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Geometric graph models of systems as diverse as
proteins, DNA assemblies, architected materials and
robot swarms are useful abstract representations of
these objects that also unify ways to study their
properties and control them in space and time.
While much work has been done in the context
of characterizing the behaviour of these networks
close to critical points associated with bond and
rigidity percolation, isostaticity, etc., much less is
known about floppy, underconstrained networks that
are far more common in nature and technology.
Here, we combine geometric rigidity and algebraic
sparsity to provide a framework for identifying the
zero energy floppy modes via a representation that
illuminates the underlying hierarchy and modularity
of the network and thence the control of its nestedness
and locality. Our framework allows us to demonstrate
a range of applications of this approach that include
robotic reaching tasks with motion primitives, and
predicting the linear and nonlinear response of elastic
networks based solely on infinitesimal rigidity and
sparsity, which we test using physical experiments.
Our approach is thus likely to be of use broadly
in dissecting the geometrical properties of floppy
networks using algebraic sparsity to optimize their
function and performance.

1. Introduction

Many different physical systems that span multiple
scales can be represented as graphs or networks. These
include proteins [1], robots [2,3] and collections of
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individual organisms or agents [4-6]. The physical, chemical and informational properties of
these systems such as coordinated motion, communication and control are both enabled and
constrained by the nature of the connectivity of the underlying network. Examples include
task-relevant representations associated with coordination in motion planning and motor
control problems in robotics and neuroscience [2,3], spatial segmentation and clustering in
biomolecules [7,8] and the mechanics of protein elastic networks [9]. In all these examples,
the underlying topological graphs are also automatically endowed with a geometric structure
due to the embedding in two- or three-dimensional Euclidean space with edges corresponding
to the distance between the nodes. This makes the understanding of the spatial structure and
organization of the degrees of freedom (DoFs) in these networks an issue of critical importance,
as learning how to identify, actuate, combine or remove certain DoF will provide the means to
control these systems.

Since Maxwell’s early work in 1864 [10], rigidity theory has been a powerful tool to model
these graphs, initially treated as mechanical networks [11]. A key concept there is that of
the deviation from isostaticity wherein the network is poised between being rigid and soft
because the number of DoFs are just balanced by the number of constraints. Two main
approaches are currently used for the study of these networks based on whether they are
stiff or compliant. First, for networks with stiff links, the number of DoF can be found using
infinitesimal rigidity theory and graph theory [12,13], quantities that have been leveraged in
network control, metamaterial design [14-17] and determination of the minimal rigid formations
[18]. Second, for networks with compliant links, mechanical properties such as bulk and shear
modulus can be calculated via molecular dynamics simulation [19]. The intermediate case of
networks that transition between stiff and compliant, i.e. can be transformed from mechanisms
with floppy modes (zero energy deformations) to structures (finite energy deformations), has
been the focus of much recent work from the perspective of phase transitions and critical
phenomena. A recent question of interest in the field is the mechanical response of networks
near the jamming transition, or the isostatic limit (as already defined by Maxwell more than
150 years ago) [19-21], with a particular focus on the divergence of correlation lengths near
the jamming transition [22-24]. Simultaneously, there has been interest in the applications of
these ideas to the control of mechanical networks [25,26], protein allostery [27-29], stiffening
underconstrained networks by geometric incompatibility [24], actuating individual floppy modes
using correlated noise [30], tuning bulk and shear moduli by varying the number of bonds [31,32],
etc.

However, almost without exception, these studies focus on either overconstrained systems
where there are no floppy modes or systems near the isostaticity transition where few floppy
modes are present. But what if one is far from the isotaticity threshold with a large number
of floppy modes? What is the best way to uncover modularity in these floppy modes, as
manifest in their spatial structure and represented as some combination of locality, hierarchy,
separability, and nestedness, for example? And what is the best way to control these floppy
modes? Since actuating all the floppy modes at once is both expensive and inefficient, are there
efficient representations that can guide their activation or suppression? Since many natural and
artificial networks must start out as underconstrained networks, answers to these questions
are likely to be of broad value. Here, we present a systematic framework to identify and
represent multiple floppy modes and use this representation to construct protocols to efficiently
actuate and control the network. To uncover the hidden hierarchy in the floppy modes, we
use the notion of maximum sparsity in the mode representation, defined in terms of the
smallest number of non-vanishing vector elements in the representation. We then demonstrate
the application of these sparse mode representations in a range of different applications: robotic
reaching tasks with motion primitives from the sparsity-based representation and predicting
the linear and nonlinear response of elastic networks based solely on infinitesimal rigidity and
sparsity.
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2. Sparse basis representation

Any Euclidean graph can be represented as a mechanical network with N nodes whose movement
is constrained by a set of edges £. If the length of these edges is fixed, this leads to a set of
geometric constraints that can be written as follows:

gi=Ilxp —xglI> = 5, =0, 2.1)

where node g is connected to node p by an edge [p,q] € £ and x, denotes the coordinates of
node p. A floppy or zero energy mode is defined as an infinitesimal mode of motion dx in
the structure, which does not violate any constraints. Therefore, for any constraint g;, we have
dgi= Z]’ dgi/9x;dx; =0. By defining the elements of the rigidity matrix R by (R);; = dg;/dx;, all
the constraints can be written in terms of a linear matrix relation,

R-dx=0. 2.2)

Therefore, the null space of R contains information about all the floppy modes in the system:
each basis in the null space of R corresponds to a mode of motion consistent with the constraints.
More explicitly, the dimension of R is m by n x N, where m is the number of constraints, # is the
number of nodes and N is the spatial dimension. In two-dimensional Euclidean space, dx, a vector
in the null space of R, can be written as (dx1y, dxiy, ..., dxny, dxyy), representing an infinitesimal
movement of the nodes that do not violate the constraints in the network. After normalization,

/ dxl.zx + dx?y is the infinitesimal displacement of node i and arctan (dx;,/dx;) indicates its

direction. Each set of linearly independent basis vectors spanning the whole null space provides a
possible representation of all the motions, and any non-degenerate rotation matrix can transform
one basis to another, so that there are infinitely many equivalent representations of the null space.

As a simple example, consider a robot arm shown in figure 12 and ignore the movement of
the fingers for now. The biologically and technologically natural representations of the modes
of motion in this network are the rotation around the base (shoulder) and the rotation around
the first joint (elbow) (figure 1d,e). However, there are other equivalent representations, e.g. one
that consists of (i) allowing the forearm and upper arm to rotate together in the same direction
and (ii) allowing them to rotate in opposite directions. On a completely different scale, consider
a molecule shown in figure 1g. When the backbone atoms are fixed in space, the movement of
the side chains on the left and on the bottom right should be independent of each other, resulting
in independent rotation modes (figure 1j,k). However, it is also possible to represent the motions
using a linear combination of the two rotations. In both these examples, we see that while there
are mathematically equivalent representations of the null space basis, some representations seem
to be intuitively better as they are modular and show spatial structure embodied in locality,
nestedness and hierarchy that might make them easier to control. We note that the notion of
modularity here is different from that in graph theory, defined purely based on links (connections)
in the network. A modular representation of floppy modes is a representation where different
modes actuate different parts of networks with little overlap or interaction. A modular network
can have a representation of floppy modes that is either modular or non-modular depending
on the decomposition algorithm, as we shall see later. We limit our study to two-dimensional
networks without edge crossings and interactions for clarity of presentation and since it is easier
to compare to physical experiments with silicone elastic networks. However, our framework can
be extended to three dimensions since the definition of the rigidity matrix is not restricted to two
dimensions.

So how can we find a representation basis that maximizes this modularity and hierarchy? A
natural response might be to use the singular value decomposition (SVD) of the rigidity matrix
R to get a set of zero modes and states of self-stress [33,34]. However, the zero modes identified
from SVD typically involve motion in all coordinates and are neither modular nor hierarchical
(see electronic supplementary material, Section 51.3).

An approach to achieve modularity is to attain maximum sparsity in the zero mode basis, i.e.
find those modes whose infinitesimal motions only involve a small number of nodes in a small
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Figure 1. Mode decomposition in robotics and biology. (a) A simple model robot arm with three joints and four DoF. Abstracted
as a node-hond network, the four floppy modes can be represented as in (b) using the SVD method or in a hierarchical way as
in (c) using the sparse null space basis decomposition (SND) method. The second method provides a clear separation of all the
motions (d, full arm, e, forearm and £, fingers). (g) A biological example of a molecule with backbone atoms (blue, spatially
fixed), and side chains (red, flexible). The left three red atoms are pairwise connected (not shown). Using the two methods as
in the example given earlier, the five floppy modes are decomposed in f and i. By using the SND method, the motions of the left
side chain and the bottom right side chain are clearly separated, as shown in (j) and (k). (Online version in colour.)

spatially localized neighbourhood. These local modes will also be naturally spatially separated,
as any linear combination of them will decrease the resulting sparsity in the bases. The remaining
modes, if any, are more global as they involve motions of more nodes. Thus, a classification
method based on maximizing sparsity has much potential in helping build a modular hierarchical
representation. Mathematically our problem then translates to finding the sparsest null space
basis of the rigidity matrix. Finding a sparse null space basis has been the subject of study in large-
scale constrained optimization and is known to be NP-hard [35], so that all current attempts to
solve this use a variety of heuristic algorithms that determine which linear recombination derived
from the null space of the rigidity matrix is sparse and hence local, modular and hierarchical.
Here, we adapt and generalize a recently proposed algorithm from numerical linear algebra
to determine a minimal number of non-zero entries in the null space basis of a matrix [36]—
the sparse null space basis decomposition [37], denoted as SND (see electronic supplementary
material, Section S1.1 for details). We show that it has a natural geometric interpretation in the
context of the rigidity matrix and is perfectly suited to determine the maximally sparse basis for
the rigidity matrix R. Furthermore, we generalize this into a multi-scale method to determine a
hierarchy of zero energy modes (in terms of their participation in a motion), and this allows us
to answer the question of how to determine a sparse, modular and hierarchical representation of
the zero energy modes in a graph representation of a range of networks.

3. Hierarchical representation and spatial separation of floppy modes

To understand how this works in practice, we first consider a simple mechanical network—the
robot arm mentioned earlier (figure 1a) that can be abstracted as an underconstrained structure
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with nodes resembling joints (the shoulder, elbow and wrist), with the base (shoulder) fixed.
Constructing the rigidity matrix from the links in the network, we apply the SND method to
find a set of basis vectors (floppy modes), and for comparison, we use a simple SVD algorithm
to generate another set of basis vectors. (For simplicity, we only compare SND with SVD in
the main text. See electronic supplementary material, Section S1.3 for a comparison with other
matrix decomposition methods such as QR decomposition.) As shown in figure 1b, an SVD basis
represents a mixed motion: fingers and forearm move together in different directions, and it is
hard to interpret the physical meaning of the basis vectors. In contrast, the SND method finds
an easily interpretable representation (figure 1c)—there are four modes that clearly distinguish
between local and global motions. The four modes reflect the movement of the whole arm, the
wrist and the two fingers, respectively, from left to right. Since SND is trying to maximize the
sparsity, the simple finger modes, only involving one node (two coordinates), are preferred over
more complicated modes.

In addition to separating the modes hierarchically, we now show that the SND algorithm also
separates them spatially. Consider the simple molecule (figure 1g) with backbone atoms (blue)
spatially fixed and side chains (red) being flexible. The three atoms connected to the leftmost blue
atoms are connected to each other as a single functional group (these three bonds between the
three red atoms are not shown in the figure). Since each atom in the side chain has two rotational
DoFs, constraint counting shows that there are in total 2 x 4 — 3 =5 DoF. With the SVD method,
we can find one representative basis of the five modes shown in figure 1i. We see that the modes
are hard to interpret, as each of them involves the motion of all the atoms in the side chain. With
the SND method, we see another representation shown in figure 1i. In contrast to the SVD basis,
here we clearly see a separation of the motions of two groups of atoms—the top three modes only
involve the functional group on the left, while the bottom two modes only involve the atom in
the bottom right.

As just described, there is no scale-dependent hierarchy in deploying the SND algorithm.
However, in many real physical systems in protein networks, or robotic systems, there is a need
for a scale-dependent approach to determining the optimally sparse and modular representation.
To achieve this, we can implement a multi-scale version of the SND algorithm, using the concept
of bi-connected components in graph theory to identify all the ‘hinges” in the graph where a
section can rotate freely around another. We then apply SND to each sub-graph once these
rotational modes are identified. The intrinsic recursive nature of this multi-scale SND ensures
that the hierarchy is built-in in the mode representation and delivers a more intuitive mode
representation of the robotic arm shown in figure 1c, leading to a more intuitive mode involving
the rotation of the wrist and the finger such that they rotate together as a rigid section (see
electronic supplementary material, Section S2 for more details and an extensive discussion of
this multi-scale approach).

To understand the performance of the SND relative to the SVD method, we deploy both on a
random planar triangular graph of a 4 x 4 network with 4 DoF. The SND method clearly identifies
all the floppy modes (figure 2a) in a hierarchical way (the left three modes) and a spatially
separated way (the last mode). On the contrary, the SVD method produces a mixture of modes
that are hard to interpret (figure 2b). For a quantitative comparison, we define the size s of a mode
to be the number of non-zero entries in its vector representation, and the participation rate P of
a set of modes as the sum of the sizes of all the modes: P =} ; s, which quantifies the sparsity
as well as the modularity of the modes (different spatially separated modes involve different set
of nodes, thus smaller P). We note that the SND decomposition is dependent on the row order of
the rigidity matrix, and the decomposition mentioned earlier follows from one random shuffle (of
row order) of the rigidity matrix; the advantage of SND can be seen by repeating the experiments
and checking the average performance. By repeating the mode decomposition 100 times (each
time with the rows of R randomly shuffled), we can calculate the average participation rate P for
modes generated by the SND method, which is significantly lower than that of modes generated
by SVD (figure 2c).
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Figure 2. Mode decomposition and activation in mechanical networks. (a) For this 4 x 4 triangular network, the SND
algorithm generates a set of modes with clear hierarchy (from mode 1 to 3) that are spatially separated (mode 4). (b) With
the SVD algorithm, these modes are not properly separated, and it is hard to attach physical meaning to a single mode. (c) The
participation rate P using the SND method is much lower than that using the SVD method. (d) For this complicated network,
multi-scale SND can identify the rotational mode (1) and floppy regions (2—5) in a hierarchical manner. (e) The SVD creates
neither hierarchical nor local motions since most nodes are involved in all modes. (f) The distribution of Q (number of modes a
node is involved in) of SND and SVD representation. (Online version in colour.)

To further demonstrate the intuitive representations arising from SND, we consider a more
complex network as shown in figure 2d. The multi-scale SND method can not only identify the
rotational mode of the right sub-graph with respect to the left sub-graph (mode (1)) but also
identify the floppy regions in a spatially separated (mode (2)) and hierarchical manner (modes
(3) to (5)). This representation agrees with our intuition and furthermore reveals the non-trivial
orange and red floppy sub-graphs, which are invisible otherwise. In contrast, the modes derived
from SVD involve almost all nodes that can possibly move (figure 2¢). Defining Q as the number
of modes that a node is involved in, in figure 2f, we see that the representation with SND has a
smaller average Q compared to SVD. Overall, we see that SND outperforms SVD and other matrix
decomposition methods (e.g. QR decomposition) by being interpretable, naturally separable and
hierarchical, and finally being computationally faster (see electronic supplementary material,
section S1.3 for more details).

4. Reaching control with sparse motion primitives

The advantages of a sparse mode representation of a floppy network are most naturally seen in
the context of network control: our multi-scale generalization of SND has the desirable properties
for motion primitives relevant for motor control and robotics. We therefore set out to use these
derived modes as motion primitives in a simple grasping task using the robotic arm shown in
figure 31 whose task is to pinch a randomly placed target position with its two fingers. The initial
arm position is randomized, and at every time step, the control algorithm selects and activates
the mode, which minimizes the distance of the two fingers to the target, the activation time of
which is shown in figure 3b,c. Mode 1 corresponds to the activation of the whole arm, mode 2 to
the lower arm and modes 3 and 4 to the two fingers. On average, we see a cascading activation of
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Figure 3. Mode decomposition and activation in mechanical networks. (a) Grasping control task for a simple manipulator arm
with two fingers. (b) Activation of the sparsity maximizing (SND) modes in the grasping task leads to hierarchical activation of
the modes over time from largest (whole arm, mode 1) to intermediate (lower arm, mode 2) to smallest (fingers, modes 3 and
4). The red line denotes the mean, the red box denotes a standard error of 1.96 times the mean (95% confidence interval) and
the blue box shows the standard deviation. Initial arm positions and target locations are randomized. (c) Activation of the SVD
modes in the grasping task shows no hierarchical activation of modes for randomized initial arm positions and target locations.
(d) Reaching control task for a random network. (e) Energetic cost of the random network control task with motion primitives
derived using SVD and SND for randomized target positions and nodes. For the same control task, SND finds a solution that uses
less energy 83.2% of the time. See electronic supplementary material, Fig. S6 for a more detailed comparison. (Online version
in colour.)

the modes in time, starting with the largest arm mode and ending with the two finger modes, as
shown in figure 3b where the time for the activation of mode 1 and 2 is shorter than that of 3 and
4. For comparison, we also use SVD to solve the problem and see no clear distinction in terms of
activation time of the modes (see electronic supplementary material, Movie 3).

The hierarchical activation may appear obvious in the simplified robotic arm, but for complex
networks, our intuition may fail while modes derived using the sparsest approach can still
provide spatially separated and hierarchical motion primitives. We deployed our approach for
sparse motion primitives on the random network shown in figure 3d in a reaching control task.
A node chosen at random is required to reach a randomized target location. Again we select the
mode that minimizes the distance to target at every time step. We track the required kinetic energy
until task completion summed over all nodes for the motion primitives. As shown in figure 3¢,
for an identical control task, a comparison with the SVD based primitives shows that the use of
SND motion primitives leads to a reduced energetic cost to reach the target in 83.2% of the cases
compared to the SVD motion primitives. This is perhaps not surprising because most SND modes
are local and do not involve the motion of the whole network and thus minimize irrelevant and
redundant motions (see electronic supplementary material, Movie 4 for an example and electronic
supplementary material, Fig. S6 for a more detailed comparison). It is worth noting that the SND
modes are comparable to motor primitives found using unsupervised learning [38] and show a
significant improvement in performance of reinforcement learning agents. Our approach might
thus provide a general interpretable framework for the determination of sparse modes for motion
primitives in motor control.

5. Control and sequential tuning of a mechanical network

The sparse mode representation not only allows us to control rigid systems but also provides
insight into the control of deformable networks, which we turn to next. The separation of the
modes into local and global ones provides a simple and efficient guideline for the rigidification
of a system. When the network is underconstrained, it is better to first freeze the largest mode
(here “large’ refers to the size of the mode s defined above); within the largest mode, it is better
to freeze the node with the largest infinitesimal displacement. A simple robot arm illustrates this
idea (figure 4a). To rigidify the whole arm, it is better to freeze the motion of the wrist relative to
the base since it has the largest infinitesimal displacement.
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Figure 4. Efficient rigidification and sequential tuning in mechanical networks. (a) When rigidifying a structure, the most
efficient way is to find the ‘biggest mode’, and freeze it by adding a link to the node with largest movement. (b) A triangular
network with the top and bottom boundary fixed and the largest floppy mode shown in green arrows. The dashed box shows the
node with the largest infinitesimal displacement. (c) To rigidify the network, the orange link (1) can be added. Five other links
are randomly chosen ((2) to (6)) for comparison. (d) The experimental setup to measure the shear modulus. (e) The numerical
simulation of the shear modulus G of the network (rigid bonds now treated as elastic springs) before and after each of the six
links is added. (f) The experimental measurement of the shear modulus before and after each of the six links is added. (g) For a
7 x 7 network, links are added one by one using the efficient (orange) or random (blue) rigidification, respectively. The shear
modulus is simulated at each time step for 10 runs, and the thick line shows the median. (h) The experimental verification of
the result in g using a similar setup as in (d). (Online version in colour.)

So far, we have based our analysis on the study of the rigidity matrix alone and thus have
been limited to considerations of infinitesimal motions. In a mechanical setting, this is equivalent
to either rigid-bond networks or spring networks with infinite stiffness k. We now explore the
possibility of generalizing our approach for the control of rigidification of a spring network with
finite stiffness k. Inspired by the robot arm in figure 44, we propose identifying the largest mode
(with the largest s, i.e. involving the largest number of nodes) and then adding edges between
the node with the largest infinitesimal displacement ( /dxlgx + dxizy ) and one of its neighbours to
rigidify the network (which we refer to as the MS protocol, for maximizing stiffness). Intuitively,
freezing or rigidifying this large floppy mode adds more low-frequency modes to the system, thus
making the structure more connected and rigid. (See electronic supplementary material, Section
54 for more details, improvements to the protocol, and comparison with other graph theory-based
methods.)

To test this idea for efficient rigidification, we first apply it to a 5 x 5 network with the link
pattern shown in figure 4b, with the top and bottom boundary fixed on two bars, the biggest
floppy mode represented in green arrows and the node with the largest infinitesimal displacement
identified in the dashed box. To freeze this mode, link (1) can be added (figure 4c), while
links (2) to (6) are randomly chosen among the remaining free links. To test whether our MS
control protocol from the infinitesimal approach works in a finitely extensible spring network
sense (finite k), we use the shear modulus G to characterize the overall rigidity (stiffness). If
the spring stiffness is k and the rest length is [y for all the springs, and the strain is y, G can
be calculated as follows [19]: G = (2/A)(E/y?), where A is the area of the network, and E is the
stretching energy E = %(k/ lo) Z[i,j] celxi— xj)Z. We also carry out a physical experiment with cast
silicone rubber networks (see electronic supplementary material, Section S4.9 for details), with
the force measurement setup as shown in figure 4d. In figure 4e,f, we show that both numerical
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simulations and the experiments confirm that adding link (1) increases the shear modulus much
more significantly than adding other links, i.e. the MS protocol based on infinitesimal rigidity
remains of value for finitely deformable elastic networks where geometric nonlinearities cannot
be neglected.

With the successful test of the MS protocol at the single bond level, we proceed to apply
the MS control protocol on the sequential tuning of system rigidity. As an example, we apply
the tuning process to a 7 x 7 triangular network. Starting from 10 network configurations with
20% randomly chosen links, we sequentially add links one by one using the MS protocol and
compare the result with a random protocol. With the same number of links added, the network
tuned with MS protocol (the orange line) indeed has larger shear modulus than the case where
links are added randomly (the blue line) when the network has a non-zero shear modulus (50-70
links) (figure 4g, the thick line shows the median for each case). Physical experiments with cast
networks (see electronic supplementary material, Section S4.9 for details) verify our numerical
results (figure 4h), suggesting our method can be applied to find the links that rapidly stiffen
an underconstrained mechanical network. All together, our results show that the infinitesimal
approach (on a rigid network with infinite k) using the rigidity matrix R is valuable even in
determining control protocols for a spring network (with finite k). (See electronic supplementary
material, Section S4 for some improvements to the protocol and a more detailed comparison with
other methods.)

As a side note, we notice that once the network has some non-zero shear modulus (associated
with 80-110 links), the random protocol actually outperforms the MS protocol. To understand
this, we observe that once a connected percolating cluster has formed, it is better to connect within
that cluster to strengthen this network, rather than adding links to freeze the remaining floppy
modes, which most likely are near the boundaries. We also notice that when the network has few
links (less than 50), there is a small non-zero shear modulus. This artefact comes from the random
noise added to facilitate the simulation (see electronic supplementary material, Section S4A for
more details).

6. ldentifying critical links in a mechanical network

So far, we have shown the power of the hierarchical representation of modes based on
infinitesimal rigidity on the control of global network rigidity, as measured in terms of tuning
the overall stiffness or shear modulus. Since floppy networks have a large number of zero energy
modes, as we tune the global stiffness of the network, the heterogeneity of the local response of
the network also begins to vary. We now closely examine the response of individual bonds to
external loading and characterize how this heterogeneity might be amplified. In particular, when
an underconstrained mechanical system is subject to deformation/external forcing, we ask if it
might be possible to detect critical bonds, i.e. bonds subject to more stretching and more prone to
failure using our sparse mode representation.

To create a heterogeneous network, we use a bi-disperse disk-packing algorithm used to
generate jammed configurations [39,40] and randomly remove some links to allow the structure to
have multiple DoF (figure 52). When a uniform outward stretching displacement is applied to this
underconstrained network, bonds that can rotate easily do so to accommodate this. For example,
in the top right area of the network in figure 54, the bonds rotate in response to deformation. To
quantify this local flexibility, we use the SND method to determine the sparse representation of
the rigidity matrix and find m sets of sparse representations of floppy modes. Defining s;? as the
size of jth mode in the hth set (the size of a mode s; defined previously is the number of non-zero
entries in the vector representation) allows us to quantify the globality for a node as follows:

m

1
fi=—" mins!, (6.1)
m Pt jeB! ]
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Figure5. Load prediction in spring networks. (a) A spring network generated from the standard jamming algorithm. Boundary
nodes (blue) are spatially fixed. (b) When the network is treated as a frame with rigid bonds, each node is coloured based on the
globality f. The purple nodes are not involved in any infinitesimal modes. (c) Prediction of loads: links connecting nodes that are
more ‘global’ or rigid nodes are more likely to bear loads (yellow), when the network is deformed. Other links (dark red) are less
likely to bear loads. (d,e) When the network is treated as a spring network, we apply a uniform outward stretching 0f10% to the
boundary nodes (d) and let it equilibrate (e). Brighter links indicate more stretching. (f) The prediction from the infinitesimal
approach and the numerical simulation agree well. (g) Experimental verification: Real network cast with elastic silicone rubber
stretched uniformly outwards by 10%. (h) Brighter colours indicate more stretching. (i) Similarly, the green colour indicates a
match between the prediction and the real experiment. (j) The matching accuracy between the prediction and the numerical
simulation with varying threshold e;. (k) The matching ratio between the prediction and the experiment with varying threshold
e,. (Online version in colour.)

where Bf’ is the set of modes that involve the motion of node i in the /ith set. Using this definition,
the nodes that are mostly involved in smaller modes (small globality, darker nodes in figure 5b)
are likely locally flexible, while the nodes that are within larger modes (large globality, brighter
nodes in figure 5b) are less likely to adjust their positions to accommodate the stretching. There are
also nodes that are not involved in any modes (purple nodes in figure 5b). These nodes, together
with the boundary nodes and global nodes, are likely to be nodes among which connecting links
bear more loads (figure 5c, links with lighter shades are predicted to bear more load), as these
links are less flexible to rotate and adjust. A threshold ¢ in the globality allows us to carry out a
binary classification for all the links into ‘more stretched” or ‘less stretched” ones (see figure 5¢
for the classification with t =12 and electronic supplementary material, Fig. S11 for the effect of
different t).

To test our prediction based on infinitesimal rigidity, we numerically simulate the deformation
of the network as one made of springs (finite k) to determine which links bear loads under
uniform stretching (figure 5d). After the network equilibrates (figure 5e), the difference between
the initial and the final length of each spring is calculated (shown via a colour gradient that
is equivalent to the force on a spring). For comparison with the prediction, we set a threshold
es for the absolute value of the change of length (scaled by the diameter of the circle) and
again carry out a binary classification of the links into ‘more stretched’ or ‘less stretched’
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ones. Defining the number of links that are both predicted and simulated to stretch more as
np, the number of links that are both predicted and simulated to stretch less as 1, and the
number of total links as 1, we calculate the matching ratio between simulation and prediction
as n=(ny +ny)/n;. By adjusting the threshold es, we see that the matching ratio can be as
high as 93.2% (figure 5j, where t is chosen to be 12; see electronic supplementary material,
Section S5.5 for more details). To test these results experimentally, we cast an elastic silicone
rubber network having the same geometry (figure 5g, electronic supplementary material, Section
55.4). By stretching it uniformly outwards by 10% (figure 5h), we can measure how much each
link is stretched. Defining the threshold ey in the spring extension (scaled by the diameter
of the circle) above which a link is classified as ‘more stretched,” we compare the prediction
and the experiment (figure 5i), and by varying the threshold ey, we find that the maximum
prediction accuracy is about 81.6% (figure 5k). The discrepancy between the simulation and
the experiment might come from (1) the experimental networks not being made of perfect
linear springs (because of material nonlinearities and elastic energies associated with nodal
deformations) and (2) the thickness of the links in the experiment being non-negligible, resulting
in the errors in length measurement. While it has recently been shown that a purely graph
theory-based approach can also help in identifying rigid clusters and predicting the network
failure [41,42], our approach provides a more general understanding of network flexibility and
zero modes. Altogether our approach based on sparse mode representation provides an efficient
way to predict local failure in a network, and it does not require consideration of the network
energetics.

7. Discussion

Many physical and biological systems can be modelled as underconstrained networks embedded
in real Euclidean space. A necessary step towards functional control of the network minimally
requires a representation of the (topological) connectivity and (geometric) rigidity of the network,
as this enables and constrains the efficient transmission of mechanical, electrical, chemical
and hydrodynamic information through the network. By couching the quest for hierarchy
and modularity in networks in terms of geometric rigidity and algebraic sparsity, we have
framed the question as one of identifying, representing and understanding the flexibility
(floppy modes) in underconstrained networks. By interpreting, adapting and generalizing
a sparse null space basis algorithm into a multi-scale variant, we have shown how to
create a sparse representation of the floppy modes that uncovers the hidden modularity
in the network and describes the combination of hierarchy and spatial localization within
the DoFs of the system. Our network approach is agnostic to the application area, and
we demonstrate this by using it to determine and deploy minimal motion primitives in
robotics and also use it to predict and control the heterogeneous mechanical response of
finitely extensible mechanical networks at the level of both the entire network and individual
edges.

It is likely that our methods will find use wherever there is a need for modular
representations in underconstrained networks with a given topological and geometrical
structure. We chose to work with a Euclidean metric and the associated infinitesimal
rigidity matrix given the nature of our geometric/physical networks. More generally, it
would be interesting to ask what the results would be if a linearized constraint is
used for non-Euclidean geometries, or perhaps even stochastic variations thereof. From a
practical perspective, how these modular representations might be engineered, learned or
optimized in motor control [2], used for motion planning in robots [43], or the design
and characterization of mechanical networks across scales in DNA assemblies, protein
allostery [29], soft materials [1,27,28] and spatial structures [44,45] remain questions for the
future.
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8. Methods

Below we describe the methods used for our computational and experimental framework briefly,
with further details available in the accompanying electronic supplementary material.

(i) Rigidity matrix

The number of rows of the rigidity matrix is equal to the total number of constraints. Besides the
length constraint of links described in the main text, the spatial confinement is also reflected in
the rigidity matrix. For any node j that is spatially fixed,

§=xp —xp, =0, (8.1)

where xp, is the fixed position for node p. In the two-dimensional (three-dimensional) case, this
corresponds to two (three) rows in the rigidity matrix, with only one non-zero entry per row.

All rows are normalized to have unit norm. Random shuffling of the row order is done each
time before the SND calculation.

(i) The SND algorithm

Given a sparse matrix M € R"*”, the SND algorithm [37] starts with the identity matrix Hy =
Iixn € R Then fori=1,2,...,m, the algorithm iteratively updates H;,1 such that the rows of
H;1 form a basis with a minimal number of non-zeros for the null space of the first i rows of M.
Ultimately, H,,,41 becomes a sparse basis for the null space for M (see electronic supplementary
material, Section S1 for more details).

(iii) Spring network simulation

For the shear modulus calculation, at the beginning of the simulation, the nodes on the top row are
displaced to the right by 8% of the width from top to bottom ((N, — 1)lp x V3/2 x 0.08) and are
fixed spatially. The motions of the nodes are simulated 20 000 steps using an overdamped Verlet
integration scheme. Random uncorrelated noise (uniformly sampled from —0.0001 to 4-0.0001,
much smaller than lp) is added to the displacement for each node to facilitate the equilibrium
process.

(iv) Network rigidification

In the network rigidification process, the MS protocol is as follows: starting from the initial
network configuration,

(a) Find the set of floppy modes using the SND algorithm.

(b) Find the mode with the largest s.

(c) Within this mode, find the node with the largest infinitesimal displacement.

(d) Connect this node to one of its neighbours. If there are multiple closest neighbouring
nodes available, randomly choose one.

(e) (For sequential tuning) Repeat steps (a) to (d) until the network is fully connected.

See electronic supplementary material, Section S4 for more variations of the MS protocol.

(v) Designing the elastic network

An initial configuration is generated using an algorithm for random close packing of bi-disperse
disks [39]. Disk centres are transformed into nodes of the network, among which links are
mapped from overlapping disks. About 35% of links are removed thereafter, making the network
underconstrained with 18 DoF. We use a circular boundary to avoid having too many free ends.
The nodes on the boundary are fixed.
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(vi) Load prediction

The procedure of the load prediction in figure 5 is as follows:

(a) Apply SND to find a set of floppy modes. Calculate the size of each mode s;.

(b) For each node i, find out the set of modes B; that involve the movement of node i.

(c) Repeat (a)-(b) m times. Calculate the globality as f; = % Y minjeBlk s;?. If node i is not
involved in any mode, f; is set to 0.

(d) To do a binary classification, set a threshold ¢ for the globality: nodes with f above f are
called global nodes. Define the set of eligible nodes as the nodes that are (1) boundary
nodes, (2) fixed nodes, or (3) global nodes.

(e) Start from the boundary nodes and do a breadth-first search until reaching another
boundary node. The search path where node i and node j are connected has to follow
two requirements: (1) node i and node j are connected by a link. (2) Both node i and node
j are eligible nodes.

(f) Mark all the links along the shortest path as the potential links to bear loads (more
stretched).

(g) Repeat (e)—(f) until all the boundary nodes have been visited.

(h) All marked links are predicted to bear more stress, and the remaining are predicted to
bear less stress.

(vii) Experiment

For the network rigidification experiment, physical networks are cast using three-dimensional
printed moulds and silicone rubber (Dragon Skin™ 30, Young’s modulus 5.93 x 10° Pa). Each
network is fully connected initially, and we cut connections sequentially if required by the
experimental protocol. Shear forces were measured on an Instron 5566 with a 10N load cell by
clamping the outermost edges of the network along its length with a three-dimensional printed
clamp and applying a displacement (at a rate of 1mms~!) to one side until a displacement of
10% of the network length is reached. More information in electronic supplementary material,
Section S4.

For the load prediction experiment, a circular network was cast using the same material as
earlier. The physical network diameter is 100 mm, and the thickness of an edge is 2.5 mm. The
outermost edge of the circular network is glued on a stretchable black spandex cloth, which is
uniformly stretched to reach an 11% size increase. Network nodes were extracted and evaluated
from image data (see electronic supplementary material, Section S5 for more information).

Data accessibility. The data are provided in electronic supplementary material [46].
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