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Abstract

With the advancement in 3D scanning technology, there has been a surge of interest in the

use of point clouds in science and engineering. To facilitate the computations and analyses

of point clouds, prior works have considered parameterizing them onto some simple planar

domains with a fixed boundary shape such as a unit circle or a rectangle. However, the

geometry of the fixed shape may lead to some undesirable distortion in the parameterization.

It is therefore more natural to consider free-boundary conformal parameterizations of point

clouds, which minimize the local geometric distortion of the mapping without constraining

the overall shape. In this work, we develop a free-boundary conformal parameterization

method for disk-type point clouds, which involves a novel approximation scheme of the

point cloud Laplacian with accumulated cotangent weights together with a special treatment

at the boundary points. With the aid of the free-boundary conformal parameterization, high-

quality point cloud meshing can be easily achieved. Furthermore, we show that using the

idea of conformal welding in complex analysis, the point cloud conformal parameterization

can be computed in a divide-and-conquer manner. Experimental results are presented to

demonstrate the effectiveness of the proposed method.
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1 Introduction

With the rapid development of computer technology, the acquisition and use of geometric

data have become increasingly popular [1]. The simplest form of geometric data obtained

by 3D scanners is a set of points in R
3, which is also known as a point cloud. Point clouds

have been widely studied for 3D modeling [2,3], object detection [4], shape analysis [5] etc.

and have recently become a subject of interest in machine learning [6–9]. However, working

with point clouds in the three-dimensional space is usually complicated and computationally

expensive. It is therefore desirable to have a method for projecting the point clouds onto a

lower dimensional space without distorting their shape, such that the computations can be

further simplified.

Surface parameterization is the process of mapping a complicated surface onto a sim-

pler domain. Over the past several decades, numerous efforts have been devoted to the

development of surface parameterization algorithms with applications in science and engi-

neering. In general, any parameterization must unavoidably induce certain distortion in area,

angle, or both. Therefore, two major classes of surface parameterization methods are area-

preserving (authalic) parameterizations and angle-preserving (conformal) parameterizations.

Prior area-preserving parameterization methods include Lie advection [10], optimal mass

transport (OMT) [11–14], density-equalizing map (DEM) [15,16], stretch energy minimiza-

tion (SEM) [17] etc. These methods focus on preserving the size of the area elements but

not their shape. Previous works on conformal parameterization include harmonic energy

minimization [18,19], least-square conformal map (LSCM) [20], discrete natural conformal

parameterization (DNCP) [21], angle-based flattening (ABF) [22,23], Yamabe flow [24],

circle patterns [25], spectral conformal map [26], Zipper algorithm [27], Ricci flow [28,29],

boundary first flattening [30], conformal energy minimization [31] etc. (see [32–34] for

detailed surveys on the subject). These parameterization methods preserve angles and hence

the local geometry of the surfaces, which is desirable in many applications. Many of them (e.g.

[20,26,30]) also allow the boundary of the parameter domain to vary from a standard shape

and achieve a more flexible parameterization result. In recent years, quasi-conformal theory

has been utilized for conformal parameterization [35–40] and applied to surface remeshing

[41,42], image registration [43,44], biological shape analysis [45–47] and material design

[48]. However, most of the above parameterization methods only work for surface meshes

with the structural connectivity prescribed.

Unlike surface meshes, point clouds do not contain any information of the connectivity of

the points and hence are more difficult to handle in general. There have only been a few works

on the parameterization of point cloud data [49–55]. In particular, to compute the conformal

parameterization of a point cloud, it is common to approximate the Laplace–Beltrami operator

at every vertex using integral approximation [56,57], the moving least-square (MLS) method

[58–60] or the local mesh method [61], and then solve the Laplace equation with some

boundary constraints. However, most of the existing approximation schemes only work well

for the case of fixed boundary constraints, in which the boundary shape of the target parameter

domain is usually set to be either a circle or a rectangle. Enforcing such a fixed boundary

shape creates undesirable geometric distortion in the parameterization result. A possible

remedy is to consider a free-boundary conformal parameterization, in which the positions

of only two boundary points are fixed for eliminating translation, rotation and scaling, and

each of all the remaining boundary points is automatically mapped to a suitable location

according to the geometry of the given point cloud. In this work, we develop a free-boundary

conformal parameterization method for disk-type point clouds (Fig. 1). In particular, we
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Fig. 1 A gallery of disk-type point clouds. As the underlying surface of each of them is a simply-connected

open surface, it is natural to consider the conformal parameterization of these point clouds onto planar domains

with a single boundary. Moreover, the large variation of the point cloud boundary shapes suggests the need of

a free-boundary conformal parameterization method which takes the boundary shapes into consideration

construct the point cloud Laplacian by accumulating cotangent weights at different local

Delaunay triangulations. Also, as the free-boundary parameterization relies heavily on the

approximation of the Laplacian at the boundary, we propose a new approximation scheme

with a novel angle criterion for handling the approximation at the boundary points. The

parameterization method can be utilized for high-quality point cloud meshing. Furthermore,

by extending the idea of partial welding [39], we can solve the parameterization problem by

decomposing the point cloud into subdomains, solving the parameterization for each of them,

and finally gluing them seamlessly. This approach can largely simplify the computation for

parameterizing dense point clouds while preserving the conformality of the mapping.

The rest of the paper is organized as follows. In Sect. 2, we highlight the contributions

of our work. In Sect. 3, we review some mathematical concepts related to our work. The

proposed method is then described in detail in Sect. 4. Experimental results are presented in

Sect. 5 to demonstrate the effectiveness of our proposed method. In Sect. 6, we describe the

application of our method to point cloud meshing. In Sect. 7, we discuss the extension of

our proposed method using the idea of partial welding. We conclude the paper and discuss

possible future works in Sect. 8.

2 Contributions

The contributions of our work are three-fold:

(i) We develop a free-boundary conformal parameterization method for disk-type point

clouds. Our method involves a new approximation scheme for the point cloud Lapla-

cian with a novel angle criterion for handling the possible non-convexity of the point
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cloud boundary. Experimental results show that the proposed angle criterion leads to a

significant improvement in the conformality of the parameterization.

(ii) Using the proposed free-boundary parameterization method, we can easily produce high-

quality triangular meshes for disk-type point clouds.

(iii) We further extend the proposed parameterization method using the idea of partial weld-

ing, which enhances the flexibility of the computation of the free-boundary conformal

parameterization of point clouds.

3 Mathematical Background

3.1 Harmonic Maps

Let S be a surface in R
3. A map f : S → R

2 is said to be a harmonic map if it is a critical

point of the following Dirichlet energy [18]:

ED( f ) =
1

2

∫

S

|∇ f |2d A. (1)

f is also the solution to the Laplace equation

Δ f = 0. (2)

To see this, one can consider the following energy

E( f , v) =

∫

S

∇ f · ∇v. (3)

Let u be a critical point to Eq. (1) andv be a test function that vanishes on ∂S. By differentiating

E(u, u + tv) with respect to t , one can show that u minimizes ED by the Stoke’s theorem or

integration by part.

3.2 Conformal Maps

Let U ⊂ C. A map f : U → C is said to be a conformal map if f (x, y) = u(x, y)+ iv(x, y)

satisfies the Cauchy–Riemann equations:

⎧
⎪⎨
⎪⎩

∂u

∂x
=

∂v

∂ y
,

∂u

∂ y
= −

∂v

∂x
.

(4)

Consequently, a conformal map can be viewed as a critical point of the following energy:

EC ( f ) =
1

2

∫

U

[(
∂u

∂x
−

∂v

∂ y

)2

+

(
∂u

∂ y
+

∂v

∂x

)2
]

d A. (5)

Note that conformal maps preserve angles and hence the local geometry of the shape, with

infinitesimal circles mapped to infinitesimal circles. To see this, let γi : [−ǫ, ǫ] → U , ǫ > 0

with i = 1, 2 be two curves satisfying that γi (0) = z with γ ′
i (0) = vi , i = 1, 2. We have

( f ◦ γ1)
′(0)( f ◦ γ2)

′(0)

‖( f ◦ γ1)′(0)( f ◦ γ2)′(0)‖
=

[ f ′(z)]2γ ′
1(0)γ ′

2(0)

‖ f ′(z)‖2‖γ ′
1(0)γ ′

2(0)‖
=

v1v2

‖v1v2‖
. (6)
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This shows the angle-preserving property of conformal maps.

Conformal maps and harmonic maps are closely related. Note that if S is a simply-

connected open surface, it can be represented using a single chart (U , φ). Then, the concept

of conformal maps can be naturally extended for surfaces. Now, by rewriting Eq. (1) in the

following form

ED( f ) =
1

2

∫

U

|∇ f |2d A =
1

2

∫

U

(u2
x + u2

y + v2
x + v2

y)d A, (7)

one can see that

EC ( f ) − ED( f ) =

∫

U

(
u yvx − uxvy

)
d A = −

∫

U

(
∂ f

∂x
×

∂ f

∂ y

)
d A. (8)

Note that

(
∂ f

∂x
×

∂ f

∂ y

)
d A is the area element of f (U ). Hence, the right-hand side of the

above equation is the total area of f (U ). Denoting it by A( f ), we have

EC ( f ) = ED( f ) − A( f ) ≥ 0. (9)

Since f is conformal if and only if EC ( f ) = 0, conformal maps can be viewed as the

harmonic maps achieving the maximum area.

3.3 Möbius Transformation

A Möbius transformation f : C → C is a conformal map on the (extended) complex plane

in the form

f (z) =
az + b

cz + d
, (10)

with a, b, c, d ∈ C satisfying ad − bc 
= 0.

It can be observed that f maps the three points (0,− d
c
,∞) to ( b

d
,∞, a

c
) on the extended

complex plane. By making use of the three-point correspondence, one can utilize Möbius

transformations for transforming a planar shape into some desired target shape while pre-

serving conformality.

4 ProposedMethod

Given a point cloud P representing a simply-connected open surface, our goal is to find

a free-boundary conformal parameterization f : P → R
2. Below, we first introduce a

free-boundary conformal parameterization method for triangulated surfaces. We then extend

it for parameterizing point cloud surfaces in a free-boundary manner by proposing a new

approximation scheme for the point cloud Laplacian. In particular, a novel angle criterion

is used for improving the approximation at the point cloud boundary and yielding a more

accurate conformal parameterization result.

4.1 Discrete Natural Conformal Parameterization (DNCP) for Triangulated Surfaces

The discrete natural conformal parameterization (DNCP) method [21] is a method for

computing free-boundary conformal parameterizations of triangulated surfaces. Let S =
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(V, E, F) be a simply-connected open triangulated surface, where V = {vi }1≤i≤n is the set

of vertices, E is the set of edges, and F is the triangulation. The DNCP method finds the

desired conformal parameterization f : S → R
2 by linearizing Eq. (9). More specifically,

the Dirichlet energy ED( f ) in Eq. (1) can be discretized using the cotangent formula [18]:

ED( f ) =
1

2

∑

(p,q):[vp,vq ]∈E

cot αpq + cot βpq

2
| f (vp) − f (vq)|2, (11)

where αpq , βpq are the opposite angles of the edge [vp, vq ]. If we write f as a 2n × 1 vector

with f = ( fx , fy)
T = (x1, x2, . . . x, y1, y2, . . . , yn)T where f (vi ) = (xi , yi )

T , then we

have

ED( f ) =
1

2
f T

(
L 0

0 L

)
f , (12)

where L is an n × n matrix with

L i j =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
1

2
(cot αi j + cot βi j ), if [vi , v j ] ∈ E,

−
∑

m 
=i

L im =
1

2

∑
m:[vi ,vm ]∈E

(cot αim + cot βim) if i = j,

0 otherwise.

(13)

The area term A( f ) in Eq. (9) can be discretized by considering all edges on the surface

boundary ∂S:

A( f ) =
1

2

∑

(vi ,v j )∈∂S

(xi y j − x j yi ) =
1

2
(xT yT )Marea

(
x

y

)
. (14)

Here, Marea is a 2n × 2n matrix in the form of

Marea =

(
0 M1

M2 0

)
, (15)

where M1(i, j) = M2( j, i) = 1
2

and M1( j, i) = M2(i, j) = − 1
2

if (vi , v j ) is an edge on

the boundary with positive orientation.

Altogether, Eq. (9) can be discretized and rewritten in the following matrix form:

EC ( f ) =
1

2
( f T

x f T
y )

((
L 0

0 L

)
− Marea

) (
fx

fy

)
. (16)

Minimizing EC ( f ) is then equivalent to solving the following matrix equation:

( (
L 0

0 L

)
− Marea

)(
fx

fy

)
= 0. (17)

To remove the freedom of rigid motions and scaling, DNCP adds two boundary constraints

to map the farthest two vertices in V to (0, 0) and (1, 0) in R
2. Readers are referred to [21]

for more details.

As a remark, in general the Laplace–Beltrami operator for triangulated surfaces is dis-

cretized as Δ = M−1L , where L is the cotangent Laplacian and M is a mass matrix for

normalizing area, which is usually constructed based on Voronoi or barycentric cells (see

[62] for more details). However, in the above-mentioned formulation of the free-boundary
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parameterization problem, Δ is approximated using the cotangent Laplacian only (i.e. with

M being an identity matrix). In other words, every vertex is considered to be with unit mass.

In fact, this is consistent with the discretization of the area term A( f ) in Eq. (14), in which

the boundary vertices are also treated to be with uniform weight. If we use a Voronoi or

barycentric mass matrix M for the Laplace–Beltrami discretization, the matrices M1, M2

in the area matrix Marea in Eq. (15) should also be replaced with M−1 M1 and M−1 M2.

Then, Eq. (17) becomes

(
M−1L −M−1 M1

−M−1 M2 M−1L

) (
fx

fy

)
= 0, from which it is clear that the

choice of the mass matrix M does not affect the solution. Therefore, one can simply use the

cotangent Laplacian for the Laplace–Beltrami discretization in the DNCP method.

4.2 Point Cloud Laplacian with Angle-Based Convexity Modification

For our problem of free-boundary conformal parameterization of point clouds, the above

mesh-based discretization cannot be directly applied. In particular, the cotangent Laplacian

in Eq. (12) cannot be constructed because of the absence of the connectivity information

in point clouds. To resolve this issue, a possible way is to develop an alternative approxi-

mation of the Laplacian. Note that the cotangent Laplacian only involves the neighbors of

every vertex. This motivates us to consider reconstructing the local geometric structure at

every vertex of the point cloud and approximating the Laplacian using the local structure.

More specifically, we construct the point cloud Laplacian by accumulating cotangent weights

obtained from different local Delaunay triangulations. Moreover, as the free-boundary con-

formal parameterization relies heavily on the approximation of the point cloud Laplacian

at the boundary, we further develop a novel angle-based convexity modification scheme for

handling the Laplacian approximation at the boundary points. Altogether, this allows us to

achieve an accurate point cloud parameterization result.

To obtain the accumulated cotangent weights, we make use of the k-nearest-neighbors

(kNN) algorithm, as well as the principal component analysis (PCA) method and the Delaunay

triangulation method. Let P = {vi }
n
i=1 be a point cloud surface with an oriented boundary

Γ = ∂P , and k be a prescribed kNN parameter. We first find the k-nearest neighbors N k
i =

{vn1 , vn2 , . . . , vnk
} of each vertex vi . To capture the local geometric information around vi ,

we apply PCA to find the three principal directions {e1
i , e2

i , e3
i } of these k data points, and

take the plane span(e1
i , e2

i ) passing through vi as the tangent plane of vi . We project N k
i to

the tangent plane and get Ñ k
i = {̃vn j

}k
j=1, using the projection formula

ṽn j
= vn j

− 〈vn j
, e3

i 〉e
3
i . (18)

Then, we construct the 2D Delaunay triangulation for Ñ k
i . Note that the Delaunay triangula-

tion maximizes the minimal angle of each triangle and the construction algorithm is provably

convergent. Consequently, we can obtain a nice triangulation representing the local geomet-

ric structure around each vertex. Based on the local Delaunay triangulation around each vi ,

we obtain the one-ring neighborhood Ri of vi . We can then apply the cotangent formula in

Eq. (13) to construct an n × n matrix L
pc
k,i using the angles in Ri . More explicitly, we have
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Fig. 2 Capturing the concavity of the point cloud boundary. a Boundary points captured without applying the

angle criterion. b Boundary points captured with the angle criterion applied

⎧
⎪⎪⎨
⎪⎪⎩

L
pc
k,i (i, j) = L

pc
k,i ( j, i) = −

1

2
(cot αi j + cot βi j ) if v j ∈ Ri ,

L
pc
k,i (i, i) =

1

2

∑
j :v j ∈Ri

(cot αi j + cot βi j ),
(19)

and all other entries of L
pc
k,i are set to be zero. Unlike the matrix L in Eq. (13), which is

computed based on the entire triangulated surface, our matrix L
pc
k,i only covers the local

structure around vi . Therefore, the point cloud Laplacian for P can be approximated by

accumulating the cotangent weights in all L
pc
k,i , with i = 1, 2, . . . , n.

While the above local Delaunay-based method gives a good approximation of the point

cloud Laplacian at the interior vertices, the approximation at the point cloud boundary ∂P may

be inaccurate due to the concavity of boundary points. For instance, if ∂P contains a concave

corner at a vertex vi , the one-ring neighborhood at vi will likely create a convex boundary

by wrongly connecting some of its neighboring boundary points under the above-mentioned

approximation process (see Fig. 2a), thereby causing inaccuracy in L
pc
k,i . For fixed-boundary

parameterization problems, such inaccuracies may not affect the parameterization result as

there will be fixed-boundary constraints for all boundary points. However, for our free-

boundary conformal parameterization problem, there are only two fixed boundary points

in computing the parameterization and hence the result can be significantly affected by the

inaccurately approximated Laplacian at the boundary. This motivates us to develop a novel

scheme for handling the approximation at the point cloud boundary.

More specifically, note that the above-mentioned issue is due to the possible non-convexity

of the point cloud boundary. At such non-convex regions, the Delaunay triangulation will

produces certain sharp triangles. To correct this, we remove those triangles that contain an

angle which is either too large or too small (see Fig. 2b). This can be done by prescribing

an angle range (c1, c2) and checking if every boundary angle θ satisfies the following angle

criterion:

c1 < θ < c2. (20)

After removing all those triangles that violate this angle criterion, we obtain the matrices

L
pc
k,i for all the boundary points.

With all n matrices L
pc
k,1, L

pc
k,2, . . . , L

pc
k,n computed, we assemble them to form the approx-

imation of the point cloud Laplacian for the entire P . It is noteworthy that a triangulation

is constructed locally at each vertex, and so the triangulations at all points together contain

overlapping triangles. As each triangle has three vertices, most of the angles are consid-

ered three times in the collection of all L
pc
k,i . For instance, suppose [vp, vq , vr ] is a triangle

in N F (vp), i.e. the 1-ring Delaunay triangulation around the vertex vp . In the Laplacian

matrix L
pc
k,p, this triangle contributes a weight to the 9 entries (p, p), (p, q), (p, r), (q, p),
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(q, q), (q, r), (r , p), (r , q), (r , r). Since having a triangle [vp, vq , vr ] in N F (vp) implies

that vp, vr are close to vq , it is likely that the points vp, vr are in the 1-ring vertex neighbor-

hood N V (vq) of the vertex vq . Similarly, it is likely that vp, vq ∈ N V (vr ). Hence, it is likely

that [vp, vq , vr ] ∈ N F (vq) and [vp, vq , vr ] ∈ N F (vr ) and so it will contribute a weight to

the same 9 entries in each of L
pc
k,q and L

pc
k,r . In other words, the same cotangent weights are

likely counted three times. Hence, we obtain the approximated point cloud Laplacian L
pc
k

by summing up all L
pc
k,i and dividing it by 3:

L
pc
k =

1

3

n∑

i=1

L
pc
k,i . (21)

We remark that there are two major differences between our approximation and the prior

approximation methods. First, a difference between our method and the moving least-square

(MLS) method [59] or the local mesh method [61] is in the consideration of overlapping

triangulations. The MLS method approximates the derivatives locally at each vertex vi by

fitting a local patch of vi using a combination of polynomials with some prescribed weight

functions, in which no triangulations are considered. While the local mesh method also

approximates the Laplace–Beltrami operator by constructing a local triangulation at each

vertex vi and considering its one-ring neighborhood Ri , the triangulation at vi only affects

the values at the i-th row of the Laplacian matrix it creates:

Δ( f (vi )) =
∑

j :v j ∈Ri

wi j ( f (v j ) − f (vi )), (22)

where wi j is the cotangent weight. In other words, the approximations at two neighboring

points vi , v j are handled separately in the local mesh method without any coupling procedure.

By contrast, in our proposed approximation scheme, the matrix L
pc
k,i obtained from the local

triangulation at vi contains nonzero entries not only at the i-th row but also at L
pc
k,i ( j, i) for

all j with v j ∈ Ri . The approximations at all points are then coupled by summing up all

L
pc
k,i and dividing it by 3 in Eq. (21). Second, when compared to other prior local Delaunay-

based point cloud Laplacian approximation schemes with accumulated cotangent weights

[55,63,64], our proposed scheme involves an extra step of handling the approximations at

boundary vertices using the angle criterion. As we discussed above, this plays an important

role for the free-boundary conformal parameterization problem we are considering in this

work.

Altogether, with the neighboring geometric information appropriately coupled at both

the interior and boundary of the point cloud and the special treatment for the point cloud

boundary, our proposed approximation method yields a better result for the free-boundary

conformal parameterization problem. Quantitative comparisons between the approximation

schemes are provided in Sect. 5.

4.3 Algorithmic Procedure of the Proposed Point Cloud Conformal Parameterization

Method

Using the proposed approximation L
pc
k of the point cloud Laplacian constructed in Eq. (21)

and the area matrix Marea constructed in Eq. (15), we can obtain a free-boundary conformal

parameterization f = ( fx , fy)
T of the point cloud P by solving a linear system similar to

Eq. (17):
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( (
L

pc
k 0

0 L
pc
k

)
− Marea

) (
fx

fy

)
= 0. (23)

For the boundary constraints, we follow the DNCP method [21] and map the farthest two

points in P to (0, 0) and (1, 0). This eliminates the rigid motions and rescaling of the param-

eterization result and ensures that the overall boundary shape is determined automatically.

The proposed method for computing free-boundary conformal parameterizations of point

clouds is summarized in Algorithm 1.

Algorithm 1: Free-boundary conformal parameterization of point clouds

Input: A point cloud P = {vi }
n
i=1 with disk topology with (oriented) boundary indices

∂P = (b1, b2, . . . , bl ), the prescribed kNN parameter k, and the prescribed angle range (c1, c2)

(in degrees) for the boundary angles.

Output: A free-boundary conformal parameterization f : P → R
2.

1 for i = 1, . . . , n do

2 Find the k-nearest neighbors N k
i

= {vn1 , . . . , vnk
} of vi ;

3 Use PCA to find the first three principal directions {e1
i
, e2

i
, e3

i
} of N k

i
;

4 Project N k
i

to the tangent plane formed by e1
i
, e2

i
passing through vi and obtain Ñ k

i
using the

projection formula in Eq. (18);

5 Construct a Delaunay triangulation T i
k

for Ñ k
i

;

6 Extract the one-ring neighborhood Ri of vi ;

7 if vi ∈ ∂P then

8 Delete those triangles with θ ≤ c1 or θ ≥ c2 and update Ri ;

9 Compute the matrix L
pc
k,i

of the one-ring neighborhoods Ri using cotangent formula in Eq. (19);

10 Obtain the point cloud Laplacian L
pc
k

using Eq. (21);

11 Construct the area matrix Marea using Eq. (15);

12 Obtain f by solving the linear system in Eq. (23);

5 Experimental Results

The proposed algorithm is implemented in MATLAB, with the backslash operator (\) used

for solving the linear systems. For the computation of the k-nearest neighbors, we use the

built-in MATLAB function knnsearch. For the computation of the 2D Delaunay trian-

gulation, we use the built-in MATLAB function Delaunay. The parfor function in the

MATLAB parallel computing toolbox is used for speeding up the computation. We adopt

point cloud models from online libraries [65,66] for testing the proposed free-boundary con-

formal parameterization algorithm. The experiments are performed on a PC with an Intel

Core i7-1065G7 quad core CPU and 16 GB RAM. For simplicity, the kNN parameter is set

to be k = 25 unless otherwise specified.
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Fig. 3 Examples of free-boundary conformal parameterizations of point clouds produced by the proposed

method (Algorithm 1). Left: The input point clouds. Middle: The parameterization results. Right: The his-

tograms of the norm of the point cloud Beltrami coefficients |μ|

5.1 Free-Boundary Conformal Parameterization of Point Clouds

Figure 3 shows three point cloud models and the free-boundary conformal parameterizations

achieved using Algorithm 1, from which it can be observed that our proposed method is

capable of handling point clouds with different geometry. To assess the conformal distortion

of each point cloud mapping, we compute the point cloud Beltrami coefficient (PCBC)

μ [67], which is a complex-valued function defined on each vertex of the point cloud. In

particular, |μ| ≡ 0 if and only if the point cloud mapping is perfectly conformal. As shown

in the histograms of |μ|, the parameterizations produced by our proposed method are highly

conformal.

For a more quantitative analysis, Table 1 records the computation time and the conformal

distortion of the proposed method for various point cloud models. For each example, we

search for an optimal set of angle criterion parameters (c1, c2) ∈ [0, 20] × [100, 180] using

a simple marching scheme with an increment of 2.5 for c1 and an increment of 10 for c2 (see

Fig. 4 for an illustration). It can be observed that our method is highly efficient and accurate.

For comparison, we also consider running the proposed method without the angle criterion

step by setting (c1, c2) = (0, 180) (i.e. using the point cloud Laplacian with accumulated

123



   14 Page 12 of 26 Journal of Scientific Computing            (2022) 90:14 

100 110 120 130 140 150 160 170 180
c

2

0

2.5

5

7.5

10

12.5

15

17.5

20

c
1

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

mean(|µ |)

Fig. 4 An illustration of the effect of different choices of the angle criterion parameters (c1, c2) in Algorithm 1

on the conformal distortion of the point cloud parameterization. Here, the point cloud used is the first model

in Fig. 3

cotangent weights [63,64]). The results show that the angle criterion step effectively reduces

the conformal distortion by over 30% on average. This suggests that the proposed angle

criterion step is important for yielding an accurate parameterization result.

One may be interested in the robustness of the proposed method. Note that the kNN

parameter k is used for the construction of the local mesh, in which the 1-ring neighborhood

is used for getting the cotangent weights. Using a very small k may lead to inaccuracies in

approximating the 1-ring neighborhood, while using a very large k may not be necessary

as most of the points will likely be outside the 1-ring neighborhood or even far away from

the reference point. In practice, we find that k = 25 works well for the models we have

considered. More specifically, Fig. 5 shows the conformal distortion of the parameterization

obtained by our proposed method with different k. It can be observed that the distortion is

usually relatively large when a very small k (e.g. k = 10) is used. As the value of k increases,

the distortion gradually decreases as the local 1-ring neighborhood approximation is more

and more accurate. After reaching around k = 20, the distortion stabilizes and so k = 25

is already sufficient for yielding a good parameterization result for all of the models. As

for the angles (c1, c2) in the angle criterion, note that the experiments presented in Table 1

cover a large variety of point clouds with different boundary shape, and the optimal values

for (c1, c2) are similar in all experiments (with c1 ≈ 15 and c2 ≈ 120). Therefore, we expect

that setting similar values for c1 and c2 is sufficient for yielding a notable improvement in

conformality for general point clouds. One of the possible future works would be to devise a

method for determining the optimal values of (c1, c2) directly based on the geometry of the

point cloud.

5.2 Comparison with Fixed-Boundary Conformal Parameterization

After assessing the performance of the proposed free-boundary conformal parameterization

method, we compare it with the point cloud rectangular conformal parameterization method

[54], which maps a disk-type point cloud onto a rectangular domain. As shown in Fig. 6, our
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Fig. 5 The conformal distortion (in terms of Mean(|μ|)) achieved by the proposed free-boundary conformal

parameterization method with different choices of the kNN parameter k

Fig. 6 Comparison between our proposed free-boundary conformal parameterization method and the rectan-

gular conformal parameterization method [54] for point clouds. For each point cloud model, we apply the two

methods and record the mean of the norm of the point cloud Beltrami coefficients (PCBC) |μ|

proposed method results in a lower conformal distortion when compared to the rectangular

parameterization method. More quantitatively, the distortion by our method is 65% lower

than that by the rectangular parameterization method on average. The better performance of

our method can be explained by the fact that while the existence of a conformal map from

a simply-connected open surface onto a rectangle is theoretically guaranteed, the additional

rectangular boundary constraint may induce numerical inaccuracy in the computation of

the point cloud rectangular conformal parameterization. By contrast, the proposed method

computes a free-boundary conformal parameterization, in which the input point cloud can

be flattened onto the plane more naturally according to their overall geometry.

Figure 7 shows the computation time for our proposed parameterization method and the

rectangular parameterization method [54]. It can be observed that the time required increases

approximately linearly with the number of points for both methods. More specifically, the

slope for our method is ≈ 2.6 × 10−4, and that for the rectangular method is ≈ 7.2 × 10−4.

This suggests that our method is over 60% faster than the rectangular method on average.

The improvement in computation time achieved by our method can be explained by the fact

that our method only requires solving the linear system in Eq. (23), while the rectangular
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Fig. 7 The computation time for the proposed free-boundary conformal parameterization method and the

rectangular conformal parameterization method [54] for point clouds. The markers correspond to the point

cloud models in Table 1. The best-fit lines for the two methods are also provided

method involves not only solving a linear system to map the point cloud onto a square but

also optimizing the height of the rectangular domain to achieve conformality.

Besides, note that the point cloud Laplacian in Eq. (21) can be used for calculating the

Dirichlet energy ED( f ) (Eq. (12)) of a point cloud mapping f : P → R
2. Similarly, we can

replace the cotangent weight in Eq. (19) with the locally authalic weight [21] and calculate

the locally authalic Chi energy Eχ ( f ) to measure the local 1-ring area distortion of a point

cloud mapping f :

Eχ ( f ) =
∑

vi ∈P

∑

v j ∈NV (vi )

cot γi j + cot δi j

|vi − v j |2
| f (vi ) − f (v j )|

2, (24)

where γi j and δi j are the two angles at a vertex v j in the approximated 1-ring vertex neighbor-

hood N V (vi ) of the vertex vi (see [21] for more details). Table 2 records the value of Eχ for

our proposed method and the rectangular parameterization method [54]. By considering the

ratio Eχ ( fours)/Eχ ( frect), where fours and frect are our parameterization and the rectangular

parameterization respectively, it can be observed that our method reduces the Chi energy

by over 30% on average. This suggests that our proposed method is more advantageous

than the rectangular parameterization method in terms of not only the conformality and the

computational cost but also the local area distortion.

5.3 Comparison with Other Point Cloud Laplacian Approximation Schemes

One may also wonder whether some other existing approximation schemes of the Laplace–

Beltrami operator can lead to a more accurate free-boundary conformal parameterization

when compared to our proposed approximation scheme in Eq. (21). Here we apply Algo-

rithm 1 with the local mesh method [61] and the moving least squares (MLS) method [59]

to obtain free-boundary parameterizations and evaluate the conformality of the results. Note

that in the MLS method, the Laplacian matrix is approximated using a linear combination

of derivatives obtained from a local parametric approximation of the kNN of each point. At
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Table 2 The local area distortion of the point cloud parameterizations

Model Eχ ( fours) Eχ ( frect) Eχ ( fours)/Eχ ( frect)

Cloth 1.2246e+04 2.3857e+04 0.5133

Julius 2.6134e+04 5.8201e+04 0.4490

Niccolò da Uzzano 4.0008e+04 5.0443e+04 0.7931

Max Planck 2.4843e+04 5.7683e+04 0.4307

Chinese lion 3.4569e+04 2.7245e+04 1.2688

Sophie 4.2953e+04 7.9225e+04 0.5422

Alex 9.0598e+04 1.0714e+05 0.8456

Twisted hemisphere 2.4911e+04 3.6771e+04 0.6775

Eχ ( fours) and Eχ ( frect) are the locally authalic Chi energy for our free-boundary parameterization method

and the rectangular parameterization method [54] respectively

Fig. 8 Comparison between our proposed scheme (Eq. (21)), the local mesh method [61] and the moving

least squares (MLS) method [59] for approximating the point cloud Laplacian. For each point cloud model, we

apply Algorithm 1 with the two Laplacian approximation schemes to compute the free-boundary conformal

parameterization, and record the mean of the norm of the point cloud Beltrami coefficients (PCBC) |μ|

a boundary point vi , the local coordinate system constructed using the kNN Nk(vi ) only

consists of points from one side of vi and hence the Laplacian approximation is highly inac-

curate. Therefore, here we evaluate the performance of the MLS method by constructing a

Laplacian with the MLS method used for the interior points and the local mesh method used

for the boundary points.

As shown in Fig. 8, the conformal distortion of the parameterizations achieved by Algo-

rithm 1 with our proposed approximation scheme is lower than that achieved by Algorithm 1

with the local mesh method and the MLS method. More quantitatively, the conformal dis-

tortion achieved by our proposed approximation scheme is 70% lower than that by both the

local mesh method and the MLS method. This suggests that our proposed approximation

scheme is important for yielding an accurate free-boundary conformal parameterization of

point clouds.
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σ = 0.5 σ = 1 σ = 1.5 σ = 2Original (σ = 0)

Fig. 9 Free-boundary conformal parameterization of noisy point clouds with a Gaussian noise. The leftmost

column shows the real-world facial point cloud obtained using the Kinect 3D scanner [54], the parameterization

result and the histogram of the norm of the point cloud Beltrami coefficient (PCBC) |μ|. The other columns

correspond to the noisy point clouds with different σ

5.4 Parameterizing Noisy Point Cloud Data

It is natural to ask whether the proposed parameterization method works well for noisy

point clouds. Here, we consider a real-world facial point cloud obtained using the Kinect 3D

scanner [54] (see Fig. 9, leftmost). We apply the proposed parameterization method on this

point cloud, and the histogram of the norm of the PCBC |μ| shows that the parameterization is

highly conformal. To further study the performance of the proposed parameterization method,

we consider adding different level of noise to the facial point cloud. Specifically, we add a

Gaussian noise with mean 0 and standard deviation σ = 0.5, 1, 1.5, 2 using the MATLAB’s

normrnd function. Figure 9 shows the noisy facial point clouds and the parameterization

results. Note that even for the examples with a large σ , the peaks of the histograms of |μ| are

still close to 0, which suggests that the conformal distortion is satisfactory.

We further compare the conformal distortion achieved by our proposed method and the

rectangular parameterization method [54] for parameterizing these noisy point clouds. As

shown in Fig. 10, our proposed parameterization method results in better conformality when

compared to the rectangular parameterization method for all levels of noise. This demon-

strates the effectiveness of our method for handling noisy point cloud data.

6 Application to Point CloudMeshing

The proposed free-boundary conformal parameterization method can be used for meshing

disk-type point clouds. More specifically, after parameterizing a point cloud onto the plane,

we can compute a 2D Delaunay triangulation of all points, which induces a mesh structure on

the input point cloud. Note that every non-boundary edge e in a 2D Delaunay triangulation

is shared by exactly two triangles, in which the two angles α, β opposite to e always satisfy
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Fig. 10 Comparison between our proposed parameterization method and the rectangular parameterization

method [54] for parameterizing noisy point clouds (see Fig. 9 for the point clouds with different noise parameter

σ ). For each example and each method, the mean of the norm of the point cloud Beltrami coefficient (PCBC)

|μ| is recorded

the following property:

α + β ≤ π. (25)

In other words, angles that are too acute or too obtuse are avoided as much as possible in

2D Delaunay triangulations. Such high-quality triangulations are desirable in many practi-

cal applications. As demonstrated by the numerical experiments presented in Sect. 5, the

proposed free-boundary conformal parameterization method results in a lower conformal

distortion when compared to other parameterization approaches. Therefore, the above-

mentioned nice property of the 2D Delaunay triangulations is well-preserved in the resulting

triangular meshes of the 3D point clouds via our parameterization method. Figure 11 shows

two examples of meshing point clouds via our parameterization method, from which it can

be observed that the resulting triangles are highly regular.

For a more quantitative assessment, we consider the Delaunay ratio of a point cloud

triangulation [53]:

r =
Number of non-boundary edges satisfying α + β ≤ π

Total number of non-boundary edges
. (26)

Table 3 records the Delaunay ratio of the point cloud triangulations created via our

free-boundary conformal parameterization method and the rectangular conformal param-

eterization method [54]. In all experiments, our free-boundary parameterization approach

produces triangular meshes with a higher quality when compared to the rectangular boundary

parameterization approach. This shows that our proposed free-boundary conformal parame-

terization method is more advantageous for point cloud meshing.

7 Extending the Proposed ParameterizationMethod Using Partial
Welding

In our recent work [39], we proposed a parallelizable algorithm for the conformal parame-

terization of triangulated surfaces using the idea of partial welding. Here, we show that the

partial welding method can be naturally extended to point clouds, thereby providing a more

flexible way of computing the free-boundary conformal parameterizations of point clouds.

The partial welding method [39] is outlined below. Let S1, S2 be two discretized

domains on the complex plane with oriented boundary vertices ∂S1 = {a0, a1, . . . , an1},
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Fig. 11 Meshing point clouds via our proposed free-boundary conformal parameterization method. Left: The

input point clouds. Right: The resulting triangular meshes

Table 3 The Delaunay ratio r of the point cloud triangulations created via our proposed free-boundary con-

formal parameterization method and the rectangular conformal parameterization method [54]

Model Meshing via our method Meshing via rectangular map [54]

Cloth 0.9991 0.9814

Julius 1 0.9987

Niccolò da Uzzano 0.9979 0.9935

Max Planck 0.9984 0.9670

Chinese lion 0.9918 0.9805

Sophie 0.9994 0.9916

Alex 0.9980 0.9939

Twisted hemisphere 0.9955 0.9882

∂S2 = {b0, b1, . . . , bn2} and a partial correspondence

ai ↔ bi , i = 0, 1, . . . , k, (27)

where k ≤ min(n1, n2). The partial welding method finds two conformal maps φ1 : S1 → C

and φ2 : S2 → C such that φ1(ai ) = φ2(bi ) for all i = 0, 1, . . . , k. In other words, the

two domains are glued conformally along the corresponding vertices. To achieve this, the

method first computes a series of conformal maps to map S1 and S2 onto the upper half-

plane and the lower half-plane respectively, with a0, . . . , ak mapped to the upper half of the

imaginary axis (denoted the transformed vertices as A0, . . . , An1 ) and b0, . . . , bk mapped to

the lower half of the imaginary axis (denoted the transformed vertices as B0, . . . , Bn2 ). The

method then finds another series of conformal maps such that each pair of corresponding
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vertices (Ai , Bi ) are mapped to a point on the real axis, thereby gluing the two domains

(denoted the transformed vertices as Ã0, . . . , Ãn1 and B̃0, . . . , B̃n2 ). In other words, the two

desired maps φ1, φ2 are constructed by a composition of these conformal maps. Using this

idea of gluing two domains based on a partial correspondence, one can compute a conformal

parameterization of a simply-connected open surface by first partitioning it into multiple

domains, then conformally mapping each domain onto the complex plane and finally gluing

all flattened domains successively. Readers are referred to [39] for more details.

While the partial welding method is developed for the parameterization of triangulated

surfaces in [39], we note that the above-mentioned procedures only involve the boundary

points of each domain but not the triangulations. This suggests that the partial welding

method is naturally applicable to our point cloud parameterization problem.

Note that in the original partial welding algorithm [39], two auxiliary points an1+1 =
1

n1

∑n1

j=1 a j and an1+2 = ∞ are appended to ∂S1. Similarly, two auxiliary points bn2+1 =
1

n2

∑n2

j=1 b j and bn2+2 = ∞ are appended to ∂S2. These auxiliary points are used at the last

step of the algorithm in [39]. More specifically, the last step considers a Möbius transformation

that sends
(

Ãn1+1, B̃n2+1, p = 1
2
( Ãn1+2 + B̃n2+2)

)
to (−1, 1,∞) in order to normalize the

transformed boundary shapes. However, we notice that p may lie inside the interior of one

of the transformed domains in some rare cases. Pushing such p to ∞ will map a bounded

domain to an unbounded domain (see Fig. 12 for an illustration), which is undesirable.

To overcome this potential problem, here we propose the following modification of the final

Möbius transformation step. If p lies inside the interior of either the transformed ∂S1 or ∂S2,

we consider the boundary Γ = (∂S1∪∂S2−weld path)∪(endpoints of weld path) formed by

the red and grey curves in the top right panel of Fig. 12. Note that Γ must be a simple closed

curve as all the previous maps are conformal. This suggests that we only need to find an interior

point q in the bounded Jordan domain Ω̃ formed by Γ , and two other points Γ (1), Γ (l) ∈ Γ

where l ≈ |Γ |/2 ∈ N. To find an interior point in Ω̃ , we simply use a minimal axis-aligned

bounding box for Ω̃ , i.e. [min(Re(Γ )), max(Re(Γ ))] × [min(Im(Γ )), max(Im(Γ ))]. Then

we draw a vertical line x = 1
2
(min(Re(Γ )) + max(Re(Γ ))) and compute its intersections

with Γ . We sort the intersections by their distance to a point that lies on the line but outside

the bounding box. We then take the midpoint of the first two intersections as q , which must

lie inside int(Ω̃). Finally, the final Möbius transformation in the original partial welding

algorithm [39] can be replaced with a Möbius transformation sending (Γ (1), Γ (l), q) to

(−1, 1,∞). This ensures that the welded boundary shapes can be normalized without being

mapped to an unbounded domain.

An illustration of the proposed free-boundary conformal parameterization algorithm for

point clouds via partial welding is shown in Fig. 13. Given a point cloud P = {vi }
n
i=1, we first

partition it into m subdomains P1, P2, . . . , Pm . We then compute a conformal parameteriza-

tion ϕi : Pi → C for each subdomain using Algorithm 1. We remark that for each point vi
j in

Pi , where j = 1, 2, . . . , |Pi |, we exclude all points in its k-nearest neighbors N
k,i
j that are not

in Pi for computing ϕi . Note that the parameterizations ϕ1, . . . , ϕm are independent of each

other and hence can be computed in parallel. Once all subdomains are flattened, we can use

the partial welding method as described in [39] with the above-mentioned modification of the

final Möbius transformation step to glue all subdomains based on the partial correspondences

of their boundaries, thereby yielding a global free-boundary conformal parameterization of

P . The proposed free-boundary conformal parameterization method via partial welding is

summarized in Algorithm 2.

We remark that since the computations of all ϕi are independent, the input parameters

k, c1, c2 in Algorithm 1 for computing each ϕi can be set differently. In other words, the
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Fig. 12 An illustration of the potential occurrence of an unbounded domain under the final Möbius trans-

formation step in [39]. The two domains S1, S2 are to be welded partially, with the weld paths highlighted

in black. After the welding process, the two domains are welded along the weld paths, with the three points(
Ãn1+1, B̃n2+1, p = 1

2 ( Ãn1+2 + B̃n2+2)

)
marked in different colors. Since p lies inside the transformed

S2, a Möbius transformation sending p to ∞ will map the transformed S2 to an unbounded domain

Fig. 13 An illustration of the proposed free-boundary conformal parameterization method for point clouds via

partial welding. Given a human face point cloud, we first partition it into subdomains. We then conformally

flatten each subdomain onto the complex plane using Algorithm 1. Finally, we glue all flattened subdomains

using partial welding to obtain the global free-boundary conformal parameterization
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Algorithm 2: Free-boundary conformal parameterization of point clouds via partial

welding

Input: A point cloud P = {vi : 1 ≤ i ≤ N } with disk topology with boundary ∂P and the number of

subdomains m.

Output: A free-boundary conformal parameterization f : P → C.

1 Partition P into m subdomains P1, P2, . . . , Pm with weld paths γi , i = 1, . . . , m;

2 for i = 1 : m do

3 Extract the boundary ∂Pi = γi ∪ (∂P ∩ Pi ) for each subdomain;

4 for j = 1 : |Pi | do

5 if ∃ v ∈ N
k,i
j

\ Pi then

6 Delete v from N
k,i
j

;

7 Do Line 3–6 in Algorithm 1;

8 Do Line 7–9 in Algorithm 1;

9 Do Line 10–12 in Algorithm 1 to get a free-boundary conformal parameterization ϕi : Pi → C.

Record the Laplacian matrix and the mapped boundary ϕi (∂Pi );

10 Perform partial welding [39] on the boundaries ϕ1(∂P1), ϕ2(∂P2), …, ϕm (∂Pm ) obtained in Line 9

with the modified final Möbius transformation step;

11 Use the Laplacian matrices obtained in Line 9 to compute a conformal parameterization ϕ̃i : Pi → C

for each Pi with the welded boundary constraints;

12 Combine ϕ̃1(P1), ϕ̃2(P2), . . . , ϕ̃m (Pm ) to form the final free-boundary conformal parameterization

f : P → C;

use of partial welding in Algorithm 2 allows us to have a more flexible choice of the local

approximation parameters for handling regions with different geometry.

Figure 14 shows several examples of free-boundary conformal parameterization of point

clouds produced by Algorithm 2. It can be observed that different subdomains can be

handled separately and then glued seamlessly to form the final free-boundary conformal

parameterization. The histograms of the norm of the Beltrami coefficients |μ| show that the

parameterizations are highly conformal.

8 Discussion

While mesh parameterization methods have been widely studied over the past several decades,

the parameterization of point clouds is much less understood. In this work, we have proposed

a method for computing free-boundary conformal parameterizations of point clouds with disk

topology. More specifically, we develop a novel approximation scheme of the point cloud

Laplacian, which allows us to extend the DNCP mesh parameterization method [21] for point

clouds with disk topology. The flexibility of the proposed parameterization method can be

further enhanced with the aid of partial welding [39]. The proposed method is capable of

handling a large variety of point clouds and achieves better conformality when compared to

prior point cloud parameterization approaches. The improvement in the conformality makes

the proposed point cloud parameterization method suitable for practical applications such as

point cloud meshing.

While we have used a universal k in our experiments, one can also use a varying k for

constructing the k-nearest neighborhood for different points without altering any other steps

in the proposed parameterization algorithm. By setting k based on the properties such as

curvature and density of the input point cloud, one may be able to further improve the
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Fig. 14 Examples of free-boundary conformal parameterizations of point clouds produced by the proposed

method with partial welding (Algorithm 2). Left: The input point clouds. Middle: The parameterization results.

Right: The histograms of the norm of the point cloud Beltrami coefficients |μ|. The colors indicate the

corresponding subdomains in the input point clouds and the parameterization results. For the first two models,

the kNN parameter is set to be k = 25. As the last model is much denser, the kNN parameter is set to be

k = 35

parameterization result. Also, note that as described in [39], the mesh-based partial welding

method for free-boundary conformal parameterization can be modified for achieving other

prescribed boundary shapes such as a circle. Analogously, Algorithm 2 should also be able to

be modified for achieving other prescribed boundary shapes in the resulting parameterization,

thereby leading to an improvement in conformality and flexibility for such parameterization

problems.

As for possible future works, it will be interesting to consider combining the idea of tufted

cover [55] with the proposed angle criterion to further improve the approximation of the point

cloud Laplacian. We also plan to explore the use of the proposed parameterization method

for point cloud registration and shape analysis, and extend the proposed parameterization

method for the conformal parameterization of point clouds with some other underlying sur-

face topology. For instance, we should be able to extend Algorithm 2 for parameterizing

multiply-connected point clouds. More specifically, we can partition a multiply-connected

point cloud into simply-connected subdomains and compute the conformal parameterization
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of each of them using the proposed parameterization method, with the partial welding idea

utilized for ensuring the consistency between the boundaries of the subdomains.
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