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Abstract

Studying bacteria motility is crucial to understanding

and controlling biomedical and ecological phenomena in-

volving bacteria. Tracking bacteria in complex environ-

ments such as polysaccharides (agar) or protein (colla-

gen) hydrogels is a challenging task due to the lack of vi-

sually distinguishable features between bacteria and sur-

rounding environment, making state-of-the-art methods for

tracking easily recognizable objects such as pedestrians

and cars unsuitable for this application. We propose a

novel pipeline for detecting and tracking bacteria in bright-

field microscopy videos involving bacteria in complex back-

grounds. Our pipeline uses motion-based features and com-

bines multiple models for detecting bacteria of varying dif-

ficulty levels. We apply multiple filters to prune false pos-

itive detections, and then use the SORT tracking algorithm

with interpolation in case of missing detections. Our results

demonstrate that our pipeline can accurately track hard-to-

detect bacteria, achieving a high precision and recall.

1. Introduction

An improved understanding of bacteria motility [19] is

crucial to understanding and controlling biomedical and

ecological phenomena involving bacteria. While automated

tracking of bacteria has conventionally been done using flu-

orescent images (Fig. 1b), bacteria swimming speed (10-

100 µm/s) necessitates high frame rate image acquisition,

which is only attainable using gray-scale bright-field im-

ages (Fig. 1a), which have significantly lower contrast.

Moreover, there has been a growing interest in studying bac-

terial motility in tissue-mimicking hydrogels or in porous

media that resemble ecological settings. For example, agar

is commonly used to culture bacteria [6], and collagen is the

most abundant extracellular matrix protein in the body [1],

making it relevant to use them as backgrounds while study-

ing bacterial interactions with host cells. Hence, there is a

need to solve the challenging problem of bacteria tracking

in (gray-scale) bright-field images in more complex envi-

ronments with textured backgrounds (Figs. 1c and 1d).

In this work, we explore the potential of using machine

learning (ML) methods for multi-object tracking (MOT) for

(a) Bright-field image in Liquid (b) Fluorescent image in Liquid

(c) Bright-field image in Agar (d) Bright-field image in Collagen

(e) Easy (f) Background (g) Hard (h) Background

Figure 1. While bacteria are easy to track in fluorescent (b) im-

ages, they are more difficult to detect in bright-field imagery avail-

able at high frame rates. Tracking bacteria in liquid media (a) is

still easier than in realistic fibrous environments such as Agar (c)

and Collagen (d). The visual ambiguity between the background

(f and h) and bacteria (e and g) makes their detection challenging,

which we focus in this work. (All scale bars are 20 µm.)

tracking bacterial cells in complex backgrounds. While ex-

isting work in MOT has primarily focused on detecting and

tracking well-defined objects (e.g., pedestrians and cars),

tracking bacteria is fundamentally more challenging for the

following four reasons. (1) Lack of Distinguishable Fea-

tures: One of the major challenges in bacteria tracking is the

visual ambiguity between the background (Figs. 1f and 1h)

and the bacteria cells (Figs. 1e and 1g), making it difficult

to distinguish between them. Furthermore, bacteria are of-

ten transparent or translucent, making it difficult to detect

them using conventional imaging techniques. (2) 2D Imag-

1
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Figure 2. Overview of our proposed pipeline for tracking bacteria that consists of four modules: (1) Motion Enhancer, which adds motion

features to the input frames, (2) Multi-level Bacteria Detector, which detects bacteria of three difficulty levels using RetinaNet models, (3)

False Positive Pruning module, which filters detections to reduce false positives, and (4) Interpolated Tracker, which tracks bacteria over

time using the SORT algorithm with interpolation.

ing of 3D Environments: While bacteria exhibit complex

3D motion, imaging is typically performed on a 2D focal

plane, leading to restricted visibility. Consequently, bac-

teria may move in and out of the focal plane, resulting in

halos or breaks in tracking. (3) Varying Difficulty Levels

of Detecting Bacteria: Because of a combination of (1)

and (2), some bacteria are relatively easier to distinguish

from the background (Fig. 1e) while others are hard to de-

tect (Fig. 1g). To account for these differences, we use three

different difficulty levels of detecting bacteria in our anno-

tations: Easy, Hard, and Very Hard. Easy bacteria can be

detected from a single frame, while the Hard bacteria re-

quire inspection of 2-3 consecutive frames to detect their

motion. The Very Hard bacteria need the annotator to go

over multiple frames, back and forth, to be able to detect

them. (4) Erratic Movement Tracks of Bacteria: Bacteria

move in a variety of ways, including swimming, crawling,

and tumbling, and their movements can be affected by var-

ious factors such as fluid flow, viscosity, and other environ-

mental factors. The unpredictable nature of their movement

may result in sudden changes in direction, speed, or orien-

tation, making it difficult to track them consistently.

We propose the Multi-level Motion Enhanced Tracker

(MMET) for tracking bacteria in bright-field microscopy

videos by overcoming the challenge of tracking bacteria in

cluttered and dynamic backgrounds (see Fig. 2). Specifi-

cally, we enhance the feature space using motion-based fea-

tures, and then feed the stacked features to three object de-

tection models to identify bacteria of varying difficulty lev-

els using RetinaNet [15] as the backbone. We combine their

predictions and apply multiple filters to prune out false pos-

itives. Finally, we employ the SORT algorithm [3] to track

detected bacteria and use interpolation in case of missing

detections due to bacteria movement in the Z dimension.

Our results demonstrate that our pipeline can accurately

predict and track hard-to-detect bacteria, achieving high

precision and recall. Our proposed method not only rep-

resents a significant contribution to the field of biophysics

and physical biology using computer vision, but also opens

the potential of applying ML methods in applications like

healthcare, environmental remediation, and chemical sens-

ing where bacteria in porous media are relevant. [4]

2. Related Work

Tracking Bacteria: The most widely used software for

manual bacteria tracking is ImageJ [22] and the available

plugins such as Trackmate [24], MtrackJ [18], and Cell-

Profiler3.0 [17]. Recently, an advanced version of Track-

mate7 [8] was launched. It uses a tracking algorithm based

on the LAP tracker (Linear Assignment Problem) [9], which

assigns objects to tracks based on their similarity. CellPro-

filer4 [23] includes a module for tracking cells and other

objects in microscopy images and videos and allows for the

creation of custom analysis pipelines for specific applica-

tions. Other work [2, 7, 13, 26] track fluorescent image se-

quences in time-lapse images. But the field of fully auto-

mated tracking of bacteria at multi-cell level over a period

of time to understand its motility patterns and behavior re-

mains relatively unexplored.

Object Detection: There are two broad categories of meth-

ods for object detection: one-stage and two-stage. One-

stage methods, such as YOLOv3 [20] and SSD [16], di-

rectly predict object bounding boxes and class labels from

an input image. On the other hand, two-stage methods such

as Faster R-CNN [21] and Mask R-CNN [10] first propose

candidate object regions and then classify and refine them.

We use RetinaNet [15], a one-stage method, as the base

bacteria detector in our pipeline. Compared to other one-

stage methods, RetinaNet achieves a better trade-off be-

tween speed and accuracy, making it suitable for detecting

bacteria in cluttered and dynamic backgrounds.

Object Tracking: Several approaches have been proposed

2
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to track detected objects including correlation filter-based

methods [5], Kalman filter based methods [3] and deep

learning-based methods [25, 27]. One of the most widely

used tracking algorithms is the SORT algorithm [3]. It uses

Kalman filter and provides state estimation and data asso-

ciation. SORT has been shown to perform well on vari-

ous tracking tasks, including pedestrian tracking and vehi-

cle tracking. However, the erratic motion of bacteria and

missing detections on hard-to-detect bacteria may limit the

performance of SORT, thus we propose a modification of

SORT algorithm described in 3.

3. Multi-level Motion Enhanced Tracker

To address the challenges of tracking bacteria in com-

plex environments, we propose a novel pipeline named

Multi-level Motion Enhanced Tracker (MMET) that con-

sists of four different modules: Motion Enhancer, Multi-

level Bacteria Detector, False Positive Pruner and Inter-

polated Tracker. Before diving into each of the modules,

we define the notations that we would be using in this

paper. Let the input video with N frames be defined as

I1..T = [I1, I2, ..., IT ], where It ∈ R
C×H×W denotes the

t-th frame and C,H and W are the number of channels,

height and width of the image respectively. Also note that

we follow the approach of tracking-by-detection, i.e., track-

ing is done on top of predictions from the detection module.

Motion Enhancement: Object detectors designed for

single-frame detection overlook the object’s position in pre-

ceding or subsequent frames, which limits their effective-

ness in tracking bacterias. However, to accurately detect

hard and very hard bacteria, incorporating the concept of

motion into the object detection model is crucial. Therefore,

we propose two different feature engineering techniques in

this module to capture motion features, which are then aug-

mented with the image features to enhance detection accu-

racy.

Optical Flow Features: Optical flow [11] is a technique that

estimates the motion of objects in a video sequence by ana-

lyzing the changes in pixel intensities between consecutive

frames. We use the Lucas-Kanade method for optical flow

computation which can be expressed mathematically as:

∂Ixu+ ∂Iyv + ∂It = 0 (1)

where u = dx
dt

∣

∣

t=t
and v = dy

dt

∣

∣

t=t
represent the x and

y components of the optical flow vector for the t-th frame,

∂Ix = ∂I
∂x

, ∂Iy = ∂I
∂y

, and ∂It =
∂I
∂t

are the image gradients

in the x, y, and time dimensions respectively. Solving this

equation yields the optical flow vector O = [u, v] for the

t-th frame in the video.

Median Deviation Features: We define the median devi-

ation as the pixel-wise difference between the image and

the pixel-wise median of the video, which we use as an-

other feature channel. Formally, we define median devia-

tion ∆I = |It−median(I1..T )|, where median(I1..T ) is the

pixel-wise median for the video. The median deviation rep-

resents the difference between the pixel intensity at a point

and the typical intensity at that point (which we assume is

the intensity of the background media). In other words, it

detects if a certain pixel is different from the background,

i.e., if the pixel belongs to a bacteria we expect the median

deviation to be positive. Finally, the input image features

It are concatenated with the optical flow features O and the

median deviation ∆I and used as inputs to the multi-level

object detector.

Multi-level Bacteria Detection: For object detection, we

use the RetinaNet [15] architecture, a state-of-the-art object

detection method that has demonstrated excellent results in

many computer vision applications. Training a single model

on all of the different categories of bacteria is challenging

as the visibility patterns and detection requirements vary

significantly for each category. We propose a multi-level

bacteria detection model where we train a different detec-

tor model for each category: Easy, Hard and Very Hard.

Therefore, the detection models for each category of bac-

teria learn specific features and parameters tailored to their

unique characteristics. This approach can help to enhance

the detection accuracy of the object detection system for

each category of bacteria and improve the overall perfor-

mance of the system which we demonstrate empirically in

Section 4.

False Positive Pruning: The multi-level bacteria detection

module leads to a large number of false positives as well

as duplicate predictions which need to be pruned without

losing important predictions. We first combine all the de-

tections from the 3 models and then filters them on two cri-

teria: (1) pruning predictions that are be greater than the

size of average bacterium (for our case, 22 pixels) and (2)

removing predictions lower than a given confidence thresh-

old. Next, we apply Non Maximum Suppression (NMS)

[5], which is a technique used to eliminate redundant object

detections by selecting the ones with the highest confidence

score and discarding the others that overlap with them.

Interpolated Tracking: In the final step, we apply the Sim-

ple Online and Realtime Tracking (SORT) [3] algorithm

to track the detected bacteria. The SORT algorithm uses

a combination of Kalman filtering [12] and the Hungarian

algorithm [14] to assign detected objects to existing tracks.

However, to account for missing detections of Hard/Very-

Hard bacteria, we modify the SORT algorithm. Specifi-

cally, we interpolate the missing detections by keeping the

Kalman filter-based unmatched predictions for a given num-

ber of frames and drop the track post that threshold. The

Kalman filter works by recursively updating estimates of

the current state of a system based on the previous state and

a set of measurements, while also taking into account the

uncertainty of those measurements.

3
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Figure 3. Precision and Recall values at each step of our pipeline

for the Agar 0.2% medium.

Model Task
Agar Collagen

Precision Recall Precision Recall

NM-MT Detection 0.17 0.90 0.17 0.66

MMT Detection 0.14 0.98 0.24 0.80

MMET (ours) Detection 0.45 0.95 0.29 0.82

MMT Tracking 0.05 1.0 0.14 0.88

MMT + FPP Tracking 0.63 0.94 0.35 0.80

MMET (ours) Tracking 0.82 0.94 0.45 0.84

Table 1. Comparing Test Precision and Recall for our model and

baselines on agar and collagen datasets.

4. Experiments

Baselines: We compare our approach against two meth-

ods. (1) No Motion Monolithic Tracker (NM-MT) and

(2) Motion-based Monolithic Tracker (MMT). NM-MT is

trained only on images from bacteria videos without any

motion features while MMT is trained on our motion en-

hanced features. Both these baselines use a single object de-

tector (hence the name monolithic) as opposed to our multi-

level approach. We apply Interpolated Tracking on both of

them for tracking. We further enhance MMT by adding the

False Positive Pruning module (FPP) before tracking.

In order to evaluate the effectiveness of our proposed

pipeline for predicting and tracking bacteria, we conducted

experiments on two different media: Agar 0.2% and Col-

lagen. Our data consisted of 6 bacteria strains with a total

of 4 videos at 60 FPS per strain in both agar and collagen

media. We used 2 videos per strain for training, 1 for vali-

dation and 1 for testing. The limited size of the training sets

is reflective of the paucity of labeled data encountered in

many scientific applications, including biology. Each agar

video had 100 frames while each collagen video had 150

frames. Each test set contains a range of highly motile to

non-motile bacteria. For evaluation, we used precision and

recall metrics.

Table 1 compares the results of our proposed method

with the two baseline methods. We can see that using mo-

tion features improves the detection performance of MMT

and MMET, especially in terms of recall. We can also ob-

serve the having a multi-level bacteria detector (MMET)

leads to reduced False positives and hence higher precision.

Comparing the tracking results for our model with the two

baselines, we can see that the FPP module improves the pre-

cision of the baseline MMT by a significant amount. How-

ever, its precision is still lower than our proposed MMET

model that uses a multi-level model instead of a monolithic

model. Finally, while the baselines have a slightly higher

recall on the detection task than our method, they suffer

from extremely low precision, making them unfit for track-

ing. On the other hand, our approach can provide signif-

icantly bettter precision than baselines with little to no ef-

fect on the recall. Despite the preliminary nature of our

evaluation on collagen, which involved only two difficulty

levels of detecting bacteria instead of three, our proposed

approach demonstrated better performance compared to the

baselines. These initial results serve as a promising founda-

tion for further investigations, including the use of 3 levels

for collagen and more extensive hyper-parameter tuning.

Fig. 3 which shows the precision and recall values at-

tained at each step of our pipeline for the agar test set. We

can see that the precision significantly increase after each of

the filters of the FPP module with a marginally small drop

in recall. The Interpolated SORT module further boosts the

recall, although at the cost of adding some false positives.

After filtering out predicted tracks that are shorter than 55

frames in length, we are finally able to achieve a useful bal-

ance of precision and recall. We have further performed ab-

lation studies to assess the impact of varying the bounding

box size and applying NMS for removing redundant detec-

tions in the proposed pipeline for tracking bacteria.

5. Limitations and Future Work

We presented a pipeline for detecting and tracking bac-

teria in hydrogels such as agar and collagen. Our results

demonstrate that the proposed pipeline accurately predicts

and tracks bacteria, including hard-to-detect bacteria. How-

ever, our pipeline also has limitations. For example, it can

generate duplicate detections from the combination of mul-

tiple models, which can lead to duplicate tracks, affecting

the accuracy of the system. To address this limitation, we

plan to explore different post-processing techniques that can

group similar detections together and produce a single track

for each group. Deep learning-based tracking methods can

also be explored to improve tracking, such as [27]. Another

direction for improvement could be calibrating the confi-

dence scores of the different models before carrying out the

filtering process to ensure that NMS does not get biased to-

wards one model with a skewed distribution of confidence

scores.
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