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Abstract

Strategic blending of supplementary cementitious materials (SCMs) into ordinary portland
cement (OPC) helps reduce energy use and greenhouse gas emissions from concrete production.
Expanding thermodynamic databases to include new reaction products from blended cements
improves computational approaches used to understand the impact of blending SCMs with
cement. Determination of thermodynamic parameters of cement reaction products based on
temperature-dependent solubility is widely used in cement research; however, assumptions,
limitations, and potential errors due to intercorrelation of the thermodynamic parameters in these
calculation methods are rarely discussed. Here, methods for obtaining thermodynamic
parameters are critically reviewed, including discussion of experimental validation. The
discussion herein provides useful guidance to improve and validate the process of determining
thermodynamic parameters of new reaction products from SCM-OPC reactions.

Keywords: Cement reaction products; thermodynamic models; solubility

1. Introduction

Portland cement is the most energy intensive ingredient in concrete, the most widely used
building material and second most manufactured product after potable water.[1] The production
of portland cement accounts for approximately 5-8% of global carbon dioxide emissions.[2] The
concrete industry has been striving toward reducing these impacts through various approaches.
For example, strategic blending of supplementary cementitious materials (SCMs) into ordinary
portland cement (OPC) helps reduce energy use and greenhouse gas emissions from concrete
production.[3,4]. The ability to predict the reactions of cementitious materials in concrete helps
optimize mixtures for different performance criteria including durability and carbon
footprint.[5,6] Thermodynamic modeling allows the prediction of hydrated cement phase
assemblages and chemical compositions for a variety of cementitious material combinations.[7—
9] Therefore, thermodynamic modeling can provide a computational approach to facilitate
understanding of the impact of blending SCMs or other materials with cement on the chemical
composition of the hydrated cementitious mixture.

Accurate thermodynamic modeling of cementitious systems relies on accurate and complete
thermodynamic databases that include all possible reactants and products of the cement
reactions.[10] CEMDATA, developed by the Swiss Federal Laboratories for Materials Testing
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and Research (EMPA), is the most widely used cement database and covers a large range of
compounds that form in reactions of cementitious systems including OPC, SCMs and other
binders. The latest version, CEMDATAI18, is written in formats supporting both Gibbs Energy
Minimization-Selector (GEMS) and PHREEQC, two thermodynamic modeling frameworks that
use different approaches for modeling chemical systems.[10—-12] GEMS simulates phase
assemblages of the reaction products by minimizing the total Gibbs free energy of the
system.[12] PHREEQC, on the other hand, is based on the law of mass action (LMA) and
performs simulations by iteratively solving a system of mole balance and charge balance
equations.[11] The LMA-based thermodynamic models are most commonly used in reactive
transport models to calculate equilibrium speciation due to the simplicity of the
algorithm.[13,14] However, since the LMA solvers have limitations when multicomponent
phases (e.g., solid solutions, non-ideal liquids, and gaseous phases) are considered, the Gibbs
energy minimization algorithm is generally the method of choice for simulations of complex
multiphase systems.[12] As a result, cementitious systems have been traditionally modeled using
GEMS, although the use of LM A-based codes, specifically PHREEQC, has been increasing for
modeling cementitious systems.[15] Both GEMS and PHREEQC frameworks can be used to
solve for concentrations of chemical species, their activity coefficients, chemical potentials of
chemical elements, and other thermodynamic quantities such as pH, fugacities, and the redox
state of the system (i.e., pe). One major advantage of GEMS is its ability to calculate volume
fractions of solid reaction products, as well as liquid and gas phases, so that estimates of
capillary porosity and chemical shrinkage can be obtained.

The major limitation associated with modeling blended cement is the lack of thermodynamic
data for the new solid reaction products that do not exist in the current thermodynamic databases;
stoichiometry, solubility data, and thermodynamic constants required to predict temperature
effects and porosity have not been determined or included in the CEMDATA database. These
data need to be determined, and the compounds need to be added to the CEMDATA database to
extend the application of thermodynamic modeling of reactions in cementitious systems.
Because the GEMS version of the database can be converted to the PHREEQC database,[10] this
paper focuses on incorporating thermodynamic data into a database for GEMS use. In a Gibbs
free energy minimization model (e.g., GEMS), the overall reaction is independent of the form of
the input species but depends on the stoichiometric composition of the elements in the input
recipe. In GEMS, the input recipe for complex cementitious systems such as SCMs (e.g. fly ash,
pumice, etc.) is usually entered in the form of total molar (or mass) concentration of each
component (typically in the form of oxides) determined from chemical analysis (e.g., x-ray
fluorescence (XRF)) rather than distinct chemical compounds. As long as the correct molar (or
mass) inputs of elements of all the reactants are available, stoichiometry is able to describe every
species in the reaction products.[12] Therefore, application of GEMS is only limited by the
availability of thermodynamic parameters for new solid reaction products.[16]

This paper aims to provide a brief overview of the required thermodynamic parameters in the
CEMDATA database and the experimental and mathematical methods used to obtain the
parameters. Several mathematical methods to obtain thermodynamic parameters based on
experimentally-determined solubility data are critically analyzed and compared. It should be
noted that the methods used to determine the thermodynamic data that are necessary for adding a
reaction product to CEMDATA depend on whether the chemical processes/reactions that lead to
the formation of that compound are known. In cementitious systems, however, it can be difficult
to know (or even hypothesize) these chemical reactions in many cases. As a result, many
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assumptions might be necessary to complete the thermodynamic data; in many cases, these data
might be inter-dependent, expanding the errors originating in one parameter to others. Discussion
in this paper assumes that reactions that lead to the formation of the product that is being added
to the CEMDATA database are known, or at the very least, can be estimated because the
chemical form of the product resembles another species that is already in the CEMDATA
database.

2. Thermodynamic data

Table 1 lists the thermodynamic parameters required to incorporate a new solid reaction product
into the CEMATA database for GEMS. Since GEMS performs simulations of cementitious
reactions by minimizing the Gibbs free energy of the end-members, the standard molar Gibbs
free energy of formation of the new solid reaction product is needed. The Gibbs free energy of a
reaction can be calculated from the measured solubility constant for the dissolution reaction of a
solid phase:

A,G? = —RTInKy )

where R is the universal gas constant (8.314 J/K/mol/) and K7 is the equilibrium solubility
product at temperature 7 (K). Therefore, experimental determination of the solubility constant
from dissolution (or precipitation) of a solid reaction product is typically performed to calculate
the Gibbs free energy associated with the reaction. The standard thermodynamic parameters at
25 °C and 1 bar are used for entry into the CEMDATA database.[10] During the simulation, the
GEMS software performs temperature and pressure corrections using the Helgeson-Kirkham-
Flowers equation.[17] The Gibbs free energy of a solid phase at a specific temperature is
calculated from the Gibbs free energy at standard conditions as:

T T CJ
ArGp = ApGp — (T —To)Sp, — fTo fTo?”deT (2)

As a result, values for the standard molar entropy S 7Qo’ enthalpy ArH 790 and heat capacity C;,),T of
the solid phase are also needed. The constant pressure heat capacity is calculated by:

C]:()),T = AQy + alT + azT_Z + a3T_O'5 (3)

where ay, a;, a,, and a; are empirical heat capacity parameters. Finally, molar volume of the
solid reaction product is needed because GEMS also predicts the volume of each reaction
product. The molar volume at standard conditions is also needed for the pressure correction of
condensed substances (e.g., solids) if the simulation pressure is different from the standard state
condition.[18] The approach to obtain each thermodynamic parameter is discussed in the
subsequent sections.

Table 1: List of required thermodynamic parameters of new solid reaction product

Thermodynamic Unit Definition
Parameter
logKs, n/a Logarithm of solubility constant at standard
condition
Ar G%) kJ/mol  Standard molar Gibbs free energy of formation at

standard condition
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AfH7QO kJ/mol  Standard molar enthalpy of formation at standard

condition

S ?0 J/K/mol  Standard molar absolute entropy at standard
condition

a J/K/mol  Empirical heat capacity parameter

a, J/K?/mol  Empirical heat capacity parameter

a, J-K/mol  Empirical heat capacity parameter

as J/K%3/mol Empirical heat capacity parameter

Vo cm’/mol  Molar volume at standard condition

2.1 Solubility constant

Solubility of a new solid reaction product is experimentally determined at various temperatures
within the relevant temperature range of the cementitious reactions.[19-21] Suppose the
composition of the new solid phase is Ca;Al;Si, 0; - mH,0 and its dissolution reaction proceeds
as Eq. 4:

Ca;ALiSiy 0, - mH,0 — iCa?* + jALO,™ + kSi0,° + mH,0 (4)

The composition of the new solid reaction product can be determined by quantifying the
component concentrations (i.e., ionic oxides composition) and bound water content of the solid.
The components in the form of ionic oxides are generally determined by XRF as the mass
percentage of each oxide in the sample.[22,23] The components can also be determined by a
combination of inductively coupled plasma-optical emission spectroscopy (ICP-OES) to obtain
major element concentrations, ICP-Mass Spectroscopy (ICP-MS) to obtain minor element
concentrations, and ion chromatography (IC) to obtain anion concentrations after digestion of the
sample.[24-28] Digestion converts solids into liquid extracts to determine the metal or anion
content. The digestion solution can be a combination of acids (e.g., nitric acid, hydrochloric acid,
hydrofluoric acid) and peroxide per standard methods [29-31] or proprietary digestion solutions
depending on the type of solid.[24] Typically microwave radiation is used to accelerate the
digestion process.[30,31] After determination of the components in the solid, the oxygen content
of the solid is quantified via stoichiometry of the corresponding oxide.

Bound water content of the solids can be determined by thermogravimetric analysis (TGA) under
N>. The amount of bound water is calculated from the mass loss of the sample between 105°C
and 1000 °C as recommended by RILEM TC 238-SCM.[32] However, one should be cautious
about the assumption that all evaporable water is removed at 105 °C. Some studies found
evaporable water at temperatures up to 130 °C[33]; these researchers recorded bound water mass
loss starting from 145-150 °C instead of 105 °C.[34,35] On the other hand, loss of chemically
bound water from C-S-H, AFm, and ettringite below 105 °C has been reported.[36-39] To
remove evaporable water without inducing loss of structural water below 105 °C, some studies
vacuum-filtered and equilibrated the sample at a lower temperature (e.g., 40 °C) for an hour
under N to allow the evaporation of excess water.[24] Freeze-drying has also been proposed as a
suitable procedure; though it can still cause some change to the microstructure, it is preferred
over oven drying.[36,40,41]. Mass loss at higher temperatures can occur due to decarbonation,
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which occurs at 600-800 °C.[42,43]. To avoid interferences in bound water measurements from
decarbonation, some studies limited their TGA upper range temperatures to 500-

600 °C.[19,24,44] However, whether an upper temperature lower than 1000 °C would
underestimate the content of bound water is not discussed in these studies, possibly because the
impact of higher temperatures on bound water content is expected to be minimal.

The solubility of a new solid Ca;Al;Si, 0, - mH,0 is experimentally determined from either
dissolution or precipitation. In the dissolution approach, the synthesized dry solid is dispersed in
degassed water (by boiling) and stored in plastic bottles (HDPE or PTFE).[19,20,24] The sealed
bottles are then kept in suspension isothermally at several selected temperature points until the
dissolution reaction reaches equilibrium as determined from statistically constant measurements
of reaction products from sample aliquots measured over time. [19,45,46] The time for the
dissolution reaction to reach equilibrium can vary with respect to the solid phase, temperature
and solution conditions. ICP-OES is often used for analysis of major dissolution products such
as Si, Al, Ca. Researchers should prepare standard sets with a matrix close to the supernatant
samples from the highly saline system to ensure that the matrix effect is accounted for.[24]

In the precipitation approach, reacting solutions prepared using deionized, degassed water are
mixed in plastic bottles to form the new solid reaction product.[20,24] CO, will significantly
interfere with cement reactions in alkaline conditions; therefore, the solution preparation,
transferring, and mixing should be performed in a N»-filled glove box. [19,20,24,47] The time
for the precipitation reaction to reach equilibrium can again be determined by sampling
supernatant aliquots for reactant analysis over time.[24] Once the measured aqueous
concentration of metals remains stable over several (3-5) sampling events, equilibrium is
assumed. However, in some cases amorphous phases can be stable for a period of time and the
length of the sampling period should be sufficient to ensure that a crystalline phase has formed
[48]; X-ray diffraction (XRD) can be useful in this regard.

After equilibrium has been obtained, the solutions are filtered through a membrane filter and
acidified with HNO3. The aqueous metal content is determined by ICP-OES or ICP-MS. The
type of membrane used for filtration is selected to ensure minimal adsorption of dissolved metals
onto the membrane and successful capture of solids. The type and pore size of the membranes
are seldom discussed in literature; however, it has been reported that measured solubility of
minerals filtered through a 3kD membrane is much lower than that filtered through a 0.05 um
membrane.[49] Considering most membrane filters used in cement systems for solid-liquid
separation are 0.22 or 0.45 pum in pore size,[20,47,50,51] it is possible that some fraction of small
undissolved solids will pass the membrane to be measured as dissolution products. Therefore, in
addition to using membranes with smaller pore size where possible, it is necessary to
experimentally characterize (e.g., using nanoparticle tracking analysis) the filtrate after
membrane filtration to ensure minimum presence of solids.

The measured aqueous metal content is then used together with speciation modeling to calculate
the concentration of aqueous species to yield the solubility constant via Eq. 5:

Kso = {Ca?*} - {A10,7Y - {5i0,°)" - {(H,0}™ = (;[Ca?*]) - (1,[410,71) - (vi[Si0:°])" - (Yi,0[H,01)™ (5)

where y; is the corresponding activity coefficient of the dissolved aqueous species. Activity
coefficients of the relevant species can be calculated by various models. The Davies equation is
generally valid for ionic strengths between 0.1 to 0.7 M.[52] The specific ion interaction theory
(SIT) model is generally applicable up to 3-4 M.[53] At an even higher ionic strength, a more
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complex model such as the Pitzer ion-interaction model is required.[54] In the application of
cementitious reactions, the Helgeson modification of the Truesdell-Jones version of the extended
Debye-Huckel Equation (Eq. 6) is often used and is applicable to ionic strengths up to 1-
2M:[52,55]

_ —AZiZ\/T
logy; = TTBadl + bl (6)

In Eq. 6, y; is the activity coefficient of ion I, A and B are Debye-Huckel solvent parameters, z;
is the ionic charge, I is the ionic strength of the solution, a is a parameter dependent on the size
of the parameter, and b is a semi-empirical parameter. In most cementitious applications, Eq. 6
has only considered a and b for the major background electrolyte (NaOH, KOH, NaCl, and
KCI).[55]

While the Pitzer model is seldom used for cementitious systems, it is probably the most
applicable model for alkali-activated reactions of SCMs where highly alkaline solutions (e.g., > 4
M NaOH) are generally used as the activating solution (i.e., geopolymers).[56—61] However, the
Pitzer model requires specific ion interaction parameters, which may not be available for
cementitious compositions.[62] Moreover, the Piter model is not directly incorporated into
GEM-Selektor, the most common geochemical software for modeling cementitious systems.[62—
64] As aresult, Eq. 6 is still widely used for alkali-activated reactions despite it being only
applicable to 1-2 M.[63,65,66]

2.2 Heat capacity

As shown in Eq. 2, heat capacity is needed to calculate Gibbs free energy at a temperature
different from the standard state condition (i.e., 25 °C). The heat capacity of a solid can be
calculated via Eq. 3. While a few studies measured heat capacity experimentally using thermal
relaxation calorimetry and differential scanning calorimetry (DSC),[67,68] in the field of cement
research, the heat capacity is usually estimated using a reference reaction [20,69] or via the
additive approach of elementary oxides [47,70]. The reference reaction approach adopts heat
capacity values for solids with known heat capacity that are structurally similar to the new solid
reaction product of interest.[20,69] For example, if the unknown new solid A is structurally
similar to the aluminate ferrite monosulfate (AFm) family, the reference reaction could include a
known AFm. [20,50,71]. A few examples are shown in Table 2.

Table 2: Reference reactions used to calculate heat capacity based on structurally similar
phases

Unknown phases Type Reference Reaction Reference
CasAl>(OH)14:6H2O Hydroxy-  CasAl2(OH)14-6H20 + CaSO4 — [20]
AFm CasAlSO4(OH)12:6H20 + Ca(OH)2
CasAlx(SO4)0.5(Cl) CI-AFm CasAlx(S04)0.5(Cl) OH)12:6H20 + 0.5 [71]
OH)2-:6H-0O CaS04 — CasAlbSO4(OH)12:6H,0 +
0.5CaCl;

Because heat capacity differs greatly between free water and structurally-bound water, the
reference reaction only involves solids without free water, thus the change in heat capacity of the
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reference reaction is approximately zero. For example, if the new solid reaction product A can be
written into a reference reaction, Eq. 7:

A+bB - cC+dD (7

where B, C, and D are species with known values of heat capacity parameters, the empirical heat
capacity parameters a; of solid A can be estimated using Eq. 8:

ajg=cC-aic+d-a;p—b-a;p (8)

The values of heat capacity parameters of the known species B, C, and D can be found from the
built-in Nagra-PSI thermodynamic database in GEMS, the existing CEMDATA 18 database, or
published literature.[72,73]

In the additive elementary oxides approach, the heat capacity of a solid phase whose composition
is Ca;Al;Si 0, - mH, 0 can be treated as the stoichiometric addition of heat capacity of CaO,
AlO3, Si02, and zeolitic H2O:

0 _
Cp,CaiAljSikol-mHZO =% ViCy i ©)

where v; represents the stoichiometric number, and C, ; is the heat capacity of the ith elementary
component. Heat capacity at different temperatures can also be obtained by addition of heat
capacities of elementary oxides at different temperatures with their stoichiometry. The
temperature-heat capacity relationship obtained can be fitted to Eq. 3 to obtain the empirical heat
capacity parameters a;.

2.3 Standard molar enthalpy, entropy, and Gibbs free energy
Several methods have been used to obtain enthalpy, entropy and Gibbs free energy of formation
of the solid phase depending on the level of assumptions employed.

The van’t Hoff model assumes constant enthalpy of the dissolution reaction (e.g., Eq. 4) and fits
the log of the solubility products at different temperature as Eq. 10. An example of using the
van’t Hoff model to fit solubility data of crystalline sodium aluminosilicate (N-A-S-(H)) is
shown in Figure 1a. [74]

0.4343

AH
R (ATS%) — TT‘)) (10)

logK; =
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Figure 1: a) van’t Hoff model of fitting solubility data of crystalline N-A-S-(H) (replotted
from Williamson et al., 2022)[74]; b) 3-parameter Gibbs free energy model of fitting
solubility data of natrolite (replotted from Lothenbach et al., 2017) [47]; and c) 3-term
temperature extrapolation method of fitting solubility data of siliceous hydrogarnet
(replotted from Matschei ez al., 2007) [20].

By fitting Eq. 10, enthalpy and entropy of the dissolution reaction can be obtained. The obtained
ArSgo and Ango can be used to yield the Gibbs free energy of the reaction as shown in Eq. 11:

AGY = AHY —ToA, 5%, (11)

The standard Gibbs free energy of formation, A¢ 6790 for the phase is then obtained using Eq. 12 if
the known thermodynamic parameters of reactants and products are available. In the example of
a dissolution reaction shown as Eq. 4, A¢ G(T)o of Ca;Al;Si 0, - mH,0 can be calculated as:

NG =i Af(;;’o_mz+ +j DG a0~ Fk AfG$0,5i020+m DGR yo—AGE (12)

Similarly, the standard molar enthalpy and entropy of Ca;Al;Si) 0, - mH, 0 are calculated using
the known standard state properties of the aqueous species:

AfHY =i+ Afhrﬁo‘mz+ +j - ApHY 40,- +k - AfH(T)O‘Sl.OZo+m “AfHD 4o — AHY (13)
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Tosi0,0 T " STQO,HZO - ArS%, (14)

The three-parameter Gibbs free energy model fits calculated Gibbs free energy of formation
values of the phase at different temperature according to Eq. 1 and 2 [47,70,75]. The
experimentally-determined solubility products of the dissolution reaction, Ky, at different
temperature points can be used to calculate the Gibbs free energy of the dissolution reaction,
A,.G2, at different temperatures. For the dissolution reaction shown in Eq. 4, the Ar G of the new
solid phase at different temperatures can be obtained in a similar manner as employed for Eq. 12
if Af Gy of each aqueous species is known for a range of temperatures.

The heat capacity of the solid is assumed constant over the relevant temperature range; therefore,
Cg in Eq. 2 can be treated as a constant and the equation can be integrated and simplified to yield
Eq. 15[47,70,75]:

ArGL = AsGY — SO (T —Ty) — CZ (Tlnl ~T+T, ) (15)

The heat capacity, C and entropy, ST , of the new solid phase are typically estimated using the
additivity method w1th the elementary oxide components [70,75,76]. This approach estimates Cy 0
using Eq. 9 and estimates S(T)0 using Eq. 16:

.c0 .70_y0
w sty ) .
TO,CaiAljSlkol-mHZO ZZViViO

where v; represents the stoichiometric number, S7Q0,i is the standard molar entropy, and V° is the
molar volume of the ith elementary components; V° is the molar volume of the new solid phase.
While this approach is useful for crystalline phases, its use in estimating C{,’ and S?O for
amorphous phases may be limited as Cg and Sﬁovalues of amorphous elementary oxides are
generally not available.

The standard molar Gibbs free energy of formation, Af G?O can be obtained by fitting the Gibbs

free energies of formation for a range of temperatures using Eq. 15. An example of using the
three-parameter Gibbs free energy model to fit the solubility data of natrolite is shown in Figure
1b. [47]

The three-term temperature extrapolation model assumes the heat capacity of the dissolution

reaction A, Cp2 is constant over the relevant temperature range and fits the 3-term equation
shown in Eq. 17: [77,78]

lOgKT = AO + AzT_l + A3lnT (17)

The relationship of thermodynamic parameters and the “logK” function shown in Egs. 18 to 20
are then used to obtain the thermodynamic parameters of the dissolution reaction:[8,20]

0.4343
Ay = [A S§ — £,Cpd (1 + InTy)| (18)
04343
A, = (A HY — A,Cp} Tp) (19)
A = “3“3A +CPY T (20)
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The molar entropy of the reaction, ArS%), and the molar enthalpy of the reaction, ArHTQO, are
estimated from Eq. 18 and 19, respectively, by regression of the “logK” function in Eq. 17. The
heat capacity of the reaction, A,.C p%o Ty, is generally not fitted using Eq. 20; rather, it is estimated
from reference reactions as discussed in section 2.2.[8,20] The Gibbs free energy of the reaction
can be obtained from Eq. 11, and the standard Gibbs free energy of formation, Af G?O for the new
solid phase is then obtained using Eq. 12. The standard molar enthalpy of formation AfH7q0 and
entropy S(T)0 of the new solid phase Ca;Al;Si; 0, - mH,0 are calculated using Eq. 13 and 14. An

example of using the three-term temperature extrapolation model to fit the solubility data of
siliceous hydrogarnet is shown in Figure 1c. [20]

2.4 Molar volume

Molar volume of the new solid reaction product phase is needed so that the simulation can
predict the volume fraction of the formed phases and thus porosity of the cementitious system.
The molar volume V? is calculated by dividing the molecular weight MW by the density p of the
solid phase as shown in Eq. 21:

_mw
T p

Vo (21)
One common technique to obtain the density of the new solid is gas pycnometry using helium
gas.[51,79-81] This method measures the pressure change resulting from displacement of helium
by the solid. After drying, the pre-weighed solid sample is placed into the pycnometer to obtain
the density of the solid sample.[51]

When the new solid of interest is crystalline, the density of the new solid can also be estimated
from crystallographic data and unit cell constants determined by XRD.[82,83] However, if the
cement reaction product of interest is amorphous, XRD techniques are of limited use to
determine the density of such solids.

3. Discussion

The three-parameter Gibbs free energy model and the three-term temperature extrapolation
model as described in Section 2 have been widely used to expand CEMDATA over the past few
decades.[8,20,47,50,69,84] The van’t Hoff model has been used in some recent studies.[45,74]
By limiting the needed experimental work for solubility measurements at different temperatures,
these three methods provide a relatively straightforward framework to incorporate new reaction
products into the CEMDATA database. Nevertheless, researchers need to be aware of some
intrinsic assumptions of these methods with respect to obtaining molar enthalpy, entropy, and
Gibbs free energy.

All three methods to obtain molar enthalpy, entropy, and Gibbs free energy are based on fitting
experimentally-determined K; values. Both the three-parameter Gibbs free energy model and the
three-term temperature extrapolation method require estimation of the heat capacity. In the three-
parameter model, while estimating heat capacity and entropy from elementary oxides yields
satisfactory results for crystalline phases, such estimation cannot be performed when the phase of
interest is amorphous, as heat capacity or entropy values for amorphous elementary oxides are
difficult to obtain. In the three-term extrapolation model, the estimated heat capacity based on
Eq. 7 and 8 requires the minerals in the reference reaction to be structurally similar to the new

10
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solid to allow the heat capacity of the reference reaction A,.Cp? to be approximately zero.
However, previous research has not set forth a systematic method for selecting the reference
reaction, the only guidance is that known components from structurally similar phases to the new
solid should be used and the importance of selecting a reference reaction without free water has
been highlighted.[20,71] This assumption that A,.Cp? is zero for the reference reaction risks error
in determination of the heat capacity if A,.Cp? of the reference reaction is not zero. In addition,
the three-term extrapolation fitting procedure for enthalpy and entropy employing Equations 17-
20 is somewhat circular because Equations 18-20 include fitting the reaction heat capacity term.

The van’t Hoff approach, on the other hand, assumes constant enthalpy of the dissolution
reaction which may be applicable over a small temperature range where the change in heat
capacity of the dissolution reaction is negligible. A demonstration of using the van’t Hoff model
and the three-parameter Gibbs free energy model is provided here and shows that the simpler
van’t Hoff approach is sufficient for the relevant temperature range of cement hydration.[74] In
this example, crystalline N-A-S-(H) samples were synthesized using sodium silicate and sodium
aluminate solutions across a range of bulk aqueous Si/Al ratios at different temperatures
following the precipitation approach discussed in Section 2.1. Concentrations of sodium,
aluminum, and silica in the supernatants were measured, activities were calculated using
PHREEQC and solubility constants were calculated following the N-A-S-(H) dissolution
reaction shown in Eq. 22 in a similar manner as Eq. 5.

NaAlSiy 06041, - 1.72H,0(5y — 1.6H,0(p) + 4H{ 5y <= Najyyy + AlLS) + 1.06H,Si0544)(22)

Both the van’t Hoff model and the three-parameter Gibbs free energy model were used to
calculate thermodynamic parameters as shown in Table 3. The van’t Hoff expression yielded
similar Gibbs free energy of formation data as the three-parameter Gibbs free energy model.
Thus, the van’t Hoff approach may obviate the need for estimating the heat capacity from
elementary oxide addition or reference reactions over reasonably small temperature ranges.
However, one limitation of using a small temperature range is that the regression is not very
sensitive to the value of entropy.[74]

Table 3: Thermodynamic parameters of crystalline N-A-S-(H) calculated from three-
parameter Gibbs free energy model and van’t Hoff model.

Parameters of N-A-S-(H) phases
Af H 70"0 S 7(20 Af G70"0 CngO
(kJ/mol) | (J/mol-K) | (kJ/mol) | (J/mol-K)
three-parameter | -2657.1 208.2 24439 203.2
van’t Hoff 2267422 152.7 24445 281.6

4. Recommendation

Calculation of thermodynamic parameters are based on regressions of Kr. To mitigate the error
in K based on measured concentrations, determining K for at least 4 or 5 temperature points is
recommended. Experimental validation of thermodynamic parameters that are currently fitted or
calculated is also recommended as discussed next.

Heat capacity of dry powders can be experimentally determined by thermal relaxation
calorimetry and DSC.[67,68,85] Recently, the physical property measurement system (PPMS), a
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commercially available automated relaxation calorimeter , has been used to determine the heat
capacity of solids.[86,87] By heating a mass of new solid in the PPMS or DSC over a
temperature range, the heat capacity of the new solid can be calculated as: [88]

Cor = —m’”;LHW (23)
where My is the measured thermal mass (J/K), m is mass of the solid sample (g), and MW is
the molecular weight of the solid of interest. Nevertheless, limited studies have employed
calorimetry techniques to determine heat capacity of cementitious reaction products.[67,85] Most
studies still estimate heat capacity based on the methods described in Section 2. It is
recommended that when the pure phase composition of the reaction products is known and
advanced calorimetry techniques are available for heat capacity measurements, experimentally
determine heat capacities should be obtained and compared to values determined from a
reference equation or addition of elementary oxides. Not only will the experimentally
determined data improve the accuracy of the thermodynamic parameter estimates, but the data
will also help to validate the other estimation methods.

When the enthalpy of the reaction needs to be experimentally determined, solution calorimetry is
used.[85,89,90] In this technique, the new solid is dissolved in a suitable solvent (e.g., SN HCI)
and the heat released or consumed is recorded. The measured heat from the acid dissolution is
then used with known or measured heat release data from reference compounds to obtain AfH7q0

of the new solid.[85] However, accuracy of measured ATH7Q0 values for the dissolution reaction

can be impacted by the presence of impurities in the synthesized new solid.[69] Therefore, use of
experimentally-determined enthalpy values should also be employed with caution.

To validate estimated entropy values from fitting or calculation, experimentally-determined
entropy values can be calculated from the measured heat capacity over a range of temperatures
and under constant pressure as shown in Eq. 24.[91,92] However, determination of entropy from
heat capacity measurement is hardly used for cement reaction products.[93]

0
T Cp,T

ASQ = ASP_o + [, 2LdT (24)

0

5. Conclusion

In summary, thermodynamic modeling is a valuable tool in the study of cementitious reactions
with new SCMs if used with an accurate and complete database. Expanding the current database
to include more solid reaction products that arise with the use of new SCMs will be the focus of
future efforts. Estimation of thermodynamic parameters based on measured solubility products at
several temperatures is a well established approach and has been widely used in many studies to
expand the CEMDATA database. Nevertheless, this widely used framework of methods involves
assumptions that might need further improvement when being extended to new reaction products
of cementitious reactions.
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