A Quantum Annealer-Enabled Decoder and
Hardware Topology for NextG Wireless Polar
Codes

Srikar Kasi*f, John Kaewell’, Kyle Jamieson*

*Princeton University, InterDigital, Inc.

Abstract

We present the Hybrid Polar Decoder (HyPD), a hybrid classical-quantum decoder design for Polar
error correction codes, which are becoming widespread in today’s 5G and tomorrow’s 6G networks.
HyPD employs CMOS processing for the Polar decoder’s binary tree traversal, and Quantum Annealing
(QA) processing for the Quantum Polar Decoder (QPD)-a Maximum-Likelihood QA-based Polar de-
coder submodule. QPD’s design efficiently transforms a Polar decoder into a quadratic polynomial
optimization form, then maps this polynomial on to the physical QA hardware via QPD-MAP, a
customized problem mapping scheme tailored to QPD. We have experimentally evaluated HyPD on
a state-of-the-art QA device with 5,627 qubits, for SG-NR Polar codes with block length of 1,024 bits,
in Rayleigh fading channels. Our results show that HyPD outperforms Successive Cancellation List
decoders of list size eight by half an order of bit error rate magnitude, and achieves a 1,500-bytes
frame delivery rate of 99.1%, at 1 dB signal-to-noise ratio. Further studies present QA compute time
considerations. We also propose QPD-HW, a novel QA hardware topology tailored for the task of
decoding Polar codes. QPD-HW is sparse, flexible to code rate and block length, and may be of

potential interest to the designers of tomorrow’s 6G wireless networks.

Index Terms

Polar codes, quantum computation, quantum annealing, channel decoding, wireless networks

I. INTRODUCTION

The Polar Code, a type of error control code, was discovered in 2009 [1], and subsequently

shown to have a number of desirable features: achievement of Shannon capacity limits for a wide

range of channels [2], attainment of a low error floor (minimal bit error rate as a function of
background noise) [3], and a simpler code construction process than other leading competitors,
such as Low Density Parity Check (LDPC) codes [4]. While promising, Polar codes face several
practical challenges if they are to manage decoder design complexity while at the same time
maintaining their capacity achieving properties [5]. Low-complexity Successive Cancellation
(SC) decoder can only achieve capacity on Polar codes that have been constructed a priori with
knowledge of the communication channel [6], which is unfortunately impractical in a wireless
network context where user mobility causes wireless channels to be largely unpredictable. The
Successive Cancellation List (SCL) [7] decoder can approach Shannon capacity, but at the price
of high complexity and high latency, thus compromising Polar codes’ advantage over LDPC
codes in this regard. Furthermore, SC/SCL algorithms are sequential in nature, which means
their decoding latency grows at least linearly with code block length, leading to low throughput
in the decoding process [5], [8].

Consequently, Polar Code use in 5G New Radio [9] is currently limited to control channels with
short block lengths, but Polar codes’ solid theoretical foundation, simple encoder implementation,
and adjustable code rate from zero to one would make them viable candidates for high speed data
channels such as for 5G enhanced Mobile Broad-Band (eMBB), and for 5G ultra-reliable, low-la-
tency channels (URLLC), if the latency of the decoder could be minimized, while simultaneously
maintaining a low bit error rate and near-capacity-limit rate performance. Overcoming processing
throughput and latency limitations would also enable Polar codes’ adoption in transformative
5G Massive Machine Type Communications (MMTC) technologies such as NB-IoT and LTE-
M, which aim to scale cellular network coverage densities to millions of devices per square
kilometer, and hence put them on the 6G roadmap with more certainty [10] .

It is with this vision in mind that this paper investigates a radically different processing
architecture for a Polar code decoder, one based on quantum annealing, to see if this emerging
technology can potentially speed up the decoding of Polar codes using the fundamental, quantum
mechanical properties of superposition, entanglement, and tunneling. This would open up new
possibilities in the design of the Polar code decoder. In our envisioned scenario, shown in Fig. 1,
quantum processing units (QPUs) are co-located with CMOS processing units in a Centralized-
RAN (C-RAN) data center, where QPUs are used for heavyweight computational tasks in the
cellular baseband unit such as decoding and demodulation, and CMOS processing units undertake

lightweight computational tasks such as handling the network’s control plane [11].

Base Stations
Uplink streams HyPD/QPD QlﬂAP

« »))//L lat links re--nnn- Polar <\
/é ow fatoncy ks Decoder Ve

QPD-HW

/ LDPC
\ Decoder /

II_I l_ll e : ’ as ::
/ CMOS QPUs | ‘---- MIMO
Detector

@)
/é Centralized-RAN BBU ! Other

Problems

Figure 1: An envisioned HyPD/QPD deployment scenario in a Centralized RAN (C-RAN)

context, where a QA server augments a C-RAN baseband unit (BBU).

This paper presents the Hybrid Polar Decoder (HyPD), a new classical-quantum hybrid Polar
decoder design that considers error correction decoding from the fresh perspective of Quantum
Annealing (QA). HyPD works by partitioning a long mother Polar code’s binary tree into a
number of shorter sub-blocks, where each sub-block is a perfect subtree with same leaf nodes
as that of the mother Polar code (see Fig. 5). We structure HyPD’s operation into classical and
quantum processing modules. Our classical module considers CMOS hardware for the Polar
decoder’s binary tree traversal, and it operates between the mother Polar code’s root node and
the root nodes of the partitioned sub-blocks. Our quantum module implements a Quantum Polar
Decoder (QPD) on a QA device to solve these partitioned sub-blocks, in order to decode the
transmitted bits. HyPD’s classical and quantum modules exchange bit-likelihood and bit-decision
information, respectively, back and forth until all bits are decoded.

Our quantum module’s Quantum Polar Decoder (QPD) is a new Maximum-Likelihood Polar
decoder design that efficiently formulates a one-to-one mapping between the Polar code’s binary
tree-structured encoder and a quadratic polynomial form that a QA can solve at the receiver, in
order to decode the transmitted bits. This polynomial is a linear combination of multiple cost
penalty functions we have created, which we refer to as Node, Frozen, and Receiver constraints.
A linear combination is chosen to ensure that the polynomial is quadratic and amenable to QA
devices. The Node and Frozen constraints work by raising a positive cost penalty to candidate
bit strings that do not agree with the Polar encoding conditions, thus ensuring that QPD outputs

only valid bit strings. The Receiver constraints add a further cost penalty to all the valid bit

strings whose magnitude depends on the proximity of a candidate bit string to the received soft
information, thus allowing QPD to select the most likely transmitted bit string. We map these
cost penalty functions directly on to the physical grid of qubits present in the QA hardware, via
QPD-MAP, our customized problem mapping design tailored for QPD, taking into account the
real-world physical qubit interconnections. QPD-MAP is flexible to code rate, block length, and
embodies quantum annealing correction (QAC) to correct the QA computational errors introduced
into the problem at hand, improving the solution quality. The QA returns the bit string with
minimal cost penalty as its decoded solution. HyPD gathers all the bit strings (corresponding to
sub-blocks) returned by QPD and concatenates them, to output the decoded user message.

We have experimentally evaluated HyPD on a state-of-the-art QA device with 5,627 qubits:
Advantage_system4.1 [12], for CRC assisted Polar codes of block length 1,024 bits, in Rayleigh
fading wireless channels, at low signal-to-noise ratio (SNR) regimes of practical interest. Our
evaluations consider BPSK modulation employed in 5G-NR control channels, and 200 message
data bits, which is the typical maximum payload size of uplink control information (UCI) in
LTE and 5G-NR eMBB scenarios [13]. Our results show that HyPD operating at a 300 us
QA compute time outperforms leading edge SCL decoders operating at list size of eight by
half an order of bit error rate magnitude, at 1 dB SNR. Further evaluations show that HyPD
achieves a 1500-bytes frame delivery rate of 99.1% at 1 dB SNR, whereas SCL achieves only
95.5% frame delivery rate at the same SNR. We also analyze QA compute time at various code
rates and with increased qubit numbers (§VI-C2). The lessons we have learned in the design and
implementation of QPD on QAs point to alternate QA hardware structures that if realized, would
be preferable to the qubit connectivity currently available. We present this ideal QA hardware

structure tailored to Polar Codes, QPD-HW, in §VII, demonstrating its features and flexibility.

II. PRIMER: QUANTUM ARCHITECTURES

While classical computation uses bits to process information, quantum computation uses
qubits, physical devices that exhibit quantum mechanical properties such as superposition and
entanglement. The current and near-term quantum computers can be classified into digital gate-
model or analog annealing-model architectures. Gate-model devices are fully general purpose
computers that perform computation using programmable logic (i.e.,, gates) acting on qubits,
whereas annealing-model devices are specialized computers that solve combinatorial optimiza-

tion problems in their equivalent Ising specifications. While gate-model quantum devices of

\ 2 i S
N\ \ é 2% QE 7
§ & LA ‘F$ j
~L i
A \, L@ % k 3

(a) Chimera (b) Pegasus (c) Zephyr

Figure 2: The figure shows unit cell interconnection structures of (a) Chimera (recent) (b)
Pegasus (state-of-the-art) and (c¢) Zephyr (next-generation) QA hardware topologies. Nodes in

the figure are qubits and edges are couplers.

size relevant to practical applications are not yet generally available, today’s annealing-model
devices with about 5,000 qubits enable us to commence empirical studies at realistic scales [11].
Therefore, we conduct this study from the perspective of annealing-model devices.

Quantum Annealing (QA) aims to find the lowest energy spin configuration (i.e., solution) of

an Ising model described by the time dependent energy functional (Hamiltonian):
H(s)=—I(s)H;+ L(s)Hp (1)

where H; is the initial Hamiltonian, Hp is the (input) problem Hamiltonian, s (€ [0, 1]) is a
non-decreasing function of time called an annealing schedule, I'(s) and L(s) are energy scaling
functions of the transverse and longitudinal fields in the annealer respectively. Essentially, T'(s)
guides the probability of tunneling during the annealing process, and L(s) guides the probability
of finding the ground state of the input problem Hamiltonian Hp [12]. The QA hardware is a
network of locally interacting radio-frequency superconducting qubits, organized in groups of
unit cells. Figure 2 shows the unit cell structures of QA devices [14]. The nodes and edges in
the figure are qubits and couplers respectively.

a) Annealing Process: Starting with a high transverse field (i.e., I'(0) >> L(0) = 0), the
QA processor initializes the qubits in a pre-known ground state of the initial Hamiltonian Hj,
then gradually interpolates this Hamiltonian over time (i.e., decreasing I'(s) and increasing L(s))
by adiabatically introducing quantum fluctuations in a low-temperature environment, until the

transverse field diminishes (i.e., L(1) > I'(1) ~ 0). The Adiabatic Theorem then ensures that

by interpolating the Hamiltonian slowly enough, the system remains in the ground state of the
interpolating Hamiltonian [15], [16]. Thus during the annealing process, the system ideally stays
in a low energy state and probabilistically reaches the global minima of the problem Hamiltonian
Hp at its conclusion. The process of optimizing a problem in the QA is called annealing, and
the time taken for this optimization is called annealing time [12].

b) Hamiltonian Forms: The initial Hamiltonian takes the form H; =) . oF, where o7 is the
Pauli-X spin operator acting on the i qubit. Thus, the initial state of the system is the ground
state of this H;, where each qubit is in an equal superposition state \% (|=1) + [+1)). The
problem Hamiltonian is Hp =), hyo7 + > _._. J;;o

707, where o7 is the Pauli-Z spin operator

i<j
acting on the " qubit, h; and J;; are the optimization problem inputs that the user supplies.
c) Input Problem Forms: QAs optimize Ising model problems, whose problem format

matches the above problem Hamiltonian: £ =), h;s; + > _._. Ji;sis;, where E is the energy,

i<j
s; € {—1,+1} is the i*" solution variable, h; is called bias of s;, and J;; is called coupler strength
between s; and s;. Biases and coupler strengths are programmed onto qubits and couplers
respectively using an on-chip control circuitry [12]. Ising format is equivalent to quadratic
unconstrained binary optimization (QUBO) format, and it is obtained via the transformation
s; — 2¢; — 1, resulting in the energy function: Eg = Zz fiqi + ZZ <j 9i7 %95 where FEg
is the QUBO form energy, ¢; € {0,1} is the i*" solution variable, f; and g;; are QUBO form
linear and quadratic coefficients respectively. The QA probabilistically returns a solution variable
configuration with minimum energy E at its output.

d) Embedding: To solve an Ising problem on a QA device, the problem must be mapped
on to the physical QA hardware. This mapping process is called embedding, and it typically

requires additional qubits. To understand embedding, let us consider an example Ising problem:
E = Ji2s182 + J138183 + J235283 2)

The connectivity structure of solution variables in Eq. 2 is a complete graph on three nodes,
which does not exist in the Chimera graph (Fig. 2(a)). Thus, to implement Eq. 2 on Chimera-
based hardware, the standard approach is to map one of the solution variables (e.g., s3) onto
two physical qubits (e.g., s3, and sgp), such that the resulting connectivity (e.g., square graph)
can be realized on the hardware. To ensure proper embedding, ss, and sz, must agree with each

other, and this is achieved by chaining them with a strong negative coupler strength [17].

Sub-block 1

N
1/

Frozen) —» ug —— D X0
Frozen () == u; — P 7 X1
Frozen () — up ——p : P X
Data 1/1’13q u3 E:._::::._:.'.—:._:._::::.—: <> X3
Frozen) — ug =9 7 X4
Data my — us — P Xs
Data m; —> ug ——p : Xg
Data mp— u7 ———=———— X7
Sub-block 2

Figure 3: The encoding process of an example (N = 8) Polar code. m; is a message bit, u; is

an encoder input bit, and z; is an encoded bit. & represents the XOR operation.

QA processors exploit quantum properties such as superposition, entanglement, and tunneling
during the annealing process, which under ideal conditions can speed up the optimization task
[18], [19]. Realization of this speedup may be challenging today due to issues surrounding current
QA hardware. In Section IV, we describe the unique challenges in applying QA computation

for Polar Code decoding and demonstrate how we address these challenges in this work.

III. PRIMER: POLAR CODES

A binary (N = 2%, K) Polar code is described functionally by a generator matrix Gy = G,
where ®d operation represents d-fold Kronecker product, and G, = H ?] is called the polar-
ization kernel. The channel polarization phenomenon in Polar codes is a transformation of N
independent bits to /N mutually interlinked bit-channels, where each bit-channel has a probability
of being decoded correctly (i.e., reliability). The sequence of these bit-channels in sorted order
of their reliabilities is called the reliability sequence. Let N be the block length adapted for
transmitting a message m = [mg, my, ..., mg_1| of length K < N bits. The coding rate is then
K/N. Using the reliability sequence, construct the encoder input vector u = [ug, Uy, ..., ux_1] by
assigning the message bits to & most reliable bit-channels, and set the remaining N — K bits
to a zero value. The u;s that are set to zero value are called frozen bits. The encoded codeword
is then x = uGy. Fig. 3 depicts the encoder operation for an example eight-bit Polar code.

To visualize QPD’s decoding process (described later in §1V-B), we here demonstrate the
encoder operation using a binary tree representation. Fig. 4 depicts this for Sub-block 1 of

Fig. 3 with input vector u = [ug, uy, us, ug] of length N, = 4 bits. Construct a perfect binary tree

[up @ u; @ uy; @ uz, u; @ uz, uy @ us, uz]

Figure 4: Encoder binary tree for Sub-block 1 of Fig. 3. T}, ; is a node at height & and index i.

with Ny, leaf nodes as shown in Fig. 4, and initialize each leaf node 7j; of the tree with bit u;.
Traversing the tree from height 4 = 0 (leaf) to h = log)™ (root), each node Ty Vh € [1, logl'*]
takes an input [uy|ur| and generates an output [u; G ug|ug|, where uy, and ug are the bit vectors
of the left and right children of 7}, ; respectively, and uj, @ ug is a bit-wise XOR operation. The
output vector obtained at the root is then the encoded codeword. In the example in Fig. 4, the

encoded codeword is X = [ug & uy B ug ® uz, uy B usz, ug G ug, usz).

IV. DESIGN

In this section, we first describe the proposed HyPD decoder design (§IV-A), and then present
QPD’s reduction of Polar decoding into a QUBO form (§1V-B). Next we present our customized
problem mapping scheme, QPD-MAP, in §IV-C, alongside practical QA considerations in §IV-D.

HyPD, the hybrid classical-quantum decoder, is a sub-optimal decoder, whereas QPD, the
pure quantum decoder, is the optimal Maximum-Likelihood decoder. The need for HyPD arises
because of limited qubits available in today’s QAs and the requirement to solve long 1,024 bits

5G Polar codes. Long codes can be entirely decoded via QPD, with sufficient qubits (§VII).

A. HyPD: Hybrid Classical-Quantum Polar Decoder

Let u = [ug, uy, ..., uy_1] be the input vector, and X = [z¢, x1, ..., y_1] be the corresponding
Polar-encoded codeword. Let y = [yo, y1, ..., yn—1] be the respective received soft information.
HyPD works by partitioning a long mother Polar code of block length N bits into Ng,, number
of shorter sub-blocks, where each sub-block is a largest perfect subtree with /Ny, leaf nodes of the
mother Polar code tree (N = Ny, Np). Fig. 5 depicts this partitioning scheme for an example 16-

bit Polar code with Ny, = Ny = 4. We structure HyPD into classical and quantum processing

Received LLRs (T4,)

J
Quantum module Classical module

(QPD)

Figure 5: HyPD decoding of an example Polar code. The classical module traverses the tree,
and the quantum module solves sub-blocks on QA. The downward and upward arrows show

LLRs’ and estimated bits’ propagation, respectively. A; is the QA solution for the i** sub-block.

modules as in Fig. 5. The classical module operates between the root node of the mother Polar

code and the root nodes of sub-blocks, and the quantum module operates on sub-blocks.
HyPD begins at the root node by computing the log-likelihood ratios (LLRs) of root node bits

from the received soft data (Fig. 5). Each node in our classical module sends to its left and right

children the LLRs of their corresponding bits, by computing F' and G functions respectively [20]:

F(s,t) = 2tanh™'(tanh L,/2 - tanh L,/2) 3)
Gls,t,5®1) = Ly(~1)"* + L, @)

where L is the LLR of bit s, F'(s,t) is the LLR of bit s & t, and G(s,t,s@t) is the
conditional LLLR of bit ¢ with respect to previously decoded bit s@ 1. For a node at height
h, the choices of s € {s1,S2,...,Son—1} and t € {t1,1s,...,ton-1} are the pairs (s;,;)Vi, where
(81, 82, ...S9n—1, t1, Lo, ..., ton—1] is the bit vector of the node. To understand the meaning of the F’
and G functions, let us observe node 75 of Fig. 4, with height » = 2 and bit vector [s, sq, 1, t2]
= [ug B uy B ug B us, uy S us, us B ug, ug). The bits corresponding to 75 o’s left and right children
are [s1Dt1, soPts| and [t1, o] respectively (cf. Fig. 4). By calculating the LLRs of [s1®t1, s2Dts],
the [function captures the LLRs of a node’s left child bits. The intuition behind the GG function

is that if @ is estimated to be zero (see Eq. 4), then s = ¢ and the conditional LLR of ¢

becomes L+ L, otherwise s # t and the conditional LLR of ¢ becomes L; — L, ¥(s;, ;) pairs.
Thus the G function captures the LLRs of a node’s right child bits [20].

Similar to SC/SCL decoder operation, our classical module traverses the tree depth-first,
with priority given to the left branches, propagating the corresponding LLRs downward [7].
In this process, we obtain the LLRs of the sub-blocks’ root node bits, which are then our
quantum module’s input. Using this LLR input, we solve each sub-block on a QA device,
and the solution returned by QA is fed back to the classical module. The solution feedback
is necessary for the classical module to compute GG functions (i.e., s 1 values in Eq. 4 are
obtained using QA). Multiple solutions can be fed back to explore more decoding paths, and we
refer the number of solutions fed back to Ngp. These bit-likelihood and bit-decision information
exchanges between our classical and quantum modules, respectively, comprises our proposed
HyPD decoder operation. The decoder terminates when all the bits are decoded (i.e., all sub-
blocks are solved). We next demonstrate HyPD more fully with a running example.

Consider a 16-bit Polar code as in Fig. 5, and input the LLRs of received bits at T}, the
root node. Ty sends to 75y, and T3, sends to 750, the LLRs of their corresponding bits, by
computing F' functions (left child). Sub-block 1 is then solved on the QA, and the solution
obtained, A, is fed back to 75 (. Using this solution, 73 sends to 75 its corresponding LLRs,
by computing the G function (right child). Sub-block 2 is then solved on the QA, and the solution
obtained, A,, is fed back to T3(. Using A; and A,, T3 estimates its bits (similar to encoding
§III) and sends them back to 7} o. A similar tree traversal process now happens at the right-hand
branch of T}y, where A3 and A, are the solutions obtained for Sub-blocks 3 and 4 respectively
(see Fig. 5). HyPD terminates when all the sub-blocks are solved. The decoded answer is the
bit decisions corresponding to leaf nodes wherein user data is located.

Design Analysis. In order to demonstrate the advantage of HyPD over SC/SCL decoders, we
now discuss their decoding algorithms, referring to Fig. 6. In SC and SCL decoding, the tree
traversal process described in Fig. 5 continues until the leaf nodes (i.e., it is entirely classical),
and at each leaf node we have one bit which can take two possible values (0 or 1). SC makes
a hard decision on each leaf node bit (0 if LLR is positive-valued, 1 otherwise) and continues
the tree traversal. Therefore, SC performs search over only one bit at a time and maintains only
one decoding path (c¢f. Fig. 6). Unlike SC, SCL continues the tree traversal with both 0 and
1 decisions for each non-frozen leaf node bit (0 decision is made for frozen bits), where each

decision leads to a distinct decoding path. The number of decoding paths therefore increases

SC SCL

Ig Ly| —
1 bit—— 1 bit|* - *|1 bit——1 bit rlg)itSSI_l bit|- = +|1 bit——1 bit

N , ' . r
l 1 decoding path I l Ly decoding paths I
T
N sub-blocks N + 1-[Ig Lg|sub-blocks
Bit Index - Bit Index "
(Broposed:) HyPD ML
N, — N N, — N
,L — _L SICIC _L — ,L Full search over all N bits
bits —\Ablts bits —1 bits
l Ngr solutions fed back I I I I
Neub suIb-blocks Entire Code Block
Bit Index - Bit Index -

Figure 6: Algorithmic structures of various Polar decoders. Each square/rectangle block shows
the number of bits over which a collective search is performed, and each edge connecting these

blocks is a decoding path. Collective search indicates verifying all possible configurations.

exponentially with the number of non-frozen leaf nodes. In order to reduce SCL’s computational
complexity, a threshold is placed on the number of decoding paths, called the list size L,. When
the number of paths grows beyond L, only the best L, paths continue (see Ref. [7]). Therefore,
SCL performs a collective search over the first [log,Ls| bits (i.e., until Ly decoding paths
emerge), followed by a search over only one bit at a time, as shown in Fig. 6. Unlike SC and
SCL, HyPD performs a collective search over all /N, bits present in each sub-block (§IV-A)—via
QA. In HyPD, each solution fed back from the quantum module to the classical module leads to
a distinct decoding path, as shown in Fig. 6. The Maximum Likelihood (ML) decoder performs
a collective search over the entire code block, thus achieving the optimal performance.
Complexity Analysis. The complexity of SC decoder is O(/NlogN), and that of SCL decoder
is O(LsNlogN). If Ly > 1, SCL decoder outperforms SC decoder, and if L, = 1, SC and SCL
are the same decoder. The complexity of ML decoder is O(2V%NlogN), where R is coding rate.
If L, < 2VE ML decoder outperforms SCL decoder, and if L, = 2V, SCL and ML are the same
decoder. The complexity of HyPD can be derived by analyzing its classical and quantum modules
separately. HyPD’s classical module’s complexity is O(NgpNlogNg,,). This is because our
classical module processes Ngpr decoding paths, and it operates on a subtree with N, number of
leaf nodes, which are essentially the root nodes of sub-blocks (see Fig. 5). Our quantum module’s

complexity is O(Ngp Ny, 2 NVe(1+10eN)) - \where the factor Ngp Ny, indicates the number of

(U
10 —— SNR=-1dB

—— SNR=0dB

1—MI(U;Ly)

10—1 i

0 200 400 600 800 1000
Bit Index
Figure 7: The behavior of mutual information between user data and their output LLR values as

the HyPD decoding progresses. Mutual information is nearly zero at the start of decoding and

it reaches > 0.9 at the end of decoding for all block lengths, demonstrating a high convergence.

sub-blocks processed via QA, and the exponent Ny (1 + log/Ny) is the solution variable count
for solving an Np-bits sub-block (see §IV-B, §VII). We have conservatively used the function
f(+) to capture the speedup of QA over classical methods, which is still yet to be precisely
quantified (see [18], [19]). If Ny = 1, HyPD and SCL (Ls = Ngp) are the same decoder, and if
Ny = N, HyPD and ML are the same decoder. For any Ny, if Ngp < Ly = 2Nt SCL decoder
outperforms HyPD. For any N, > 1, if Ngr > L, HyPD outperforms SCL decoder (see Fig. 6).

Convergence Analysis. As noted above, HyPD converges when all the sub-blocks are solved,
which means that its convergence speed is proportional to the sub-block count. To understand
convergence, we next observe how the mutual information (MI) between equiprobable user data

U and their output LLRs Ly changes with the decoding progress. This is computed as [21]:

MI(U;LU)zl—%;Hb(H%) 5)
where H,, is the binary entropy function and L; is the LLR value of i'* user data bit at the decoder
output. In Fig. 7, the decoding starts at bit index 0 and ends at bit index N, and M I(U; Ly) is
computed after decoding every eight bits (i.e., N, = 8 sub-blocks), resulting in step functions
of width eight bits. At the start of decoding, MI is nearly zero as the received data is highly
corrupted. As the decoding progresses, MI increases, reaching 0.934, 0.956, 0.958 for block
lengths 256, 512, 1024 bits respectively (SNR 1 dB) at the end of decoding, demonstrating a
high convergence. We also note that the convergence speed is higher for shorter block lengths.

To increase the convergence speed of long codes, larger sub-blocks must be solved.

B. OPD: Quantum Polar Decoder

We now present our QPD sub-module. Let q, = [0, 91, ... » ¢n,—1] be the solution variables
used to extract a sub-block’s input bits ug,, = [ug, Ui, ... , un,—1] respectively. Let F be the
set of frozen bits, 7 be the set of sub-block’s binary tree nodes, and a; be an ancillary variable
used for calculation purposes. Any b; is a generic binary variable (i.e., solution or ancillary).

1) QUBO Formulation: QPD’s objective function comprises multiple terms, classified into
three types: Node, Frozen, and Receiver constraints. The Node constraints (C'y) ensures that a
candidate decoding agree with the Polar encoding conditions. If a candidate decoding violates
these constraints, a cost penalty is raised for that candidate (i.e., the candidate is raised in
energy). The Frozen constraints (C'r) ensures all a candidate decoding agree with the frozen bit
conditions (i.e., qubits that represent frozen bits must take a zero value). If a candidate decoding
disagrees, a cost penalty is raised for that candidate. The Receiver constraints (C'r) introduce a
further cost penalty to all valid candidates, whose magnitude depends on the proximity of an
individual candidate to the received soft information. They thus encourage the decoder to find
the decoding that most closely matches the received information. The entire QUBO objective

function is a weighted linear combination of these cost functions:

argmqin{WNZ Cn(T) +WFZ Cr(a) +WRZCR(bj)}~ (6)
vTET Yui €F \Z

A linear combination ensures that Eq. 6 is a quadratic polynomial. The weights Wy, Wg, Wg
prioritize their respective constraints. We determine the best choices of these weights in §IV-D.
2) Node Constraints: From Section III, we observe that the Polar encoder performs only
XOR operations. Let us define £ as the set of all XOR operations the encoder performs at node

T of the binary tree. For each 7' € T (defined earlier in §IV-B), we define a Node constraint:
Cy(T)= > (bi+bj—ar—2ap)”, (7)

VXOR(b;,b;)€ET

where 0;, b; represent the variables whose equivalent bits are XORed at node 7 in the encoding
process, and ay, aj,1 are ancillary variables. The value of k € {2p|p € W} is chosen such that
each ancillary variable is only introduced once. We observe that Cy(7') is in sum-of-squares
form, thus at the minimum energy (i.e., Cy(7") = 0), the sum b; + b; must be equal to the sum
ar+2ay1. Since all the variables are binary, this implies that a;, = b; ®b; in the minimum energy

configuration. Upon expansion of Eq. 7, C'y introduces both linear and quadratic terms into the

[0 D@91 D@3, 91 D3, 92 D g3, q3] EEC = [a4, a¢, a3, q3]

[a1] [92]

Figure 8: QPD decoding process of Sub-block 1. (Left) Direct representation of Fig. 4 using

solution variables. (Right) QPD’s equivalent representation of Left using ancillary variables.

objective QUBO (Eq. 6), with quadratic coefficient values in {—4, —2,+2,+4} only. We next
demonstrate the working process of Node constraints more fully with a running example.

Let us continue with Sub-block 1 whose encoder tree is shown in Fig. 4 with input vector ug,y,
= [ug, u1, us, us). Let q, = [go, ¢1, G2, g3] be the solution variables used at the decoder to extract
the bits [ug, u1, us, us] respectively. Fig. 8 (Left) shows the direct representation of Fig. 4 using
respective variables at the decoder, and Fig. 8 (Right) shows QPD’s equivalent representation of
Fig. 8 (Left). In this example, 7 = {720,110, 11,1, To0, 70,1, To.2, To,3}. Similar to encoding, we
traverse the tree from leaf to root for constructing QPD’s Node constraints as follows.

At height = 0, we note that the nodes {70, 701,702,703} perform no computation, and so
the Node constraints of these nodes are zero (i.e., Cy(Tp,;) = 0 Vi). At height = 1, we have two
nodes {7} o, T 1} that perform one XOR operation each (see Fig. 8). In particular, 7} o computes
qo ® q1 and T ; computes g2 @ g3. Thus using Eq. 7, we construct two Node constraints as:
Cn(T1o) = (@o+q1 —ao—2a1)? and Cn(T1 1) = (g2 + g3 — as — 2a3)?. Here ag equals ¢y @ q;, and
ay equals g2 @ g3 in the minimum energy solution. At height = 2, the root node 75, performs
two XOR operations (see Fig. 8): qo @ ¢1 ® ¢2 @ ¢3, and ¢; P g3. We note that these computations
are equivalent to ap @ ae and ¢; @ g3 respectively. Hence, using Eq. 7 we construct the Node
constraint: Cy(T30) = (ag+as —aq—2as)? + (q1 + g3 — ag — 2a7)*. Here a4 equals ag@®ay, and ag
equals ¢; @ g3 in the minimum energy solution. The ancillary variables representing such XORs
are reflected in Fig. 8 (Right). The output vector obtained at the root node [ay4, ag, as, q3] 1S now
bit-wise equivalent to the corresponding encoded data [qo © ¢1 B q2 D g3, ¢1 D g3, q2 D q3, q3]. We

hence refer this output vector to the equivalent encoded codeword (EEC).

3) Frozen Constraints: From Section III, we note that frozen bits do not carry user information

and that they are always assigned zero value. Hence we define a Frozen constraint as:
Crlg:) =aq Yu € F 3

CF is minimum when the variables that represent frozen bits take a zero value (i.e, not one
value). C'r introduces only linear terms into the objective QUBO (Eq. 6).
4) Receiver Constraints: We next consider the EEC obtained from the Node constraints, and

compute its distance to the corresponding received data using a Receiver constraint as in [17]:
CR(bj) = (bj — Pr(bj = 1|y))2 \V/b] € EFEC (9)

where the probability Pr(b; = 1|y) can be computed for various modulations and channels,
using the LLR information the HyPD’s classical module supplies (§IV-A). For instance, for a
BPSK-modulated information (0 — +1,1 — —1) transmitted over a Rayleigh fading channel
with AWGN noise, this is computed as 1/(1 + e¥), where L is the LLR of the bit (say c;)
that represents b;. If the channel state information (CSI) is known at the receiver, at least
statistically where the first and second order moments of the channel are characterized, L is
computed as 2yuy,c;/(0? + o7), where (= ay/7/2) and o?(= a*(4 — 7)/2) are the mean
and variance of the Rayleigh distribution with scale parameter a, and o is the AWGN noise
variance [22]. If the CSI is unknown at the receiver, this probability is computed using L =
log(v(c;/V/25) [1(—c;//25)), where & = (1 + 202) and (z) = 1 + /mwexp(x?)erfc(—x)
[23]. We note that C'g is minimum for a b; € {0, 1} that has a greater probability of being the cor-
responding bit at the encoder. C'y introduces only linear terms into the objective QUBO (Eq. 6).

Summary. In the above sections (§IV-A, §IV-B), we have described HyPD and QPD. These de-
signs are purely algorithmic, and they can be implemented on hardware suitable for QUBO/Ising
optimization problems [24]. While in this work we investigate QA technology, we note that
implementing the same ideas using specialized classical hardware is also a promising possibil-
ity. The following sections (§IV-C, §IV-D) describe and address the unique challenges in the
application of QA for Polar Code decoding, which include problem formulation, embedding,

quantum annealing correction, and parameter tuning for real QA devices.

C. QPD-MAP: Problem Embedding

In this section, we first describe quantum annealing correction (QAC), and then explain

QPD-MAP, our customized problem mapping scheme tailored for QPD.

(a) Unprotected (b) NP-QAC (c) EP-QAC

Figure 9: The figure shows QAC schemes with Ngac = 3, where s;(q,) represent s;Vi, and
Spf1,2,3) are penalty qubits. Complete-QAC is EP-QAC with a majority vote decision (§IV-C1).

1) Quantum Annealing Correction: QAC is a strategy that aims to correct the QA computa-
tional errors introduced into the problem at hand, due to qubit decoherence, analog noise, among
others [12], and it provides error protection to the problem in two ways: First, by increasing
the energy scale of the problem, and second, by a majority vote decision for solution variables.
QAC methods achieve increased energy scale by solving multiple copies of the same problem
while correlating the qubits that represent the same solution variables (across copies). This can

be expressed as the problem Hamiltonian transformation [25]:

Ngac

HP - Z (HP)z + ﬂHpenalty (10)

i=1
where Hp is the problem Hamiltonian resulted with QAC, Ngac is the number of problem
copies, (Hp); is the problem Hamiltonian of the ith copy, Hpenaity 1 the Hamiltonian resulted
from correlating the qubits representing the same solution variable, and [is its energy scaling
factor. If 5§ = 0, then it is called No-Penalty QAC (NP-QAC), and if 5 < 0, then it is called
Encoded-Penalty QAC (EP-QAC). EP-QAC with a majority vote decision for solution variables
is called Complete-QAC [25]. To understand QAC, let us consider an example Ising problem:

E = J125152 + Ja35253 + J135153 (11)

Figure 9 depicts various QAC graphs for this problem, where nodes represent qubits and edges
represent quadratic coupler terms. In particular, Fig. 9(a) shows the direct, QAC-unprotected,
connectivity of Eq. 11, and Fig. 9(b) shows its NP-QAC connectivity with Ngsc = 3 (i.e.,
three copies of the same problem), where s;(q5.1 represent s; Vi. In comparison to QAC-

unprotected, NP-QAC provides better quality solutions due to increased problem energy scale

Solution Variable ENX
Gl
) N Z
,,ff"? 2\ N

q1

aG

(a) Four-clique mapping (b) N;, = 4 bits (¢c) N; = 8 bits (d) N;, = 16 bits

Figure 10: QPD-MAP embedding on Pegasus QA hardware, for various sub-block sizes (/Vy).

Nodes and edges in the figure are physical qubits and physical couplers, respectively.

resulting from multiple copies of the same problem. We next see in Fig. 9(c) the EP-QAC con-
nectivity of Eq. 11 with Ngac = 3, where the qubits representing the same variable (s14, 515, S1c)
are chained to a penalty qubit (sp;) with a strong negative coupler strength (). This chaining
in EP-QAC forces the qubits representing the same variable to agree in the solution the machine
outputs, therefore improving solution quality further in comparison to NP-QAC. Complete-QAC
is EP-QAC with a majority vote decision for solution variables, thus it helps recover any errors
across problem copies. QAC graphs also need minor embedding for running the problem.

2) QPD-MAP: The above sections have described minor embedding and QAC in general
terms (§II-0d, §IV-C1). Here we describe how we bring together these strategies for mapping
QPD’s design onto QA hardware. QPD-MAP is our customized problem mapping scheme
tailored for QPD, and it embodies minor embedding and Complete-QAC with Ngac = 8. Let us
recall from §IV-B that only Node constraints introduce quadratic terms into the QPD’s QUBO
design, and so they require embedding. Each Node constraint is a sum of guadratic forms (see
Eq. 7), where each quadratic form consists of four solution variables, and so the connectivity of
each such quadratic form is essentially a four-clique.

Construction. QPD-MAP realizes each such four-clique connectivity on the QA hardware
using four unit cells as shown in Fig. 10(a), by mapping a single node of this four-clique (i.e., a
solution variable) on to eight physical qubits present in a unit cell, and a single edge of this four-
clique (i.e., a quadratic term) on to eight physical couplers connecting two unit cells, therefore

realizing eight copies of the problem. Figure 10(a) depicts this construction on state-of-the-art

Pegasus QA hardware, showing eight qubits representing a solution variable and eight couplers
representing a quadratic term. In order to make all the qubits within a unit cell behave like a
single solution variable, QPD-MAP pairwise chains these qubits with a strong negative coupler
strength, thus forcing them to agree. The vertically aligned unit cells (see Fig. 10(a)) have only
four available couplers connecting them, and so we double the strength of each such coupler,
effectively realizing an eight-coupler connectivity (see 2x-Couplers in Fig. 10(a)). QPD-MAP
follows a majority vote decision for solution variables. Therefore, this construction of QPD-MAP
embodies minor embedding and Complete-QAC with Ngac = 8.

Placement. QPD-MAP next places the four-cliques that share common solution variables close
to each other, then makes the qubits representing the same solution variable agree. To understand
this, let us visualize a binary tree with N, leaf nodes as a root node connected to two shorter
binary trees with Ny /2 leaf nodes each. QPD-MAP follows this recursive property of binary
trees: We first place the four-cliques corresponding to the root node along the top-left bottom-
right diagonal of the Pegasus graph, and the four-cliques corresponding to its children trees
symmetrically on either side of this diagonal as shown in Figs. 10(c) and 10(d). Figures 10(b),
10(c), and 10(d) depict QPD-MAP designs for sub-blocks with size Ny, of four bits, eight bits, and
16 bits respectively. We observe that Fig. 10(b)’s qubit connectivity is same as that of Fig. 10(c)’s
left and right children trees, and Fig. 10(c)’s qubit connectivity is same as that of Fig. 10(d)’s
left and right children trees, therefore admitting the aforementioned recursive property of binary
trees, making QPD-MAP flexible to varying sub-block sizes. We next describe Fig. 10(b).

Figure 10(b) shows the QPD-MAP design for Sub-block 1, whose Node constraints are
(8IV-B2): Cn(Ty,;) = OVi,Cn(Tho) = (9o + @1 — ap — 2a1)*,Cn(T11) = (g2 + ¢35 — a2 —
2a3)%, On(Tao) = (ap + ag — ag — 2a5)* + (¢1 + g3 — ag — 2a7)?, where Ty is the root node,
{T0,T06,0,T0.1} constitutes its left child tree, and {77 1,752,753} constitutes its right child tree
(see Fig. 8). We see in Fig. 10(b) the two four-cliques of the root node (i.e., Cny(1%0)) placed
along the top-left bottom-right diagonal, with its left child (i.e., Civ(T7)) and right child (i.e.,
Cn(T1 1)) four-clique connectivities placed symmetrically on either side of this diagonal, where
each four-clique follows the aforementioned construction scheme (Fig. 10(a)).

Let us note that upon expansion of C'y, the QUBO quadratic coefficients of terms involving
two ancillary qubits (e.g., aga;) take a value of 44, which in Ising form take a +1 value, which
is the maximum supported value for a quadratic coefficient (see §IV-D). Therefore, such coupler

strengths cannot be doubled. QPD-MAP avoids placing odd-indexed ancillary variables (e.g.,

ai,as,as,ar) in unit cells that require 2x-Couplers, therefore ensuring that all the coefficients
fall into the supported range of QA. For instance, note that a,, as, a5, a7 do not appear in unit

cells that require 2x-Couplers (cf. Figs. 10(a) and 10(b)).

D. Practical Annealer Considerations

We now determine the best choices for QPD’s weights W, W, W§ (Eq. 6), and then fine-tune
the coefficient values for achieving a greater probability of decoding correctly.
To optimize a QUBO problem on a QA device, it must be specified as an equivalent Ising

problem (§II). This conversion is characterized by the coefficient transformations [26]:

fi 9ij G9ij
hz:g— I]’ ng:zj (12)

where h; and J;; are Ising coefficients corresponding to linear (f;) and quadratic (g;;) QUBO
coefficients respectively. Current QAs support values for h; € [—4, +4] and J;; € [-2.0,+1.0].
a) Choice of the weight Wy: As noted above in §IV-B2, all the QPD’s quadratic QUBO
coefficients (g;;) take values in {—4, —2, 42, +4} only. This implies that their respective Ising
coefficients (J;;) take values in {—1,—0.5,40.5,+1} (from Eq. 12). For any Wy > 1.0 (in
Eq. 6), the quadratic Ising coefficients .J;; fall outside their supported values (i.e., > +1), and
hence must be normalized back again to bring coefficients into the supported range. For any
W < 1.0, the priority of the Node constraints is undermined. Hence, we consider Wy = 1.0.
b) Choice of the weight Wr: Looking at Eqs. 6 and 8, we note that Wy is a linear
coefficient, and that a high W strongly enforces the qubits representing frozen bits to take a
zero value. Thus, we set Wy to the maximum supported linear coefficient value of +4 for every
physical qubit that represents a frozen bit.
c) Choice of the weight Wr: The best choice of W5 depends on sub-block’s size, coding
rate, and channel SNR. We first demonstrate these dependencies, and then present our choice.
From §IV-B2, we see that the number of Node constraints QPD introduced into the QUBO
objective function is proportional to the sub-block’s size. Higher sub-block’s size implies more
nodes in the sub-block’s binary tree, hence more Node constraints. Thus longer sub-blocks tend
to agree on more Node constraints for error correction, implying that they balance greater Wx.
Code rate determines the number of frozen bits. When the number of frozen bits is high,
more Node constraints tend to work correctly. For instance, let us consider the Node constraint:

Cn = (qo+q1 — ap — 2ay)?. If gy and ¢, represent frozen bits (i.e., gy, ¢ = 0), then it is certain

20

that ag (= qo @ q1) takes the correct zero value in the minimum energy solution. If ¢, and ¢;
do not represent frozen bits, then ag depends on the received information, and thus may or may
not take a correct zero or one value. Hence, lower coding rates cause a greater number of Node
constraints to work properly, and thus allow greater values for Wpg.

A higher channel SNR implies that the received information has a lower probability of
experiencing errors. Thus, a higher SNR allows greater values for 5. Empirical evaluations
are performed to select the best Wg value: At Wi = Rgup, 1 — Rsub, 2 — Rsub, 3 — Rsub, 4 — Rsuns
the average correct answer probability of HyPD is 0.34, 0.42, 0.81, 0.56, 0.32 respectively.
Therefore, we choose Wi = 2 — Rgyp, (see §V for implementation details).

d) Choice of embedding coupler strength: The purpose of embedding is to make qubits
agree with each other, and so we must prioritize embedding couplers. Therefore, we assign the
minimum supported value for embedding coupler strengths (Jp = 8 = —2.0).

e) Fine-tuning the physical Ising coefficients: We select Wy, Wr, Wg, and Jp as afore-
mentioned and obtain the physical Ising problem. Here we describe our approach in tailoring
the physical Ising coefficients closely into the QA’s supported bit precision of 4-5 bits [27].

If a solution variable with linear Ising coefficient h; is mapped onto A number of physical
qubits, then the QA default auto-scaling methods assign h;/A value to each qubit (i.e., equal
sharing) [28]. This auto-scaling approach therefore reduces the coefficient precision greatly when
A is large. Thus, we opt for an unequal sharing of h;, in steps of 1.0 value. For example, if
a solution variable has a linear coefficient of 2.0, then eight copies of this variable requires
an effective coefficient value of 16.0 (Ngac = 8). If this solution variable is mapped on to 24
physical qubits in the embedding process, then 16 of the physical qubits take 1.0 coefficient value
and the rest eight physical qubits take a zero coefficient value. Further, the linear coefficients
are programmed only on to the physical qubits involved in the four-cliques (i.e., not on to the
qubits involved in the minor embedding chains), avoiding any errors due to long range chains.
This uneven sharing ensures that the coefficient precision is much less disturbed than that of
auto-scaling methods. By design, QPD’s Ising quadratic coefficients fall into the supported range
and precision of QA. As noted above, they take values in {—2, —1, —0.5,+0.5, +1} only, where
—2 is the embedding coupler strength. These values are sufficiently separated in magnitude for

the QA to distinguish within the 4-5 bit precision.

21

V. IMPLEMENTATION

We implement HyPD’s classical module on a 2.3 GHz eight-core Intel CPU with 14 nm
CMOS process, and quantum module on 5,627-qubit Advantage_system4.1 QA. Our decoder
targets CRC-assisted Polar codes in the 5G-NR Physical Uplink Control Channel (PUCCH) with
block length of 1,024 bits. We consider PUCCH’s BPSK modulation scheme and 200 message
data bits, which is typically the maximum UCI payload in LTE and 5G-NR eMBB scenarios
[13]. Our encoder implementation follows SG-NR specifications [29]. In particular, a 11-bit CRC
1s attached to the user data, frozen bits and sub-channels are allocated, and then the mother Polar
code encoding is performed as in §III. This encoded data is passed onto sub block and channel
interleavers, and then transmitted over a wireless Rayleigh fading channel. At the receiver, we
de-interleave the received soft information accordingly and then perform HyPD’s decoding.

Current QAs have a 4-40 ps coefficient programming time, 0—10 ms post-programming
thermalization time, 25—-150 us solution readout time, and 0—10 ms post-readout thermalization
time. Thermalization times are user-specified, and we set it equal to default 1 ms. These overhead
times, however, can be reduced several orders of magnitude by system integration [11]. In our
particular QA device, there are 13 defective qubits, each in a different unit cell, and we use only
7 available physical qubits in such unit cells. Practical challenges include embedding, coefficient
range and precision, and analog QA machine noise called integrated control error (ICE). ICE
is caused by qubit flux-noise, quantization, among others [12], and it alters problem biases
(h; = h; £ 0h;) and coupler strengths (J;; — J;; £ 0.J;;). Although the errors 0h; and 0.J;; are
currently on the order of 1072, these may disturb the solution quality in scenarios where ICE
noise erases significant information from the problem. Nevertheless, we increase the solution
quality via the standard method of running multiple anneals for a problem. Our end-to-end

evaluation results capture all the sources of QA imprecision.

VI. EVALUATION

Our experimental evaluation begins with our experimental methodology description (§VI-A).
We measure performance over Rayleigh fading channels at low SNR regimes of practical interest,
in both known partial statistical CSI and unknown CSI scenarios at the receiver. QPD’s evaluation
provides detailed insights into QA performance (§VI-B). End-to-end experiments compare HyPD

head-to-head against successive cancellation list (SCL) decoders with list size of eight (§VI-C).

22

A. Experimental Methodology

Let us define an instance I as a 1,024-bit Polar decoding problem. We partition each instance
into Ng, = 128 sub-blocks with Ny = 8 bits each (as described in §IV-A). For each sub-
block Iy, we perform 2,000 anneals with 1 us annealing time, where each anneal potentially
returns a distinct solution to the sub-block due to the heuristic sampling nature of the QA. If
Nl is the number of distinct solutions returned for a sub-block, we rank these solutions in
increasing order of their energies as R, Ro, ..., Rstsub, and note the solutions’ bit errors and
occurrence probabilities. Eight sub-blocks are parallelized in a single QA anneal, by mapping
these sub-blocks to distinct physical locations in the QA hardware.

1) BER Evaluation: If R.;, is the rank of the minimum energy solution in a particular
population sample of N, < 2,000 anneals, we compute the expected number of bit errors (Np)

in a sub-block I, over performing N, anneals as:

sub
E(NE®|N,) = Z Pr(Rumin = Ri|Na) - Ng(R;), (13)

where the probability of R,;, being R; glven N, anneals can be computed using the cumulative

distribution function F'(-) of observed solution probabilities in 2,000 anneals as [17]:
Pr(Ruin = RilNa) = (1 — F(Ri—1))N — (1 = F(Ry))™, (14)

If K is the number of message data bits in an instance /, and N is the total number of instances,

then we compute the overall bit error rate (BER) as:

Nsub

BER = ZZE (NEIN,

VI =1
2) BLER Evaluation: A block is error-free iff all the bits in the block are decoded correctly,

Na, /K Nrt. (15)

where each block is an instance. We compute the probability of instance / being error-free as:

Nsub

Pr(H{ZPr i R\Na,lm,Nlm(R)—O)} (16)

m=

Then we compute the overall block error rate (BLER) as:

BLER = ; {1 - Pr([ef)}/NI. (17)

3) FER Evaluation: A frame is said to be error-free if and only if all the blocks in a frame
are decoded correctly, where each block is decoded independently. If a given frame consists Np

blocks, we compute the overall frame error rate (FER) as:

FER=1-(1—- BLER)"*. (18)

23

0 Coding Rate = 0.25 Coding Rate = 0.50 Coding Rate = 0.75 Coding Rate = 1.0

2 10
I ——5 -2]
£E Illlllllllllllnlln ;I.IIIIIIIIIIIIIIII 1I|.I||n||l||llllu]Ijlnllllmllllul
Ex o :
£g 4 P —
z]
RO | I N8 R S | | T
2 10°
3 2
a 10]
22 Illlllll— Illlll.lllllllllllll III.IIIIIIIIIIIIIIL Illlllllllnlllll“l
E. ~ 10*4]
£z ¢ ’
5 3
: 2 | I
& (1) i | | | il _IIIIIIIII_I____III_ :_I“IIIIIIIIIIII []
1 5 10 15 201 5 10 15 201 5 10 15 201 5 10 15 20
Solution Rank Solution Rank Solution Rank Solution Rank

Figure 11: QPD’s performance of partitioned sub-blocks at SNR 1 dB, in both minorminer and
QPD-MAP embeddings, showing first 20 lowest energy solutions. Sub-blocks with low coding
rates achieve high Rank 1 solution probability. At coding rate of 0.25 in QPD-MAP, only eight

distinct solutions are returned by the QA. QPD-MAP achieves lower bit errors than minorminer.

B. QPD’s Sub-block Performance

This section reports the performance of QPD’s sub-blocks, in both QPD-MAP and the QA’s
default, state-of-the-art, minorminer embeddings [28].

In Fig. 11, we see the probability and bit error statistics of solutions returned by the QA
for sub-blocks at various coding rates. In minorminer embedding, sub-blocks with 0.25 coding
rate achieve a high probability of finding the correct answer (i.e., Rank 1 solution), whereas
sub-blocks with higher coding rates (0.5, 0.75, 1.0) achieve a significantly low correct answer
probability (i.e., barely 1-4 anneals out of 2,000 anneals returned the minimum energy solution).
This is because in minorminer embedding, the absence of QAC makes the problems highly
sensitive to QA ICE noise (§V), which in turn significantly degrades the solution quality. Further,
we note that the number of bit errors in solutions increase with increased coding rate. Solutions
with higher rank (> 1) and zero bit errors imply that ancillary qubits, but not solution qubits
that represent user data, are errored (§IV-B). In QPD-MAP embedding, sub-blocks with 0.25
and 0.5 coding rates achieve high correct answer probability, whereas sub-blocks with 0.75
and 1.0 coding rates achieve relatively low correct answer probability. This is because at high

coding rates the best choice of Wy is low (§IV-D), which leads to low energy gap between the

24

—— QPD-MAP —— MM(R =0.75)

----- R=025 —-- R=050 —— R=0.75 R=1.0 e MM (R=0.25) MM(R = 1.0)
minorminer QPD-MAP = MM R=05)
LOOT ™ | 100}y R T P P,
| R
0.757 ¢ 0.754 ¢ i 0.75
E I | : L,
S o501 0.50 f 8050
0.25 0.251 ! 0.25
0.00 , , : , —0.00— . , - , ; |
o 1 2 3 4 5 o 1 2 3 4 5 0003 i 3 3
Bit Errors Bit Errors Broken Chains (%)

Figure 12: The figure shows bit errors and broken chains distribution, across solutions returned
by the QA, in both minorminer and QPD-MAP, for sub-blocks at various coding rates. QPD-

MAP has near zero broken chains at all coding rates.

minimum energy solution and the rest, thus making it difficult for the QA to distinguish the
minimum energy solution. Nevertheless, QPD-MAP achieves higher correct answer probability
and lower bit errors than the default minorminer embedding, at all coding rates.

We next see in Fig. 12 (Left and Middle) the distribution of bit errors for sub-blocks at various
coding rates. The plots show that at 0.25 and 0.5 coding rates, most of the solutions have zero bit
errors in both minorminer and QPD-MAP embeddings. At higher coding rates (0.75 and 1.0), the
number of bit errors drastically increase in minorminer, reaching a worst case scenario where 25%
of the solutions have more than four bit errors. In QPD-MAP embedding, only about 10-15% of
the solutions have more than two bit errors, at high 0.75 and 1.0 coding rates. We next investigate
broken chain statistics in Fig. 12 (Right). Broken chains are embedding chains where qubits do
not agree, they thus degrade the solution quality [17]. The figure shows that broken chains are
more frequent in minorminer embedding than in QPD-MAP embedding. In summary, our results
show that QPD achieves higher correct answer probability, lesser bit errors, and lesser broken
chains with our QPD-MAP embedding than with minorminer embedding. We therefore consider

QPD in combination with QPD-MAP for HyPD’s system performance evaluation heretofore.

C. HyPD’s System Performance

This section presents HyPD’s end-to-end system performance, comparing head-to-head against
SCL decoders, in both known partial statistical CSI and unknown CSI scenarios at the receiver.

Figures 13, 14, and 15 report these results.

25

10° 100 g ——————— 10— ===

& 510 &
M 10-34 == Uncoded m == Uncoded o == Uncoded
—ai— SC == SC 1072 —i— SC
== SCL (L;=238) 10*3 == SCL (L;=38) == SCL (L;=38)
1074 <= HyPD (N, = Nor — 8) —k— HyPD (N, = Nz = 8) —h— HyPD (N = N = 8)
—®— SCL (L; = 128) —®— SCL (Ly = 128) —®— SCL (L; = 128)
1073 10-4 1073
—2.5 -20 —1.5 —1.0 =05 00 05 1.0 —25 -2.0 —1.5 —1.0 =05 00 05 1.0 2.5 -20 —1.5 —1.0 0.5 00 05 10
SNR (dB) SNR (dB) SNR (dB)

Figure 13: HyPD’s end-to-end system performance when partial statistical CSI is known at the
receiver, in Rayleigh fading channels. L, is SCL decoder’s list size, N, and Ngr are HyPD’s

sub-block size and number of solutions fed back respectively. (Right) Frame size is 1500 bytes.

1) Error Performance: In Fig. 13 (Left), we first investigate how HyPD’s end-to-end BER
behaves as the wireless channel SNR varies when partial statistical CSI is known at the receiver
(§IV-B4). At regions of channel SNRs less than —1 dB, HyPD’s BER barely lags behind that of
SCL(8) decoder. As we meet SNRs greater than —1 dB, we observe HyPD’s BER curve drops
down, outperforming SCL(8) decoder by half an order of BER magnitude at 1 dB SNR. This
performance improvement of HyPD is a result of QPD exploring all 2= decoding paths within
each sub-block. We next see in Fig. 13 (Middle) the BLER performance of HyPD in the same
scenarios. The figure shows that at SNR 1 dB, HyPD achieves nearly an order of magnitude
lower BLER than that of SCL(8), indicating that majority of bit errors HyPD experienced are
distributed across a minority of code blocks. We next see in Fig. 13 (Right) the FER performance
at a frame size of 1,500 bytes (i.e., 11 blocks per frame). The figure shows that at 1 dB SNR,
HyPD achieves a 99.1% frame delivery rate whereas SCL(8) achieves only 95.5%. In all the
plots, SCL(128) curves are shown for reference, which is algorithmically more rigorous than
HyPD when N = Ngr = 8. We next investigate how HyPD performs when CSI is unknown at
the receiver, in Fig. 14, along the same error performance metrics. Fig. 14 (Left) depicts BER
performance, showing that SC and SCL decoders achieve almost similar performance as that of
known CSI scenario, and the performance gap between HyPD and SCL(8) is barely decreased
at all SNRs (cf. Fig. 13). A similar analogy can be observed in Figs. 14 (Middle, Right) as well.

2) Timing Analysis: We now analyze QA compute time, describing current technology points

and predicted future with increased QA qubit counts.

26

10° 100 100 e ===
107! -
107!
R 107!
10- o
~ ~
o 5102 o
M 10-34 === Uncoded m === Uncoded o === Uncoded
—— SC —— SC 10-2] —&— sc
] T sCLE=3) 10-3] —m— scL @, =8) —— SCL (L, =8)
1073 —%— HyPD (N, = Nsr = 8) —&— HyPD (N, = N5y = 8) —k— HyPD (N, = Nsp = 8)
—— SCL (L, = 128) —@— SCL (L, = 128) —— SCL (L, = 128)
1073 10-4 1073
—-25 -20-15-1.0-05 00 05 1.0 —-25 -20 —-1.5 -1.0 =05 0.0 05 1.0 —-25 -20-15-1.0-05 00 05 1.0
SNR (dB) SNR (dB) SNR (dB)

Figure 14: HyPD’s end-to-end system performance when CSI is unknown at the receiver, in
Rayleigh fading channels. L, is SCL decoder’s list size, N and Ngr are HyPD’s sub-block

size and number of solutions fed back respectively. (Right) Frame size is 1500 bytes.

We first measure time-to-solution (TTS), the time required to reach the ground state of input
problem. Since QA is probabilistic in nature, TTS(P) can be used to understand the time required

to reach the minimum energy solution with a target probability P. It is computed as [30]:
TTS(P) =T, -log(l — P)/log(1 — P) (19)

where 7, is the annealing time and P, is the probability of [?;, the minimum energy solution.
The factor log(1 — P)/log(1 — P;) indicates the number of repetitions/anneals required to reach
the desired success probability P. If Py problems are solved in parallel, then the effective TTS
is reduced by a parallelization factor Pf. In current QA devices with 5K qubits, eight QPD
problems can be parallelized (P; = 8), whereas the projected parallelization in near-term future
QA devices with 14K, 35K, and 70K qubits is 20, 50, and 100 respectively.

In Fig. 15 (Left), we see TTS(99%) performance of QPD with 7, = 1 us. The figure shows
that TTS scales proportionally with sub-block’s coding rate, reaching a worst-case 70 us for
sub-blocks with a 1.0 coding rate (P; = 8). This is because at high coding rates, I?; solution
probability is low (§VI-B). With P; = 100, this worst-case TTS reaches to 5.6 ps. We further
note that TTS at coding rate of 1/8 deviates from the trend. This is because at very low coding
rates, the energy gap between the minimum energy solution and the rest becomes significantly
low, making it difficult for the QA to distinguish the minimum energy solution. To overcome
this issue, either QAC with Ngac < 8 or finer coefficient settings may be employed to relax

the effect of embedding chains—we leave for future work.

27

—h— Pf: Pf:20 -4- PfZIOO —k— P/= P_/'=20 -4- Pf=]00

-k - Pf=8 Pf=50 —k- P/=8
=

» g

3. D

g f

S g

) " 2 =

0} —1 Pt ——AT — == 8

& 10 | \\A //Q E 4 a

= \‘_——‘ E

0% I O U S -
1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8

1071 102 10 104 1079
Coding Rate Target BER
Figure 15: HyPD’s timing analysis. The boxes’ lower/upper whiskers and quartiles are 10" /90"

and 25" /75" percentiles respectively. Line trends show averages, and P is parallelization factor.

While TTS shows the time required to reach the ground state of an input problem, it does
not capture the effect of bit errors the ground state may have. Therefore, we next measure the

compute time (1) required to reach a certain BER target. It is computed as:

1 Nsub

L= 5 D (Tw)i x (Na)i (20)

i=1
where Ny, is the number of sub-blocks, (7,); and (IV,); are annealing time and number of
anneals of the " sub-block respectively. For this evaluation, we set a target BER value in
Eq. 15 and then calculate back N, and obtain 7.. Sub-blocks with only frozen bits do not
contribute to the total compute time. Fig. 15 (Right) depicts HyPD’s compute time requirements
at SNR 1 dB, showing that higher compute times achieve lower BER. For a target BER of 1074,
compute time required is 250 ps (Py = 8). With Py = 100, this time reduces to 20 pus.

3) Throughput considerations: HyPD solves eight eight-bit sub-blocks (i.e., N = Py = 8) in
1 ps annealing time, which means that the best case achievable throughput on current QAs is 64
Mbps only, which is well behind the achievable throughput on classical compute devices where
SCL decoders with up to 4-5 Gbps throughputs have been demonstrated [31]. However, this
throughput limitation on current QAs is not fundamental, and can be increased several orders
of magnitude with faster anneal times, increased qubit counts, better qubit connectivity, among
others [11], [32]. While these advancements are underway, we next demonstrate an ideal QA
hardware connectivity structure for Polar codes, which with 107 qubits and 1 ps annealing time

can achieve throughputs up to 524x R Gbps, where R is coding rate.

28

(a) N = 8 bits. (b) N = 16 bits. (c) N = 32 bits. (d) N = 64 bits.

Figure 16: QPD-HW: Quantum Polar Decoder’s Hardware qubit connectivity design for

decoding Polar codes. Nodes and edges represent qubits and couplers respectively.

VII. QPD-HW HARDWARE DESIGN

In this section, we propose an ideal QA hardware structure tailored to the task of decoding
Polar codes (QPD-HW). The motivation for this section stems from the challenges existing
in current hardware implementation such as the need to boost decoder throughput (§VI-C3),
circumvent embedding (§11-0d), and reduce hardware resource usage to mitigate ICE noise (§V).

The requirement of embedding is a major impediment to leveraging the QA technology for
practical applications because of mapping difficulties. The problem of embedding arises because
of the lack of all-to-all qubit connectivity in the QA hardware. While such an all-to-all qubit
connectivity is desired for natively encoding generic problem graphs, near-term engineering
considerations allow for scaling the QA hardware with local qubit connectivities. In this section,
we envision a scenario where near-term quantum hardware is tailored for specific problem needs,
where a part of qubit connectivity is dedicated for wireless community, for decoding Polar codes.

An ideal hardware structure that circumvents the requirement of embedding is the connectivity
graph of the QUBO (i.e., the graph of Eq. 6). We next demonstrate this connectivity which may be
of interest for QPD-HW engineering considerations. Fig. 16 shows the connectivity structure of
the QPD’s QUBO design at various Polar code block lengths. In particular, nodes in the figure
represent variables in Eq. 6, and edges represent the quadratic terms of Eq. 6. These nodes
and edges then constitute qubits and couplers respectively in the proposed hardware design. In
Fig. 16(a), we see QPD’s qubit connectivity in a Polar code of block length eight bits. This
code requires a total of 32 qubits, with several four-cliques. Looking at Eq. 7, we see that the
connectivity of these four-cliques mirrors the connectivity of QPD’s Node constraints. Since
QPD’s QUBO formulation is the exact representation of the Polar encoder binary tree structure,

the proposed hardware also scales with the features of a perfect binary tree as follows:

29

a) Flexible support for block lengths: Since the children of a node in a perfect binary
tree are also perfect binary trees, QPD-HW for a code of block length 27 bits can be used to
solve 2¥ independent codes of block length 2¢=* bits, in parallel. For example, Fig. 16(b) shows
QPD-HW for 16-bit codes, can also be used to solve two 8-bit codes in parallel. This is because
two copies of Fig. 16(a) are present in Fig. 16(b) as independent subgraphs.

b) Flexible support for coding rates: A varying coding rate affects only the Frozen con-
straints of the QPD. Since the Frozen constraints do not introduce quadratic terms into the
objective QUBO (§IV), the proposed hardware allows decoding of various coding rates.

c¢) Connectivity features: The proposed hardware qubit connectivity is highly sparse. In the
proposed hardware, the number of couplers per qubit, for a code of block length 2¢ bits, takes all
values in positive integer multiples of three with a maximum value of 3d. For instance, observe
in Fig. 16(a) that the number of couplers per qubit takes values in {3, 6, 9} only. Further, if Ny
is number of qubits with 3k edges (k € [1,d]), then Ny = 4, Ny_; = 8, and N}, = 2N 41 +2¢°F
(k € [1,d — 2]). For instance, observe in Fig. 16(a) that the number of qubits with {3, 6, 9}
edges is {20, 8, 4} respectively. To decode a Polar code of block length 27 bits, the proposed
hardware requires (d+ 1) x 2¢ qubits and 3d x 2 couplers. This implies that with 1 s annealing
time and 10%,10%,10°, 107 qubits, the proposed hardware can achieve processing throughputs
up to 0.12,1.02,65.5,524 x R Gbps respectively, where R is the coding rate. State-of-the-art
D-Wave QA hardware has 5,627 qubits and 40,279 couplers, and so supports decoding Polar
codes of block lengths up to 27 bits. While these block lengths are of useful sizes employed in
the 5G-NR standard (2°-2° bits) [29], if QA designers were to reconnect the currently available
qubits and couplers to form our proposed QPD-HW structure, Polar codes of block lengths up

to 2° bits may be feasbily decoded in the near term.

VIII. RELATED WORK

Polar codes’ fundamental construction and properties are well studied [33]-[35] and though
proven in theory to be capacity-achieving [1], their use is limited to short block lengths due to
their computationally-complex decoding algorithms. Several studies to this end have proposed
efficient decoder architectures based on the inferior SC algorithm [8], [36], whereas HyPD
compares favorably in performance (§VI) against the superior SCL decoding algorithm. Recon-
figurable decoders for LDPC and Polar codes also exist [37]-[39]: in this class of decoders,

belief propagation and SC decoding perform similarly [38]. Further studies provide insights into

30

the comparison of Polar codes with other capacity achieving codes [40], [41], where [40] shows
Polar codes outperform LDPC codes, and [41] shows that Polar codes decoded via the SCL
algorithm match the performance of that of LDPC and Turbo codes.

QA machines have been recently used to successfully optimize wireless communication prob-
lems [17], [42]-[45]. Quantum Gate-based approaches are also being widely investigated, wherein
quantum approximate optimization algorithm (QAOA), quantum search methods, and syndrome-
based decoding schemes have been proposed [46]-[48]. A holistic cost and power feasibility
analysis of QA-based wireless communications is conducted in [11]. Some of the prior work
[17] studies QA-based LDPC decoding towards formulating a QUBO problem with a customized
embedding scheme. However, the embedding design studied in Ref. [17] is applicable only to
(2,3)-regular LDPC codes and not to Polar codes. Further, the embedding scheme presented
in Ref. [17] does not generalize to higher LDPC check bit degrees. As a result, these studies
will lose efficiency in their embeddings when their QUBO designs are employed for other code
parameters. QPD instead proposes a QUBO design that can be mapped on to QA hardware
for various code rates and block lengths flexibly, via QPD-MAP, and also enables a novel QA
hardware structure, QPD-HW, that circumvents the requirement of embedding altogether, thus

significantly advancing the state-of-the-art over prior work.

IX. CONCLUSION

HyPD leverages classical and quantum annealing computational structures for decoding Polar
codes, proposing a fresh QA based design and evaluating it experimentally on real leading-edge
QA hardware. Our studies demonstrate the practical challenges today in using such devices. We
further present a customized problem mapping scheme on current hardware, and propose an
ideal QA hardware structure that is sparse, flexible under different code rates and block lengths,
and inherently meshes with the Polar code’s binary tree construction. The ideas we propose here
may inform NextG wireless networks and in the more distant future enable applicability of long

Polar codes in practical protocol standards.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation under Grant
No. CNS-1824357. KJ and SK gratefully acknowledge a gift from the InterDigital Corporation
that helped support this work.

(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

31

REFERENCES

E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input
memoryless channels,” IEEE Transactions on information Theory, vol. 55, no. 7, pp. 3051-3073, 20009.

E. Sasoglu, E. Telatar, and E. Arikan, “Polarization for arbitrary discrete memoryless channels,” in 2009 IEEE
Information Theory Workshop, pp. 144—148.

A. Eslami and H. Pishro-Nik, “On bit error rate performance of Polar codes in finite regime,” in 2010 48th Annual
Allerton Conference on Communication, Control, and Computing (Allerton), pp. 188—194.

R. Gallager, “Low-density parity-check codes,” IRE Transactions on Information Theory, vol. 8, no. 1, pp. 21-28, 1962.
E. Arikan, N. ul Hassan, M. Lentmaier, G. Montorsi, and J. Sayir, “Challenges and some new directions in channel
coding,” Journal of Communications and Networks, vol. 17, no. 4, pp. 328-338, 2015.

E. Sasoglu, “Polar coding theorems for discrete systems,” Ph.D. dissertation, EPFL, Lausanne, Switzerland, 2011.

I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. on Info. Theory, vol. 61, no. 5, pp. 2213-2226, 2015.
C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel successive-cancellation decoder for Polar
codes,” IEEE Transactions on Signal Processing, vol. 61, no. 2, pp. 289-299, 2013.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,”
IEEE Communications Magazine, vol. 52, no. 2, pp. 74-80, 2014.

P. Yang, Y. Xiao, M. Xiao, and S. Li, “6G wireless communications: Vision and potential techniques,” IEEE Network,
vol. 33, no. 4, pp. 70-75, 2019.

S. Kasi, P. Warburton, J. Kaewell, and K. Jamieson, “A cost and power feasibility analysis of quantum annealing for
NextG cellular wireless networks,” arXiv preprint arXiv:2109.01465, 2021.

D-Wave Systems User Manual, “Technical description of the D-Wave Quantum Processing Unit,” pp. 09—1109A-0, 2019.
3GPP TSG-RAN WGI #88 R1-1703106. Nokia, Alcatel-Lucent Shanghai Bell, “Polar design for control channels,” 2017.
D-Wave, “D-Wave QPU Architecture: Topologies,” Website, 2021.

C. Baldassi and R. Zecchina, “Efficiency of quantum versus classical annealing in non-convex learning problems,”
Proceedings of the National Academy of Sciences, vol. 115, no. 7, pp. 1457-1462, 2018.

C. C. McGeoch, “Adiabatic quantum computation and quantum annealing: Theory and practice,” Synthesis Lectures on
Quantum Computing, vol. 5, no. 2, pp. 1-93, 2014.

S. Kasi and K. Jamieson, “Towards Quantum Belief Propagation for LDPC Decoding in Wireless Networks,” in
Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, 2020, pp. 1-14.

Y. Susa, Y. Yamashiro, M. Yamamoto, and H. Nishimori, “Exponential speedup of quantum annealing by
inhomogeneous driving of the transverse field,” Journal of the Physical Society of Japan, vol. 87, no. 2, p. 023002, 2018.
S. Mukherjee and B. K. Chakrabarti, “Multivariable optimization: Quantum annealing and computation,” The European
Physical Journal Special Topics, vol. 224, no. 1, pp. 17-24, 2015.

L. Xiang, Y. Liu, Z. B. K. Egilmez, R. G. Maunder, L.-L. Yang, and L. Hanzo, “Soft list decoding of polar codes,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 11, pp. 13921-13 926, 2020.

J. Hagenauer, “The exit chart-introduction to extrinsic information transfer in iterative processing,” in 2004 12th
European Signal Processing Conference. 1EEE, 2004, pp. 1541-1548.

L. O. Espluga, M. Aubault-Roudier, C. Poulliat, M. L. Boucheret, H. Al-Bitar, and P. Closas, “LLR approximation for
fading channels using a bayesian approach,” IEEE Communications letters, vol. 24, no. 6, pp. 1244-1248, 2020.

G. Hosoya, M. Hasegawa, and H. Yashima, “LLR calculation for iterative decoding on fading channels using padé

approximation,” in 2012 International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1-6.

(24]

[25]

[26]

(27]

(28]

[29]

(30]

[31]

(32]

(33]
[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

32

J. M. Arrazola, A. Delgado, B. R. Bardhan, and S. Lloyd, “Quantum-inspired algorithms in practice,” arXiv preprint
arXiv:1905.10415, 2019.

K. L. Pudenz, T. Albash, and D. A. Lidar, “Error-corrected quantum annealing with hundreds of qubits,” Nature
communications, vol. 5, no. 1, pp. 1-10, 2014.

D-Wave, “D-Wave Problem Solving Handbook,” Github, 2018.

J. E. Dorband, “Extending the D-Wave with support for higher precision coefficients,” arXiv preprint:1807.05244, 2018.
D-Wave, “D-Wave minorminer Embedding Tool,” Github, 2018.

3rd Generation Partnership Project (3GPP), “Multiplexing and channel coding,” 38.212, vol. V.15.3.0, 2018.

T. Albash and D. A. Lidar, “Demonstration of a scaling advantage for a quantum annealer over simulated annealing,”
Physical Review X, vol. 8, no. 3, p. 031016, 2018.

Y. Tao, S.-G. Cho, and Z. Zhang, “A configurable successive-cancellation list polar decoder using split-tree architecture,”
IEEE Journal of Solid-State Circuits, vol. 56, no. 2, pp. 612-623, 2020.

A. D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A. J. Berkley, S. Ejtemaee, E. Hoskinson,

S. Huang et al., “Coherent quantum annealing in a programmable 2,000 qubit ising chain,” Nature Physics, 2022.

R. Wang and R. Liu, “A novel puncturing scheme for Polar codes,” IEEE Communications Letters, 2014.

R. Pedarsani, S. H. Hassani, 1. Tal, and E. Telatar, “On the construction of Polar codes,” in 2011 IEEE International
Symposium on Information Theory Proceedings, 2011, pp. 11-15.

K. Niu, K. Chen, and J.-R. Lin, “Beyond Turbo codes: Rate-compatible punctured Polar codes,” in 2013 IEEE
International Conference on Communications (ICC), 2013, pp. 3423-3427.

O. Dizdar and E. Arikan, “A high-throughput energy-efficient implementation of successive cancellation decoder for
Polar codes using combinational logic,” IEEE Transactions on Circuits and Systems I: Regular Papers, 2016.

T. Lin, S. Cao, S. Zhang, S. Xu, and C. Zhang, “A reconfigurable decoder for standard-compatible LDPC codes and
Polar codes,” in 2019 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). 1EEE, 2019, pp. 73-76.

W. Xu, X. Tan, Y. Be’ery, Y.-L. Ueng, Y. Huang, X. You, and C. Zhang, “Deep learning-aided belief propagation
decoder for Polar codes,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020.

N. Yang, S. Jing, A. Yu, X. Liang, Z. Zhang, X. You, and C. Zhang, “Reconfigurable decoder for LDPC and Polar
codes,” in 2018 IEEE International Symposium on Circuits and Systems (ISCAS). 1EEE, 2018, pp. 1-5.

B. Tahir, S. Schwarz, and M. Rupp, “BER comparison between Convolutional, Turbo, LDPC, and Polar codes,” in 24th
International Conference on Telecommunications (ICT), 2017, pp. 1-7.

A. Balatsoukas-Stimming, P. Giard, and A. Burg, “Comparison of Polar decoders with existing Low-density parity-check
and Turbo decoders,” in 2017 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), 2017.
N. Ide, T. Asayama, H. Ueno, and M. Ohzeki, “Maximum likelihood channel decoding with quantum annealing
machine,” in 2020 International Symposium on Information Theory and Its Applications (ISITA), 2020, pp. 91-95.

M. Kim, D. Venturelli, and K. Jamieson, “Leveraging Quantum Annealing for Large MIMO Processing in Centralized
Radio Access Networks,” in Proceedings of the ACM Special Interest Group on Data Communication, 2019.

Z. Bian, F. Chudak, R. Israel, B. Lackey, W. G. Macready, and A. Roy, “Discrete optimization using quantum annealing
on sparse Ising models,” Frontiers in Physics, vol. 2, p. 56, 2014.

S. Kasi, J. Kaewell, and K. Jamieson, “The design and implementation of a hybrid classical-quantum annealing polar
decoder,” in GLOBECOM 2022 - 2022 IEEE Global Communications Conference, 2022, pp. 5819-5825.

T. Matsumine, T. Koike-Akino, and Y. Wang, “Channel decoding with quantum approximate optimization algorithm,” in

2019 IEEE International Symposium on Information Theory (ISIT). 1EEE, 2019, pp. 2574-2578.

33

[47] Z. Babar, Z. B. Kaykac Egilmez, L. Xiang, D. Chandra, R. G. Maunder, S. X. Ng, and L. Hanzo, “Polar codes and their
quantum-domain counterparts,” IEEE Communications Surveys & Tutorials, vol. 22, no. 1, pp. 123-155, 2020.

[48] C.-Y. Lai, K.-Y. Kuo, and B.-J. Liao, “Syndrome decoding by quantum approximate optimization,” arXiv preprint
arXiv:2207.05942, 2022.

