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Abstract

Studying bacteria motility is crucial to understanding
and controlling biomedical and ecological phenomena in-
volving bacteria. Tracking bacteria in complex environ-
ments such as polysaccharides (agar) or protein (colla-
gen) hydrogels is a challenging task due to the lack of vi-
sually distinguishable features between bacteria and sur-
rounding environment, making state-of-the-art methods for
tracking easily recognizable objects such as pedestrians
and cars unsuitable for this application. We propose a
novel pipeline for detecting and tracking bacteria in bright-
field microscopy videos involving bacteria in complex back-
grounds. Our pipeline uses motion-based features and com-
bines multiple models for detecting bacteria of varying dif-
ficulty levels. We apply multiple filters to prune false pos-
itive detections, and then use the SORT tracking algorithm
with interpolation in case of missing detections. Our results
demonstrate that our pipeline can accurately track hard-to-
detect bacteria, achieving a high precision and recall.

1. Introduction

An improved understanding of bacteria motility [19] is
crucial to understanding and controlling biomedical and
ecological phenomena involving bacteria. While automated
tracking of bacteria has conventionally been done using flu-
orescent images (Fig. 1b), bacteria swimming speed (10-
100 pm/s) necessitates high frame rate image acquisition,
which is only attainable using gray-scale bright-field im-
ages (Fig. la), which have significantly lower contrast.
Moreover, there has been a growing interest in studying bac-
terial motility in tissue-mimicking hydrogels or in porous
media that resemble ecological settings. For example, agar
is commonly used to culture bacteria [6], and collagen is the
most abundant extracellular matrix protein in the body [!],
making it relevant to use them as backgrounds while study-
ing bacterial interactions with host cells. Hence, there is a
need to solve the challenging problem of bacteria tracking
in (gray-scale) bright-field images in more complex envi-
ronments with textured backgrounds (Figs. 1c and 1d).

In this work, we explore the potential of using machine
learning (ML) methods for multi-object tracking (MOT) for

—

(b) Fluorescent image in Liquid

[

—

(d) Bright-field image in Collagen

(e) Easy

(f) Background (g) Hard (h) Background

Figure 1. While bacteria are easy to track in fluorescent (b) im-
ages, they are more difficult to detect in bright-field imagery avail-
able at high frame rates. Tracking bacteria in liquid media (a) is
still easier than in realistic fibrous environments such as Agar (c)
and Collagen (d). The visual ambiguity between the background
(f and h) and bacteria (e and g) makes their detection challenging,
which we focus in this work. (All scale bars are 20 pum.)

tracking bacterial cells in complex backgrounds. While ex-
isting work in MOT has primarily focused on detecting and
tracking well-defined objects (e.g., pedestrians and cars),
tracking bacteria is fundamentally more challenging for the
following four reasons. (1) Lack of Distinguishable Fea-
tures: One of the major challenges in bacteria tracking is the
visual ambiguity between the background (Figs. 1f and 1h)
and the bacteria cells (Figs. le and 1g), making it difficult
to distinguish between them. Furthermore, bacteria are of-
ten transparent or translucent, making it difficult to detect
them using conventional imaging techniques. (2) 2D Imag-
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Figure 2. Overview of our proposed pipeline for tracking bacteria that consists of four modules: (1) Motion Enhancer, which adds motion
features to the input frames, (2) Multi-level Bacteria Detector, which detects bacteria of three difficulty levels using RetinaNet models, (3)
False Positive Pruning module, which filters detections to reduce false positives, and (4) Interpolated Tracker, which tracks bacteria over

time using the SORT algorithm with interpolation.

ing of 3D Environments: While bacteria exhibit complex
3D motion, imaging is typically performed on a 2D focal
plane, leading to restricted visibility. Consequently, bac-
teria may move in and out of the focal plane, resulting in
halos or breaks in tracking. (3) Varying Difficulty Levels
of Detecting Bacteria: Because of a combination of (1)
and (2), some bacteria are relatively easier to distinguish
from the background (Fig. le) while others are hard to de-
tect (Fig. 1g). To account for these differences, we use three
different difficulty levels of detecting bacteria in our anno-
tations: Easy, Hard, and Very Hard. Easy bacteria can be
detected from a single frame, while the Hard bacteria re-
quire inspection of 2-3 consecutive frames to detect their
motion. The Very Hard bacteria need the annotator to go
over multiple frames, back and forth, to be able to detect
them. (4) Erratic Movement Tracks of Bacteria: Bacteria
move in a variety of ways, including swimming, crawling,
and tumbling, and their movements can be affected by var-
ious factors such as fluid flow, viscosity, and other environ-
mental factors. The unpredictable nature of their movement
may result in sudden changes in direction, speed, or orien-
tation, making it difficult to track them consistently.

We propose the Multi-level Motion Enhanced Tracker
(MMET) for tracking bacteria in bright-field microscopy
videos by overcoming the challenge of tracking bacteria in
cluttered and dynamic backgrounds (see Fig. 2). Specifi-
cally, we enhance the feature space using motion-based fea-
tures, and then feed the stacked features to three object de-
tection models to identify bacteria of varying difficulty lev-
els using RetinaNet [15] as the backbone. We combine their
predictions and apply multiple filters to prune out false pos-
itives. Finally, we employ the SORT algorithm [3] to track
detected bacteria and use interpolation in case of missing
detections due to bacteria movement in the Z dimension.
Our results demonstrate that our pipeline can accurately
predict and track hard-to-detect bacteria, achieving high

precision and recall. Our proposed method not only rep-
resents a significant contribution to the field of biophysics
and physical biology using computer vision, but also opens
the potential of applying ML methods in applications like
healthcare, environmental remediation, and chemical sens-
ing where bacteria in porous media are relevant. [4]

2. Related Work

Tracking Bacteria: The most widely used software for
manual bacteria tracking is ImageJ [22] and the available
plugins such as Trackmate [24], Mtrack] [18], and Cell-
Profiler3.0 [17]. Recently, an advanced version of Track-
mate7 [8] was launched. It uses a tracking algorithm based
on the LAP tracker (Linear Assignment Problem) [9], which
assigns objects to tracks based on their similarity. CellPro-
filer4 [23] includes a module for tracking cells and other
objects in microscopy images and videos and allows for the
creation of custom analysis pipelines for specific applica-
tions. Other work [2,7, 13,26] track fluorescent image se-
quences in time-lapse images. But the field of fully auto-
mated tracking of bacteria at multi-cell level over a period
of time to understand its motility patterns and behavior re-
mains relatively unexplored.

Object Detection: There are two broad categories of meth-
ods for object detection: one-stage and two-stage. One-
stage methods, such as YOLOv3 [20] and SSD [16], di-
rectly predict object bounding boxes and class labels from
an input image. On the other hand, two-stage methods such
as Faster R-CNN [21] and Mask R-CNN [10] first propose
candidate object regions and then classify and refine them.
We use RetinaNet [15], a one-stage method, as the base
bacteria detector in our pipeline. Compared to other one-
stage methods, RetinaNet achieves a better trade-off be-
tween speed and accuracy, making it suitable for detecting
bacteria in cluttered and dynamic backgrounds.

Object Tracking: Several approaches have been proposed
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to track detected objects including correlation filter-based
methods [5], Kalman filter based methods [3] and deep
learning-based methods [25,27]. One of the most widely
used tracking algorithms is the SORT algorithm [3]. It uses
Kalman filter and provides state estimation and data asso-
ciation. SORT has been shown to perform well on vari-
ous tracking tasks, including pedestrian tracking and vehi-
cle tracking. However, the erratic motion of bacteria and
missing detections on hard-to-detect bacteria may limit the
performance of SORT, thus we propose a modification of
SORT algorithm described in 3.

3. Multi-level Motion Enhanced Tracker

To address the challenges of tracking bacteria in com-

plex environments, we propose a novel pipeline named
Multi-level Motion Enhanced Tracker (MMET) that con-
sists of four different modules: Motion Enhancer, Multi-
level Bacteria Detector, False Positive Pruner and Inter-
polated Tracker. Before diving into each of the modules,
we define the notations that we would be using in this
paper. Let the input video with N frames be defined as
T = [1', 12, ..., IT], where I* € RE*H*W denotes the
t-th frame and C,H and W are the number of channels,
height and width of the image respectively. Also note that
we follow the approach of tracking-by-detection, i.e., track-
ing is done on top of predictions from the detection module.
Motion Enhancement: Object detectors designed for
single-frame detection overlook the object’s position in pre-
ceding or subsequent frames, which limits their effective-
ness in tracking bacterias. However, to accurately detect
hard and very hard bacteria, incorporating the concept of
motion into the object detection model is crucial. Therefore,
we propose two different feature engineering techniques in
this module to capture motion features, which are then aug-
mented with the image features to enhance detection accu-
racy.
Optical Flow Features: Optical flow [1 1] is a technique that
estimates the motion of objects in a video sequence by ana-
lyzing the changes in pixel intensities between consecutive
frames. We use the Lucas-Kanade method for optical flow
computation which can be expressed mathematically as:

0l,u+ 0lyv+ 0l =0 (D

where u = ‘fj—ﬂt:t and v = %‘t:t represent the x and
y components of the optical flow vector for the ¢-th frame,
ol, = %, ol, = g—i, and 0I; = % are the image gradients
in the x, y, and time dimensions respectively. Solving this
equation yields the optical flow vector O = [u,v] for the
t-th frame in the video.
Median Deviation Features: We define the median devi-
ation as the pixel-wise difference between the image and
the pixel-wise median of the video, which we use as an-
other feature channel. Formally, we define median devia-

tion Al = |I' —median(I'T")|, where median(I'-T) is the
pixel-wise median for the video. The median deviation rep-
resents the difference between the pixel intensity at a point
and the typical intensity at that point (which we assume is
the intensity of the background media). In other words, it
detects if a certain pixel is different from the background,
i.e., if the pixel belongs to a bacteria we expect the median
deviation to be positive. Finally, the input image features
I are concatenated with the optical flow features O and the
median deviation AT and used as inputs to the multi-level
object detector.

Multi-level Bacteria Detection: For object detection, we
use the RetinaNet [ 15] architecture, a state-of-the-art object
detection method that has demonstrated excellent results in
many computer vision applications. Training a single model
on all of the different categories of bacteria is challenging
as the visibility patterns and detection requirements vary
significantly for each category. We propose a multi-level
bacteria detection model where we train a different detec-
tor model for each category: Easy, Hard and Very Hard.
Therefore, the detection models for each category of bac-
teria learn specific features and parameters tailored to their
unique characteristics. This approach can help to enhance
the detection accuracy of the object detection system for
each category of bacteria and improve the overall perfor-
mance of the system which we demonstrate empirically in
Section 4.

False Positive Pruning: The multi-level bacteria detection
module leads to a large number of false positives as well
as duplicate predictions which need to be pruned without
losing important predictions. We first combine all the de-
tections from the 3 models and then filters them on two cri-
teria: (1) pruning predictions that are be greater than the
size of average bacterium (for our case, 22 pixels) and (2)
removing predictions lower than a given confidence thresh-
old. Next, we apply Non Maximum Suppression (NMS)
[5], which is a technique used to eliminate redundant object
detections by selecting the ones with the highest confidence
score and discarding the others that overlap with them.

Interpolated Tracking: In the final step, we apply the Sim-
ple Online and Realtime Tracking (SORT) [3] algorithm
to track the detected bacteria. The SORT algorithm uses
a combination of Kalman filtering [!2] and the Hungarian
algorithm [14] to assign detected objects to existing tracks.
However, to account for missing detections of Hard/Very-
Hard bacteria, we modify the SORT algorithm. Specifi-
cally, we interpolate the missing detections by keeping the
Kalman filter-based unmatched predictions for a given num-
ber of frames and drop the track post that threshold. The
Kalman filter works by recursively updating estimates of
the current state of a system based on the previous state and
a set of measurements, while also taking into account the
uncertainty of those measurements.
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Figure 3. Precision and Recall values at each step of our pipeline
for the Agar 0.2% medium.

Model Task Agar Collagen
Precision Recall Precision Recall
NM-MT Detection 0.17 0.90 0.17 0.66
MMT Detection  0.14 0.98 0.24 0.80
MMET (ours) Detection  0.45 0.95 0.29 0.82
MMT Tracking  0.05 1.0 0.14 0.88

MMT + FPP  Tracking 0.63 0.94 0.35 0.80
MMET (ours) Tracking 0.82 0.94 0.45 0.84

Table 1. Comparing Test Precision and Recall for our model and
baselines on agar and collagen datasets.

4. Experiments

Baselines: We compare our approach against two meth-
ods. (1) No Motion Monolithic Tracker (NM-MT) and
(2) Motion-based Monolithic Tracker (MMT). NM-MT is
trained only on images from bacteria videos without any
motion features while MMT is trained on our motion en-
hanced features. Both these baselines use a single object de-
tector (hence the name monolithic) as opposed to our multi-
level approach. We apply Interpolated Tracking on both of
them for tracking. We further enhance MMT by adding the
False Positive Pruning module (FPP) before tracking.

In order to evaluate the effectiveness of our proposed
pipeline for predicting and tracking bacteria, we conducted
experiments on two different media: Agar 0.2% and Col-
lagen. Our data consisted of 6 bacteria strains with a total
of 4 videos at 60 FPS per strain in both agar and collagen
media. We used 2 videos per strain for training, 1 for vali-
dation and 1 for testing. The limited size of the training sets
is reflective of the paucity of labeled data encountered in
many scientific applications, including biology. Each agar
video had 100 frames while each collagen video had 150
frames. Each test set contains a range of highly motile to
non-motile bacteria. For evaluation, we used precision and
recall metrics.

Table 1 compares the results of our proposed method

with the two baseline methods. We can see that using mo-
tion features improves the detection performance of MMT
and MMET, especially in terms of recall. We can also ob-
serve the having a multi-level bacteria detector (MMET)
leads to reduced False positives and hence higher precision.
Comparing the tracking results for our model with the two
baselines, we can see that the FPP module improves the pre-
cision of the baseline MMT by a significant amount. How-
ever, its precision is still lower than our proposed MMET
model that uses a multi-level model instead of a monolithic
model. Finally, while the baselines have a slightly higher
recall on the detection task than our method, they suffer
from extremely low precision, making them unfit for track-
ing. On the other hand, our approach can provide signif-
icantly bettter precision than baselines with little to no ef-
fect on the recall. Despite the preliminary nature of our
evaluation on collagen, which involved only two difficulty
levels of detecting bacteria instead of three, our proposed
approach demonstrated better performance compared to the
baselines. These initial results serve as a promising founda-
tion for further investigations, including the use of 3 levels
for collagen and more extensive hyper-parameter tuning.

Fig. 3 which shows the precision and recall values at-
tained at each step of our pipeline for the agar test set. We
can see that the precision significantly increase after each of
the filters of the FPP module with a marginally small drop
in recall. The Interpolated SORT module further boosts the
recall, although at the cost of adding some false positives.
After filtering out predicted tracks that are shorter than 55
frames in length, we are finally able to achieve a useful bal-
ance of precision and recall. We have further performed ab-
lation studies to assess the impact of varying the bounding
box size and applying NMS for removing redundant detec-
tions in the proposed pipeline for tracking bacteria.

5. Limitations and Future Work

We presented a pipeline for detecting and tracking bac-
teria in hydrogels such as agar and collagen. Our results
demonstrate that the proposed pipeline accurately predicts
and tracks bacteria, including hard-to-detect bacteria. How-
ever, our pipeline also has limitations. For example, it can
generate duplicate detections from the combination of mul-
tiple models, which can lead to duplicate tracks, affecting
the accuracy of the system. To address this limitation, we
plan to explore different post-processing techniques that can
group similar detections together and produce a single track
for each group. Deep learning-based tracking methods can
also be explored to improve tracking, such as [27]. Another
direction for improvement could be calibrating the confi-
dence scores of the different models before carrying out the
filtering process to ensure that NMS does not get biased to-
wards one model with a skewed distribution of confidence
scores.
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