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ABSTRACT

Exploiting (near-)optimal MIMO signal processing algorithms
in the next generation (NextG) cellular systems holds great
promise in achieving significant wireless performance gains
in spectral efficiency and device connectivity, to name a few.
However, it is extremely difficult to enable optimal process-
ing methods in the systems, since the required computational
amount increases exponentially with more users and higher
data rates, while available processing time is strictly limited. In
this regard, quantum signal processing has been recently iden-
tified as a promising potential enabler of the (near-)optimal
algorithms in the systems, since quantum computing could
dramatically speed up the computation via non-conventional
effects based on quantum mechanics. Given existing quantum
decoherence and noise on quantum hardware, parallel quan-
tum optimization could accelerate the process even further at
the expense of more qubit usage. In this paper, we discuss the
parallelization of quantum MIMO processing and investigate
a spin-level preprocessing method for relatively finer-grained
decomposition that can support more flexible parallel quantum
signal processing, compared to the recently reported symbol-
level decomposition method. We evaluate the method on the
state-of-the-art analog D-Wave Advantage quantum processor.

Index Terms— Quantum MIMO Processing, Parallel
Quantum Annealing, Problem Decomposition

1. INTRODUCTION

One of the representative challenging processing jobs in the
physical layer (PHY) of wireless systems is multi-user (MU)
precoding and decoding at Multiple-Input Multiple-Output
(MIMO) base station systems. The precoding and decoding
are dual techniques to enable parallel streams to service mul-
tiple users concurrently on a single time-frequency resource,
in downlink and uplink, respectively. As the MIMO dimen-
sion increases (i.e., larger parallel streams), significant gains
in spectral efficiency or connectivity become achievable effi-
ciently, and therefore MU-MIMO becomes an essential block
in NextG wireless systems. However, these techniques start
to suffer from the trade-off between linear sub-optimal pro-
cessing versus non-linear (near-)optimal processing when the
wireless systems aim larger MIMO dimensions for the NextG
performance, for the following reasons.

Linear processing is a MIMO signal processing method
that is deployed in the current systems due to its straightfor-
ward implementation and low computational complexity [1,
2, 3]. While its precoding and decoding performance is sub-

optimal, even linear methods like Minimum Mean Square Er-
ror (MMSE) can achieve the near-optimal performance, when
a base station (BS) equipped with many antennas (also known
as massive MIMO base station systems) serves relatively small
number of users at a time (e.g., 8 X 64 MIMO; 8 users and
64 base station antennas). However, this required high ratio
between BS antenna counts and user counts is becoming a lim-
iting factor to large MIMO dimensions that are desirable for
the NextG performances, since the number of parallel streams
is decided by the number of concurrently served users. With
given BS antenna counts, merely increasing MIMO dimen-
sions to serve more users will cause severely high error rates
with sub-optimal linear processing algorithms [4, 5].

Maximum Likelihood (ML) processing can improve the
precoding and decoding performance significantly for large
MIMO dimensions even when user counts approach to BS
antenna counts (i.e., towards maximum MIMO dimensions).
ML processing is the best possible method which guarantees
theoretically optimal performance in terms of the minimum
error rates. However, its required computational amount
increases at an exponential rate both with the number of the
concurrently serviced users and with data rate of each user.
Thus, it is challenging to enable the ML processing for large
MIMO dimensions in current wireless systems, where both
computing resources and allowed processing time are limited.

Quantum-Accelerated MIMO ML Processing. Recently,
quantum computing has been identified as a promising poten-
tial enabler of fast near-ML processing in MIMO wireless sys-
tems with its great acceleration potential via non-conventional
computation based on quantum mechanics [6, 7, 8, 9, 10, 11].
On current and near-future quantum hardware, users can uti-
lize only limited quantum fluctuations due to existing quantum
decoherence and noise. Thus, how to make use of given lim-
ited quantum fluctuations to solve hard optimization problems
is an important challenge. In this regard, parallel quantum
optimization could be a promising strategy, accelerating the
process even further at the expense of more qubit usage. While
recent work reports parallel quantum ML processing based on
the user symbol decomposition [12], it supports rather inflexi-
ble parallelism, since it uses a coarse-grained decomposition
method based on wireless symbols that depend on the mod-
ulation size. In this work, we investigate a binary spin-level
decomposition method, exploiting quantum input Ising models,
for relatively finer-grained decomposition in order to support
more flexibly parallel quantum ML processing whose available
parallelism is not affected by the modulation.



2. BACKGROUND: QUANTUM ANNEALING

Quantum computing is a new type of computing method based
on quantum mechanics. While there are several models of
quantum computers that are available, this paper focuses on
quantum annealing machines [13, 14, 15] due to the sufficient
available qubit counts for real-world application experiments.
Quantum annealers are analog heuristic optimizer machines
that leverage quantum annealing (QA) algorithms based on
quantum effects like quantum tunneling [16] in order to tra-
verse all possible states among search space of input optimiza-
tion problems (from an initial quantum superposition state)
and thus to find their ground states (i.e. the state corresponding
to global optimum) at the end of computation in ideal cases.
Currently, QA solves only a certain type of combinatorial
optimization problems called Ising Models whose variables
are spins with each of spin s; either -1 or +1 (i.e., binary).
The objective function consists of only linear and quadratic
terms, and the goal of the model is to find the spin vector (or

configuration) consisting of Ny spins, or s = {s1,...,5n, }
that minimizes the cost function called Ising energy E:
Ny
E({Sl,-u’SNV})=ZM(i,j)SiSj~ (1)

i<j

M e RN¥VXNV is an upper triangular matrix whose elements
are Ising coefficients that represent input optimization prob-
lems. On QA devices, non-diagonal coefficients g;; are (anti-
)ferromagnetic couplings that indicate a preference of corre-
lation between ' and j* spins (i.e., on sis; = x1), while
diagonal coefficients f; are local magnetic fields that indicate
each spin’s preference on s; = +1.

3. QAML: QA FOR MIMO ML PROCESSING

When a base station with N, antennas serves N, users simul-
taneously, wireless signal that the base station receives from
the served users can be expressed asy = Hv+n € CNr, where
H e CNr*Nt ig a channel matrix, v € OM is a transmitted
signal from users with O being all possible modulation sym-
bols per user, and n € CNr is an AWGN vector. Since the
base station does not have knowledge on each component
in y, it needs to estimate the signal v (ideally v = V) based
on the perturbed received signal y and estimated H through
pilot symbols. This signal processing is uplink MU-MIMO
decoding or detection, while downlink MU-MIMO precoding
is a dual technique of this [17]. Assuming H = H, Maximum
Likelihood (ML) formulation to acquire the best estimated V is

¥ =arg min |ly — Hv]|]?. 2)
veONt

The ML processing obtains theoretically optimal solutions,
but becoming prohibitive for larger N; and/or |O|, due to the
exponentially increasing amount of computation, with |O|
being the modulation size. QA could potentially accelerate
the computation required for ML processing [11]. In order to
solve the ML equation using QA, the ML form (Eq. 2) needs
to be translated into the equivalent Ising model (Eq. 1) that is
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Fig. 1: QAML’s bit error rate performance of 64-user BPSK
MIMO detection, comparing with MMSE. In the tested
QAML, each anneal (sampling) takes 2 us.

a programmable form on the hardware. After replacing each
symbol v € O in the objective function of Eq. 2 (each element
of v) with a symbol-spin(s) linear mapping expression (e.g.,
ref [7]), the norm expansion will result in an equivalent Ising
model whose ground state corresponds to the ML solution.
The required Ny is N;log>(|O)).

The next step is to program the model coefficients f; and
gij on the quantum annealer and then the system can run a QA
algorithm to solve the problem in a typical way of probabilistic
heuristic optimization blackboxes, where each anneal results
in a solution candidate or a sample. Typically, multiple anneals
are conducted per system run to collect multiple samples, and
the best sample with the lowest cost E(s) is selected as the
final solution. In this paper, we call this series of QA-related
processing for ML optimization, ‘QAML’. Figure 1 compares
Bit Error Rate (BER) performance of MIMO QAML detection
with MMSE for different N, and SNRs. The figure shows that
while the linear MMSE results in poor BER, QAML’s BER
converges to the optimal ML performance as more samples
are collected, showing some promise of the QAML approach.
However, note that there exist many unresolved issues on
practical (parallel) QAML which will not be discussed in
this paper (but available in the references). Similar physics-
inspired computing approaches are available in [18, 4, 19, 20].

4. QAML PARALLELIZATION

With the trend of exponentially increasing qubit counts on
QA devices, parallelizing QA optimization will become more
and more important to make better use of increasing qubits
and thus accelerate overall optimization process. However,
how to make use of extra qubits for task parallelism in QA
optimization (cf. data parallelism) is an open question which
has not been often discussed and studied so far.

Same Instance Multi-Programming Approach. One of the
most straightforward methods of QA parallelization is to pro-
gram the same (QAML) Ising problem onto hardware multiple
times to collect more samples per anneal call [21]. Considering
that QA processing is a probabilistic technique, more collected
samples are favorable to ensure that the global optimum ML
sample is collected at least once, since only the best anneal
result among them will be filtered at the end.
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(b) Example impact on 1 X 1 QPSK MIMO detection.

Fig. 2: Ising search decomposition. By fully expanding hard
variables, sub-problems are formulated. Only one of them
retains the ground state of the original problem, but each of
them is generally easier to solve than the original one.

Search/Problem Decomposition Approach. Decomposition
methods split a ML Ising problem into multiple different
sub-problems that can be processed in parallel. Recent
work [12] reports parallel QAML based on a decompo-
sition that is inspired from the conventional parallel tree
search algorithm [22]. However, since its decomposition
is based on a symbol v € O, the algorithm can support
only rather coarse-grained decomposition that depends on
the modulation O, which limits parallelism flexibility of
QAML. The symbol-decomposed method for QAML re-
quires [(NV —10g2(|O|)Nys) - |()|Nf3'] spin variables (or
logical qubits) for fully-parallel processing, where Ny, is the
controllable number of fully-expanded user symbols.

5. SPIN-BASED ISING SEARCH DECOMPOSITION

We investigate a spin-based Ising search decomposition, which
is a classical preprocessing module for the following QAML
processing. By leveraging binary spin variables in generated
Ising forms (instead of wireless symbols) for decomposition,
the method can support relatively finer-grained decomposi-
tion than the symbol-based decomposition method for parallel
QAML. For example, with 16-QAM, the symbol-based decom-

position supports 16, 162, 16, - - - (power of modulation size)
parallelism for fully parallel processing, while Ising search de-
composition supports 2, 22,23, - - - (power of two) parallelism,

regardless of the modulation, which implies more flexible par-
allelization. Table 1 shows the comparisons for the required
physical qubit counts for fully parallel QPSK MIMO QAML
on the Pegasus-topology QA hardware [15].

Table 1: The required numbers of physical qubits for fully
parallel QAML processing for 16x16 QPSK MIMO are shown,
considering the limited connectivity on the annealer hardware
to program fully-connected (Vg;; # 0) ML Ising forms.

Decom. Method & Level
(Spin-based) Nps: 0/1/2/3/4
(Symbol-based) Nys:0/1/2/3/4

Required Qubits
154/300/456 /880 /1,696
154 /456 /1,696 /6,272 /23,040

For parallel QAML processing, a system decomposes a
ML Ising model into multiple sub-Ising forms by prefixing
the hard spin variables. The resulted sub-Ising forms with
updated M’ (with reduced variable counts) can be explored
simultaneously using parallel QAML. In order to retain the
unknown ground state (ML Sol.), each prefixed spin s; has to
be divided into both s; = +1 and s; = —1 (full expansions) as
shown in Figure 2(a). Each of the generated sub-problems is
generally a easier problem compared to the original one, while
only one of them holds the original ground state.

The underlying principle of potential optimization im-
provements in the decomposition-based parallel QAML (other
than reduced variable counts) is that each spin variable has
different impacts on E. With a toy example of 1 X 1 QPSK
in Figure 2(b), where spin s; corresponds to symbol’s I-plane
(x-axis), while spin s, to symbol’s Q-plane (y-axis), let us
assume the received signal y is near x-axis and far from y-axis.
In this case, while the different s; values (s; = +1 vs. 51 = —1)
lead to large E gaps (i.e., E(—1, s2) vs. E(1, s2)), the different
so values lead to small E gaps (i.e., E(s1,—1) vs. E(s1,1)). In
other words, spin s is an intuitively harder detection variable
for QAML. If the system can choose s; as a difficult variable
based on the input M, it can prefix its value into +1 and —1 for
the decomposition, resulting in two Ising forms (only with the
s1 spin) that now have large gaps between E (1) and E(—1)
(like two problems with BPSK modulation). For both Ising
forms, the solver will likely choose s; = 1 as the solution
relatively easily, which implies that the samples with prefixed
s considered will be s = {1, 1} from one sub-problem and {1,
—1} from the other. Based on the original M, the former that
has lower E will be selected as the final solution.

Now we describe the proposed algorithm of Ising search
decomposition. Since it is generally observed that the values
of diagonal elements | f;| are larger than non-diagonal elements
|gij| in Eq. 1 of ML [7], we assume the diagonal elements are
more important factors that decide the impact on E. First, with
My, xny, formed, the system chooses the most difficult spin
variable to detect (s; with 1 < i < Ny) with min| f;|. Second,

the system prefixes the selected s; into one with s; = +1

and the other with s; = —1, as a full expansion. Then, two

different updated M’ ,, _,, are formed. For the further
(Ny-1)x(Ny-1)

decomposition, s; (1 < i < Ny — 1) is chosen as the most
difficult spin variable between two decomposed Ising forms
using the ratio between min| f;| and max|f;|. This process
iterates for Npg times, with Npg the controllable number of
fully-expanded variables for the decomposition, resulting in
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Fig. 3: Impact of Ising search decomposition on parallel
QAML with various decomposition levels. In general, further
decomposition and parallelism (higher Npg) leads to better
QAML result distribution, while more qubits are required.

2Nps sub-Ising forms. After the decomposition, the generated
sub-Ising forms can be solved by QAML in parallel (i.e., 2VPs
parallelism), requiring (Ny — Npg) - 2P spin variables for
fully-parallel processing.

6. PRELIMINARY EXPERIMENTS

We evaluate the impact of spin-based Ising search decom-
position on parallel QAML on the state-of-the-art quantum
annealer (D-Wave Advantage [15]) with standard forward an-
nealing schedule. We collect 5,000 anneal samples per setting
with relatively-small a few tens of instances. For the purpose
of heuristics analysis, we focus on a sub-Ising form that con-
tains the original global optimum among 2™VPS sub-problems.
To test largely parallel problems (e.g., ones with high Npg),
separate anneal cycles are used to mimic parallel processing
and its performance, since the current QA hardware has limited
qubit counts for high-scale parallelism.

We first test parallel QAML processing for 32 x 32 MIMO
detection (SNR 20 dB) with QPSK, varying Ising search de-
composition levels (Npg). Figure 3(a) plots CDF of resulted
anneal samples across their corresponding E normalized by
the absolute global optimum cost, where -1.0 denotes the ML
solution. It is observed that as more decomposition levels are
applied, the following QAML generally results in samples that
are closer to the global optimum (i.e., better anneal quality).

Next, we microbenchmark parallel QAML for 16 X 16
MIMO detection (SNR 20 dB) with QPSK, comparing the
spin-based decomposition against the symbol-based one using
the probability of achieving ML solution per anneal or P,y .
This metric is directly related to the required time-to-solution
or TTS (i.e., higher Py requires less compute time for near-
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Fig. 4: Microbenchmark of parallel QAML with Py across
parallelism with different decomposition methods. While plain
lines report mean, symbols do instances. Shadings highlight
additionally available parallelism in the spin decomposition.

optimal QAML performance), while we leave comprehensive
TTS evaluations for our future extended work, since different
preprocessing times also need to be considered for overall com-
pute times. Figure 4 shows Pj;;, across applied parallelism.
We observe that the spin-based method can support relatively
finer-grained decomposition making some unavailable paral-
lelism numbers in the symbol-based method available. This
can be further highlighted when with higher-order modulations
like 16- or 64-QAM (e.g., 1,2,4,8, --- vs. 1, 64,4096, - - -).
Considering the limited qubit count on the hardware (while
it keeps increasing), supporting more flexibly parallel QAML
will be a good benefit, to further accelerate QAML processing
efficiently, although P,y improvements across parallelism are
not clearly observed with these tested instances in Figure 4,
probably due to the heuristic nature of QA and rather small
tested instances and parallelism.

Lastly, we also test 16-QAM MIMO parallel QAML with
a hybrid QA algorithm [8] with 20 instances (SNR 16 dB).
Figure 3(b) reports average occurrences for solution ranks (or-
dered by E) for different BS antenna counts and various Npg,
where 300 anneals are conducted per instance. Interestingly,
we observe that parallel QAML obtains more clear (Pysr)
gains across Nps when with more BS antenna counts.

7. CONCLUSION

This short paper introduces a decomposition technique for
parallel QAML. Using translated Ising forms, the method
can provide relatively finer-grained decomposition, allowing
more flexible parallel QAML, compared to the recently studied
wireless symbol-based decomposition approach. Such prepro-
cessing can be applied to parallel optimization on any Ising
machines such as optical coherent Ising machines and digital
annealers whose inputs are Ising models. Furthermore, the
method can be used for any applications to make use of paral-
lel QA, since QA-translated input variables are always spins
which are not application-specific ones (cf. wireless symbol).
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