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A B S T R A C T   

Automatic calibration (autocalibration) of models is a standard practice in hydrologic sciences. However, hy
drologic modelers, while performing autocalibrations, spend considerable amount of time in data pre-processing, 
coding, and running simulations rather than focusing on science questions. Such inefficiency, as this paper 
outlines, stems from: (i) platform dependence, (ii) limited computational resource, (iii) limited programming 
literacy, (iv) limited model structure and source code literacy, and (v) lack of data-model interoperability in the 
so-called autocalibration process. By expanding and enhancing an existing web-based modeling platform 
SWATShare, developed for the Soil and Water Assessment Tool (SWAT) hydrologic model, this paper demon
strates a generalizable pathway to making autocalibration efficient via cyberinfrastructure (CI) solutions. 
SWATShare is a collaborative platform for sharing and visualization of SWAT models, model results, and met
adata online. This paper describes the front and back end architectures of SWATShare for enabling efficient 
SWAT model autocalibration on the web. In addition, this paper also demonstrates three implementation case 
studies to validate the autocalibration workflow and results. Results from these implementations show that 
SWATShare autocalibration can produce streamflow hydrograph and parameters that are comparable with 
commonly used offline SWATCUP calibration outputs. In some instances, the parameter values from SWATShare 
calibration are more physically relevant than those from SWATCUP. Although the discussion in this paper is in 
the context of SWAT and SWATShare, the conceptual and technical design presented here can be used as an Open 
Science blueprint for similar CI-enabled developments in other hydrologic models, and more importantly, in 
other domains of Earth system sciences.   
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1.0. Introduction 

The predictability of a hydrologic model largely depends on how 
well its parameters are calibrated. Because numerous manual iterations 
to search representative parameter values can be time-consuming 
(Dawdy and O’Donnell, 1965), hydrologic modelers use an automated 
iterative process using complex algorithms (hereafter, autocalibration) 
(Duan et al., 2006; Gupta et al., 1999; Samadi et al., 2020; Wu et al., 
2021). Over time, this autocalibration has become a standard practice in 
hydrologic model applications, leading to the widespread development 
of open-source tools that can link calibration algorithms with respective 
model source-codes (e.g., Abbaspour, 2015; Wi et al., 2017; Wu and Liu, 
2012). These autocalibration tools, when provided with adequate 
reference datasets, produce hydrologic simulations with reasonably high 
accuracy. Yet, it will not be an overstatement to refer the term “auto
calibration” as a misnomer because many data- and model-integration 
tasks required to set up and run the contemporary autocalibration 
tools heavily rely on modelers’ manual interventions. As a result, despite 
the notable recent improvements in calibration algorithms and 
open-source tools (e.g., Baracchini et al., 2020; Chlumsky et al., 2021; 
Femeena et al., 2020; Sadler et al., 2019; Wang and Brubaker, 2015; 
Zhang et al., 2013), hydrologic modelers spend considerable time in 
data pre-processing, coding, and running simulations rather than 
focusing on science questions. Therefore, having a guided step-by-step 
workflow and/or an intuitive graphical user interface do not neces
sarily lead to an efficient autocalibration procedure. Addressing the root 
cause(s) of inefficiency in hydrologic model autocalibration still remains 
a challenge. Below we identify five root causes of inefficiency in auto
calibration tools and then we compare some of the contemporary hy
drologic models according to the efficiency of their respective 
autocalibration tools (Table 1).  

(1) Platform dependence: Most of the autocalibration tools recognized 
across the hydrologic modeling community are developed as 
offline, desktop-based black box software (e.g., SWAT-CUP for the 
Soil and Water Assessment Tool (SWAT), VIC-ASSIST for the 
Variable Infiltration Capacity (VIC) model, HSPEXP/HSPEXP+

for the Hydrologic Simulation Program–Fortran (HSPF)) 

(Abbaspour, 2015; EPA, 2015; Wi et al., 2017). These tools rely 
on a particular computer operating system (i.e., Windows or 
Linux), dependencies (e.g., specific program libraries, packages, 
and their versions), and licensing requirements. Correspondingly, 
a major issue associated with such platform dependence is 
maintenance and updating of functions (Yu et al., 2019). Over 
time, some autocalibration tools (e.g., HSPEXP; EPA, 2015) have 
become obsolete due to incompatibility with current computer 
operating systems. 

(2) Limited computing resource: Commonly used desktop-based auto
calibration tools often conduct one calibration job at a time on a 
single desktop computer. The computing resource in a desktop 
computer may be adequate to run small-scale calibrations 
involving small watershed areas and short simulation periods. 
However, such small-scale calibrations become computationally 
intensive when the models undergo multi-objective calibrations 
with spatially distributed data and involves a large parameter set 
(e.g., Kunnath-Poovakka et al., 2016; Rajib et al., 2018a). Obvi
ously, calibrations involving large watersheds and long simula
tion periods (e.g., Du et al., 2018), high spatial resolution (e.g., 
Lin et al., 2018), and complex spatial discretization schemes (e.g., 
Evenson et al., 2018) demand more computing resources than an 
average desktop computer alone can provide. In any case, mod
elers commonly run multiple instances of the same calibration 
setup as trial runs to gather priori knowledge of sensitive pa
rameters, suitable parameter values, and characteristic model 
bias (Kuzmin et al., 2008) which make the overall computational 
footprint and run-time unmanageable. Against these needs, effi
ciency of commonly used desktop-based autocalibration tools 
remains limited by the processing power and available storage 
space in modelers’ personal computers. Some of the recent 
autocalibration tools allow model calibration to be remotely 
executed in High Performance Computing (HPC) clusters (e.g., 
LCC-SWAT and gSWAT-BASHYT for the SWAT model (Bacu et al., 
2011; Cau et al., 2013; Zamani et al., 2021); the model inde
pendent cloud-based Parameter ESTimation (PEST) tool (Fienen 
et al., 2011)). There are also efforts to speed-up calibration tools 
using Graphics Processing Units (GPU)-aided parallel computing 

Table 1 
Comparison of contemporary hydrologic models according to the efficiency of their respective autocalibration tools: ╳ means inefficient and √ means efficient. For a 
particular tool, ╳ or √ is a relative indicator of its efficiency compared to all other tools/models presented in the table.  

Model Calibration tool Reference Platform 
independence 

Access to HPC 
resources 

Reduced need for 
programming literacy 

Reduced need for 
model structural 
literacy 

Data-model 
interoperability 

GSSHA PEST Skahill et al. (2012) ╳ ╳ ╳ ╳ ╳ 
SWMM OSTRICH-SWMM# Behrouz et al. (2020);  

Macro et al. (2019) 
✓ ╳ ╳ ╳ ╳ 

SWMM DREAM-SWMM# Gao et al. (2020) ✓ ╳ ╳ ╳ ╳ 
SWAT R-SWAT-FME# Wu and Liu (2012), 

2014 
✓ ╳ ╳ ╳ ╳ 

WRF- 
Hydro 

PyWrfHydroCalib# NCAR (2019) ✓ ╳ ╳ ╳ ╳ 

HSPF HSPEXP/ 
HSPEXP+

EPA (2015) ╳ ╳ ✓ ╳ ╳ 

VICη VIC-ASSIST* Wi et al. (2017) ╳ ╳ ✓ ╳ ╳ 
SWAT SWAT-CUP* Abbaspour (2015) ╳ ╳ ✓ ╳ ╳ 
SWAT SWATShare 1.0 Rajib et al. (2016) ╳ ✓ ✓ ╳ ╳ 
SWAT LCC-SWAT Zamani et al. (2021) ╳ ✓ ✓ ╳ ╳ 
SWAT gSWAT-BASHYT♱ Bacu et al. (2011); Cau 

et al. (2013) 
✓ ✓ ✓ ╳ ╳ 

SWAT SWATShare 2.0 This paper ✓ ✓ ✓ ✓ ✓ 

#OSTRICH-SWMM, DREAM-SWMM, R-SWAT-FME, and PyWrfHydroCalib are coded in platform independent language. Therefore, these tools have potential to access 
HPC resources via a web interface, but the existing literature mostly shows desktop-based applications. 
ηRecent VIC modeling architectures to support web-based model applications and reproducibility (e.g., Hamman et al., 2018) are not yet fully developed to address 
autocalibration inefficiencies. 
*Some functionalities in VIC-ASSIST and SWAT-CUP are designed to reduce model structural literacy. 
†To the best of authors’ knowledge, gSWAT-BASHYT is no longer in use. 
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(Ercan et al., 2014; Freitas et al., 2022; Kan et al., 2019). Yet, it is 
widely acknowledged that running autocalibration tools using 
HPC and/or parallel computing also requires a client-server 
interface and standard web services for job management, 
resource monitoring, messaging, user verification, data transfer, 
encrypting, and various notification mechanisms (Hokkanen 
et al., 2021; Zhu et al., 2016), which may be challenging to sus
tain unless the tool is part of a large, holistic modeling platform.  

(3) Programming literacy: Some of the autocalibration tools do not 
have a graphical user interface. In such cases, running the tool 
requires substantial literacy on programming languages, syntax, 
and execution. For example, use of pyWrfHydroCalib for the 
WRF-Hydro model (Lin et al., 2018; NCAR, 2019), R-SWAT-FME 
for the SWAT model (e.g., Wu and Liu, 2012, 2014), and OS
TRICH for the Storm Water Management Model (SWMM) (Beh
rouz et al., 2020; Macro et al., 2019) require medium-to 
high-level skills in python and R codes. Similarly, without 
knowing how to write in Command-Line Interface, modelers 
cannot run the PEST tool for the Gridded Surface Subsurface 
Hydrologic Analysis (GSSHA) model (Skahill et al., 2009, 2012). 
In short, it is challenging to run some of the existing autocali
bration tools without programming skills, which limits their 
wider acceptability within the hydrologic modeling community.  

(4) Model structural literacy: Besides the knowledge of hydrologic 
processes and steps to setup and calibrate a model, it is necessary 
for a modeler to clearly understand the model’s internal structure 
including the model’s geodatabase, source-code, and parameter 
definitions. Because the existing autocalibration tools are not 
fully coupled with the model structure, modelers running these 
tools with limited model structural literacy need to follow a steep 
learning curve. For example, while using pyWrfHydroCalib and 
HSPEXP/HSPEXP+, modelers need to manually decide on the 
spatial scale at which the tool will iterate a parameter (at indi
vidual subbasin-scale or entire basin-scale) or the nodes the tool 
will use as calibration sites (specific subbasin or river IDs) (EPA, 
2015; NCAR, 2019; also see the scaling problem discussed by 
Nijzink et al., 2018; Tsai et al., 2021; Xu et al., 2014; Zhang et al., 
2017). Some tools do not offer a function to automatically fit the 
most optimal parameter combinations back into the model 
source-code after completing a batch of iterations (e.g., 
SWAT-CUP and LCC-SWAT; Ozdemir and Leloglu, 2019; Zamani 
et al., 2021). Nonetheless, the reduced need for model structural 
literacy is the most desired service that an autocalibration tool 
can offer to educators who often want to avoid the steep learning 
curve. The intuitive graphical user interface in tools like 
SWAT-CUP and VIC-ASSIST is helpful yet inadequately detailed 
to substantially reduce the need for model structural literacy.  

(5) Data-model interoperability: Use of multiple sources/types of 
reference datasets in model calibration requires a meaningful 
linking of the data with the model structure, which should handle 
the space-time-variable continuum without misleading the 
parameter search procedure (Dembélé et al., 2020; Gardner et al., 
2018; Jadidoleslam et al., 2020). While there are advances in 
developing web-based platforms to perform spatio-temporal 
query across a region and bulk-download available in-situ and 
remotely sensed Earth observation datasets (Ames et al., 2012; 
CSISS, 2021; GEE, 2022), none of the existing autocalibration 
tools can automatically do the data post-processing and 
model-linking tasks. Therefore, for a large-scale model calibra
tion involving many in-situ measurements (e.g., Abbaspour, 
2015; Du et al., 2018; Lin et al., 2018; Rajib et al., 2020a,b) or for 
a small watershed-scale model calibration involving spatially 
distributed remotely sensed estimates (Rajib et al., 2018a), it may 
be easy to download required datasets through web-based plat
forms, but it remains an excruciatingly labor-intensive task for a 
modeler to process the data let alone link each of those datasets 

explicitly with the corresponding calibration sites in the model (e. 
g., river IDs). Unfortunately, all the existing calibration tools are 
designed with an assumption that downloading, pre-processing, 
and making the reference datasets ready for the calibration tool 
are auxiliary tasks conducted outside the tool’s graphical/coding 
interface. 

Scientific cyberinfrastructures (CIs) can address all five root causes of 
inefficiency in hydrologic model autocalibration through a Findable, 
Accessible, Interoperable, and Reusable (FAIR) Open Science platform 
(Bandaragoda et al., 2019; Chen et al., 2020; Govindaraju et al., 2009; 
Kalyanam et al., 2019, 2020; Maidment, 2008; Voinov and Costanza, 
1999; Wilkinson et al., 2016). The FAIRness or Openness of CIs is due to 
their building blocks which generally include HPC resources, contain
erized models, code wrappers, automated workflows, geospatial data 
analysis, GIS interface, and other tools needed for their interoperability 
and reproducibility ‒ all through an open, web-based environment (e.g., 
Essawy et al., 2020; Le et al., 2015; Wu et al., 2013; Zhang et al., 2019). 
Considering these benefits, many contemporary developments in Earth 
system sciences reflect a trend of CI solutions. For example, recently 
developed web-based GIS environments allow running a hydrologic 
model using HPC resources without having to possess in-depth pro
gramming and model development skills (e.g., Liu et al., 2014; Lyu et al., 
2019). Similarly, inclusion and removal of modules and codes in a 
simple drag-and-drop plug-and-play fashion, and thereby enabling the 
total platform independence of a modeling workflow is becoming 
increasingly feasible (Dunlap et al., 2013; Lodhi et al., 2020; Peckham 
and Goodall, 2013; Zeng et al., 2020). What has further widened the 
scope of hydrologic modeling in a CI platform is the ability to link 
multiple CIs that allows greater utilization of available data repositories, 
computational environments, and model Application Programming In
terfaces (APIs) (Castronova et al., 2013; Essawy et al., 2018; Choi et al., 
2021). Correspondingly, modelers are now developing interoperability 
engines (Zhang et al., 2021) to resolve the heterogeneity in model and 
data types (e.g., Chen et al., 2020; Gregersen et al., 2007; Hutton et al., 
2020; Peckham et al., 2013). 

In line with the above efforts, SWATShare (Rajib et al., 2016; 
referred here as SWATShare 1.0; https://mygeohub.org/groups/ 
water-hub/swatshare) was developed as a unique SWAT modeling 
platform leveraging the CI capabilities of myGeoHub (Kalyanam et al., 
2019, 2020; https://mygeohub.org). Besides the collaborative platform 
for model and metadata sharing, and interoperability with other 
collaborative CIs like HydroShare (Morsy et al., 2017; Tarboton et al., 
2018), SWATShare 1.0 offered basic autocalibration functionalities 
unable to address all five root causes of calibration inefficiency identi
fied earlier (see Table 1). Thus, SWATShare 1.0 has been substantially 
modified in SWATShare 2.0 by incorporating a new, highly efficient 
autocalibration tool that addresses all root causes of calibration in
efficiency by harnessing CI capabilities. 

The overall goal of this paper is to introduce the new SWAT model 
autocalibration tool in SWATShare 2.0. The specific objectives of this 
paper are to (i) describe the CI-enabled functionalities in SWATShare 
that make the new autocalibration tool efficient compared to the pre
vious version (Rajib et al., 2016) as well as a widely used desktop-based 
tool called SWAT-CUP, (ii) describe the software architecture and 
simulation workflow of the new tool, and (iii) present three imple
mentation case studies to validate the tool’s design concepts as well as 
physical consistency in terms of hydrologic processes and parameters. 
Although the discussion presented in this paper is in the context of 
SWAT and SWATShare, the conceptual and technical design can be used 
as a blueprint to reproduce similar functionalities in other hydrologic 
model autocalibration tools. 
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2.0. SWAT model autocalibration in SWATShare 

2.1. The genetic algorithm 

The Non-Sorting Genetic Algorithm-II (NSGA-II) (Deb et al., 2002) is 
incorporated into SWATShare 2.0 for SWAT parameter optimization, 
replacing the Shuffled Complex Evolution Algorithm (SCE-UA; Duan 
et al., 1992; Van Griensven and Bauwens, 2003; Van Liew et al., 2005) 
previously used in SWATShare 1.0 (Rajib et al., 2016). NSGA-II has 
proven to be effective for multi-objective hydrologic model calibrations 
and complex watershed management decisions (e.g., Alam et al., 2018; 
Bekele and Nicklow, 2007; Dai et al., 2017; Ercan et al., 2020; Monteil 
et al., 2020). Besides genetic algorithms’ ability to mimic natural se
lection in the physical world using the principles of genetics, and 
thereby produce physically meaningful solutions to parameter optimi
zation problems (Haupt and Haupt, 2003; Gregory, 2009), there are 
three key factors that make NSGA-II a better fit than SCE-UA for hy
drologic modeling CIs. These factors include: (i) ease of use in a web 
interface due to minimal user inputs, (ii) rapid convergence to optimal 
solution, and (iii) adaptability with a parallel computing environment 
(Jeon et al., 2014; Tang et al., 2006; Zhang et al., 2012, 2013). A pre
liminary version of SWATShare’s NSGA-II algorithm written in python 
programming language has been evaluated by Ercan and Goodall 
(2016). A brief description of this algorithm is provided below. 

The NSGA-II in SWATShare uses Latin Hypercube Sampling (LHS) 
method to create the initial parent population (Ercan and Goodall, 
2016), thus reducing the number of generations significantly to reach 
the Pareto front much quicker than starting with a random parent 
population (Ercan and Goodall, 2016; Bekele and Nicklow, 2007). Initial 
parent population size must be at least twice the population size. Once 
the initial parent population objective functions are evaluated within 
the SWAT model, the non-dominated sorting method ranks solutions in 

groups. The best performing groups are selected to create the mate 
population which has a predetermined constant size (population size). 
The crowding distance method is used to select members within the 
same ranking to reach the exact population size. Then, the mate popu
lation goes through crossover and mutation, an essential part of the 
searching process, to create a child population. Once the objective 
functions through SWAT runs are calculated for the child population, the 
mate and child populations are combined to create the next generation 
parent population. This process repeats for each generation until the 
termination criteria are met. Ercan and Goodall (2016) explained these 
procedures in detail. Before incorporating into SWATShare, the original 
NSGA-II source-code (Ercan and Goodall, 2016) has been modified to 
facilitate new functionalities and make them compatible with SWAT
Share’s workflow within myGeoHub. 

2.2. CI-enabled autocalibration functionalities 

Fig. 1 summarizes the new autocalibration functionalities in 
SWATShare, showing how each of these functionalities is driven by and/ 
or benefited from CI in terms of the efficiency matrix introduced in 
Table 1 ‒ platform independence, access to HPC, reduced need for 
programming literacy, reduced need for model structural literacy, and 
data-model interoperability. Additionally, Fig. 1 categorically explains 
whether and to what extent SWATShare’s current version leverages CI 
benefits and improves autocalibration efficiency compared to its pre
decessor (Rajib et al., 2016) and a contemporary, widely used 
desktop-based tool called SWAT-CUP. 

2.2.1. Web-based interface with hierarchical progression 
SWATShare is equipped with a web-based interface to facilitate 

platform independent calibration of SWAT models. Various functions of 
the interface associated with model calibration are grouped under four 

Fig. 1. An efficiency matrix comparing model autocalibration functionalities across the current and previous versions of SWATShare and a widely used desktop- 
based tool called SWAT-CUP. 

A. Rajib et al.                                                                                                                                                                                                                                    
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graphical control elements (or tabs): Discovery, My Models, Simulation, 
and Visualization. The Discovery tab provides an interactive GIS envi
ronment to search and download existing models previously uploaded 
and calibrated in SWATShare, including the models’ metadata and 
geographical extent (Fig. 2a). The My Models tab enables users to initiate 
calibration by first uploading the model input files from their personal 
computers or seamlessly importing them from an external resource in 
HydroShare. Upon uploading a new model, SWATShare automatically 
maps the watershed on the interface and extracts key metadata (e.g., 
number of subbasins and HRUs in the model, watershed drainage area, 
simulation time step and duration) following an extended Dublin Core 
metadata framework in HydroShare (Morsy et al., 2017) (Fig. 2b). 
Finally, SWATShare creates a dedicated web link for the model which 
allows modelers to directly view the model metadata and watershed 
map via a web browser without having to login to SWATShare. The 
Simulation tab allows modelers to set up the calibration protocol, 
including the number of iterations, objective function, objective vari
ables, reference datasets, and a list of parameters along with their 
minimum-maximum ranges (Figs. 3–4). In its current design, the Simu
lation interface lets modelers undergo an intuitive, hierarchical pro
gression across different tasks and in a specific sequence ‒ a critical 
element of interface design (Carrillo et al., 2006) that reduces (or 
eliminates in some cases) the need for both programming and model 
structural literacy. SWATShare’s previous version had a web-based 
Simulation interface as well, yet the interface only allowed uploading a 
pre-processed zip file so that modelers had to set up the calibration 
offline; such an interface reduced programming literacy to some extent 
(by running the calibration online) but it was implicitly platform 
dependent with high model structural literacy needs (due to the offline 
setup in modelers’ local computers). The SWAT-CUP interface, on the 
other hand, is user-friendly but not particularly intuitive as the modelers 

have to manually intervene at critical steps such as defining specific 
subbasins or rivers as calibration nodes, linking the corresponding 
reference data with the model nodes, and feeding the optimized pa
rameters back into the model, among others (further discussed in the 
following sections). 

2.2.2. Interoperability for seamless extraction of reference data from the 
source 

SWATShare offers interoperability so that it can seamlessly and 
instantaneously extract streamflow and water quality datasets through 
the United States Geological Survey web services (USGS, 2022). While 
modelers have the option to upload pre-processed reference datasets in 
CSV (Comma Separated Values) format (configurable size limit; 
currently set at 10 GB), they can activate the interoperability function
ality by simply uploading a CSV file with a list of USGS gage stations that 
they want to be included as reference nodes/model constraints (Fig. 3). 
Such a high level of automation in data-model interoperability corre
spondingly reduces modelers’ need for both modeling and programming 
literacy. To the best of authors’ knowledge, a similar data-model inter
operability functionality is not available in any other contemporary 
hydrologic model autocalibration tools. Currently designed for US wa
tersheds (limited by the availability of a USGS web service), the inter
operability function in SWATShare can be easily extended to other 
regions of the world once suitable web services become available. 
Nonetheless, the current implementation reveals the potential for future 
development to make SWATShare interoperable with emerging remote 
sensing Earth Observation platforms. 

2.2.3. Ease of linking spatially distributed reference datasets with the model 
SWATShare lets modelers upload multiple reference datasets in CSV 

file format, with each CSV file representing a specific variable (i.e., 

Fig. 2. SWATShare interface: Sharing SWAT model and metadata before setting up the calibration. (a) A modeler can also access models that are developed and 
shared by other modelers. (b) For a given model, SWATShare automatically extracts metadata such as number of subbasins, simulation time-step and duration, 
warmup period etc. without having to manually search such information amidst numerous input/output files. 
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streamflow, evapotranspiration). Regardless of the CSV file(s) with pre- 
processed reference data or the CSV file(s) with location list for seam
lessly extracting reference data from the source (section 2.2.2), SWAT
Share uses the same CSV file(s) to recognize and link relevant model 
subbasin and/or river IDs with corresponding datasets (Fig. 3c). There 
was no such functionality in the previous version of SWATShare as it 
required preparing the calibration setup offline and simply provided a 
web interface to submit the calibration job to HPC. In case of SWAT- 
CUP, the graphical interface eases the inclusion of reference datasets, 
but modelers not well-versed with SWAT input/output files may still 
find it challenging to manually link reference datasets with the corre
sponding subbasin and/or river IDs. The current version of SWATShare, 
as noted above, offers a parsimonious yet highly efficient way so that 
modelers can link large, spatially distributed datasets with the model in 
a single step, without having to deal with coding to prepare the data in a 
specific format or being well-versed about the model’s file structure and 
nomenclature. 

2.2.4. Multi-objective calibration 
SWATShare can calibrate various internal dynamics and signatures 

across the watershed in addition to calibrating streamflow only at the 
watershed outlet (Kunnath-Poovakka et al., 2016; Nijzink et al., 2018; 
Rajib et al., 2018a). Specifically, SWATShare offers the option of cali
brating up to five hydrology and water quality variables, simultaneously 
and across different spatial scales, including streamflow (river reach), 
evapotranspiration (subbasin), sediment (river reach), phosphorus 
(river reach), and nitrate (river reach). More variables can be added in 
the future with minimal changes in the overall workflow. However, the 
data- and computation-intensive nature of multi-objective calibration is 
a deterring factor (Asgari et al., 2022) which drives modelers towards 
the traditional streamflow-only calibration and produces right answers 
for wrong reasons (Rajib et al., 2018a). Besides the interoperability with 
data platforms and the ease of linking data with model structure (sec
tions 2.2.2-2.2.3), the free access to HPC in SWATShare reduces data and 
computational burden at the modelers’ end and encourages the use of 
multi-objective calibration to obtain accurate understanding of hydro
logic processes. Executing multi-objective calibrations remains chal
lenging in many contemporary autocalibration tools (e.g., high model 
structural literacy requirements to enable multi-objective calibration in 
PyWrfHydroCalib and SWAT-CUP; no multi-objective option in 
PEST-GSSHA), but SWATShare users can activate multi-objective cali
bration simply by clicking a few check-boxes on the interface 
(Fig. 3a–b). 

2.2.5. Multi-criteria convergence to the optimal solution 
Model performance criteria measure calibration performance by 

expressing the agreement between simulation and reference data. 
Commonly used criteria, e.g., Percent Bias (PBIAS), Correlation (r), Nash 
Sutcliffe Efficiency (NSE), Kling Gupta Efficiency (KGE) (Knoben et al., 
2019; Krause et al., 2005; Legates and McCabe, 1999) are not equally 
representative benchmarks for different hydrologic regimes (Knoben 
et al., 2019), and also the choice of criteria during model calibration is 
often arbitrary (see Moriasi et al., 2007). Therefore, the so-called best 
parameter set (the optimal solution) based on a single criterion is hardly 
the best for all criteria simultaneously. Considering multiple criteria 
simultaneously may produce a trade-off solution, generally known as 
Pareto optimal solutions or non-dominated solutions. These solutions are 
optimal in the sense that no other solutions in the parameter space are 
better than them or can dominate them when all the criteria are 
considered (Ercan and Goodall, 2016). While many existing tools (e.g., 
SWAT-CUP and PyWrfHydro) use a single criterion to search optimality, 
SWATShare lets modelers select a combination of up to three criteria to 
search Pareto optimality (Fig. 3b). 

2.2.6. Spatially distributed parameter search 
Employing spatially distributed reference data in multi-objective 

calibrations (e.g., evapotranspiration from satellites, streamflow and 
water quality from multiple gage stations across the watershed) does not 
automatically guarantee spatially distributed parameter search. For 
example, despite being fed with spatially distributed data, autocalibra
tion tools often let parameters undergo the same degree of change across 
the entire watershed during the iteration process (e.g., Rajib et al., 
2016). Because such an approach overlooks the relative locations of 
calibration nodes and the space-time-variable continuum of the data 
(Dembélé et al., 2020; Gardner et al., 2018; Jadidoleslam et al., 2020), it 
can mislead the parameter search to an equifinal solution. As a remedial 
solution, the new SWATShare interface provides an option similar to 
SWAT-CUP so that modelers can divide a watershed into multiple zones 
according to the spatial distribution/proximity of the calibration nodes 
(and also the knowledge of watershed properties), and correspondingly 
apply different degrees of change to the same parameter across these 
zones (Fig. 4a). The increased computational need for such a highly 
discretized, spatially distributed parameter search is supported by 
SWATShare’s HPC resource. 

2.2.7. Feedback of optimal parameters into the model 
As noted above, choice of performance criteria in traditional hy

drologic model calibration practices is largely arbitrary. As such, de
velopers of autocalibration tools often automate the iterative parameter 

Fig. 3. Setting up autocalibration in SWATShare: 
(a–b) multi-objective calibration with the option of 
simultaneously calibrating streamflow, evapotranspi
ration, sediment, phosphorus, and nitrate, and multi- 
criteria convergence to optimal solution with the 
option of using a combination of up to three perfor
mance metrics (objective functions), (c) two different 
options to define reference datasets, i.e., (1) extract
ing reference data directly from the source without 
requiring any offline data-preprocessing tasks (the 
current version of SWATShare offers this function
ality only for US watersheds through interoperability 
with USGS web services), and (2) enabling the ease of 
linking a user-defined reference dataset with the 
corresponding calibration nodes without requiring 
any manual intervention or coding.   
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search process but decouple the final step from the calibration workflow 
where the best parameter values are fed into the model source code to 
produce the optimal model. This is to let modelers check which per
formance criteria shows the best performance, select the corresponding 
best parameter set, and do manual parameter adjustments if necessary 
(e.g., Mengistu et al., 2019). The contemporary SWAT autocalibration 
tools, e.g., SWAT-CUP and R-SWAT-FME, invariably use this approach. 
Although such an approach gives modelers some flexibility to evaluate 
the physical consistency of the calibration results outside the autocali
bration workflow (Abbaspour, 2015), it is subjective and highly sus
ceptible to equifinality, not to mention the cumbersome tasks of 
handling model parameters manually and chances of errors therein. 
SWATShare, on the other hand, applies a feedback loop to automatically 
insert the best parameter set into the model after finishing a batch of 
iterations. The underlying idea here is to trade-off the aforesaid flexi
bility for other opportunities, such as use of spatially distributed data, 
multi-criteria optimization, and in-depth visualization of model outputs 

(elaborated in section 2.2.8), which can ultimately reduce subjectivity 
and equifinality in model calibration and may in fact produce a more 
robust calibrated model. 

2.2.8. Instantaneous visualization and evaluation of calibration 
performance 

When a calibration job is completed, SWATShare sends an email 
notification to the modeler thus providing more flexibility in SWAT
Share’s remote work environment. Through an interactive interface 
similar to SWAT-CUP, modelers can evaluate calibration performance 
by visualizing the time series of simulated and reference data along with 
the performance metrics. SWATShare allows users to make explainable 
adjustments to the prior calibration protocol and subsequently re-run 
the calibration as necessary. SWATShare enables this by displaying the 
corresponding calibration nodes (i.e., subbasin, river) in a dynamic map 
so that the modelers can visually interpret the variation of model per
formance at different spatial scales (e.g., upstream-to-downstream 

Fig. 4. (a) Spatially distributed parameter 
search in SWATShare where modelers have 
the option to set a parameter with multiple 
possible initial ranges across the model’s 
spatial units, i.e., subbasins and Hydrologic 
Response Units (HRUs). (b) Visualization of 
calibration performance: time-series com
parison and performance metrics. This 
visualization page also displays metadata 
related to the calibration setup and allows 
downloading the calibrated model. It also 
lets modelers check an auto-generated 
simulation log for debugging purposes. (c) 
Additional visualization services that allow 
spatial mapping and time-series plotting of 
all simulated water balance components in 
the calibrated model to have a more in- 
depth understanding of the model’s phys
ical consistency.   
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gradient) and geophysical properties across the watershed (e.g., topog
raphy, land use, climate) (Fig. 4b). 

Further, SWATShare lets modelers instantaneously create time-series 
and spatial maps for all the simulated hydrologic processes corre
sponding to the most optimal parameter set. Especially, for the spatial 
maps (Fig. 4c), SWATShare shows a precipitation time-series so that 
modelers can correlate the spatial patterns of water balance components 
with climatic drivers and sense inconsistencies in their choice of cali
bration protocol. Such an instantaneous yet comprehensive evaluation 
of calibration performance through multiple layers of visualization aids 
is a feature unique to SWATShare currently absent in the contemporary 
autocalibration tools. Additionally, calibration statistics (e.g., optimal 
parameter values, performance metrics) and the calibrated model can be 
downloaded from SWATShare to facilitate offline experiments and/or 
published through SWATShare (Fig. 2) for broader community 
consumption. 

2.3. The software architecture and simulation workflow 

SWATShare architecture, as shown in Fig. 5, consists of three main 
structural components: front end web interface, back end services, and 
external resources. Although the three main structural components 
remain the same as in the previous SWATShare version (Rajib et al., 
2016), the associated software architecture has been modified to better 
fit the sustainability model and the common geospatial data manage
ment and analysis infrastructure myGeoHub provides to the other hos
ted projects (Kalyanam et al., 2019). 

2.3.1. Front end interface 
The front end of SWATShare is an interactive web application 

deployed through myGeoHub (Kalyanam et al., 2019, 2020; 
https://mygeohub.org) ‒ a geospatial science gateway in the HUBzero 
CI. HUBzero is a CI to create and host interactive web portals for sci
entific research, education, and outreach activities (McLennan and 
Kennell, 2010). It provides out-of-the-box data management tools for 
users such as group, project, publication, ticket tracking, wiki, forum, 
and an automated process to contribute contents and publish online 

tools. The access control for SWATShare is integrated with the HUBzero 
authentication system. It enables private model and simulation man
agement for each modeler as well as resource usage monitoring and data 
sharing. The earlier version of the SWATShare’s graphical user interface 
was implemented using Adobe Flash. Since Adobe no longer supports 
Flash Player after year 2020, a new version of SWATShare as a HUBzero 
component is implemented using PHP and JavaScript, which are the 
main programming languages for web application development on the 
HUBzero platform. Specifically, it is a single-page application (SPA) 
providing dynamic content by actively communicating with myGeoHub 
web server eliminating the need to refresh the entire web page. This 
enables a faster transition, and thus a better user experience as if they 
were using a native application. 

2.3.2. Back end services 
The back end of the SWATShare system is built on Redhat Linux 

distribution. It consists of a set of services that are responsible for 
handling modelers’ requests through the web interface. In particular, 
the Apache/PHP services provide data upload and download functions 
via HTTP messages. The Tomcat web services are written in JAVA and 
support REpresentational State Transfer (REST) web APIs for managing 
models, users, and simulations. They also perform geospatial data pro
cessing functions including model output transformation, data visuali
zation, model validation, and metadata extraction, using open source 
python and R software, such as gdal (Warmerdam et al., 2022), fiona 
(Gillies, 2020), dataRetrieval (De Cicco et al., 2022), and hydroGOF 
(Zambrano-Bigiarini, 2020). The metadata for users, simulations, and 
models are stored securely in a MySQL database. This 
Linux-Apache-MySQL-PHP (LAMP) software stack is a widely used web 
development platform having an open-source ecosystem, and providing 
cost efficiency (Lawton, 2005). The uncalibrated models uploaded by 
different modelers and their corresponding calibrated models/outputs 
are stored in a high-performance file system. 

2.3.3. External resources 
SWATShare utilizes and interoperates with several external re

sources. A GeoServer is used for rendering interactive maps that allows 
users to search models by geographic location and metadata. GeoServer 
is a standard-conforming, community-based tool that has proved stable 
and efficient in GIS application developments (Parker et al., 2015). 
SWAT model autocalibration usually require a large amount of 
computational resources. For instance, one calibration job for a SWAT 
model normally includes more than 500 iterative simulations. In order 
to get better performance and scalability, SWATShare connects to the 
HPC resources at the Extreme Science and Engineering Discovery 
Environment (XSEDE) Comet cluster and a Purdue campus cluster. This 
enables users to get simulation results much sooner than using their 
desktop environments. Moreover, they can run multiple simulations at 
the same time without performance degradation. SWATShare also 
connects to HydroShare (Tarboton et al., 2018), a collaborative CI 
aiming at enabling the hydrologic user community to share their data, 
models, and analysis. Users from either system can easily access data 
and tools across the networks without the need to create new accounts or 
manually import or export models. 

2.3.4. Simulation workflow 
SWATShare runs calibration as well as normal simulations remotely 

on HPC resources via secure shell (ssh). The overview of the simulation 
workflow is described in Fig. 6. When the modeler submits a job, the 
web front end collects the user input and creates a simulation specifi
cation file that describes the input, simulation name, simulation period, 
and SWAT executable version (see, e.g., Fig. 3a). It then invokes the 
SWATShare job submission web service with the simulation specifica
tion. Additional calibration details are collected and passed to the web 
service, such as the optimization algorithm to use, the number of iter
ations, and parameter information, and reference data files (see, e.g., Fig. 5. SWATShare software architecture.  
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Fig. 3b–c, 4a). 
When the SWATShare web service receives the request, it prepares a 

job submission module to be submitted to the HPC resources. In 
particular, it parses the specification and creates a simulation module 
containing the SWAT model input file, a definition file including cali
bration information, and the reference data file(s). Along with the input 
files, the module also includes a simulation execution engine consisting 
of several automation scripts and a SWAT executable. Next, the web 
service sends a job request with the module to the Slurm workload 
manager on the head node of the remote cluster via ssh. The job will 
enter a waiting queue until a suitable compute node is available. When a 
compute node is assigned, the automation scripts in the simulation 
module are executed and the simulation is run iteratively. The SWAT
Share job monitoring web service keeps track of the job status. When the 
job completes, it fetches the simulation output from the file system of the 
computational resource and stores it to a Network File System (NSF) 
mounted to the back-end server. Finally, it checks for successful run of a 
simulation and updates the MySQL database accordingly. 

3.0. Implementation case studies 

In our previous study, we conducted modeling experiments to 

introduce SWATShare’s model sharing, high performance computation, 
and visualization capabilities in a real-time multi-user environment 
(Rajib et al., 2016). In the present study, we conducted experiments to 
demonstrate (i) how the new CI capabilities of SWATShare calibration 
facilitate data-model interoperability, (ii) how SWATShare allows 
spatially distributed parameter search as opposed to a conventional 
approach, and (iii) whether the SWATShare calibration results are 
consistent with those from a widely used desktop-based SWAT calibra
tion tool SWAT-CUP. 

3.1. Data-model interoperability 

SWATShare’s data-model interoperability is demonstrated in Fig. 7 
using a SWAT model originally developed by Rajib et al. (2018b) for the 
Upper Wabash River watershed in central Indiana, United States. This 
watershed has 7 streamflow gage stations that satisfies the data avail
ability criteria and are considered as calibration nodes. To activate 
data-model interoperability, a CSV file listing the gage and the corre
sponding river IDs is uploaded. SWATShare retrieves other key inputs 
from the prior steps, including the simulation period, time-step, and 
objective variable (see Fig. 3a–b) and feeds this information into the 
dataRetreival software (De Cicco et al., 2022) to seamlessly fetch the 

Fig. 6. Overview of the SWATShare simulation workflow.  

Fig. 7. The steps SWATShare would follow to enable data-model interoperability for calibrating a SWAT model of the Upper Wabash watershed, United States. The 
information in (1) are the only user inputs; the rest of the steps including the R code in (3) are automatically executed by SWATShare. 
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required time-series data from USGS. Next, SWATShare uses a python 
post-processor to transform the downloaded time-series in a specified 
format while linking them with the corresponding river IDs. In addition 
to the Wabash watershed test presented here, this functionality has been 
tested using different watersheds with varying density of gage stations, 
simulation period, and objective variables (e.g., water quality). For the 
Upper Wabash test case, a modeler with moderate SWAT modeling, GIS, 
and programming experience could save one working day (about 8 h) in 
data processing tasks when using SWATShare’s data-model interopera
bility functionality as opposed to the manual data search, download, and 
processing for 7 gaging stations. 

3.2. Spatially distributed parameter search 

Fig. 8 shows SWATShare’s capability to perform spatially distributed 
parameter search using the same model setup for the Upper Wabash 
watershed demonstrated earlier. The 7 streamflow gage stations used in 
the model’s calibration are somewhat uniformly distributed across 43 
subbasins and numerous Hydrologic Response Units (HRUs) within the 
subbasins (Fig. 8a). 

By making a ±25% change in the default curve number (CN2) or 
replacing the default channel roughness (CH_N2) with a new value be
tween 0.01 and 0.15 irrespective of subbasins and river reaches 
(Fig. 8b), these parameters are allowed to undergo the same degree of 
change across the entire watershed without considering the relative 
locations of calibration nodes (i.e., gage station locations). On one hand, 
this spatially uniform optimization limits the ability of a parameter to 
represent watershed features (e.g., land use and topography). On the 
other hand, such an approach makes a distributed model function like a 
lumped model, thus underutilizing the data, labor, and computational 
cost of highly resolved process-based simulations. Yang et al. (2019) 
conceptualized this as the Calibration Density and Consistency problem 
while Xie et al. (2021) linked this to a dimensionality problem. Creating 
a model with high spatial resolutions (Fenicia et al., 2016; Kuppel et al., 
2018; Marcé et al., 2008) or using spatially distributed reference data in 

model calibrations (Rajib et al., 2018a) alone does not address this 
problem. 

As a remedial solution, the new calibration interface in SWATShare 
uses an approach suggested by Abbaspour (2015) to explicitly relate 
reference data with the corresponding model subbasins and/or HRUs. 
This functionality is demonstrated in Fig. 8c that shows how the same 
parameter (e.g., Curver Number (CN2)) can undergo different degrees of 
optimization across three different watershed zones. Briefly, the 
sub-basins are grouped in three zones according to their proximity to 
gage stations in an upstream-to-downstream gradient. The parameter 
optimization is further distributed at HRU-level in one of the subbasins 
according to different land use types (see Fig. 8a and c). The resulting 
calibrated model with spatially distributed parameter search option 
produced notable changes in model outputs. For example, 
subbasin-level surface runoff after a particular storm event is −30% to 
+60% different in the spatially distributed option compared to that in 
the spatially uniform option. Although this demonstration is based on 
point observations at a limited number of gage stations, the spatially 
distributed parameter search option shown here makes SWATShare a 
user-friendly, futuristic tool for calibrating large-scale high-resolution 
hydrologic models with increasingly available gridded Earth observa
tion datasets. 

3.3. Consistency across SWATShare and SWAT-CUP calibration results 

In this experiment, separate SWATShare and SWAT-CUP calibrations 
of 30 SWAT models across four different climate zones in the United 
States (see Fig. 9a) are conducted. This is the first calibration experiment 
at such an extensive scale because prior studies often considered a single 
watershed to evaluate alternative calibration tools (e.g., Paul and 
Negahban-Azar, 2018; Yang et al., 2008). This extensive calibration 
experiment facilitates a conclusive understanding of whether and to 
what extent SWATShare and SWAT-CUP results are consistent. The 
metadata corresponding to each of these test models can be accessed 
through the Discovery function of SWATShare (Fig. 2) using the 

Fig. 8. Effect of spatially distributed parameter search approach in SWATShare as opposed to the commonly used spatially uniform approach (demonstrated using 
the Curve Number parameter as an example). The model used in this example is adapted from Rajib et al. (2018b). 
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supplementary information in S1. 
All 30 models are simulated at a daily time-step with a 2-year period 

of initialization (2001–2002), followed by a 5-year calibration 
(2003–2007) and a 3-year validation (2008–2010) using gage station 
streamflow data as reference. Identical set of calibration parameters (N 
= 18) and their respective initial ranges are selected across all 60 setups 
(see supplementary information S1). The models are calibrated with the 
NSGA-II algorithm in SWATShare and the Sequential Uncertainty 
Fitting-versions 2 (SUFI-2) algorithm in SWAT-CUP. SUFI-2 in SWAT- 
CUP is used because of its well-documented applications in the litera
ture. Models in SWATShare are set with 20 generations and 100 itera
tions, whereas models in SWAT-CUP are set with 1000 iterations each 
across two successive batches of iterations. This is a measure to ensure 
an equivalent number of total simulations although such a distribution 
of generation, iteration, and batch numbers may not translate the same 
meaning across two conceptually different calibration tools. 

The results indicate that SWATShare and SWAT-CUP yield nearly 
consistent calibration performance in terms of streamflow Kling Gupta 
Efficiency (KGE) (Knoben et al., 2019) values averaged separately for 
calibration and validation, and across all the watersheds located within 
a climate zone (Fig. 9b). These averaged estimates of calibration per
formance are also supported by individual watershed-KGE values 
(Fig. 9c; note the adherence of KGE values around the SWATShare ⎼ 
SWAT-CUP 1:1 line). Despite such consistency in overall calibration 
performance, optimal parameter values in SWATShare may be incon
sistent with those in SWAT-CUP. As a result, the most optimal parameter 
values in SWATShare, with a few exceptions, showed low correlation 

with the corresponding parameter values in SWAT-CUP (Fig. 10a). 
Importantly, a behavioral change is observed revealing how some of these 
parameters represented hydrologic processes in the two calibration 
tools. For example, the optimal value for parameter ESCO in SWATShare 
is greater than EPCO across all four climate zones ‒ a pattern completely 
opposite compared to SWAT-CUP (Fig. 10b). Because ESCO and EPCO 
are the key parameters controlling SWAT’s soil moisture accounting and 
evapotranspiration mechanisms (Neitsch et al., 2011; Rajib et al., 2016), 
their opposite behavior shown in Fig. 10b indicates two potentially 
different states of water balance in the same model regardless of similar 
calibration performances. Although it is hard to disentangle the under
lying factors for such behavioral change in parameters’ responses, these 
findings add new insights into how the choice of calibration tool can 
cause equifinality. 

4. Conclusions and future directions 

Data for streamflow, climate, hydrography, topography, land use, 
and soil over the internet date back to early 2000s. Naturally, devel
opment and use of Cyberinfrastructure (CI) for hydrology, or water re
sources in general, had long been focused on instantaneous access to 
data, standardizations of data publication and integration, and plat
forms for data storage and sharing. Therefore, CIs and Open Science 
platforms geared towards hydrologic modeling needs had been limited. 
SWATShare 1.0 (https://mygeohub.org/groups/water-hub/swatshare) 
partially filled this gap by providing a collaborative platform for sharing, 
simulation, and visualization of SWAT models (Rajib et al., 2016). This 

Fig. 9. Comparison of SWATShare and SWAT-CUP calibration performance. The map shows 30 watersheds across four different climates zones used for this 
comparison (also see supplementary information S1). The climate zones are based on a global climate classification map (Beck et al., 2018) where Cfa = humid 
subtropical, Csa = Mediterranean hot summer, Dfa = hot summer continental, Dfb = warm summer continental. 

Fig. 10. Comparison of the most optimal parameter values for SWAT models calibrated separately with SWATShare and SWAT-CUP. SWATShare and SWAT-CUP in 
this model intercomparison experiment used NSGA-II and SUFI-2 optimization algorithms respectively. 
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paper introduces SWATShare 2.0 – a substantially improved version 
incorporating a new autocalibration tool and demonstrating how CI 
capabilities can be harnessed to solve five root causes of inefficiency in 
traditional hydrologic model calibration practices, including (i) plat
form dependence, (ii) limited computing resource, (iii) lack of pro
gramming literacy, (iv) lack of model structural literacy, and (v) no 
data-model interoperability. The online interface of SWATShare en
sures platform independence by letting modelers perform complex 
calibration tasks in a web browser without requiring any specific com
puter operating system, software packages, and their versions and 
licenses. The free access to High Performance Computing (HPC) 
resource allows SWATShare to lower the computational burden, and 
thereby offer multi-objective calibration options involving up to five 
hydrology and water quality variables and a highly discretized param
eter search option involving spatially distributed datasets. SWATShare’s 
data-model interoperability, by seamlessly and instantaneously 
extracting streamflow and water quality datasets through the USGS web 
services and automatically recognizing and linking those datasets with 
corresponding model subbasin and/or river IDs, show a unique example 
of CI capabilities currently absent in any other hydrologic model auto
calibration tools. Searching the optimal solution using a combination of 
up to three performance criteria, direct feedback of optimal parameters 
into the model, and instantaneous visualization and evaluation of cali
bration performance are the additional functionalities that further in
crease the efficiency of the autocalibration process in SWATShare 
without the need for excessive pre- and post-processing tasks. SWAT
Share’s online interface serves as the one-stop platform to let modelers 
perform all the above calibration steps through an intuitive, hierarchical 
progression, thus minimizing the need for a modeler to have high pro
gramming and model-structural literacy. Finally, and more importantly, 
results from SWATShare autocalibration show that its streamflow pre
diction is comparable with that from the commonly used offline cali
bration platform SWATCUP, but for some of the study areas, parameters 
estimated from SWATShare may be more meaningful to the physical 
processes. 

While SWATShare demonstrates an example application using the 
SWAT model, except the model, most of the workflow is generic and can 
be adopted for any model. For example, the SWAT model itself is 
evolving and is currently being modified as SWAT+. SWAT+ can be 
brought under SWATShare via simple code modifications to incorporate 
the model’s new file naming conventions and data structures, without 
having to change SWATShare’s overall workflow. Plan to do this is 
already underway. 

No doubt the above developments of SWATShare addressed a critical 
need of the hydrologic modeling community. Yet, future developments 
and re-developments of SWATShare harnessing newer and better CI and 
Open Science capabilities to address broader community needs are 
imminent. There is a push and also broader consensus within the sci
entific community, including hydrology, for reproducibility. Repro
ducibility cannot be accomplished without the ability to run complete 
scientific workflows which may, and in most cases they do, demand a 
more extensive architecture for interoperability and computing. For 
example, currently SWATShare cannot create a SWAT model directly 
from input datasets; it relies on modelers to upload their existing 
models, meaning modelers cannot run complete scientific workflows – 
from model creation to model calibration – within SWATShare interface. 
Fortunately, besides access to XSEDE distributed HPC (https://www. 
xsede.org), SWATShare’s current capabilities to interoperate across 
multiple CIs including myGeoHub (https://mygeohub.org), HydroShare 
(https://www.hydroshare.org), and USGS′ National Water Information 
System (https://waterdata.usgs.gov/nwis) have already created the 
building blocks to achieve that reproducibility goal. Efforts to link models 
and enable model interoperability is also booming. The generalizable 
software pieces developed for SWATShare can further excel these 
interoperability efforts by brining other models and myriad open access 
autocalibration codes under one platform. In essence, with calls for 

adopting FAIR or Open Science principles and increasing need for 
convergent approaches to address societal problems involving water and 
climate, platforms like SWATShare can serve as a blueprint for new CI- 
enabled developments in hydrology, and beyond hydrology in other 
disciplinary domains of Earth system sciences. 
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