
1

A Quantum Annealer-Enabled Decoder and

Hardware Topology for NextG Wireless Polar

Codes

Srikar Kasi∗†, John Kaewell†, Kyle Jamieson∗

∗Princeton University, †InterDigital, Inc.

Abstract

We present the Hybrid Polar Decoder (HyPD), a hybrid classical–quantum decoder design for Polar

error correction codes, which are becoming widespread in today’s 5G and tomorrow’s 6G networks.

HyPD employs CMOS processing for the Polar decoder’s binary tree traversal, and Quantum Annealing

(QA) processing for the Quantum Polar Decoder (QPD)–a Maximum-Likelihood QA-based Polar de-

coder submodule. QPD’s design efficiently transforms a Polar decoder into a quadratic polynomial

optimization form, then maps this polynomial on to the physical QA hardware via QPD-MAP, a

customized problem mapping scheme tailored to QPD. We have experimentally evaluated HyPD on

a state-of-the-art QA device with 5,627 qubits, for 5G-NR Polar codes with block length of 1,024 bits,

in Rayleigh fading channels. Our results show that HyPD outperforms Successive Cancellation List

decoders of list size eight by half an order of bit error rate magnitude, and achieves a 1,500-bytes

frame delivery rate of 99.1%, at 1 dB signal-to-noise ratio. Further studies present QA compute time

considerations. We also propose QPD-HW, a novel QA hardware topology tailored for the task of

decoding Polar codes. QPD-HW is sparse, flexible to code rate and block length, and may be of

potential interest to the designers of tomorrow’s 6G wireless networks.

Index Terms

Polar codes, quantum computation, quantum annealing, channel decoding, wireless networks

I. INTRODUCTION

The Polar Code, a type of error control code, was discovered in 2009 [1], and subsequently

shown to have a number of desirable features: achievement of Shannon capacity limits for a wide

2

range of channels [2], attainment of a low error floor (minimal bit error rate as a function of

background noise) [3], and a simpler code construction process than other leading competitors,

such as Low Density Parity Check (LDPC) codes [4]. While promising, Polar codes face several

practical challenges if they are to manage decoder design complexity while at the same time

maintaining their capacity achieving properties [5]. Low-complexity Successive Cancellation

(SC) decoder can only achieve capacity on Polar codes that have been constructed a priori with

knowledge of the communication channel [6], which is unfortunately impractical in a wireless

network context where user mobility causes wireless channels to be largely unpredictable. The

Successive Cancellation List (SCL) [7] decoder can approach Shannon capacity, but at the price

of high complexity and high latency, thus compromising Polar codes’ advantage over LDPC

codes in this regard. Furthermore, SC/SCL algorithms are sequential in nature, which means

their decoding latency grows at least linearly with code block length, leading to low throughput

in the decoding process [5], [8].

Consequently, Polar Code use in 5G New Radio [9] is currently limited to control channels with

short block lengths, but Polar codes’ solid theoretical foundation, simple encoder implementation,

and adjustable code rate from zero to one would make them viable candidates for high speed data

channels such as for 5G enhanced Mobile Broad-Band (eMBB), and for 5G ultra-reliable, low-la-

tency channels (URLLC), if the latency of the decoder could be minimized, while simultaneously

maintaining a low bit error rate and near-capacity-limit rate performance. Overcoming processing

throughput and latency limitations would also enable Polar codes’ adoption in transformative

5G Massive Machine Type Communications (MMTC) technologies such as NB-IoT and LTE-

M, which aim to scale cellular network coverage densities to millions of devices per square

kilometer, and hence put them on the 6G roadmap with more certainty [10] .

It is with this vision in mind that this paper investigates a radically different processing

architecture for a Polar code decoder, one based on quantum annealing, to see if this emerging

technology can potentially speed up the decoding of Polar codes using the fundamental, quantum

mechanical properties of superposition, entanglement, and tunneling. This would open up new

possibilities in the design of the Polar code decoder. In our envisioned scenario, shown in Fig. 1,

quantum processing units (QPUs) are co-located with CMOS processing units in a Centralized-

RAN (C-RAN) data center, where QPUs are used for heavyweight computational tasks in the

cellular baseband unit such as decoding and demodulation, and CMOS processing units undertake

lightweight computational tasks such as handling the network’s control plane [11].

3

Other
 Problems

Centralized-RAN BBU

Base Stations
Uplink streams

QPUs MIMO
Detector

LDPC
Decoder

Polar
Decoder

HyPD/QPD

CMOS

Low latency links

QPD-MAP

QPD-HW

Figure 1: An envisioned HyPD/QPD deployment scenario in a Centralized RAN (C-RAN)

context, where a QA server augments a C-RAN baseband unit (BBU).

This paper presents the Hybrid Polar Decoder (HyPD), a new classical–quantum hybrid Polar

decoder design that considers error correction decoding from the fresh perspective of Quantum

Annealing (QA). HyPD works by partitioning a long mother Polar code’s binary tree into a

number of shorter sub-blocks, where each sub-block is a perfect subtree with same leaf nodes

as that of the mother Polar code (see Fig. 5). We structure HyPD’s operation into classical and

quantum processing modules. Our classical module considers CMOS hardware for the Polar

decoder’s binary tree traversal, and it operates between the mother Polar code’s root node and

the root nodes of the partitioned sub-blocks. Our quantum module implements a Quantum Polar

Decoder (QPD) on a QA device to solve these partitioned sub-blocks, in order to decode the

transmitted bits. HyPD’s classical and quantum modules exchange bit-likelihood and bit-decision

information, respectively, back and forth until all bits are decoded.

Our quantum module’s Quantum Polar Decoder (QPD) is a new Maximum-Likelihood Polar

decoder design that efficiently formulates a one-to-one mapping between the Polar code’s binary

tree-structured encoder and a quadratic polynomial form that a QA can solve at the receiver, in

order to decode the transmitted bits. This polynomial is a linear combination of multiple cost

penalty functions we have created, which we refer to as Node, Frozen, and Receiver constraints.

A linear combination is chosen to ensure that the polynomial is quadratic and amenable to QA

devices. The Node and Frozen constraints work by raising a positive cost penalty to candidate

bit strings that do not agree with the Polar encoding conditions, thus ensuring that QPD outputs

only valid bit strings. The Receiver constraints add a further cost penalty to all the valid bit

4

strings whose magnitude depends on the proximity of a candidate bit string to the received soft

information, thus allowing QPD to select the most likely transmitted bit string. We map these

cost penalty functions directly on to the physical grid of qubits present in the QA hardware, via

QPD-MAP, our customized problem mapping design tailored for QPD, taking into account the

real-world physical qubit interconnections. QPD-MAP is flexible to code rate, block length, and

embodies quantum annealing correction (QAC) to correct the QA computational errors introduced

into the problem at hand, improving the solution quality. The QA returns the bit string with

minimal cost penalty as its decoded solution. HyPD gathers all the bit strings (corresponding to

sub-blocks) returned by QPD and concatenates them, to output the decoded user message.

We have experimentally evaluated HyPD on a state-of-the-art QA device with 5,627 qubits:

Advantage system4.1 [12], for CRC assisted Polar codes of block length 1,024 bits, in Rayleigh

fading wireless channels, at low signal-to-noise ratio (SNR) regimes of practical interest. Our

evaluations consider BPSK modulation employed in 5G-NR control channels, and 200 message

data bits, which is the typical maximum payload size of uplink control information (UCI) in

LTE and 5G-NR eMBB scenarios [13]. Our results show that HyPD operating at a 300 µs

QA compute time outperforms leading edge SCL decoders operating at list size of eight by

half an order of bit error rate magnitude, at 1 dB SNR. Further evaluations show that HyPD

achieves a 1500-bytes frame delivery rate of 99.1% at 1 dB SNR, whereas SCL achieves only

95.5% frame delivery rate at the same SNR. We also analyze QA compute time at various code

rates and with increased qubit numbers (§VI-C2). The lessons we have learned in the design and

implementation of QPD on QAs point to alternate QA hardware structures that if realized, would

be preferable to the qubit connectivity currently available. We present this ideal QA hardware

structure tailored to Polar Codes, QPD-HW, in §VII, demonstrating its features and flexibility.

II. PRIMER: QUANTUM ARCHITECTURES

While classical computation uses bits to process information, quantum computation uses

qubits, physical devices that exhibit quantum mechanical properties such as superposition and

entanglement. The current and near-term quantum computers can be classified into digital gate-

model or analog annealing-model architectures. Gate-model devices are fully general purpose

computers that perform computation using programmable logic (i.e., gates) acting on qubits,

whereas annealing-model devices are specialized computers that solve combinatorial optimiza-

tion problems in their equivalent Ising specifications. While gate-model quantum devices of

5

(a) Chimera (b) Pegasus (c) Zephyr

Figure 2: The figure shows unit cell interconnection structures of (a) Chimera (recent) (b)

Pegasus (state-of-the-art) and (c) Zephyr (next-generation) QA hardware topologies. Nodes in

the figure are qubits and edges are couplers.

size relevant to practical applications are not yet generally available, today’s annealing-model

devices with about 5,000 qubits enable us to commence empirical studies at realistic scales [11].

Therefore, we conduct this study from the perspective of annealing-model devices.

Quantum Annealing (QA) aims to find the lowest energy spin configuration (i.e., solution) of

an Ising model described by the time dependent energy functional (Hamiltonian):

H(s) = −Γ(s)HI + L(s)HP (1)

where HI is the initial Hamiltonian, HP is the (input) problem Hamiltonian, s (∈ [0, 1]) is a

non-decreasing function of time called an annealing schedule, Γ(s) and L(s) are energy scaling

functions of the transverse and longitudinal fields in the annealer respectively. Essentially, Γ(s)

guides the probability of tunneling during the annealing process, and L(s) guides the probability

of finding the ground state of the input problem Hamiltonian HP [12]. The QA hardware is a

network of locally interacting radio-frequency superconducting qubits, organized in groups of

unit cells. Figure 2 shows the unit cell structures of QA devices [14]. The nodes and edges in

the figure are qubits and couplers respectively.

a) Annealing Process: Starting with a high transverse field (i.e., Γ(0) >> L(0) ≈ 0), the

QA processor initializes the qubits in a pre-known ground state of the initial Hamiltonian HI ,

then gradually interpolates this Hamiltonian over time (i.e., decreasing Γ(s) and increasing L(s))

by adiabatically introducing quantum fluctuations in a low-temperature environment, until the

transverse field diminishes (i.e., L(1) ≫ Γ(1) ≈ 0). The Adiabatic Theorem then ensures that

6

by interpolating the Hamiltonian slowly enough, the system remains in the ground state of the

interpolating Hamiltonian [15], [16]. Thus during the annealing process, the system ideally stays

in a low energy state and probabilistically reaches the global minima of the problem Hamiltonian

HP at its conclusion. The process of optimizing a problem in the QA is called annealing, and

the time taken for this optimization is called annealing time [12].

b) Hamiltonian Forms: The initial Hamiltonian takes the form HI =
∑

i σ
x
i , where σx

i is the

Pauli-X spin operator acting on the ith qubit. Thus, the initial state of the system is the ground

state of this HI , where each qubit is in an equal superposition state 1√
2
(|−1⟩+ |+1⟩). The

problem Hamiltonian is HP =
∑

i hiσ
z
i +

∑
i<j Jijσ

z
i σ

z
j , where σz

i is the Pauli-Z spin operator

acting on the ith qubit, hi and Jij are the optimization problem inputs that the user supplies.

c) Input Problem Forms: QAs optimize Ising model problems, whose problem format

matches the above problem Hamiltonian: E =
∑

i hisi +
∑

i<j Jijsisj , where E is the energy,

si ∈ {−1,+1} is the ith solution variable, hi is called bias of si, and Jij is called coupler strength

between si and sj . Biases and coupler strengths are programmed onto qubits and couplers

respectively using an on-chip control circuitry [12]. Ising format is equivalent to quadratic

unconstrained binary optimization (QUBO) format, and it is obtained via the transformation

si −→ 2qi − 1, resulting in the energy function: EQ =
∑

i fiqi +
∑

i<j gijqiqj , where EQ

is the QUBO form energy, qi ∈ {0, 1} is the ith solution variable, fi and gij are QUBO form

linear and quadratic coefficients respectively. The QA probabilistically returns a solution variable

configuration with minimum energy E at its output.

d) Embedding: To solve an Ising problem on a QA device, the problem must be mapped

on to the physical QA hardware. This mapping process is called embedding, and it typically

requires additional qubits. To understand embedding, let us consider an example Ising problem:

E = J12s1s2 + J13s1s3 + J23s2s3 (2)

The connectivity structure of solution variables in Eq. 2 is a complete graph on three nodes,

which does not exist in the Chimera graph (Fig. 2(a)). Thus, to implement Eq. 2 on Chimera-

based hardware, the standard approach is to map one of the solution variables (e.g., s3) onto

two physical qubits (e.g., s3a and s3b), such that the resulting connectivity (e.g., square graph)

can be realized on the hardware. To ensure proper embedding, s3a and s3b must agree with each

other, and this is achieved by chaining them with a strong negative coupler strength [17].

7

u0
u1
u2
u3
u4
u5
u6
u7

x0
x1
x2
x3
x4
x5
x6
x7

Sub-block 1

Sub-block 2

Frozen
Frozen
Frozen
Data

Frozen
Data
Data
Data

0
0
0

m3
0

m2
m1
m0

Figure 3: The encoding process of an example (N = 8) Polar code. mi is a message bit, ui is

an encoder input bit, and xi is an encoded bit. ⊕ represents the XOR operation.

QA processors exploit quantum properties such as superposition, entanglement, and tunneling

during the annealing process, which under ideal conditions can speed up the optimization task

[18], [19]. Realization of this speedup may be challenging today due to issues surrounding current

QA hardware. In Section IV, we describe the unique challenges in applying QA computation

for Polar Code decoding and demonstrate how we address these challenges in this work.

III. PRIMER: POLAR CODES

A binary (N = 2d, K) Polar code is described functionally by a generator matrix GN = G⊗d
2 ,

where ⊗d operation represents d-fold Kronecker product, and G2 =
[
1 0
1 1

]
is called the polar-

ization kernel. The channel polarization phenomenon in Polar codes is a transformation of N

independent bits to N mutually interlinked bit-channels, where each bit-channel has a probability

of being decoded correctly (i.e., reliability). The sequence of these bit-channels in sorted order

of their reliabilities is called the reliability sequence. Let N be the block length adapted for

transmitting a message m = [m0,m1, ...,mK−1] of length K ≤ N bits. The coding rate is then

K/N . Using the reliability sequence, construct the encoder input vector u = [u0, u1, ..., uN−1] by

assigning the message bits to K most reliable bit-channels, and set the remaining N −K bits

to a zero value. The uis that are set to zero value are called frozen bits. The encoded codeword

is then x = uGN . Fig. 3 depicts the encoder operation for an example eight-bit Polar code.

To visualize QPD’s decoding process (described later in §IV-B), we here demonstrate the

encoder operation using a binary tree representation. Fig. 4 depicts this for Sub-block 1 of

Fig. 3 with input vector u = [u0, u1, u2, u3] of length NL = 4 bits. Construct a perfect binary tree

8

T1,0

T0,0 T0,1 T0,3T0,2

T1,1

T2,0

[u0] [u1] [u2] [u3]

[u 0 ⊕
 u 1, u 1] [u2 ⊕ u3 , u3]

 [u0 ⊕ u1 ⊕ u2 ⊕ u3, u1 ⊕ u3, u2 ⊕ u3, u3]

Figure 4: Encoder binary tree for Sub-block 1 of Fig. 3. Th,i is a node at height h and index i.

with NL leaf nodes as shown in Fig. 4, and initialize each leaf node T0,i of the tree with bit ui.

Traversing the tree from height h = 0 (leaf) to h = logNL
2 (root), each node Th,i ∀h ∈ [1, logNL

2]

takes an input [uL|uR] and generates an output [uL⊕uR|uR], where uL and uR are the bit vectors

of the left and right children of Th,i respectively, and uL⊕uR is a bit-wise XOR operation. The

output vector obtained at the root is then the encoded codeword. In the example in Fig. 4, the

encoded codeword is x = [u0 ⊕ u1 ⊕ u2 ⊕ u3, u1 ⊕ u3, u2 ⊕ u3, u3].

IV. DESIGN

In this section, we first describe the proposed HyPD decoder design (§IV-A), and then present

QPD’s reduction of Polar decoding into a QUBO form (§IV-B). Next we present our customized

problem mapping scheme, QPD-MAP, in §IV-C, alongside practical QA considerations in §IV-D.

HyPD, the hybrid classical–quantum decoder, is a sub-optimal decoder, whereas QPD, the

pure quantum decoder, is the optimal Maximum-Likelihood decoder. The need for HyPD arises

because of limited qubits available in today’s QAs and the requirement to solve long 1,024 bits

5G Polar codes. Long codes can be entirely decoded via QPD, with sufficient qubits (§VII).

A. HyPD: Hybrid Classical-Quantum Polar Decoder

Let u = [u0, u1, ..., uN−1] be the input vector, and x = [x0, x1, ..., xN−1] be the corresponding

Polar-encoded codeword. Let y = [y0, y1, ..., yN−1] be the respective received soft information.

HyPD works by partitioning a long mother Polar code of block length N bits into Nsub number

of shorter sub-blocks, where each sub-block is a largest perfect subtree with NL leaf nodes of the

mother Polar code tree (N = NsubNL). Fig. 5 depicts this partitioning scheme for an example 16-

bit Polar code with Nsub = NL = 4. We structure HyPD into classical and quantum processing

9

T4,0

C
la

ss
ic

al
 m

od
ul

e

Q
ua

nt
um

 m
od

ul
e

(Q
PD

)

Received LLRs (T4,0)

LLRs (T3,0)

Sub-block 1

T2,0

T3,0 T3,1

Sub-block 3

T2,3

Sub-block 2 Sub-block 4

A1 A2 A3 A4 LLRs (
T 2,0

)

LLRs (T3,1)

LLRs (T
2,1) LLRs (

T 2,2
) LLRs (T

2,3)

Est. (T3,0) Est. (T3,1)

T2,1 T2,2

Figure 5: HyPD decoding of an example Polar code. The classical module traverses the tree,

and the quantum module solves sub-blocks on QA. The downward and upward arrows show

LLRs’ and estimated bits’ propagation, respectively. Ai is the QA solution for the ith sub-block.

modules as in Fig. 5. The classical module operates between the root node of the mother Polar

code and the root nodes of sub-blocks, and the quantum module operates on sub-blocks.

HyPD begins at the root node by computing the log-likelihood ratios (LLRs) of root node bits

from the received soft data (Fig. 5). Each node in our classical module sends to its left and right

children the LLRs of their corresponding bits, by computing F and G functions respectively [20]:

F (s, t) = 2 tanh−1(tanhLs/2 · tanhLt/2) (3)

G(s, t, ŝ⊕ t) = Ls(−1)ŝ⊕t + Lt, (4)

where Ls is the LLR of bit s, F (s, t) is the LLR of bit s ⊕ t, and G(s, t, ŝ⊕ t) is the

conditional LLR of bit t with respect to previously decoded bit ŝ⊕ t. For a node at height

h, the choices of s ∈ {s1, s2, ..., s2h−1} and t ∈ {t1, t2, ..., t2h−1} are the pairs (si, ti)∀i, where

[s1, s2, ...s2h−1 , t1, t2, ..., t2h−1] is the bit vector of the node. To understand the meaning of the F

and G functions, let us observe node T2,0 of Fig. 4, with height h = 2 and bit vector [s1, s2, t1, t2]

= [u0⊕u1⊕u2⊕u3, u1⊕u3, u2⊕u3, u3]. The bits corresponding to T2,0’s left and right children

are [s1⊕t1, s2⊕t2] and [t1, t2] respectively (cf. Fig. 4). By calculating the LLRs of [s1⊕t1, s2⊕t2],
the F function captures the LLRs of a node’s left child bits. The intuition behind the G function

is that if ŝ⊕ t is estimated to be zero (see Eq. 4), then s = t and the conditional LLR of t

10

becomes Ls+Lt, otherwise s ̸= t and the conditional LLR of t becomes Lt−Ls, ∀(si, ti) pairs.

Thus the G function captures the LLRs of a node’s right child bits [20].

Similar to SC/SCL decoder operation, our classical module traverses the tree depth-first,

with priority given to the left branches, propagating the corresponding LLRs downward [7].

In this process, we obtain the LLRs of the sub-blocks’ root node bits, which are then our

quantum module’s input. Using this LLR input, we solve each sub-block on a QA device,

and the solution returned by QA is fed back to the classical module. The solution feedback

is necessary for the classical module to compute G functions (i.e., ŝ⊕ t values in Eq. 4 are

obtained using QA). Multiple solutions can be fed back to explore more decoding paths, and we

refer the number of solutions fed back to NSF . These bit-likelihood and bit-decision information

exchanges between our classical and quantum modules, respectively, comprises our proposed

HyPD decoder operation. The decoder terminates when all the bits are decoded (i.e., all sub-

blocks are solved). We next demonstrate HyPD more fully with a running example.

Consider a 16-bit Polar code as in Fig. 5, and input the LLRs of received bits at T4,0, the

root node. T4,0 sends to T3,0, and T3,0 sends to T2,0, the LLRs of their corresponding bits, by

computing F functions (left child). Sub-block 1 is then solved on the QA, and the solution

obtained, A1, is fed back to T3,0. Using this solution, T3,0 sends to T2,1 its corresponding LLRs,

by computing the G function (right child). Sub-block 2 is then solved on the QA, and the solution

obtained, A2, is fed back to T3,0. Using A1 and A2, T3,0 estimates its bits (similar to encoding

§III) and sends them back to T4,0. A similar tree traversal process now happens at the right-hand

branch of T4,0, where A3 and A4 are the solutions obtained for Sub-blocks 3 and 4 respectively

(see Fig. 5). HyPD terminates when all the sub-blocks are solved. The decoded answer is the

bit decisions corresponding to leaf nodes wherein user data is located.

Design Analysis. In order to demonstrate the advantage of HyPD over SC/SCL decoders, we

now discuss their decoding algorithms, referring to Fig. 6. In SC and SCL decoding, the tree

traversal process described in Fig. 5 continues until the leaf nodes (i.e., it is entirely classical),

and at each leaf node we have one bit which can take two possible values (0 or 1). SC makes

a hard decision on each leaf node bit (0 if LLR is positive-valued, 1 otherwise) and continues

the tree traversal. Therefore, SC performs search over only one bit at a time and maintains only

one decoding path (cf. Fig. 6). Unlike SC, SCL continues the tree traversal with both 0 and

1 decisions for each non-frozen leaf node bit (0 decision is made for frozen bits), where each

decision leads to a distinct decoding path. The number of decoding paths therefore increases

11

NL
bits

(Proposed:) HyPD

Nsub sub-blocks

NSF solutions fed back

NL
bits

NL
bits

NL
bits

1 bit 1 bit 1 bit 1 bit

SC

N sub-blocks

1 decoding path

ML

Entire Code Block

1 bit 1 bit 1 bit

SCL
lg Ls
bits

N + 1 lg Ls sub-blocks
Ls decoding paths

Full search over all N bits

Bit Index Bit Index

Bit Index Bit Index

Figure 6: Algorithmic structures of various Polar decoders. Each square/rectangle block shows

the number of bits over which a collective search is performed, and each edge connecting these

blocks is a decoding path. Collective search indicates verifying all possible configurations.

exponentially with the number of non-frozen leaf nodes. In order to reduce SCL’s computational

complexity, a threshold is placed on the number of decoding paths, called the list size Ls. When

the number of paths grows beyond Ls, only the best Ls paths continue (see Ref. [7]). Therefore,

SCL performs a collective search over the first ⌈log2Ls⌉ bits (i.e., until Ls decoding paths

emerge), followed by a search over only one bit at a time, as shown in Fig. 6. Unlike SC and

SCL, HyPD performs a collective search over all NL bits present in each sub-block (§IV-A)–via

QA. In HyPD, each solution fed back from the quantum module to the classical module leads to

a distinct decoding path, as shown in Fig. 6. The Maximum Likelihood (ML) decoder performs

a collective search over the entire code block, thus achieving the optimal performance.

Complexity Analysis. The complexity of SC decoder is O(N logN), and that of SCL decoder

is O(LsN logN). If Ls > 1, SCL decoder outperforms SC decoder, and if Ls = 1, SC and SCL

are the same decoder. The complexity of ML decoder is O(2NRN logN), where R is coding rate.

If Ls < 2NR, ML decoder outperforms SCL decoder, and if Ls = 2NR, SCL and ML are the same

decoder. The complexity of HyPD can be derived by analyzing its classical and quantum modules

separately. HyPD’s classical module’s complexity is O(NSFN logNsub). This is because our

classical module processes NSF decoding paths, and it operates on a subtree with Nsub number of

leaf nodes, which are essentially the root nodes of sub-blocks (see Fig. 5). Our quantum module’s

complexity is O(NSFNsub2
f(NL(1+logNL))), where the factor NSFNsub indicates the number of

12

Figure 7: The behavior of mutual information between user data and their output LLR values as

the HyPD decoding progresses. Mutual information is nearly zero at the start of decoding and

it reaches > 0.9 at the end of decoding for all block lengths, demonstrating a high convergence.

sub-blocks processed via QA, and the exponent NL(1 + logNL) is the solution variable count

for solving an NL-bits sub-block (see §IV-B, §VII). We have conservatively used the function

f(·) to capture the speedup of QA over classical methods, which is still yet to be precisely

quantified (see [18], [19]). If NL = 1, HyPD and SCL (Ls = NSF) are the same decoder, and if

NL = N , HyPD and ML are the same decoder. For any NL, if NSF < Ls = 2NL , SCL decoder

outperforms HyPD. For any NL > 1, if NSF ≥ Ls, HyPD outperforms SCL decoder (see Fig. 6).

Convergence Analysis. As noted above, HyPD converges when all the sub-blocks are solved,

which means that its convergence speed is proportional to the sub-block count. To understand

convergence, we next observe how the mutual information (MI) between equiprobable user data

U and their output LLRs LU changes with the decoding progress. This is computed as [21]:

MI(U ;LU) = 1− 1

N

∑
∀i

Hb

(1

1 + e−|Li|

)
(5)

where Hb is the binary entropy function and Li is the LLR value of ith user data bit at the decoder

output. In Fig. 7, the decoding starts at bit index 0 and ends at bit index N, and MI(U ;LU) is

computed after decoding every eight bits (i.e., NL = 8 sub-blocks), resulting in step functions

of width eight bits. At the start of decoding, MI is nearly zero as the received data is highly

corrupted. As the decoding progresses, MI increases, reaching 0.934, 0.956, 0.958 for block

lengths 256, 512, 1024 bits respectively (SNR 1 dB) at the end of decoding, demonstrating a

high convergence. We also note that the convergence speed is higher for shorter block lengths.

To increase the convergence speed of long codes, larger sub-blocks must be solved.

13

B. QPD: Quantum Polar Decoder

We now present our QPD sub-module. Let qsub = [q0, q1, ... , qNL−1] be the solution variables

used to extract a sub-block’s input bits usub = [u0, u1, ... , uNL−1] respectively. Let F be the

set of frozen bits, T be the set of sub-block’s binary tree nodes, and ai be an ancillary variable

used for calculation purposes. Any bi is a generic binary variable (i.e., solution or ancillary).

1) QUBO Formulation: QPD’s objective function comprises multiple terms, classified into

three types: Node, Frozen, and Receiver constraints. The Node constraints (CN) ensures that a

candidate decoding agree with the Polar encoding conditions. If a candidate decoding violates

these constraints, a cost penalty is raised for that candidate (i.e., the candidate is raised in

energy). The Frozen constraints (CF) ensures all a candidate decoding agree with the frozen bit

conditions (i.e., qubits that represent frozen bits must take a zero value). If a candidate decoding

disagrees, a cost penalty is raised for that candidate. The Receiver constraints (CR) introduce a

further cost penalty to all valid candidates, whose magnitude depends on the proximity of an

individual candidate to the received soft information. They thus encourage the decoder to find

the decoding that most closely matches the received information. The entire QUBO objective

function is a weighted linear combination of these cost functions:

argmin
q

{
WN

∑
∀T∈T

CN (T) +WF

∑
∀ui∈F

CF (qi) +WR

∑
∀j

CR(bj)
}
. (6)

A linear combination ensures that Eq. 6 is a quadratic polynomial. The weights WN ,WF ,WR

prioritize their respective constraints. We determine the best choices of these weights in §IV-D.

2) Node Constraints: From Section III, we observe that the Polar encoder performs only

XOR operations. Let us define ET as the set of all XOR operations the encoder performs at node

T of the binary tree. For each T ∈ T (defined earlier in §IV-B), we define a Node constraint:

CN(T) =
∑

∀XOR(bi,bj)∈ET

(bi + bj − ak − 2ak+1)
2, (7)

where bi, bj represent the variables whose equivalent bits are XORed at node T in the encoding

process, and ak, ak+1 are ancillary variables. The value of k ∈ {2p|p ∈ W} is chosen such that

each ancillary variable is only introduced once. We observe that CN(T) is in sum-of-squares

form, thus at the minimum energy (i.e., CN(T) = 0), the sum bi + bj must be equal to the sum

ak+2ak+1. Since all the variables are binary, this implies that ak = bi⊕bj in the minimum energy

configuration. Upon expansion of Eq. 7, CN introduces both linear and quadratic terms into the

14

T1,0

T0,0 T0,1 T0,3T0,2

T1,1

T2,0

[q0] [q1] [q2] [q3]

[q 0 ⊕
 q 1, q 1] [q2 ⊕ q3 , q3]

[q0 ⊕ q1 ⊕ q2 ⊕ q3, q1 ⊕ q3, q2 ⊕ q3, q3]

T1,0

T0,0 T0,1 T0,3T0,2

T1,1

T2,0

[q0] [q1] [q2] [q3]

[a 0, q 1] [a2 , q3]

[a4, a6, a2, q3]EEC =

QPD

Figure 8: QPD decoding process of Sub-block 1. (Left) Direct representation of Fig. 4 using

solution variables. (Right) QPD’s equivalent representation of Left using ancillary variables.

objective QUBO (Eq. 6), with quadratic coefficient values in {−4,−2,+2,+4} only. We next

demonstrate the working process of Node constraints more fully with a running example.

Let us continue with Sub-block 1 whose encoder tree is shown in Fig. 4 with input vector usub

= [u0, u1, u2, u3]. Let qsub = [q0, q1, q2, q3] be the solution variables used at the decoder to extract

the bits [u0, u1, u2, u3] respectively. Fig. 8 (Left) shows the direct representation of Fig. 4 using

respective variables at the decoder, and Fig. 8 (Right) shows QPD’s equivalent representation of

Fig. 8 (Left). In this example, T = {T2,0, T1,0, T1,1, T0,0, T0,1, T0,2, T0,3}. Similar to encoding, we

traverse the tree from leaf to root for constructing QPD’s Node constraints as follows.

At height = 0, we note that the nodes {T0,0, T0,1, T0,2, T0,3} perform no computation, and so

the Node constraints of these nodes are zero (i.e., CN(T0,i) = 0 ∀i). At height = 1, we have two

nodes {T1,0, T1,1} that perform one XOR operation each (see Fig. 8). In particular, T1,0 computes

q0 ⊕ q1 and T1,1 computes q2 ⊕ q3. Thus using Eq. 7, we construct two Node constraints as:

CN(T1,0) = (q0+q1−a0−2a1)
2 and CN(T1,1) = (q2+q3−a2−2a3)

2. Here a0 equals q0⊕q1, and

a2 equals q2 ⊕ q3 in the minimum energy solution. At height = 2, the root node T2,0 performs

two XOR operations (see Fig. 8): q0⊕ q1⊕ q2⊕ q3, and q1⊕ q3. We note that these computations

are equivalent to a0 ⊕ a2 and q1 ⊕ q3 respectively. Hence, using Eq. 7 we construct the Node

constraint: CN(T3,0) = (a0+a2−a4−2a5)
2+(q1+q3−a6−2a7)

2. Here a4 equals a0⊕a2, and a6

equals q1 ⊕ q3 in the minimum energy solution. The ancillary variables representing such XORs

are reflected in Fig. 8 (Right). The output vector obtained at the root node [a4, a6, a2, q3] is now

bit-wise equivalent to the corresponding encoded data [q0⊕ q1⊕ q2⊕ q3, q1⊕ q3, q2⊕ q3, q3]. We

hence refer this output vector to the equivalent encoded codeword (EEC).

15

3) Frozen Constraints: From Section III, we note that frozen bits do not carry user information

and that they are always assigned zero value. Hence we define a Frozen constraint as:

CF (qi) = qi ∀ui ∈ F (8)

CF is minimum when the variables that represent frozen bits take a zero value (i.e, not one

value). CF introduces only linear terms into the objective QUBO (Eq. 6).

4) Receiver Constraints: We next consider the EEC obtained from the Node constraints, and

compute its distance to the corresponding received data using a Receiver constraint as in [17]:

CR(bj) = (bj − Pr(bj = 1|y))2 ∀bj ∈ EEC (9)

where the probability Pr(bj = 1|y) can be computed for various modulations and channels,

using the LLR information the HyPD’s classical module supplies (§IV-A). For instance, for a

BPSK-modulated information (0 → +1, 1 → −1) transmitted over a Rayleigh fading channel

with AWGN noise, this is computed as 1/(1 + eL), where L is the LLR of the bit (say cj)

that represents bj . If the channel state information (CSI) is known at the receiver, at least

statistically where the first and second order moments of the channel are characterized, L is

computed as 2µhcj/(σ
2 + σ2

h), where µh(= a
√
π/2) and σ2

h(= a2(4 − π)/2) are the mean

and variance of the Rayleigh distribution with scale parameter a, and σ2 is the AWGN noise

variance [22]. If the CSI is unknown at the receiver, this probability is computed using L =

log(ψ(cj/
√
2σ̃)/ψ(−cj/

√
2σ̃)), where σ̃ = σ2(1 + 2σ2) and ψ(x) = 1 +

√
πxexp(x2)erfc(−x)

[23]. We note that CR is minimum for a bj ∈ {0, 1} that has a greater probability of being the cor-

responding bit at the encoder. CR introduces only linear terms into the objective QUBO (Eq. 6).

Summary. In the above sections (§IV-A, §IV-B), we have described HyPD and QPD. These de-

signs are purely algorithmic, and they can be implemented on hardware suitable for QUBO/Ising

optimization problems [24]. While in this work we investigate QA technology, we note that

implementing the same ideas using specialized classical hardware is also a promising possibil-

ity. The following sections (§IV-C, §IV-D) describe and address the unique challenges in the

application of QA for Polar Code decoding, which include problem formulation, embedding,

quantum annealing correction, and parameter tuning for real QA devices.

C. QPD-MAP: Problem Embedding

In this section, we first describe quantum annealing correction (QAC), and then explain

QPD-MAP, our customized problem mapping scheme tailored for QPD.

16

s1

s2 s3

J23
J13
J12

(a) Unprotected (c) EP-QAC

s1b

s2b s3b

s1a

s2a s3a

s1c

s2c s3c

(b) NP-QAC

s1b

s2b s3b

s1a

s2a s3a

s1c

s2c s3c

sP3sP2 sP1

Figure 9: The figure shows QAC schemes with NQAC = 3, where si{a,b,c} represent si∀i, and

sP{1,2,3} are penalty qubits. Complete-QAC is EP-QAC with a majority vote decision (§IV-C1).

1) Quantum Annealing Correction: QAC is a strategy that aims to correct the QA computa-

tional errors introduced into the problem at hand, due to qubit decoherence, analog noise, among

others [12], and it provides error protection to the problem in two ways: First, by increasing

the energy scale of the problem, and second, by a majority vote decision for solution variables.

QAC methods achieve increased energy scale by solving multiple copies of the same problem

while correlating the qubits that represent the same solution variables (across copies). This can

be expressed as the problem Hamiltonian transformation [25]:

HP =

NQAC∑
i=1

(HP)i + βHpenalty (10)

where HP is the problem Hamiltonian resulted with QAC, NQAC is the number of problem

copies, (HP)i is the problem Hamiltonian of the ith copy, Hpenalty is the Hamiltonian resulted

from correlating the qubits representing the same solution variable, and β is its energy scaling

factor. If β = 0, then it is called No-Penalty QAC (NP-QAC), and if β < 0, then it is called

Encoded-Penalty QAC (EP-QAC). EP-QAC with a majority vote decision for solution variables

is called Complete-QAC [25]. To understand QAC, let us consider an example Ising problem:

E = J12s1s2 + J23s2s3 + J13s1s3 (11)

Figure 9 depicts various QAC graphs for this problem, where nodes represent qubits and edges

represent quadratic coupler terms. In particular, Fig. 9(a) shows the direct, QAC-unprotected,

connectivity of Eq. 11, and Fig. 9(b) shows its NP-QAC connectivity with NQAC = 3 (i.e.,

three copies of the same problem), where si{a,b,c} represent si ∀i. In comparison to QAC-

unprotected, NP-QAC provides better quality solutions due to increased problem energy scale

17

(a) Four-clique mapping (b) NL = 4 bits (c) NL = 8 bits (d) NL = 16 bits

Figure 10: QPD-MAP embedding on Pegasus QA hardware, for various sub-block sizes (NL).

Nodes and edges in the figure are physical qubits and physical couplers, respectively.

resulting from multiple copies of the same problem. We next see in Fig. 9(c) the EP-QAC con-

nectivity of Eq. 11 with NQAC = 3, where the qubits representing the same variable (s1a, s1b, s1c)

are chained to a penalty qubit (sP1) with a strong negative coupler strength (β). This chaining

in EP-QAC forces the qubits representing the same variable to agree in the solution the machine

outputs, therefore improving solution quality further in comparison to NP-QAC. Complete-QAC

is EP-QAC with a majority vote decision for solution variables, thus it helps recover any errors

across problem copies. QAC graphs also need minor embedding for running the problem.

2) QPD-MAP: The above sections have described minor embedding and QAC in general

terms (§II-0d, §IV-C1). Here we describe how we bring together these strategies for mapping

QPD’s design onto QA hardware. QPD-MAP is our customized problem mapping scheme

tailored for QPD, and it embodies minor embedding and Complete-QAC with NQAC = 8. Let us

recall from §IV-B that only Node constraints introduce quadratic terms into the QPD’s QUBO

design, and so they require embedding. Each Node constraint is a sum of quadratic forms (see

Eq. 7), where each quadratic form consists of four solution variables, and so the connectivity of

each such quadratic form is essentially a four-clique.

Construction. QPD-MAP realizes each such four-clique connectivity on the QA hardware

using four unit cells as shown in Fig. 10(a), by mapping a single node of this four-clique (i.e., a

solution variable) on to eight physical qubits present in a unit cell, and a single edge of this four-

clique (i.e., a quadratic term) on to eight physical couplers connecting two unit cells, therefore

realizing eight copies of the problem. Figure 10(a) depicts this construction on state-of-the-art

18

Pegasus QA hardware, showing eight qubits representing a solution variable and eight couplers

representing a quadratic term. In order to make all the qubits within a unit cell behave like a

single solution variable, QPD-MAP pairwise chains these qubits with a strong negative coupler

strength, thus forcing them to agree. The vertically aligned unit cells (see Fig. 10(a)) have only

four available couplers connecting them, and so we double the strength of each such coupler,

effectively realizing an eight-coupler connectivity (see 2x-Couplers in Fig. 10(a)). QPD-MAP

follows a majority vote decision for solution variables. Therefore, this construction of QPD-MAP

embodies minor embedding and Complete-QAC with NQAC = 8.

Placement. QPD-MAP next places the four-cliques that share common solution variables close

to each other, then makes the qubits representing the same solution variable agree. To understand

this, let us visualize a binary tree with NL leaf nodes as a root node connected to two shorter

binary trees with NL/2 leaf nodes each. QPD-MAP follows this recursive property of binary

trees: We first place the four-cliques corresponding to the root node along the top-left bottom-

right diagonal of the Pegasus graph, and the four-cliques corresponding to its children trees

symmetrically on either side of this diagonal as shown in Figs. 10(c) and 10(d). Figures 10(b),

10(c), and 10(d) depict QPD-MAP designs for sub-blocks with size NL of four bits, eight bits, and

16 bits respectively. We observe that Fig. 10(b)’s qubit connectivity is same as that of Fig. 10(c)’s

left and right children trees, and Fig. 10(c)’s qubit connectivity is same as that of Fig. 10(d)’s

left and right children trees, therefore admitting the aforementioned recursive property of binary

trees, making QPD-MAP flexible to varying sub-block sizes. We next describe Fig. 10(b).

Figure 10(b) shows the QPD-MAP design for Sub-block 1, whose Node constraints are

(§IV-B2): CN(T0,i) = 0∀i, CN(T1,0) = (q0 + q1 − a0 − 2a1)
2, CN(T1,1) = (q2 + q3 − a2 −

2a3)
2, CN(T2,0) = (a0 + a2 − a4 − 2a5)

2 + (q1 + q3 − a6 − 2a7)
2, where T2,0 is the root node,

{T1,0, T0,0, T0,1} constitutes its left child tree, and {T1,1, T0,2, T0,3} constitutes its right child tree

(see Fig. 8). We see in Fig. 10(b) the two four-cliques of the root node (i.e., CN(T2,0)) placed

along the top-left bottom-right diagonal, with its left child (i.e., CN(T1,0)) and right child (i.e.,

CN(T1,1)) four-clique connectivities placed symmetrically on either side of this diagonal, where

each four-clique follows the aforementioned construction scheme (Fig. 10(a)).

Let us note that upon expansion of CN , the QUBO quadratic coefficients of terms involving

two ancillary qubits (e.g., a0a1) take a value of +4, which in Ising form take a +1 value, which

is the maximum supported value for a quadratic coefficient (see §IV-D). Therefore, such coupler

strengths cannot be doubled. QPD-MAP avoids placing odd-indexed ancillary variables (e.g.,

19

a1, a3, a5, a7) in unit cells that require 2x-Couplers, therefore ensuring that all the coefficients

fall into the supported range of QA. For instance, note that a1, a3, a5, a7 do not appear in unit

cells that require 2x-Couplers (cf. Figs. 10(a) and 10(b)).

D. Practical Annealer Considerations

We now determine the best choices for QPD’s weights WN ,WF ,WR (Eq. 6), and then fine-tune

the coefficient values for achieving a greater probability of decoding correctly.

To optimize a QUBO problem on a QA device, it must be specified as an equivalent Ising

problem (§II). This conversion is characterized by the coefficient transformations [26]:

hi =
fi
2
−
∑
∀j

gij
4
, Jij =

gij
4

(12)

where hi and Jij are Ising coefficients corresponding to linear (fi) and quadratic (gij) QUBO

coefficients respectively. Current QAs support values for hi ∈ [−4,+4] and Jij ∈ [−2.0,+1.0].

a) Choice of the weight WN : As noted above in §IV-B2, all the QPD’s quadratic QUBO

coefficients (gij) take values in {−4,−2,+2,+4} only. This implies that their respective Ising

coefficients (Jij) take values in {−1,−0.5,+0.5,+1} (from Eq. 12). For any WN > 1.0 (in

Eq. 6), the quadratic Ising coefficients Jij fall outside their supported values (i.e., > +1), and

hence must be normalized back again to bring coefficients into the supported range. For any

WN < 1.0, the priority of the Node constraints is undermined. Hence, we consider WN = 1.0.

b) Choice of the weight WF : Looking at Eqs. 6 and 8, we note that WF is a linear

coefficient, and that a high WF strongly enforces the qubits representing frozen bits to take a

zero value. Thus, we set WF to the maximum supported linear coefficient value of +4 for every

physical qubit that represents a frozen bit.

c) Choice of the weight WR: The best choice of WR depends on sub-block’s size, coding

rate, and channel SNR. We first demonstrate these dependencies, and then present our choice.

From §IV-B2, we see that the number of Node constraints QPD introduced into the QUBO

objective function is proportional to the sub-block’s size. Higher sub-block’s size implies more

nodes in the sub-block’s binary tree, hence more Node constraints. Thus longer sub-blocks tend

to agree on more Node constraints for error correction, implying that they balance greater WR.

Code rate determines the number of frozen bits. When the number of frozen bits is high,

more Node constraints tend to work correctly. For instance, let us consider the Node constraint:

CN = (q0 + q1 − a0 − 2a1)
2. If q0 and q1 represent frozen bits (i.e., q0, q1 = 0), then it is certain

20

that a0 (= q0 ⊕ q1) takes the correct zero value in the minimum energy solution. If q0 and q1

do not represent frozen bits, then a0 depends on the received information, and thus may or may

not take a correct zero or one value. Hence, lower coding rates cause a greater number of Node

constraints to work properly, and thus allow greater values for WR.

A higher channel SNR implies that the received information has a lower probability of

experiencing errors. Thus, a higher SNR allows greater values for WR. Empirical evaluations

are performed to select the best WR value: At WR = Rsub, 1−Rsub, 2−Rsub, 3−Rsub, 4−Rsub,

the average correct answer probability of HyPD is 0.34, 0.42, 0.81, 0.56, 0.32 respectively.

Therefore, we choose WR = 2−Rsub (see §V for implementation details).

d) Choice of embedding coupler strength: The purpose of embedding is to make qubits

agree with each other, and so we must prioritize embedding couplers. Therefore, we assign the

minimum supported value for embedding coupler strengths (JF = β = −2.0).

e) Fine-tuning the physical Ising coefficients: We select WN , WF , WR, and JF as afore-

mentioned and obtain the physical Ising problem. Here we describe our approach in tailoring

the physical Ising coefficients closely into the QA’s supported bit precision of 4–5 bits [27].

If a solution variable with linear Ising coefficient hi is mapped onto A number of physical

qubits, then the QA default auto-scaling methods assign hi/A value to each qubit (i.e., equal

sharing) [28]. This auto-scaling approach therefore reduces the coefficient precision greatly when

A is large. Thus, we opt for an unequal sharing of hi, in steps of 1.0 value. For example, if

a solution variable has a linear coefficient of 2.0, then eight copies of this variable requires

an effective coefficient value of 16.0 (NQAC = 8). If this solution variable is mapped on to 24

physical qubits in the embedding process, then 16 of the physical qubits take 1.0 coefficient value

and the rest eight physical qubits take a zero coefficient value. Further, the linear coefficients

are programmed only on to the physical qubits involved in the four-cliques (i.e., not on to the

qubits involved in the minor embedding chains), avoiding any errors due to long range chains.

This uneven sharing ensures that the coefficient precision is much less disturbed than that of

auto-scaling methods. By design, QPD’s Ising quadratic coefficients fall into the supported range

and precision of QA. As noted above, they take values in {−2,−1,−0.5,+0.5,+1} only, where

−2 is the embedding coupler strength. These values are sufficiently separated in magnitude for

the QA to distinguish within the 4–5 bit precision.

21

V. IMPLEMENTATION

We implement HyPD’s classical module on a 2.3 GHz eight-core Intel CPU with 14 nm

CMOS process, and quantum module on 5,627-qubit Advantage system4.1 QA. Our decoder

targets CRC-assisted Polar codes in the 5G-NR Physical Uplink Control Channel (PUCCH) with

block length of 1,024 bits. We consider PUCCH’s BPSK modulation scheme and 200 message

data bits, which is typically the maximum UCI payload in LTE and 5G-NR eMBB scenarios

[13]. Our encoder implementation follows 5G-NR specifications [29]. In particular, a 11-bit CRC

is attached to the user data, frozen bits and sub-channels are allocated, and then the mother Polar

code encoding is performed as in §III. This encoded data is passed onto sub block and channel

interleavers, and then transmitted over a wireless Rayleigh fading channel. At the receiver, we

de-interleave the received soft information accordingly and then perform HyPD’s decoding.

Current QAs have a 4–40 µs coefficient programming time, 0–10 ms post-programming

thermalization time, 25–150 µs solution readout time, and 0–10 ms post-readout thermalization

time. Thermalization times are user-specified, and we set it equal to default 1 ms. These overhead

times, however, can be reduced several orders of magnitude by system integration [11]. In our

particular QA device, there are 13 defective qubits, each in a different unit cell, and we use only

7 available physical qubits in such unit cells. Practical challenges include embedding, coefficient

range and precision, and analog QA machine noise called integrated control error (ICE). ICE

is caused by qubit flux-noise, quantization, among others [12], and it alters problem biases

(hi → hi ± δhi) and coupler strengths (Jij → Jij ± δJij). Although the errors δhi and δJij are

currently on the order of 10−2, these may disturb the solution quality in scenarios where ICE

noise erases significant information from the problem. Nevertheless, we increase the solution

quality via the standard method of running multiple anneals for a problem. Our end-to-end

evaluation results capture all the sources of QA imprecision.

VI. EVALUATION

Our experimental evaluation begins with our experimental methodology description (§VI-A).

We measure performance over Rayleigh fading channels at low SNR regimes of practical interest,

in both known partial statistical CSI and unknown CSI scenarios at the receiver. QPD’s evaluation

provides detailed insights into QA performance (§VI-B). End-to-end experiments compare HyPD

head-to-head against successive cancellation list (SCL) decoders with list size of eight (§VI-C).

22

A. Experimental Methodology

Let us define an instance I as a 1,024-bit Polar decoding problem. We partition each instance

into Nsub = 128 sub-blocks with NL = 8 bits each (as described in §IV-A). For each sub-

block Isub, we perform 2, 000 anneals with 1 µs annealing time, where each anneal potentially

returns a distinct solution to the sub-block due to the heuristic sampling nature of the QA. If

N Isub
s is the number of distinct solutions returned for a sub-block, we rank these solutions in

increasing order of their energies as R1, R2, ..., RN
Isub
s

, and note the solutions’ bit errors and

occurrence probabilities. Eight sub-blocks are parallelized in a single QA anneal, by mapping

these sub-blocks to distinct physical locations in the QA hardware.

1) BER Evaluation: If Rmin is the rank of the minimum energy solution in a particular

population sample of Na < 2,000 anneals, we compute the expected number of bit errors (NB)

in a sub-block Isub over performing Na anneals as:

E(N Isub
B |Na) =

N
Isub
s∑
i=1

Pr(Rmin = Ri|Na) ·NB(Ri), (13)

where the probability of Rmin being Ri given Na anneals can be computed using the cumulative

distribution function F (·) of observed solution probabilities in 2,000 anneals as [17]:

Pr(Rmin = Ri|Na) = (1− F (Ri−1))
Na − (1− F (Ri))

Na , (14)

If K is the number of message data bits in an instance I , and NI is the total number of instances,

then we compute the overall bit error rate (BER) as:

BER =
∑
∀I

Nsub∑
i=1

E(N Ii
B |Na,Ii)

/
K ·NI . (15)

2) BLER Evaluation: A block is error-free iff all the bits in the block are decoded correctly,

where each block is an instance. We compute the probability of instance I being error-free as:

Pr(Ief) =
Nsub∏
m=1

{∑
∀i

Pr(Rmin = Ri|Na, Im, N
Im
B (Ri) = 0)

}
, (16)

Then we compute the overall block error rate (BLER) as:

BLER =
∑
∀I

{
1− Pr(Ief)

}/
NI . (17)

3) FER Evaluation: A frame is said to be error-free if and only if all the blocks in a frame

are decoded correctly, where each block is decoded independently. If a given frame consists NF

blocks, we compute the overall frame error rate (FER) as:

FER = 1− (1− BLER)NF . (18)

23

10 4

10 2

100

Pr
ob

ab
ili

ty

Coding Rate = 0.25 Coding Rate = 0.50 Coding Rate = 0.75 Coding Rate = 1.0

0
1
2
3
4

B
it

Er
ro

rs
m

in
or

m
in

er

10 4

10 2

100

Pr
ob

ab
ili

ty

1 5 10 15 20
Solution Rank

0
1
2
3
4

B
it

Er
ro

rs

1 5 10 15 20
Solution Rank

1 5 10 15 20
Solution Rank

1 5 10 15 20
Solution Rank

Q
PD

-M
A

P

Figure 11: QPD’s performance of partitioned sub-blocks at SNR 1 dB, in both minorminer and

QPD-MAP embeddings, showing first 20 lowest energy solutions. Sub-blocks with low coding

rates achieve high Rank 1 solution probability. At coding rate of 0.25 in QPD-MAP, only eight

distinct solutions are returned by the QA. QPD-MAP achieves lower bit errors than minorminer.

B. QPD’s Sub-block Performance

This section reports the performance of QPD’s sub-blocks, in both QPD-MAP and the QA’s

default, state-of-the-art, minorminer embeddings [28].

In Fig. 11, we see the probability and bit error statistics of solutions returned by the QA

for sub-blocks at various coding rates. In minorminer embedding, sub-blocks with 0.25 coding

rate achieve a high probability of finding the correct answer (i.e., Rank 1 solution), whereas

sub-blocks with higher coding rates (0.5, 0.75, 1.0) achieve a significantly low correct answer

probability (i.e., barely 1–4 anneals out of 2,000 anneals returned the minimum energy solution).

This is because in minorminer embedding, the absence of QAC makes the problems highly

sensitive to QA ICE noise (§V), which in turn significantly degrades the solution quality. Further,

we note that the number of bit errors in solutions increase with increased coding rate. Solutions

with higher rank (> 1) and zero bit errors imply that ancillary qubits, but not solution qubits

that represent user data, are errored (§IV-B). In QPD-MAP embedding, sub-blocks with 0.25

and 0.5 coding rates achieve high correct answer probability, whereas sub-blocks with 0.75

and 1.0 coding rates achieve relatively low correct answer probability. This is because at high

coding rates the best choice of WR is low (§IV-D), which leads to low energy gap between the

24

0 1 2 3 4 5
Bit Errors

0.00

0.25

0.50

0.75

1.00

C
D

F

minorminer
R = 0.25 R = 0.50 R = 0.75 R = 1.0

0 1 2 3 4 5
Bit Errors

0.00

0.25

0.50

0.75

1.00

QPD-MAP

0 1 2 3
Broken Chains (%)

0.00

0.25

0.50

0.75

1.00

C
D

F

QPD-MAP
MM (R = 0.25)
MM (R = 0.5)

MM(R = 0.75)
MM(R = 1.0)

Figure 12: The figure shows bit errors and broken chains distribution, across solutions returned

by the QA, in both minorminer and QPD-MAP, for sub-blocks at various coding rates. QPD-

MAP has near zero broken chains at all coding rates.

minimum energy solution and the rest, thus making it difficult for the QA to distinguish the

minimum energy solution. Nevertheless, QPD-MAP achieves higher correct answer probability

and lower bit errors than the default minorminer embedding, at all coding rates.

We next see in Fig. 12 (Left and Middle) the distribution of bit errors for sub-blocks at various

coding rates. The plots show that at 0.25 and 0.5 coding rates, most of the solutions have zero bit

errors in both minorminer and QPD-MAP embeddings. At higher coding rates (0.75 and 1.0), the

number of bit errors drastically increase in minorminer, reaching a worst case scenario where 25%

of the solutions have more than four bit errors. In QPD-MAP embedding, only about 10–15% of

the solutions have more than two bit errors, at high 0.75 and 1.0 coding rates. We next investigate

broken chain statistics in Fig. 12 (Right). Broken chains are embedding chains where qubits do

not agree, they thus degrade the solution quality [17]. The figure shows that broken chains are

more frequent in minorminer embedding than in QPD-MAP embedding. In summary, our results

show that QPD achieves higher correct answer probability, lesser bit errors, and lesser broken

chains with our QPD-MAP embedding than with minorminer embedding. We therefore consider

QPD in combination with QPD-MAP for HyPD’s system performance evaluation heretofore.

C. HyPD’s System Performance

This section presents HyPD’s end-to-end system performance, comparing head-to-head against

SCL decoders, in both known partial statistical CSI and unknown CSI scenarios at the receiver.

Figures 13, 14, and 15 report these results.

25

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0
SNR (dB)

10−5

10−4

10−3

10−2

10−1

100

B
E

R

Uncoded
SC
SCL (Ls = 8)
HyPD (NL = NSF = 8)
SCL (Ls = 128)

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0
SNR (dB)

10−4

10−3

10−2

10−1

100

B
L

E
R

Uncoded
SC
SCL (Ls = 8)
HyPD (NL = NSF = 8)
SCL (Ls = 128)

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0
SNR (dB)

10−3

10−2

10−1

100

FE
R

Uncoded
SC
SCL (Ls = 8)
HyPD (NL = NSF = 8)
SCL (Ls = 128)

Figure 13: HyPD’s end-to-end system performance when partial statistical CSI is known at the

receiver, in Rayleigh fading channels. Ls is SCL decoder’s list size, NL and NSF are HyPD’s

sub-block size and number of solutions fed back respectively. (Right) Frame size is 1500 bytes.

1) Error Performance: In Fig. 13 (Left), we first investigate how HyPD’s end-to-end BER

behaves as the wireless channel SNR varies when partial statistical CSI is known at the receiver

(§IV-B4). At regions of channel SNRs less than −1 dB, HyPD’s BER barely lags behind that of

SCL(8) decoder. As we meet SNRs greater than −1 dB, we observe HyPD’s BER curve drops

down, outperforming SCL(8) decoder by half an order of BER magnitude at 1 dB SNR. This

performance improvement of HyPD is a result of QPD exploring all 2NL decoding paths within

each sub-block. We next see in Fig. 13 (Middle) the BLER performance of HyPD in the same

scenarios. The figure shows that at SNR 1 dB, HyPD achieves nearly an order of magnitude

lower BLER than that of SCL(8), indicating that majority of bit errors HyPD experienced are

distributed across a minority of code blocks. We next see in Fig. 13 (Right) the FER performance

at a frame size of 1,500 bytes (i.e., 11 blocks per frame). The figure shows that at 1 dB SNR,

HyPD achieves a 99.1% frame delivery rate whereas SCL(8) achieves only 95.5%. In all the

plots, SCL(128) curves are shown for reference, which is algorithmically more rigorous than

HyPD when NL = NSF = 8. We next investigate how HyPD performs when CSI is unknown at

the receiver, in Fig. 14, along the same error performance metrics. Fig. 14 (Left) depicts BER

performance, showing that SC and SCL decoders achieve almost similar performance as that of

known CSI scenario, and the performance gap between HyPD and SCL(8) is barely decreased

at all SNRs (cf. Fig. 13). A similar analogy can be observed in Figs. 14 (Middle, Right) as well.

2) Timing Analysis: We now analyze QA compute time, describing current technology points

and predicted future with increased QA qubit counts.

26

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0
SNR (dB)

10−5

10−4

10−3

10−2

10−1

100

B
E

R

Uncoded
SC
SCL (Ls = 8)
HyPD (NL = NSF = 8)
SCL (Ls = 128)

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0
SNR (dB)

10−4

10−3

10−2

10−1

100

B
L

E
R

Uncoded
SC
SCL (Ls = 8)
HyPD (NL = NSF = 8)
SCL (Ls = 128)

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0
SNR (dB)

10−3

10−2

10−1

100

FE
R

Uncoded
SC
SCL (Ls = 8)
HyPD (NL = NSF = 8)
SCL (Ls = 128)

Figure 14: HyPD’s end-to-end system performance when CSI is unknown at the receiver, in

Rayleigh fading channels. Ls is SCL decoder’s list size, NL and NSF are HyPD’s sub-block

size and number of solutions fed back respectively. (Right) Frame size is 1500 bytes.

We first measure time-to-solution (TTS), the time required to reach the ground state of input

problem. Since QA is probabilistic in nature, TTS(P) can be used to understand the time required

to reach the minimum energy solution with a target probability P . It is computed as [30]:

TTS(P) = Ta · log(1− P)/log(1− P1) (19)

where Ta is the annealing time and P1 is the probability of R1, the minimum energy solution.

The factor log(1−P)/log(1−P1) indicates the number of repetitions/anneals required to reach

the desired success probability P. If Pf problems are solved in parallel, then the effective TTS

is reduced by a parallelization factor Pf . In current QA devices with 5K qubits, eight QPD

problems can be parallelized (Pf = 8), whereas the projected parallelization in near-term future

QA devices with 14K, 35K, and 70K qubits is 20, 50, and 100 respectively.

In Fig. 15 (Left), we see TTS(99%) performance of QPD with Ta = 1 µs. The figure shows

that TTS scales proportionally with sub-block’s coding rate, reaching a worst-case 70 µs for

sub-blocks with a 1.0 coding rate (Pf = 8). This is because at high coding rates, R1 solution

probability is low (§VI-B). With Pf = 100, this worst-case TTS reaches to 5.6 µs. We further

note that TTS at coding rate of 1/8 deviates from the trend. This is because at very low coding

rates, the energy gap between the minimum energy solution and the rest becomes significantly

low, making it difficult for the QA to distinguish the minimum energy solution. To overcome

this issue, either QAC with NQAC < 8 or finer coefficient settings may be employed to relax

the effect of embedding chains–we leave for future work.

27

Figure 15: HyPD’s timing analysis. The boxes’ lower/upper whiskers and quartiles are 10th/90th

and 25th/75th percentiles respectively. Line trends show averages, and Pf is parallelization factor.

While TTS shows the time required to reach the ground state of an input problem, it does

not capture the effect of bit errors the ground state may have. Therefore, we next measure the

compute time (Tc) required to reach a certain BER target. It is computed as:

Tc =
1

Pf

Nsub∑
i=1

(Ta)i × (Na)i (20)

where Nsub is the number of sub-blocks, (Ta)i and (Na)i are annealing time and number of

anneals of the ith sub-block respectively. For this evaluation, we set a target BER value in

Eq. 15 and then calculate back Na and obtain Tc. Sub-blocks with only frozen bits do not

contribute to the total compute time. Fig. 15 (Right) depicts HyPD’s compute time requirements

at SNR 1 dB, showing that higher compute times achieve lower BER. For a target BER of 10−4,

compute time required is 250 µs (Pf = 8). With Pf = 100, this time reduces to 20 µs.

3) Throughput considerations: HyPD solves eight eight-bit sub-blocks (i.e., NL = Pf = 8) in

1 µs annealing time, which means that the best case achievable throughput on current QAs is 64

Mbps only, which is well behind the achievable throughput on classical compute devices where

SCL decoders with up to 4–5 Gbps throughputs have been demonstrated [31]. However, this

throughput limitation on current QAs is not fundamental, and can be increased several orders

of magnitude with faster anneal times, increased qubit counts, better qubit connectivity, among

others [11], [32]. While these advancements are underway, we next demonstrate an ideal QA

hardware connectivity structure for Polar codes, which with 107 qubits and 1 µs annealing time

can achieve throughputs up to 524×R Gbps, where R is coding rate.

28

0

1

2

3

4

5

6

7
8

9

10

11

12

13
14

15

16

17

18
19

20
21

22

23

24
25

26
27

28

29

30

31

(a) N = 8 bits. (b) N = 16 bits. (c) N = 32 bits. (d) N = 64 bits.

Figure 16: QPD-HW: Quantum Polar Decoder’s Hardware qubit connectivity design for

decoding Polar codes. Nodes and edges represent qubits and couplers respectively.

VII. QPD-HW HARDWARE DESIGN

In this section, we propose an ideal QA hardware structure tailored to the task of decoding

Polar codes (QPD-HW). The motivation for this section stems from the challenges existing

in current hardware implementation such as the need to boost decoder throughput (§VI-C3),

circumvent embedding (§II-0d), and reduce hardware resource usage to mitigate ICE noise (§V).

The requirement of embedding is a major impediment to leveraging the QA technology for

practical applications because of mapping difficulties. The problem of embedding arises because

of the lack of all-to-all qubit connectivity in the QA hardware. While such an all-to-all qubit

connectivity is desired for natively encoding generic problem graphs, near-term engineering

considerations allow for scaling the QA hardware with local qubit connectivities. In this section,

we envision a scenario where near-term quantum hardware is tailored for specific problem needs,

where a part of qubit connectivity is dedicated for wireless community, for decoding Polar codes.

An ideal hardware structure that circumvents the requirement of embedding is the connectivity

graph of the QUBO (i.e., the graph of Eq. 6). We next demonstrate this connectivity which may be

of interest for QPD-HW engineering considerations. Fig. 16 shows the connectivity structure of

the QPD’s QUBO design at various Polar code block lengths. In particular, nodes in the figure

represent variables in Eq. 6, and edges represent the quadratic terms of Eq. 6. These nodes

and edges then constitute qubits and couplers respectively in the proposed hardware design. In

Fig. 16(a), we see QPD’s qubit connectivity in a Polar code of block length eight bits. This

code requires a total of 32 qubits, with several four-cliques. Looking at Eq. 7, we see that the

connectivity of these four-cliques mirrors the connectivity of QPD’s Node constraints. Since

QPD’s QUBO formulation is the exact representation of the Polar encoder binary tree structure,

the proposed hardware also scales with the features of a perfect binary tree as follows:

29

a) Flexible support for block lengths: Since the children of a node in a perfect binary

tree are also perfect binary trees, QPD-HW for a code of block length 2d bits can be used to

solve 2k independent codes of block length 2d−k bits, in parallel. For example, Fig. 16(b) shows

QPD-HW for 16-bit codes, can also be used to solve two 8-bit codes in parallel. This is because

two copies of Fig. 16(a) are present in Fig. 16(b) as independent subgraphs.

b) Flexible support for coding rates: A varying coding rate affects only the Frozen con-

straints of the QPD. Since the Frozen constraints do not introduce quadratic terms into the

objective QUBO (§IV), the proposed hardware allows decoding of various coding rates.

c) Connectivity features: The proposed hardware qubit connectivity is highly sparse. In the

proposed hardware, the number of couplers per qubit, for a code of block length 2d bits, takes all

values in positive integer multiples of three with a maximum value of 3d. For instance, observe

in Fig. 16(a) that the number of couplers per qubit takes values in {3, 6, 9} only. Further, if Nk

is number of qubits with 3k edges (k ∈ [1, d]), then Nd = 4, Nd−1 = 8, and Nk = 2Nk+1+2d−k

(k ∈ [1, d − 2]). For instance, observe in Fig. 16(a) that the number of qubits with {3, 6, 9}
edges is {20, 8, 4} respectively. To decode a Polar code of block length 2d bits, the proposed

hardware requires (d+1)×2d qubits and 3d×2d couplers. This implies that with 1 µs annealing

time and 104, 105, 106, 107 qubits, the proposed hardware can achieve processing throughputs

up to 0.12, 1.02, 65.5, 524 × R Gbps respectively, where R is the coding rate. State-of-the-art

D-Wave QA hardware has 5,627 qubits and 40,279 couplers, and so supports decoding Polar

codes of block lengths up to 27 bits. While these block lengths are of useful sizes employed in

the 5G-NR standard (25–210 bits) [29], if QA designers were to reconnect the currently available

qubits and couplers to form our proposed QPD-HW structure, Polar codes of block lengths up

to 29 bits may be feasbily decoded in the near term.

VIII. RELATED WORK

Polar codes’ fundamental construction and properties are well studied [33]–[35] and though

proven in theory to be capacity-achieving [1], their use is limited to short block lengths due to

their computationally-complex decoding algorithms. Several studies to this end have proposed

efficient decoder architectures based on the inferior SC algorithm [8], [36], whereas HyPD

compares favorably in performance (§VI) against the superior SCL decoding algorithm. Recon-

figurable decoders for LDPC and Polar codes also exist [37]–[39]: in this class of decoders,

belief propagation and SC decoding perform similarly [38]. Further studies provide insights into

30

the comparison of Polar codes with other capacity achieving codes [40], [41], where [40] shows

Polar codes outperform LDPC codes, and [41] shows that Polar codes decoded via the SCL

algorithm match the performance of that of LDPC and Turbo codes.

QA machines have been recently used to successfully optimize wireless communication prob-

lems [17], [42]–[45]. Quantum Gate-based approaches are also being widely investigated, wherein

quantum approximate optimization algorithm (QAOA), quantum search methods, and syndrome-

based decoding schemes have been proposed [46]–[48]. A holistic cost and power feasibility

analysis of QA-based wireless communications is conducted in [11]. Some of the prior work

[17] studies QA-based LDPC decoding towards formulating a QUBO problem with a customized

embedding scheme. However, the embedding design studied in Ref. [17] is applicable only to

(2,3)-regular LDPC codes and not to Polar codes. Further, the embedding scheme presented

in Ref. [17] does not generalize to higher LDPC check bit degrees. As a result, these studies

will lose efficiency in their embeddings when their QUBO designs are employed for other code

parameters. QPD instead proposes a QUBO design that can be mapped on to QA hardware

for various code rates and block lengths flexibly, via QPD-MAP, and also enables a novel QA

hardware structure, QPD-HW, that circumvents the requirement of embedding altogether, thus

significantly advancing the state-of-the-art over prior work.

IX. CONCLUSION

HyPD leverages classical and quantum annealing computational structures for decoding Polar

codes, proposing a fresh QA based design and evaluating it experimentally on real leading-edge

QA hardware. Our studies demonstrate the practical challenges today in using such devices. We

further present a customized problem mapping scheme on current hardware, and propose an

ideal QA hardware structure that is sparse, flexible under different code rates and block lengths,

and inherently meshes with the Polar code’s binary tree construction. The ideas we propose here

may inform NextG wireless networks and in the more distant future enable applicability of long

Polar codes in practical protocol standards.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation under Grant

No. CNS-1824357. KJ and SK gratefully acknowledge a gift from the InterDigital Corporation

that helped support this work.

31

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input

memoryless channels,” IEEE Transactions on information Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

[2] E. Şaşoğlu, E. Telatar, and E. Arikan, “Polarization for arbitrary discrete memoryless channels,” in 2009 IEEE

Information Theory Workshop, pp. 144–148.

[3] A. Eslami and H. Pishro-Nik, “On bit error rate performance of Polar codes in finite regime,” in 2010 48th Annual

Allerton Conference on Communication, Control, and Computing (Allerton), pp. 188–194.

[4] R. Gallager, “Low-density parity-check codes,” IRE Transactions on Information Theory, vol. 8, no. 1, pp. 21–28, 1962.

[5] E. Arikan, N. ul Hassan, M. Lentmaier, G. Montorsi, and J. Sayir, “Challenges and some new directions in channel

coding,” Journal of Communications and Networks, vol. 17, no. 4, pp. 328–338, 2015.

[6] E. Şaşoğlu, “Polar coding theorems for discrete systems,” Ph.D. dissertation, EPFL, Lausanne, Switzerland, 2011.

[7] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. on Info. Theory, vol. 61, no. 5, pp. 2213–2226, 2015.

[8] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel successive-cancellation decoder for Polar

codes,” IEEE Transactions on Signal Processing, vol. 61, no. 2, pp. 289–299, 2013.

[9] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,”

IEEE Communications Magazine, vol. 52, no. 2, pp. 74–80, 2014.

[10] P. Yang, Y. Xiao, M. Xiao, and S. Li, “6G wireless communications: Vision and potential techniques,” IEEE Network,

vol. 33, no. 4, pp. 70–75, 2019.

[11] S. Kasi, P. Warburton, J. Kaewell, and K. Jamieson, “A cost and power feasibility analysis of quantum annealing for

NextG cellular wireless networks,” arXiv preprint arXiv:2109.01465, 2021.

[12] D-Wave Systems User Manual, “Technical description of the D-Wave Quantum Processing Unit,” pp. 09–1109A–O, 2019.

[13] 3GPP TSG-RAN WG1 #88 R1-1703106. Nokia, Alcatel-Lucent Shanghai Bell, “Polar design for control channels,” 2017.

[14] D-Wave, “D-Wave QPU Architecture: Topologies,” Website, 2021.

[15] C. Baldassi and R. Zecchina, “Efficiency of quantum versus classical annealing in non-convex learning problems,”

Proceedings of the National Academy of Sciences, vol. 115, no. 7, pp. 1457–1462, 2018.

[16] C. C. McGeoch, “Adiabatic quantum computation and quantum annealing: Theory and practice,” Synthesis Lectures on

Quantum Computing, vol. 5, no. 2, pp. 1–93, 2014.

[17] S. Kasi and K. Jamieson, “Towards Quantum Belief Propagation for LDPC Decoding in Wireless Networks,” in

Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, 2020, pp. 1–14.

[18] Y. Susa, Y. Yamashiro, M. Yamamoto, and H. Nishimori, “Exponential speedup of quantum annealing by

inhomogeneous driving of the transverse field,” Journal of the Physical Society of Japan, vol. 87, no. 2, p. 023002, 2018.

[19] S. Mukherjee and B. K. Chakrabarti, “Multivariable optimization: Quantum annealing and computation,” The European

Physical Journal Special Topics, vol. 224, no. 1, pp. 17–24, 2015.

[20] L. Xiang, Y. Liu, Z. B. K. Egilmez, R. G. Maunder, L.-L. Yang, and L. Hanzo, “Soft list decoding of polar codes,” IEEE

Transactions on Vehicular Technology, vol. 69, no. 11, pp. 13 921–13 926, 2020.

[21] J. Hagenauer, “The exit chart-introduction to extrinsic information transfer in iterative processing,” in 2004 12th

European Signal Processing Conference. IEEE, 2004, pp. 1541–1548.

[22] L. O. Espluga, M. Aubault-Roudier, C. Poulliat, M. L. Boucheret, H. Al-Bitar, and P. Closas, “LLR approximation for

fading channels using a bayesian approach,” IEEE Communications letters, vol. 24, no. 6, pp. 1244–1248, 2020.

[23] G. Hosoya, M. Hasegawa, and H. Yashima, “LLR calculation for iterative decoding on fading channels using padé

approximation,” in 2012 International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–6.

32

[24] J. M. Arrazola, A. Delgado, B. R. Bardhan, and S. Lloyd, “Quantum-inspired algorithms in practice,” arXiv preprint

arXiv:1905.10415, 2019.

[25] K. L. Pudenz, T. Albash, and D. A. Lidar, “Error-corrected quantum annealing with hundreds of qubits,” Nature

communications, vol. 5, no. 1, pp. 1–10, 2014.

[26] D-Wave, “D-Wave Problem Solving Handbook,” Github, 2018.

[27] J. E. Dorband, “Extending the D-Wave with support for higher precision coefficients,” arXiv preprint:1807.05244, 2018.

[28] D-Wave, “D-Wave minorminer Embedding Tool,” Github, 2018.

[29] 3rd Generation Partnership Project (3GPP), “Multiplexing and channel coding,” 38.212, vol. V.15.3.0, 2018.

[30] T. Albash and D. A. Lidar, “Demonstration of a scaling advantage for a quantum annealer over simulated annealing,”

Physical Review X, vol. 8, no. 3, p. 031016, 2018.

[31] Y. Tao, S.-G. Cho, and Z. Zhang, “A configurable successive-cancellation list polar decoder using split-tree architecture,”

IEEE Journal of Solid-State Circuits, vol. 56, no. 2, pp. 612–623, 2020.

[32] A. D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A. J. Berkley, S. Ejtemaee, E. Hoskinson,

S. Huang et al., “Coherent quantum annealing in a programmable 2,000 qubit ising chain,” Nature Physics, 2022.

[33] R. Wang and R. Liu, “A novel puncturing scheme for Polar codes,” IEEE Communications Letters, 2014.

[34] R. Pedarsani, S. H. Hassani, I. Tal, and E. Telatar, “On the construction of Polar codes,” in 2011 IEEE International

Symposium on Information Theory Proceedings, 2011, pp. 11–15.

[35] K. Niu, K. Chen, and J.-R. Lin, “Beyond Turbo codes: Rate-compatible punctured Polar codes,” in 2013 IEEE

International Conference on Communications (ICC), 2013, pp. 3423–3427.

[36] O. Dizdar and E. Arıkan, “A high-throughput energy-efficient implementation of successive cancellation decoder for

Polar codes using combinational logic,” IEEE Transactions on Circuits and Systems I: Regular Papers, 2016.

[37] T. Lin, S. Cao, S. Zhang, S. Xu, and C. Zhang, “A reconfigurable decoder for standard-compatible LDPC codes and

Polar codes,” in 2019 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). IEEE, 2019, pp. 73–76.

[38] W. Xu, X. Tan, Y. Be’ery, Y.-L. Ueng, Y. Huang, X. You, and C. Zhang, “Deep learning-aided belief propagation

decoder for Polar codes,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020.

[39] N. Yang, S. Jing, A. Yu, X. Liang, Z. Zhang, X. You, and C. Zhang, “Reconfigurable decoder for LDPC and Polar

codes,” in 2018 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2018, pp. 1–5.

[40] B. Tahir, S. Schwarz, and M. Rupp, “BER comparison between Convolutional, Turbo, LDPC, and Polar codes,” in 24th

International Conference on Telecommunications (ICT), 2017, pp. 1–7.

[41] A. Balatsoukas-Stimming, P. Giard, and A. Burg, “Comparison of Polar decoders with existing Low-density parity-check

and Turbo decoders,” in 2017 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), 2017.

[42] N. Ide, T. Asayama, H. Ueno, and M. Ohzeki, “Maximum likelihood channel decoding with quantum annealing

machine,” in 2020 International Symposium on Information Theory and Its Applications (ISITA), 2020, pp. 91–95.

[43] M. Kim, D. Venturelli, and K. Jamieson, “Leveraging Quantum Annealing for Large MIMO Processing in Centralized

Radio Access Networks,” in Proceedings of the ACM Special Interest Group on Data Communication, 2019.

[44] Z. Bian, F. Chudak, R. Israel, B. Lackey, W. G. Macready, and A. Roy, “Discrete optimization using quantum annealing

on sparse Ising models,” Frontiers in Physics, vol. 2, p. 56, 2014.

[45] S. Kasi, J. Kaewell, and K. Jamieson, “The design and implementation of a hybrid classical-quantum annealing polar

decoder,” in GLOBECOM 2022 - 2022 IEEE Global Communications Conference, 2022, pp. 5819–5825.

[46] T. Matsumine, T. Koike-Akino, and Y. Wang, “Channel decoding with quantum approximate optimization algorithm,” in

2019 IEEE International Symposium on Information Theory (ISIT). IEEE, 2019, pp. 2574–2578.

33

[47] Z. Babar, Z. B. Kaykac Egilmez, L. Xiang, D. Chandra, R. G. Maunder, S. X. Ng, and L. Hanzo, “Polar codes and their

quantum-domain counterparts,” IEEE Communications Surveys & Tutorials, vol. 22, no. 1, pp. 123–155, 2020.

[48] C.-Y. Lai, K.-Y. Kuo, and B.-J. Liao, “Syndrome decoding by quantum approximate optimization,” arXiv preprint

arXiv:2207.05942, 2022.

