n in the direction
of the inward normal to the surface (a, b > 0) (SI Appendix
has more details). The ratio b/a gives a length scale that

Fig. 4. Growth and form of beaks. (A) The active growth zone in a developing beak of a zebra finch at stage 37 (following ref. 7 which shows proliferating

cells that are involved in division and growth close to the tip). The red curve delineates the most recent cross-section to exit the growth zone. (B) The function

x0(t) is the center of the growth zone at time t. The blue mesh is taken from a C. pallidus sample, and the green–blue region near the tip represents the

growth zone. Also illustrated is the angle of growth relative to the skull. The red curves represent cross-sections at different times, with more recent ones

being brighter. (C) Results from the combined boundary and bulk stoppage of cell proliferation model described in the text superimposed with the actual

cross-sections from a C. pallidus sample. The white circle represents the range, λ, of the morphogen. The initial conditions were generated from a basal cross-

section of the actual beak (see SI Appendix, Fig. S12 for parameters). (D) Results for the same C. pallidus sample as above with cross-sections generated

from a simulation using the mean curvature flow with U ≡ dx0(t)/dt, a/U = 0.74, and b/U = 2 mm and the same initial basal cross-section as in C (see

SI Appendix, Fig. S13 and SI Text for parameters). The green arrows give the velocity field of the mean curvature flow given by v = −(a+ b κ)n, where κ

is the boundary curvature and n is the unit normal to the boundary. Also illustrated is a growth-adapted coordinate frame [τ ,Φ, R(τ ,Φ)], an alternative

parametrization to the Cartesian frame of Eq. 1. (Scale bars, 1mm.)
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Fig. 5. Developmental morphospace of beaks. Beak shapes were generated using the modified mean curvature flow v = −(a+ bκ)n acting on circular

cross-sections with initial radius R(0) =W/2. Each point in the phase space corresponds to a species (color coded as in Fig. 1C). The parameter a/U is

numerically solved for in terms of L/W and b/(UW) to generate the points shown (parameter values are given in SI Appendix, Table S2). The light blue

region is the region allowed by the mean curvature flow. Note how the points lie inside the region and close to the curve b/U =W2/8L, which corresponds

to a= 0 (see text for an explanation of this developmental constraint). The four skulls, taken from ref. 39, illustrate the range of shapes generated by this

growth law.We also show a few golden-colored beaks with shapes not allowed by the constraint (L/W = 1.5, b/U = 0.21W , a/U = −0.34, S̃ = 0, κ̃ = 1.5 and

L/W = 2, b/U = 0.3W , a/U = −0.57, S̃ = 1, κ̃ = 5). Alectura (A.) lathami; Baryphthengus (B.) ruficapillus; Eurypyga (E.) helias; Xanthomixis (X.) zosterops.

determines which of the two terms in the growth law will
dominate (SI Appendix, Table S2). When the radius of curvature
κ−1 of the transverse beak cross-section is greater than b/a , the
term an, which also describes the evolution of a wave front under
Huygens’ principle, dominates. When κ−1 ≪ b/a , the term bκ
dominates. This growth law is the well-known curve shortening
(or mean curvature) flow in which speed is proportional to the
curvature, introduced to account for the erosion of pebbles (35)
and grain growth from a melt (36), and has since been the object
of much mathematical work (37, 38).

Fig. 4D shows the agreement between the shape generated by
the mean curvature flow and the cross-sections of a C. pallidus
sample (SI Appendix, Fig. S13). We further validate the mean
curvature flow by considering the evolution of semicircular
cross-sections and comparing them with the actual upper
beaks (Movie S3). The flow equations simplify to an ordinary
differential equation for the radius R(t) as a function of time

given by Ṙ(t) =−(a + b/R(t)); R(0) =W /2. The parameters
a and b can be estimated by comparing with the functional form
of the beak width near x → L (Eq. 4 and Fig. 2B). The resulting
phase space is shown in Fig. 5 (SI Appendix, Fig. S14) where
each point represents a species, color coded as in Fig. 1. The fact
that all the points, obtained independently from morphological
parameters (Eq. 10), lie below the boundary of the region
allowed by the morphogenetic model is significant and implies
a developmental bias, or constraint, that restricts possible beak
morphologies (40). The constraint b/U <W 2/8L, which can be

rewritten as 4κ̃x ≤ S̃ , may be understood intuitively since large
values of b > 0 will lead necessarily to smaller lengths. Thus,
there are morphologies (those having large sagittal curvature

κ̃x and small sharpening rate S̃ ) inaccessible to evolution
through variation of this developmental program. As indicated
by the proximity of the points in Fig. 5 to the curve b/(UW ) =
W /8L, beaks excluded by the developmental constraint may
have adaptive value. For example, larger values of κ̃x in our
mechanical models lead to both higher tip biting force and
increased rigidity of the beak.

Conclusion

Our morphometric analysis provides an the understanding of the
3D beak shape using simple interpretable parameters. In addi-

tion to beak size, beak shape is determined using its orientation
relative to the skull, aspect ratios, and curvatures (Fig. 2). We
uncovered, through our morphometric analysis in the context
of beak diet and biomechanics, ways in which beak morphology
can significantly affect mechanical performance (Fig. 3). This
understanding allowed for the construction of tissue- and cell-
level growth models that reproduce the observed variety of beak
shapes (Fig. 4) and explain features of the distribution of beaks in
morphospace (Fig. 5). In particular, our developmental models
explain how beak shape emerges due to initial size, growth
direction relative to the skull, the distal protrusion velocity of
the growth zone, and the transverse shrinkage rate determined
by both a and b parameters. While we have focused on Dar-
win’s finches, these parameters can determine the generation of
beaks from many different bird groups. How these developmen-
tal changes actually occurred over time will remain shrouded
by the fog of time, but our hope is that our analysis linking
form, function, and evolution in the context of Darwin’s finches
might serve as a fillip for other similar ventures that might help
gradually illuminate these mysteries.

Materials and Methods
Nondimensionalized Form of the Beak. Since we are interested in the differ-

ences in shape in addition to differences in size, we construct dimensionless

quantities by considering the alternative form of Eq. 1 given as

z(x, y) = D

[

(1 + κ̃x)
x

L
− κ̃x

(

x

L

)2

−

(

κ̃tip − S̃
x

L

) (

y

W

)2
]

=⇒ κ̃x =
L2

D
κx , κ̃tip =

W2

D
κtip, S̃ =

L W2

D
S. [2]

In deriving this form, we have used the fact that z(L, 0) = D. Since the

beak was cut by a horizontal plane, which we take to be the plane z = 0,

we also have an additional relation, z(L,W/2) = 0. This last constraint gives

the relation κ̃tip = 4 + S̃ (Fig. 2D).

We can further test Eq. 2 by using z(x,±W(x)/2) = 0 and D(x) = z(x, 0)

to find

D(τ) = D
[

(1 − τ) (1 + κ̃x) − κ̃x(1 − τ)
2
]

, [3]

W(τ) =W

√

4(1 − τ)(1 + κ̃x) − 4 κ̃x (1 − τ)2

4 + S̃ τ
. [4]
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The form for W(τ) is derived using the relation that κy(x) = κtip − S x =

4D(x)/W2(x) and τ , defined as τ ≡ L−x
L , is zero at the base and equal to one

at the tip (Fig. 2B). Note thatD(0) ≡ D andW(0) ≡W are the corresponding

values at the base of the beak.

The dimensions, measured in millimeters, are in the range 4.3 < L<

12.4, 2.46 <W < 8.34, and 0.99 < D< 3.47. The constant midsagittal cur-

vature, in units of millimeters−1, lies in the range 0.015 < κx < 0.06

across all species, while the sharpening rate satisfies 0.036 < S < 0.237

(millimeters−2), and the curvature at the tip (millimeters−1) lies in the range

0.63 < κtip < 1.55. For the dimensionless quantities, we obtain 0.41 < κ̃x <

1.4, 7.5 < κ̃tip < 14.2, and 3.7 < S̃ < 10.4.

The shape of the beak can be reparametrized using a developmentally

motivated coordinate frame. Using morphogen gradients, cells can in prin-

ciple determine how far they are from the growth zone center of mass and

boundary (Eq. 7). Therefore, we parameterize the shape for a cross-section

at τ as R(τ ,Φ) where τ ,Φ, and R are illustrated in Fig. 4D and R(τ ,Φ) is

given in SI Appendix, Eq. S23.

Cellular and Tissue Model. We assume that each cell produces the mor-

phogen χ at a constant rate P, which subsequently diffuses with diffusion

constant Dc and degrades at a rate given by Γ. Thus, the concentration of

the morphogen χ(r, t) obeys the equation

∂tχ(r, t) = Dc ∇
2
χ(r, t) − Γ χ(r, t) + P. [5]

We see that there is a characteristic length scale controlled by the balance

between diffusion and degradation given by λ ≡
√

Dc/Γ. Defining the

dimensionless quantities t̃ ≡ Γ t, ρ ≡ r/λ, and ψ ≡ χ/χ0, where χ0 ≡ P/Γ,

we can write Eq. 5 in the following dimensionless form:

∂̃tψ(ρ, t̃) = ∇
2
ψ(ρ, t̃) − ψ(ρ, t̃) + 1,

lim
|ρ|→∞

ψ(ρ, t̃) = 0 and ψ(ρ, 0) = ψinit(ρ). [6]

If the cell division rate is much smaller than Γ−1, then the concentration of

χ will reach a steady state given by

ψ(ρ, t̃ → ∞) =

∫

R

e−|ρ−ρ
′|

4π|ρ − ρ′|
d
3
ρ
′, [7]

where R is the region containing the morphogen-producing cells. Since the

morphogen is only produced in the growth zone, which is located distally,

the concentration will decrease exponentially away from this zone. This

establishes a morphogen gradient that allows cells to maintain a stable

growth direction. Furthermore, the concentration of the morphogen will

be maximal in the center of the growth zone since a cell at that location

gets contributions from other cells in all directions. We denote this maximal

concentration as ψbulk. Near the boundary, a distance ǫλ away, a cell has

fewer neighbors and experiences lower concentrations as a consequence

(SI Appendix, Fig. S12). Using Eq. 7, we can calculate the morphogen con-

centration a distance ǫλ away from a boundary of curvature κ to get

(SI Appendix has the derivation assuming arbitrary ǫ) to the leading order

in κλ:
ψǫ,κ

ψbulk

=
1 + ǫ − κλ

2
. [8]

This expression gives 1/2 when κλ = ǫ = 0, which corresponds to a sphere

cut in half by a plane. Cells stop dividing when the concentration drops

below a certain threshold, written as ψǫ,κ < f ψbulk, for some choice of

fraction 0 < f < 1. Since ǫλ is the thickness of the layer of cells that stop cell

division and denoting the cell division time as Tc, the velocity of the cross-

section can be written as v = −(ǫλ/Tc)n (SI Appendix has more details).

After solving the condition ψǫ,κ = f ψbulk for ǫ in Eq. 8, we get the modified

mean curvature flow with coefficients

a= (2f − 1)
λ

Tc
> 0, b=

λ2

Tc
> 0. [9]

Note that both coefficients are generically expected to be positive provided

that cell division stops below a concentration threshold and cells near

straight boundary regions (κ = 0) are below this threshold (2f > 1).

From previous measurements on developing zebra finch beaks (9)

(SI Appendix, Fig. S11), we calculate the extrusion rate to be U ≈ 29µm/h,

which is within an order of magnitude from the estimate U ∼Wc/Tc,

whereWc ∼ 10 − 100µm is the cell width (41) and Tc ∼ 1 − 24h is the time

between cell divisions (42). In addition, we find experimentally that b≈

22µm2/h (SI Appendix, Fig. S11), which is within an order of magnitude

of the value obtained from Eq. 9 using λ ∼ 50 − 100µm (43). Lastly, we

estimate b/(UW) ∼ 0.01, where W ∼ 80],µm is taken as the growth zone

size 100 h before it reaches the tip (SI Appendix, Fig. S11), which is compa-

rable with the values b/(UW) ∼ 0.05 in Fig. 5. Since this is a dimensionless

quantity, we expect it to stay relatively constant beyond this stage as the

beak size increases without considerable change in shape (9, 44). Thus, the

cell-level growth model leads to the tissue-level model, which was fitted

to the beak shapes, and both give consistent estimates of the growth

parameters.

Circular Cross-Sections and Developmental Constraints. The parameter b can

be estimated by comparing the solution of the growth equations R(τ) with

the width given by Eq. 4 and recalling that W(τ) = 2R(τ). Near the tip

(tU/L= τ → 1), we have

W(τ) ≈W

√

4 (1 + κ̃x)

4 + S̃

√

(1 − τ), R(τ) ≈

√

2bL

U

√

(1 − τ).

=⇒
b

UW
=

(1 + κ̃x)

4 + S̃

W

2L
, [10]

where the first equality follows from Eq. 4 and the second follows from the

growth law applied to circular cross-sections (SI Appendix).

We assume that a> 0, b> 0. If this was not the case, then we would

have a finite width fixed point in the dynamics. For a given value of b,

the largest possible length L happens when a= 0 (since a positive value

of a leads to lower lengths via faster width decay). When a= 0, we have

Ṙ= −b/R =⇒ R(t) =
√

2b(L/U − t). From the initial conditions, we get

R(0) =W/2 =
√

2bL/U =⇒ b/U =W2/8L. This is a constraint because any

larger value of L would require negative values of a. Therefore, we get the

prediction b/(WU) <W/8L, which is satisfied by our samples (Fig. 5). Using

the equation above for b in terms of other morphological parameters, we

get 4κ̃x ≤ S̃.

Data Availability. Raw mesh data and code used to generate results have
been deposited in Harvard Dataverse (https://doi.org/10.7910/DVN/IHODX1)
(16). All other data are included in the manuscript and/or
supporting information.
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