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Abstract—With today’s proliferation of IoT and real-time appli-
cations, it has become crucial to properly handle traffic, optimize
the quality-of-service (QoS) of wireless networks and design novel
approaches to enable reliable communications with bounded
latency and high throughput for future wireless services. In
order to meet these stringent QoS requirements, there has been a
recent surge in research that investigates a deep restructuring of
the Radio Access Network (RAN). In particular, the open radio
access network (O-RAN) framework promises to deliver flexible,
scalable, and agile solutions for improving the handover process
of a moving user equipment (UE), by considering factors related
to the requirements of applications in terms of QoS, traffic load,
signal quality and the diversity of multiple access technologies
or radio frequencies of the environment. Building on this basis,
this paper investigates the handover process of a moving vehicle,
by exploring and comparing the prediction accuracy results of
different machine learning (ML) techniques used for anomaly
detection. In particular, the structure of one of the O-RAN
modules is presented. This module relates to a traffic steering
application, specifically designed and used to detect anomalies
within the network. Several ML techniques are then implemented
in the O-RAN traffic steering module to predict the handover.
The results pertaining to the comparison of the implemented
ML techniques show that the random forest algorithm gives the
highest accuracy (up to 98%), which helps boosting the handover
process.

Index Terms—5G, Anomaly Detection, Handover, Artificial Intel-
ligence, Machine Learning, Open RAN, RIC, xApp.

I. INTRODUCTION

The evolution of mobile communication technologies and the
increasing demand of real-time applications have motivated
the deployment of flexible protocols, such as those based on
artificial intelligence (AI), to manage and operate wireless
networks [1], [2]. However, in order to deploy such new
protocols, it is necessary to rethink the way in which the
radio access network (RAN) is designed. In particular, existing
RAN systems are limited in terms of supporting the varied
requirements of 5G applications. These limitations include a
lack of data-driven functionality, a lack of support for the
deployment of artificial intelligence, limited configurability,
closed proprietary systems, as well as the interoperability
issue between RAN components supplied by different vendors.
For instance, traditional RAN systems are not able to handle
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the high data rates required by modern applications such as
video streaming and online gaming that has very stringent
requirements in regard to throughput and bandwidth demand.
Additionally, RAN structure is not able to provide the low
latency needed for real-time applications such as voice and
video calls. Furthermore, it’s unable to provide the flexibility
needed to accommodate a wide range of services, user needs
and changing traffic patterns. These limitations are partly due
to the lack of standardization of interfaces that allow data
collection from the base stations [3]. Clearly, there is a need for
new RAN standards that are more flexible and agile, and that
could accommodate AI models and algorithms. For instance,
the lack of openness in the RAN has been identified as a major
bottleneck in maximally utilizing network virtualization. In
response to all these needs, many operators such as AT&T,
China Mobile and many others have joined forces to found
an alliance in 2018 to promote the concept of an intelligent
and open RAN that is not tied to proprietary functions. This
alliance is called the open radio access network, or O-RAN
[4]. Its mission is to re-shape the industry towards more
intelligent, virtualized network elements, white-box hardware,
standardized and open interfaces as shown in Fig. 1. In this
sense, O-RAN emerged as a new modern wireless network
model, that can respond to the requirements of 5G and beyond,
by (i) opening interfaces between the base-band units (BBUs)
and the remote radio units (RRUs), which offers flexibil-
ity, scalability, and agility of RAN networks thus enabling
multi-vendor deployments to achieve an optimal solution,
(ii) enabling network automation, (iii) deploying intelligence,
and (iiii) enhancing RAN performance through virtualization.
One of the most important part of the O-RAN framework
is the radio intelligent controller (RIC), that plays the role
of a traditional network controller in charge of orchestrating
network functions, by performing a proactive maintenance of
traffic network. Also called as open smart controller, it consists
of embedding intelligence into the radio controller, along
with splitting user and control planes, which will succeed in
improving the traditional radio resource management functions
(RRM) [5] and [6]. It is composed of two layers, the near real-
time RIC and the non real-time RIC. On the one hand, the near
real-time RIC operates in near-real-time, in the time-frame of
10 ms to 1s and is responsible for RAN control and optimiza-
tion, it hosts third parties xApps such as machine learning
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(ML) xApp, self optimization network xApp. On the other
hand, the non real-time RIC is part of service management and
orchestration (SMO). It allows operators to flexibly configure
the desired optimization policies, utilize the right performance
criteria, and leverage machine learning to enable intelligent
and proactive traffic control. It operates in a timeframe more
than 1s. It uses RAN data analytic to perform policy guidance
and training of machine learning models. It is called non real-
time because it operates on offline mode in a duration greater
than one second [7]. The state-of-the-art analysis reveals that
very few research works have thus far developed concrete
solutions for deploying machine learning in O-RAN networks
[3], [6], [8]–[10]. In addition, the integration of the RIC to
improve smart mobility applications particularly vehicular-to-
everything (V2X) has not been considered yet, and still not
available for deployment as an xApp within O-RAN software.
The main contribution of this paper is the investigation of
handover management in O-RAN. We used the traffic steering
module that incorporates anomaly detection and we evaluated
and compared the performance of various ML algorithms for
handover prediction, including local outlier factor, isolation
forest, robust covariance, logistic regression, naive bayes,
SVM and random forest. Given the structure of our database,
our results demonstrate that the random forest used for
anomaly detection in the traffic steering module of O-RAN can
significantly improve handover performance and outperform
other methods.
The rest of this paper is organized as follows. Section II
presents a background and related works to introduce anomaly
detection techniques on handover management. This section
also describes the different third party applications used in
the O-RAN environment for anomaly detection. Section III
presents a detailed analysis of the network data using anomaly
detection. Section IV presents the corresponding results and
finally, section V provides concluding remarks and future
works.

II. BACKGROUND AND RELATED WORKS

To bridge the gap between the machine learning algorithms
and their application in O-RAN, we first introduce previous
works focusing on machine learning algorithms for detecting
anomalies, and highlight related works in this area, then we

provide a detailed explanation of how anomaly detection can
be applied in O-RAN environment.

A. Machine learning algorithms for anomaly detection

Anomaly detection (AD) is an unsupervised machine learning
technique in charge of detecting abnormal data (outliers) that
deviate from the norm (inliers). These types of data are called
anomalies and are classified into 3 different categories [11]:

• Outliers: Refer to short or small anomalous patterns that
appear in a non-systematic way in data collection (for
instance communication errors).

• Change in events: It happens when a sudden change has
occurred (for instance extreme weather conditions).

• Drifts: Are characterized by the slow, unidirectional, and
long-term change in data, for instance, a fault in a sensor.

In the context of O-RAN, AD algorithms identify abnormal
behavior of network data such signal power or communication
between nodes. Several approaches could be used to perform
anomaly detection, such as machine learning algorithms based
on (1) decision tree, classification or statistical models, (2)
clustering such as K-means where anomalies do not belong to
a cluster, (3) deep reinforcement learning, specifically used to
handle high dimensional data and multiples features.
1) Classification:
Classification for anomaly detection assigns a predefined label
to a given input feature, it involves predicting and detecting
irregularities in real-time and helps triggering proper actions
such as handover. While various classification ML algorithms
are available, we have chosen to focus on logistic regression,
naive bayes, support vector machines (SVM), and random
forest because of their performance in detecting irregularities
and their applications to the specific context of network data.
Logistic Regression
Logistic regression is a supervised ML classification algorithm
that predicts the probability of occurrence of an event by
learning the relationship between the features and mapping
inputs data to a probability outputs with values between 0
and 1. Let’s consider X to be the input data and θ be the
parameter we want to train and optimize, the probability is
then expressed by the Sigmoid function as following :

hθ(X) =
1

1 + e−θX
(1)

Naive Bayes
Naives Bays is a supervised learning and a probabilistic
classifier that belongs to a family classifier algorithms based
on Bayes’ Theorem (See equation 2), and where every pair
of features being classified is assumed to be independent of
each other. Naive Bayes classifier calculates the probabilities
and selects the highest probability outcome.

P (A|B) =
P (B|A)P (A)

P (B)
(2)

Support Vector Machine (SVM)
SVM is a supervised machine learning used for classification,
regression and anomaly detection. The role of this algorithm



is to define a decision boundary (also called ”a hyperplane”),
consisting of a subset of training points: support vectors. The
hyperplane helps classifying data points by splitting data into
two main categories, its dimension depends on the number
of features. Many hyperplanes could be selected, however an
effective classification of SVM algorithm requires a maximum
margin distance between data points of both classes. During
the training, the SVM learns to make a prediction for a new
data point, by measuring the distance to each of the support
vectors.
Random Forest (RF)
Random forest is considered to be one of the most important
supervised learning algorithm and is based on four steps. In
the first step, we consider a dataset of k records, where n
random records are retrieved. The second step consists of
building individual decision trees for each sample. In step 3
each decision tree will generate an output. And in step 4, final
output is considered based on majority voting or averaging for
classification and regression respectively.
Given the significant volume of data collected from the RAN,
the classification labeling process of RAN anomalies might be
challenging and costly [12]. In this sens, other alternatives can
be considered, such as clustering or DRL as discussed next.
2) Clustering:
This subsection describes the clustering algorithms used for
anomaly detection and discuss its application in O-RAN
environment.
Local Outlier Factor (LOF )
LOF is an unsupervised machine learning technique based on
density and nearest neighbors algorithm, useful for anomaly
detection. The application of LOF is based on the four
following concepts:

• K-distance and K-neighbors: K-distance is the distance
between a given point Xi to its Kth nearest neighbor,
defined and computed according to the value of the hyper-
parameter k that represents the number of neighbors. K-
neighbors denoted by Nk(Xi) represent a set of points
that belong to the circle of radius K-distance.

• Reachability distance (RD): The RD refers to the distance
of travel from a particular point Xi to its neighbor point
Xj . RD is defined as the maximum of the distance be-
tween these two points and the K-distance. For instance,
in the case of the Euclidean distance, we consider Xk to
be the kth nearest neighbor of Xi, then the RD from Xi

to Xj is expressed as following:

RDk(Xi, Xj) = max(|Xi −Xk|, |Xi −Xj)|) (3)

• Local reachability density (LRD): We consider Xi ∈ X l
i

with l ∈ [1, n]. The LRD is equal to the inverse of
the average RDs from X

(l)
i to Xi [13], as expressed by

equation 4. In a practical way, the LRD states that the
more the average RD is (Xk from Xi), less density of
points are present around a Xi.

LRDk(Xi) =

(
k∑

i=1

RDk(X
(l)
i , Xi)

Nk(Xi)

)−1

(4)

• Local Outlier Factor (LOF):
The LOF represents the ratio of the LRD of a given point
Xi to the LRD of its K-neighbors. Based on the LOF
score, if LOF > 1, that means Xi is an outlier.

LOFk(Xi) =
1

|Nk(Xi)|
·

∑
Xj∈Nk(Xi)

LRDk(Xj)

LRDk(Xi)
(5)

Robust Covariance
The Robust Covariance is an unsupervised outlier detection
based on probabilistic distribution. Let’s consider a point
xi following a probabilistic distribution of mean µ and
covariance matrix cov[xi], then the deviation xi from µ is
known as Mahalanobis distance di, expressed in the following:

di(µ, cov[xi]) =
√

(xi − µ)T cov[xi]−1(Xi − µ) (6)

In this section, we discussed the use of classification and
clustering algorithms for anomaly detection (AD) in general.
In the context of O-RAN, it offers an effective way to
identify anomalies in terms of volume of data, disaggregated
architecture, real-time detection, and high sacalability. In typ-
ical RAN, the AD algorithms can be applied only to one
data source whereas in O-RAN, AD algorithms are applied
to a significant volume of network data collected from a
heterogeneous environment, and from multiple data sources.
For instance, authors in [3] proposed a clustering solution
to reduce control plane latency by decreasing the number of
inter-controller interactions and described how this proposed
framework could be integrated in the O-RAN architecture.
They applied the proposed framework to study the reduction of
prediction error for 600,000 user traffic in 650 base stations. In
terms of architecture, AD algorithms are processed in a single
location centralized in the typical RAN. O-RAN offers the
flexibility of AD algorithms to be implemented in different
components, which allows the detection of irregularities in
real-time and communicate with the RIC to execute the han-
dover. Furthermore, O-RAN is designed to be able to support
a large number of connected devices and users, unlike typical
RAN that can not satisfy high scalability requirements.
3) Deep reinforcement learning:
Intelligent handover (HO) management in wireless systems
has been a topic of significant research interest in recent years
[14]–[16]. For instance, in [14], the authors deployed recurrent
neural network (RNN) algorithm to predict the movement of
traffic of subscribers towards a particular cell in the hetero-
geneous 5G mobile networks. On another context in [15], the
authors proposed a dual stacked RNN with Long-short term
memory (LSTM), that help vehicles predict handover points
based on their interactions with fog computing nodes. With
the advent of autonomous vehicles, handover management
becomes more crucial as it is closely related to user safety,
and thus requires a real-time application. Many researchers



attempted to solve the handover problem for autonomous
vehicles, using various solutions, including the LTE hybrid
access proposed in [16], that consists of using a combination
of LTE multiple operators. As part of the improvement of
the innovation, and in order to enhance the performance
of the handover management process, operators have been
advocating for multi-vendor interoperability of RAN elements,
which is now possible with O-RAN. To successfully oper-
ate IoT services such as connected autonomous vehicles, a
wireless system must simultaneously deliver high reliability,
low latency, and high data rates, for heterogeneous devices,
across uplink and downlink. A number of recent works have
investigated the various capabilities of O-RAN in handling
handovers [?], [6], [8], [9]. In [6], authors propose a work-
flow of ML implementation in O-RAN through the RIC by
using Acumos (a linux foundation open-source project that
is interoperable with O-RAN architecture). Autonomous and
self-optimizing networks using O-RAN are considered in [8],
where authors proposed a data driven closed loop control to
gain in spectral efficiency and buffer occupancy. Additionally,
in [9], authors proposed an algorithm that uses automatic
neighbor relation (ANR) xApp in O-RAN, that is based on
random forest decision tree classifier, in order to optimize
the neighbor cell relation table through the minimization of
handover failures. Another example of predicting occurrences
of handovers was studied in [?], in which the authors identified
potential congested cells using a recurrent neural network
(RNN) model and long short-term memory (LSTM). Overall,
these study cases have contributed to a better understanding
of the capabilities and potential benefits of O-RAN, however
to the best of our knowledge, we found no prior research that
benchmarked anomaly detection ML techniques in the context
of O-RAN. Therefore, we present an overview process that
aims to fill this gap in the literature.
In order to effectively apply ML algorithms of anomaly
detection in the O-RAN environment, vendors and operators
developed a specific framework called ’traffic steering’ module
available in O-RAN software, which is detailed in section
II-B. This module is based on isolation forest which is an
unsupervised machine learning algorithm used for anomaly
detection. It ‘isolates’ data points by building an isolation
tree, that randomly select a feature from the dataset and then
selecting a split value, in charge of dividing the data points
into two sub-trees. In the following section, we explore the
internal architecture of traffic steering that may use various
machine learning algorithms for anomaly detection.

B. Application of anomaly detection in O-RAN through the
traffic steering module

“Traffic steering” is a process of selecting and directing a user
equipment (UE) to the most convenient base station with the
best possible QoS in a wireless communication network. In
classical traffic steering processes, the selection operation was
based on the movement of the device and the average values
of signal power. In addition to this, all connected devices and
applications were treated equally. This represents a challenge

in heterogeneous networks (5G) where different types of
cells are deployed. Furthermore, new emerging applications
have different requirements while being deployed in the same
device. This is the case of V2X critical application such as
forward collision warning system that needs to change a cell
earlier due to specific requirement of QoS, whereas, a non
critical application such as infotainment doesn’t have stringent
QoS requirement. This leads us to the main question “how to
design different strategies for different types of users”. In this
case, O-RAN enables us to use machine learning techniques
to enable this flexibility and build intelligent traffic steering
control by using new ready-to-use applications called xApps.
One of the proposed xApps is the traffic steering xApp, used
to enhance network performance by balancing the load across
cells and optimize the handover process with the help of
intelligent algorithms such as anomaly detection algorithm.
The traffic steering xApp comprises of 5 open source sample
xApps. Each xApp has a specific role as described in fig. 2
and in the following [17], [18]:
(1) KPIMON xApp: is a KPI monitoring xApp that collects
data and metrics received by the user such as:

• RSRP: which is the reference signal received power and
represents the average received power without noise and
interference.

• RSSI-NR: that refers to the adjacent channel interference
including serving and non-serving cells.

• RSRQ: which is the reference signal received quality
metric represented as the ratio between RSSI and RSRP.

These metrics are collected from the O-RAN distributed unit
(O-DU) which is responsible for real-time processing of radio
scheduling information and beamforming, and the O-RAN
centralize unit (O-CU) that controls the function of numerous
DUs over the midhaul interface, through E2 nodes (E2 nodes
represent the interface between the RAN and the base station).
The data are then stored in a time series database (Influx
database).
(2) Anomaly detection (AD) xApp: The AD xApp is in
charge of detecting anomalous signal metrics that serve UEs
within the network. The xApp retrieves the anomalous UE data
from the Influx database and performs ML training. Currently,
in the O-RAN software, the anomaly detection is based on
“isolation forest model” to detect anomalous UEs. The type of
anomaly or degradation as well as the data about the detected
UEs are sent to the traffic steering xApp.
(3) Traffic steering (TS) xApp: Based on the list received
from the AD xApp, the TS xApp starts the prediction op-
erations on UE throughput. The results are then transmitted
to the non real-time RIC, which is in charge of defining and
providing policies to the near real-time RIC over A1 policy
(A1 interface enables policy-driven guidance from the non-
RT RIC to the near-RT RIC), in order to guide the behavior
of traffic steering xApp. As illustrated in Fig. 2, there are
four possible policies stated by A1 policy: SHALL, PREFER,
AVOID or FORBID. For instance, in Fig. 2, A1 policy states
that vehicle B should ”AVOID” cell M2 and ”PREFERS” to
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Fig. 2. Traffic steering process for handover operations.

connect to cell m2 which is a microcell able to deliver a high
QoE signal compared to macrocell M2.
(4) QoE predictor (QP) xApp: QP xApp uses machine
learning algorithm to predict throughput of the UE and sends
the outputs to the TS xApp. The near real-time RIC executes
these policies, to switch the connection to another cell that has
a maximum throughput, and then sends control messages to
E2 nodes to execute the handover.
These xApps are crucial elements in the O-RAN architecture
and can significantly enhance the performance of handover by
providing real-time monitoring and visualization of network
KPIs, raising alerts in the presence of anomalies, improving
network resource utilization and predicting end-user QoE.

III. DATA ANALYSIS AND SIMULATION SETUP

Our work focused on using O-RAN to optimize the handover
process of a user equipment moving from a cell to another
cell and records signal strength measurements (RSRP, RSRQ)
from the surrounding cells every second. The dataset contains
10,000 observations and 5 features. O1 interface records a set
of standardized events in NR gNBs and collects data about
UE movement pattern and distributes data across the entire
O-RAN infrastructure. The dataset can be accessed from the
official O-RAN github [4]. There main characteristics are :

• 25% of abnormal users.
• 9 cells and 5 neighbor cells.
• UE-ID refers to car, waiting passenger, train passenger.
• Signal strength parameters: [RSRP, RSRQ, RSSINR],

’PRB usage’, ’Throughput’.

The input features used in the data analysis are related to
measurement reports and UE performance statistics:

• RSRP metric has a range of: [-44dBm (excellent),
140dBm (No signal)]. In our dataset, the maximum and
minimum values of RSRP are:[-150.37dBm, -56.81dBM].

• RSSI-NR: In our dataset, the maximum and minimum
values of RSSI are:[-13.15 dBm, 65.41 dBm].

• RSRQ: In our dataset, the maximum and minimum values
of RSRQ are:[-70.79 dBm, -10.79 dBm].

• Throughput refers to the actual measure of data success-
fully transferred from source to destination.

• Physical resource block (PRB) which is the smallest unit
of scheduling block that a gNB assigns for transmission.

The first step is to apply data preprocessing to reduce the
negative influence of irrelevant data or values that might be
missing in the dataset. In our case, the preprocessing phase is
based on the same approach used by O-RAN software. It is
mainly based on the following steps:

• Dropping irrelevant data for predictions which include the
UE ID, the UE category and timestamp.

• Checking and dropping high correlation parameters.
• Normalizing data to bring all parameters in same scale.
• Filtering the numeric data types.
• Dropping data that have NAN values.

Fig. 3 shows the mean and standard deviation of each feature.
There is a high PRB utilization with an average greater
than 93% of the cell serving anomalous UEs. Poor signal
measurements (RSRQ) and poor network throughput are also
noticed for abnormal users.

IV. SIMULATION RESULTS AND ANALYSIS

We applied different ML techniques to predict anomalous
users and then minimize the handover failure, as well as
comparing the performance and scores of each ML technique



Fig. 3. Features analysis of normal users V.S. abnormal users.

TABLE I
DIFFERENT ML TECHNIQUES APPLIED TO MOBILITY DATA USING O-RAN

ML technique Accuracy Precision Recall F-Score RMSE
Local Outlier Factor 0.7404 0.3627 0.0144 0.0277 0.50
Isolation Forest 0.9118 0.8010 0.8734 0.8356 0.29
Robust Covariance 0.8322 0.9504 0.3656 0.5281 0.40
Logistic Regression 0.1349 0.1386 0.4544 0.2124 0.93
NAIVE BAYES 0.8651 0.8850 0.5455 0.6750 0.36
SVM 0.8133 0.6657 0.5482 0.6013 0.43
Random Forest 0.98 0.9760 0.9459 0.9607 0.14

as presented in Table I and Figures 5 and 4. The analysis was
based on classical comparison metrics using true positive (TP),
true negative (TN), false positive (FP), and false negative (FN).
Isolation forest has been selected by AD xApp developers to be
used in O-RAN software to predict the handover and optimize
the wireless communication system.
However, as detailed in Table I, the results show that random
forest outperforms all other ML techniques as detailed in the
following:

• Accuracy: refers to the ratio of observations that have
been correctly predicted over the total observations.

Accuracy =
TP + TN

TP + FP + FN + TN
(7)

In our study, we found that ML techniques are pretty
close in terms of accuracy ranging from 81% to 91%,
followed by 74% of LOF, with the exception of logistic
regression that shows a very low ratio (13%). Random
Forest, however, shows a very high ratio of accuracy
(98%).

• Precision: is the ratio of correctly predicted positive
observations to the total predicted positive observations.

Precision =
TP

TP + FP
(8)

By measuring the precision metric, we found out that data
reveal a certain dispersion, ranging from 13% (logistic
regression) to 95% (robust covariance). Random forest is
on the top of the list with a precision ratio of 97%.

Training Time (ms)

NB LOF LR RF SVM IF RC
0

500

1K

1.5K

2K

2.5K

Fig. 4. Comparison of ML techniques in terms of training time (in ms).

• Recall: represents the ratio of positive observations that
have been correctly predicted over all observations in
actual class.

Recall =
TP

TP + FN
(9)

By computing the recall metric on our ML algorithms,
it appears that both algorithms, isolation forest and ran-
dom forest, are the best performing with 87% and 94%
respectively.

• F-score: is the weighted average of precision and recall.

F1score = 2 · Recall · Precision

Recall + Precision
(10)

The F-score results show the same performance as recall
metrics, with the best performance of isolation forest
(83%) and random forest (96%).

• Root mean square error (RMSE): is used for evaluating
the prediction quality, and is based on Euclidean distance
to show how far predictions fall from real values, where
yi is the actual value and ŷi is the predicted value.

RMSE =

√∑N
i=1 ||(yi − ŷi)||

N
(11)

The RMSE has the smallest value when using random forest,
which means the model is good at predicting the data, at the
opposite of logistic regression where RMSE is large, meaning
the model is failing to consider important features of data. In
terms of training time, Naive Bayes algorithm is the fastest one
spending around 38 ms in training (see Figure 4). In addition,
by comparing the prediction of IF and RF performance with
real data related to the normal and abnormal categories, we
find that RF prediction is close to the reality as illustrated
in figure 6. Given the characteristics of our dataset, RF is
suitable due to the relatively low complexity of the data.
However, for significantly larger datasets, the effectiveness of
RF may vary. In such scenarios, it may be worth exploring
a combination of different techniques such as unsupervised
ML and RL techniques to detect anomalies and trigger the
handover in a more efficient and effective way.

V. CONCLUSION

This paper provides an overview of the newly introduced Open
RAN model that offers flexible, agile and scalable solutions
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to heterogenous wireless communication network, and to the
processing of large volumes of data from diverse connected
devices and users in real-time. The interoperability between
RAN components and the openness of interfaces promotes the
use of artificial intelligence in wireless networks, and help in
optimizing services such as resource reallocation to predict
congestion, smooth and seamless handover management to
maintain the required QoS. Furthermore, O-RAN is designed
to be able to support a large number of connected devices
and users, unlike typical RAN that can not satisfy high
scalability requirements. The contribution of this paper is the
investigation of handover management in O-RAN, we used
the traffic steering module that incorporates anomaly detection
and we evaluated and compared the performance of various
ML algorithms for handover prediction, including local outlier
factor, isolation forest, robust covariance, logistic regression,
naive bayes, SVM and random forest. Given the structure of
our database, our results demonstrate that the random forest
used for anomaly detection in the traffic steering module of
O-RAN can significantly improve handover performance and
outperform other methods. For significantly larger datasets,
the classification labeling process of anomalies might be
challenging and the effectiveness of RF may vary, which opens
the perspectives for alternatives AI algorithms such as RL (Q-
learning) or a combination of ML and RL techniques to ensure
a real-time, effective amd optimized handover.
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