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1.0. Introduction

The predictability of a hydrologic model largely depends on how
well its parameters are calibrated. Because numerous manual iterations
to search representative parameter values can be time-consuming
(Dawdy and O’Donnell, 1965), hydrologic modelers use an automated
iterative process using complex algorithms (hereafter, autocalibration)
(Duan et al., 2006; Gupta et al., 1999; Samadi et al., 2020; Wu et al.,
2021). Over time, this autocalibration has become a standard practice in
hydrologic model applications, leading to the widespread development
of open-source tools that can link calibration algorithms with respective
model source-codes (e.g., Abbaspour, 2015; Wi et al., 2017; Wu and Liu,
2012). These autocalibration tools, when provided with adequate
reference datasets, produce hydrologic simulations with reasonably high
accuracy. Yet, it will not be an overstatement to refer the term “auto-
calibration” as a misnomer because many data- and model-integration
tasks required to set up and run the contemporary autocalibration
tools heavily rely on modelers’ manual interventions. As a result, despite
the notable recent improvements in calibration algorithms and
open-source tools (e.g., Baracchini et al., 2020; Chlumsky et al., 2021;
Femeena et al., 2020; Sadler et al., 2019; Wang and Brubaker, 2015;
Zhang et al., 2013), hydrologic modelers spend considerable time in
data pre-processing, coding, and running simulations rather than
focusing on science questions. Therefore, having a guided step-by-step
workflow and/or an intuitive graphical user interface do not neces-
sarily lead to an efficient autocalibration procedure. Addressing the root
cause(s) of inefficiency in hydrologic model autocalibration still remains
a challenge. Below we identify five root causes of inefficiency in auto-
calibration tools and then we compare some of the contemporary hy-
drologic models according to the efficiency of their respective
autocalibration tools (Table 1).

(1) Platform dependence: Most of the autocalibration tools recognized
across the hydrologic modeling community are developed as
offline, desktop-based black box software (e.g., SWAT-CUP for the
Soil and Water Assessment Tool (SWAT), VIC-ASSIST for the
Variable Infiltration Capacity (VIC) model, HSPEXP/HSPEXP+
for the Hydrologic Simulation Program-Fortran (HSPF))

Table 1
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(Abbaspour, 2015; EPA, 2015; Wi et al., 2017). These tools rely
on a particular computer operating system (i.e., Windows or
Linux), dependencies (e.g., specific program libraries, packages,
and their versions), and licensing requirements. Correspondingly,
a major issue associated with such platform dependence is
maintenance and updating of functions (Yu et al., 2019). Over
time, some autocalibration tools (e.g., HSPEXP; EPA, 2015) have
become obsolete due to incompatibility with current computer
operating systems.

(2) Limited computing resource: Commonly used desktop-based auto-

calibration tools often conduct one calibration job at a time on a
single desktop computer. The computing resource in a desktop
computer may be adequate to run small-scale calibrations
involving small watershed areas and short simulation periods.
However, such small-scale calibrations become computationally
intensive when the models undergo multi-objective calibrations
with spatially distributed data and involves a large parameter set
(e.g., Kunnath-Poovakka et al., 2016; Rajib et al., 2018a). Obvi-
ously, calibrations involving large watersheds and long simula-
tion periods (e.g., Du et al., 2018), high spatial resolution (e.g.,
Lin et al., 2018), and complex spatial discretization schemes (e.g.,
Evenson et al., 2018) demand more computing resources than an
average desktop computer alone can provide. In any case, mod-
elers commonly run multiple instances of the same calibration
setup as trial runs to gather priori knowledge of sensitive pa-
rameters, suitable parameter values, and characteristic model
bias (Kuzmin et al., 2008) which make the overall computational
footprint and run-time unmanageable. Against these needs, effi-
ciency of commonly used desktop-based autocalibration tools
remains limited by the processing power and available storage
space in modelers’ personal computers. Some of the recent
autocalibration tools allow model calibration to be remotely
executed in High Performance Computing (HPC) clusters (e.g.,
LCC-SWAT and gSWAT-BASHYT for the SWAT model (Bacu et al.,
2011; Cau et al., 2013; Zamani et al., 2021); the model inde-
pendent cloud-based Parameter ESTimation (PEST) tool (Fienen
et al., 2011)). There are also efforts to speed-up calibration tools
using Graphics Processing Units (GPU)-aided parallel computing

Comparison of contemporary hydrologic models according to the efficiency of their respective autocalibration tools: X means inefficient and \/ means efficient. For a
particular tool, X or \/ is a relative indicator of its efficiency compared to all other tools/models presented in the table.

Model Calibration tool Reference Platform Access to HPC Reduced need for Reduced need for Data-model
independence resources programming literacy model structural interoperability
literacy
GSSHA PEST Skahill et al. (2012) X X X X X
SWMM OSTRICH-SWMM*  Behrouz et al. (2020); v X X X X
Macro et al. (2019)
SWMM DREAM-SWMM* Gao et al. (2020) v X X X X
SWAT R-SWAT-FME” Wu and Liu (2012), v X X X x
2014
WRE- PyWrfHydroCalib¥  NCAR (2019) v X X x X
Hydro
HSPF HSPEXP/ EPA (2015) X X v X X
HSPEXP+
vIC" VIC-ASSIST* Wi et al. (2017) X X v X X
SWAT SWAT-CUP* Abbaspour (2015) X X v X X
SWAT SWATShare 1.0 Rajib et al. (2016) X v v X X
SWAT LCC-SWAT Zamani et al. (2021) X v v X X
SWAT gSWAT-BASHYT"' Bacu et al. (2011); Cau v v v X X
et al. (2013)
SWAT SWATShare 2.0 This paper 4 v v v v

#OSTRICH-SWMM, DREAM-SWMM, R-SWAT-FME, and PyWrfHydroCalib are coded in platform independent language. Therefore, these tools have potential to access
HPC resources via a web interface, but the existing literature mostly shows desktop-based applications.
Recent VIC modeling architectures to support web-based model applications and reproducibility (e.g., Hamman et al., 2018) are not yet fully developed to address

autocalibration inefficiencies.

*Some functionalities in VIC-ASSIST and SWAT-CUP are designed to reduce model structural literacy.

'To the best of authors’ knowledge, gSWAT-BASHYT is no longer in use.
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(Ercan et al., 2014; Freitas et al., 2022; Kan et al., 2019). Yet, it is
widely acknowledged that running autocalibration tools using
HPC and/or parallel computing also requires a client-server
interface and standard web services for job management,
resource monitoring, messaging, user verification, data transfer,
encrypting, and various notification mechanisms (Hokkanen
et al., 2021; Zhu et al., 2016), which may be challenging to sus-
tain unless the tool is part of a large, holistic modeling platform.
Programming literacy: Some of the autocalibration tools do not
have a graphical user interface. In such cases, running the tool
requires substantial literacy on programming languages, syntax,
and execution. For example, use of pyWrfHydroCalib for the
WRF-Hydro model (Lin et al., 2018; NCAR, 2019), R-SWAT-FME
for the SWAT model (e.g., Wu and Liu, 2012, 2014), and OS-
TRICH for the Storm Water Management Model (SWMM) (Beh-
rouz et al.,, 2020; Macro et al, 2019) require medium-to
high-level skills in python and R codes. Similarly, without
knowing how to write in Command-Line Interface, modelers
cannot run the PEST tool for the Gridded Surface Subsurface
Hydrologic Analysis (GSSHA) model (Skahill et al., 2009, 2012).
In short, it is challenging to run some of the existing autocali-
bration tools without programming skills, which limits their
wider acceptability within the hydrologic modeling community.
Model structural literacy: Besides the knowledge of hydrologic
processes and steps to setup and calibrate a model, it is necessary
for a modeler to clearly understand the model’s internal structure
including the model’s geodatabase, source-code, and parameter
definitions. Because the existing autocalibration tools are not
fully coupled with the model structure, modelers running these
tools with limited model structural literacy need to follow a steep
learning curve. For example, while using pyWrfHydroCalib and
HSPEXP/HSPEXP+, modelers need to manually decide on the
spatial scale at which the tool will iterate a parameter (at indi-
vidual subbasin-scale or entire basin-scale) or the nodes the tool
will use as calibration sites (specific subbasin or river IDs) (EPA,
2015; NCAR, 2019; also see the scaling problem discussed by
Nijzink et al., 2018; Tsai et al., 2021; Xu et al., 2014; Zhang et al.,
2017). Some tools do not offer a function to automatically fit the
most optimal parameter combinations back into the model
source-code after completing a batch of iterations (e.g.,
SWAT-CUP and LCC-SWAT; Ozdemir and Leloglu, 2019; Zamani
et al., 2021). Nonetheless, the reduced need for model structural
literacy is the most desired service that an autocalibration tool
can offer to educators who often want to avoid the steep learning
curve. The intuitive graphical user interface in tools like
SWAT-CUP and VIC-ASSIST is helpful yet inadequately detailed
to substantially reduce the need for model structural literacy.

Data-model interoperability: Use of multiple sources/types of
reference datasets in model calibration requires a meaningful
linking of the data with the model structure, which should handle
the space-time-variable continuum without misleading the
parameter search procedure (Dembélé et al., 2020; Gardner et al.,
2018; Jadidoleslam et al., 2020). While there are advances in
developing web-based platforms to perform spatio-temporal
query across a region and bulk-download available in-situ and
remotely sensed Earth observation datasets (Ames et al., 2012;
CSISS, 2021; GEE, 2022), none of the existing autocalibration
tools can automatically do the data post-processing and
model-linking tasks. Therefore, for a large-scale model calibra-
tion involving many in-situ measurements (e.g., Abbaspour,
2015; Du et al., 2018; Lin et al., 2018; Rajib et al., 2020a,b) or for
a small watershed-scale model calibration involving spatially
distributed remotely sensed estimates (Rajib et al., 2018a), it may
be easy to download required datasets through web-based plat-
forms, but it remains an excruciatingly labor-intensive task for a
modeler to process the data let alone link each of those datasets
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explicitly with the corresponding calibration sites in the model (e.
g., river IDs). Unfortunately, all the existing calibration tools are
designed with an assumption that downloading, pre-processing,
and making the reference datasets ready for the calibration tool
are auxiliary tasks conducted outside the tool’s graphical/coding
interface.

Scientific cyberinfrastructures (CIs) can address all five root causes of
inefficiency in hydrologic model autocalibration through a Findable,
Accessible, Interoperable, and Reusable (FAIR) Open Science platform
(Bandaragoda et al., 2019; Chen et al., 2020; Govindaraju et al., 2009;
Kalyanam et al., 2019, 2020; Maidment, 2008; Voinov and Costanza,
1999; Wilkinson et al., 2016). The FAIRness or Openness of Cls is due to
their building blocks which generally include HPC resources, contain-
erized models, code wrappers, automated workflows, geospatial data
analysis, GIS interface, and other tools needed for their interoperability
and reproducibility - all through an open, web-based environment (e.g.,
Essawy et al., 2020; Le et al., 2015; Wu et al., 2013; Zhang et al., 2019).
Considering these benefits, many contemporary developments in Earth
system sciences reflect a trend of CI solutions. For example, recently
developed web-based GIS environments allow running a hydrologic
model using HPC resources without having to possess in-depth pro-
gramming and model development skills (e.g., Liu et al., 2014; Lyu et al.,
2019). Similarly, inclusion and removal of modules and codes in a
simple drag-and-drop plug-and-play fashion, and thereby enabling the
total platform independence of a modeling workflow is becoming
increasingly feasible (Dunlap et al., 2013; Lodhi et al., 2020; Peckham
and Goodall, 2013; Zeng et al., 2020). What has further widened the
scope of hydrologic modeling in a CI platform is the ability to link
multiple CIs that allows greater utilization of available data repositories,
computational environments, and model Application Programming In-
terfaces (APIs) (Castronova et al., 2013; Essawy et al., 2018; Choi et al.,
2021). Correspondingly, modelers are now developing interoperability
engines (Zhang et al., 2021) to resolve the heterogeneity in model and
data types (e.g., Chen et al., 2020; Gregersen et al., 2007; Hutton et al.,
2020; Peckham et al., 2013).

In line with the above efforts, SWATShare (Rajib et al., 2016;
referred here as SWATShare 1.0; https://mygeohub.org/groups/
water-hub/swatshare) was developed as a unique SWAT modeling
platform leveraging the CI capabilities of myGeoHub (Kalyanam et al.,
2019, 2020; https://mygeohub.org). Besides the collaborative platform
for model and metadata sharing, and interoperability with other
collaborative CIs like HydroShare (Morsy et al., 2017; Tarboton et al.,
2018), SWATShare 1.0 offered basic autocalibration functionalities
unable to address all five root causes of calibration inefficiency identi-
fied earlier (see Table 1). Thus, SWATShare 1.0 has been substantially
modified in SWATShare 2.0 by incorporating a new, highly efficient
autocalibration tool that addresses all root causes of calibration in-
efficiency by harnessing CI capabilities.

The overall goal of this paper is to introduce the new SWAT model
autocalibration tool in SWATShare 2.0. The specific objectives of this
paper are to (i) describe the Cl-enabled functionalities in SWATShare
that make the new autocalibration tool efficient compared to the pre-
vious version (Rajib et al., 2016) as well as a widely used desktop-based
tool called SWAT-CUP, (ii) describe the software architecture and
simulation workflow of the new tool, and (iii) present three imple-
mentation case studies to validate the tool’s design concepts as well as
physical consistency in terms of hydrologic processes and parameters.
Although the discussion presented in this paper is in the context of
SWAT and SWATShare, the conceptual and technical design can be used
as a blueprint to reproduce similar functionalities in other hydrologic
model autocalibration tools.
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2.0. SWAT model autocalibration in SWATShare
2.1. The genetic algorithm

The Non-Sorting Genetic Algorithm-II (NSGA-II) (Deb et al., 2002) is
incorporated into SWATShare 2.0 for SWAT parameter optimization,
replacing the Shuffled Complex Evolution Algorithm (SCE-UA; Duan
et al., 1992; Van Griensven and Bauwens, 2003; Van Liew et al., 2005)
previously used in SWATShare 1.0 (Rajib et al., 2016). NSGA-II has
proven to be effective for multi-objective hydrologic model calibrations
and complex watershed management decisions (e.g., Alam et al., 2018;
Bekele and Nicklow, 2007; Dai et al., 2017; Ercan et al., 2020; Monteil
et al., 2020). Besides genetic algorithms’ ability to mimic natural se-
lection in the physical world using the principles of genetics, and
thereby produce physically meaningful solutions to parameter optimi-
zation problems (Haupt and Haupt, 2003; Gregory, 2009), there are
three key factors that make NSGA-II a better fit than SCE-UA for hy-
drologic modeling CIs. These factors include: (i) ease of use in a web
interface due to minimal user inputs, (ii) rapid convergence to optimal
solution, and (iii) adaptability with a parallel computing environment
(Jeon et al., 2014; Tang et al., 2006; Zhang et al., 2012, 2013). A pre-
liminary version of SWATShare’s NSGA-II algorithm written in python
programming language has been evaluated by Ercan and Goodall
(2016). A brief description of this algorithm is provided below.

The NSGA-II in SWATShare uses Latin Hypercube Sampling (LHS)
method to create the initial parent population (Ercan and Goodall,
2016), thus reducing the number of generations significantly to reach
the Pareto front much quicker than starting with a random parent
population (Ercan and Goodall, 2016; Bekele and Nicklow, 2007). Initial
parent population size must be at least twice the population size. Once
the initial parent population objective functions are evaluated within
the SWAT model, the non-dominated sorting method ranks solutions in
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groups. The best performing groups are selected to create the mate
population which has a predetermined constant size (population size).
The crowding distance method is used to select members within the
same ranking to reach the exact population size. Then, the mate popu-
lation goes through crossover and mutation, an essential part of the
searching process, to create a child population. Once the objective
functions through SWAT runs are calculated for the child population, the
mate and child populations are combined to create the next generation
parent population. This process repeats for each generation until the
termination criteria are met. Ercan and Goodall (2016) explained these
procedures in detail. Before incorporating into SWATShare, the original
NSGA-II source-code (Ercan and Goodall, 2016) has been modified to
facilitate new functionalities and make them compatible with SWAT-
Share’s workflow within myGeoHub.

2.2. Cl-enabled autocalibration functionalities

Fig. 1 summarizes the new autocalibration functionalities in
SWATShare, showing how each of these functionalities is driven by and/
or benefited from CI in terms of the efficiency matrix introduced in
Table 1 - platform independence, access to HPC, reduced need for
programming literacy, reduced need for model structural literacy, and
data-model interoperability. Additionally, Fig. 1 categorically explains
whether and to what extent SWATShare’s current version leverages CI
benefits and improves autocalibration efficiency compared to its pre-
decessor (Rajib et al., 2016) and a contemporary, widely used
desktop-based tool called SWAT-CUP.

2.2.1. Web-based interface with hierarchical progression

SWATShare is equipped with a web-based interface to facilitate
platform independent calibration of SWAT models. Various functions of
the interface associated with model calibration are grouped under four

Efficiency Matrix

Access to

Reduced need for

HPC resources ‘\ /' modeling literacy

o

Platform

Reduced need for
independence  programming literacy

Data-model
interoperability

SWATShare (previous version) SWATShare (current version)

Calibratoin functionalities SWAT-CUP
User interface to facilitate a intuitive,
hierarchical progression of model calibration l | -

steps

Interoperability with US Geological Survey web
services for seamlessly extracting gage station | | |

streamflow and water quality data

Ease of linking spatially distributed reference
datasets, e.g., multiple streamflow and water

quality gage stations, remotely sensed gridded | | -

evapotranspiration, with corresponding model
river and subbasin IDs

Multi-objective  calibration  simultaneously -

using streamflow, evapotranspiration, and | |

water quality data

Combination of upto three different metrics

for a multi-criteria, pareto front-likel l I

convergence to the optimal solution

Option for a highly discretized, spatially
distributed parameter search at subbasin- and l:l:-:] I I ‘ ‘ | | | ‘

Hydrologic Response Unit (HRU)-levels

Feedback of calibration results (i.e., the

optimal parameter set) into the model

without requiring any user intervention

Instantaneous
performance metrics and output visualization

calculation of model I:I:-:I [ I [ [ | ]

Fig. 1. An efficiency matrix comparing model autocalibration functionalities across the current and previous versions of SWATShare and a widely used desktop-

based tool called SWAT-CUP.
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graphical control elements (or tabs): Discovery, My Models, Simulation,
and Visualization. The Discovery tab provides an interactive GIS envi-
ronment to search and download existing models previously uploaded
and calibrated in SWATShare, including the models’ metadata and
geographical extent (Fig. 2a). The My Models tab enables users to initiate
calibration by first uploading the model input files from their personal
computers or seamlessly importing them from an external resource in
HydroShare. Upon uploading a new model, SWATShare automatically
maps the watershed on the interface and extracts key metadata (e.g.,
number of subbasins and HRUs in the model, watershed drainage area,
simulation time step and duration) following an extended Dublin Core
metadata framework in HydroShare (Morsy et al., 2017) (Fig. 2b).
Finally, SWATShare creates a dedicated web link for the model which
allows modelers to directly view the model metadata and watershed
map via a web browser without having to login to SWATShare. The
Simulation tab allows modelers to set up the calibration protocol,
including the number of iterations, objective function, objective vari-
ables, reference datasets, and a list of parameters along with their
minimum-maximum ranges (Figs. 3-4). In its current design, the Simu-
lation interface lets modelers undergo an intuitive, hierarchical pro-
gression across different tasks and in a specific sequence - a critical
element of interface design (Carrillo et al., 2006) that reduces (or
eliminates in some cases) the need for both programming and model
structural literacy. SWATShare’s previous version had a web-based
Simulation interface as well, yet the interface only allowed uploading a
pre-processed zip file so that modelers had to set up the calibration
offline; such an interface reduced programming literacy to some extent
(by running the calibration online) but it was implicitly platform
dependent with high model structural literacy needs (due to the offline
setup in modelers’ local computers). The SWAT-CUP interface, on the
other hand, is user-friendly but not particularly intuitive as the modelers
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have to manually intervene at critical steps such as defining specific
subbasins or rivers as calibration nodes, linking the corresponding
reference data with the model nodes, and feeding the optimized pa-
rameters back into the model, among others (further discussed in the
following sections).

2.2.2. Interoperability for seamless extraction of reference data from the
source

SWATShare offers interoperability so that it can seamlessly and
instantaneously extract streamflow and water quality datasets through
the United States Geological Survey web services (USGS, 2022). While
modelers have the option to upload pre-processed reference datasets in
CSV (Comma Separated Values) format (configurable size limit;
currently set at 10 GB), they can activate the interoperability function-
ality by simply uploading a CSV file with a list of USGS gage stations that
they want to be included as reference nodes/model constraints (Fig. 3).
Such a high level of automation in data-model interoperability corre-
spondingly reduces modelers’ need for both modeling and programming
literacy. To the best of authors’ knowledge, a similar data-model inter-
operability functionality is not available in any other contemporary
hydrologic model autocalibration tools. Currently designed for US wa-
tersheds (limited by the availability of a USGS web service), the inter-
operability function in SWATShare can be easily extended to other
regions of the world once suitable web services become available.
Nonetheless, the current implementation reveals the potential for future
development to make SWATShare interoperable with emerging remote
sensing Earth Observation platforms.

2.2.3. Ease of linking spatially distributed reference datasets with the model
SWATShare lets modelers upload multiple reference datasets in CSV
file format, with each CSV file representing a specific variable (i.e.,

SWATShare (D Discovery
UMRB_conventional by adnanrjc g
https://mygeohub.org/groups/water-hub id=54043601a8e2e144981766b46d85708 sxarchewan il S el
@Edit | #simulate | dll Visualize | Exportv | (@ Delete
Fele, e
o
& NORTH DAKOTA \ ) e 2B
The “conventional® modeling approach overlooking surface depression and ° ORI S 3 g
w

calibration is provided herewith the model.

Owner adnan.rajib
Creators adnan.rajib
Contributors

Keywords

Last Modified 3/6/2020,11:47:01 PM

Model Metadata

Watershed Name Upper Mississippi River Basin

Simulation Type Normal Simulation
DEM Resolution (m) 0
DEM Source USGS

Land use Data OTHER|NASS 2011

Source

Soil Data Source STATSGO
Model Objective Hydrology
Additional Info Tile drainage
Published? No

Calibrated? NSE:, KGE:, PBIAS:

Output Included? Yes

wetland water storage. All the inputs including the data required for streamflow

(3
s O N SnovA'scd
Ottawa Ty @B b
Ne

buing @
°

NEBRASKA .

UNITED STATEL’:

e A
colorgoo KANSAS

Miss
OKLAHOMA
EW MEXICO. o @S

@,
0:0s ®) . wissit9,
@ LOUSIANA

Gulf of R ] % (a)

Mexico

Extracted Metadata

Runoff Calculation Method Curve Number

Flow Routing Method Variable Storage
PET Estimation Method Penman-Monteith
Rainfall Time Step Daily
Routing Time Step Daily

Watershed Area (km?) 439853.938

Number of Subbasins 279
Number of HRUs 279
SWAT Version 2012
Simulation Time Step Monthly
Simulation Period From 01/01/2005
To 12/22/2017
Warm-up period 3 (b)

Fig. 2. SWATShare interface: Sharing SWAT model and metadata before setting up the calibration. (a) A modeler can also access models that are developed and
shared by other modelers. (b) For a given model, SWATShare automatically extracts metadata such as number of subbasins, simulation time-step and duration,
warmup period etc. without having to manually search such information amidst numerous input/output files.



A. Rajib et al.

2. Set simulation properties.

Step 2: Set simulation properties
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Fig. 3. Setting up autocalibration in SWATShare:
(a-b) multi-objective calibration with the option of
simultaneously calibrating streamflow, evapotranspi-

Simulation Name

caltest

SWAT2012 rev.664 v

Option

Option 1: SWATShare automatically
downloads and formats reference data

ration, sediment, phosphorus, and nitrate, and multi-
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streamflow, evapotranspiration). Regardless of the CSV file(s) with pre-
processed reference data or the CSV file(s) with location list for seam-
lessly extracting reference data from the source (section 2.2.2), SWAT-
Share uses the same CSV file(s) to recognize and link relevant model
subbasin and/or river IDs with corresponding datasets (Fig. 3c). There
was no such functionality in the previous version of SWATShare as it
required preparing the calibration setup offline and simply provided a
web interface to submit the calibration job to HPC. In case of SWAT-
CUP, the graphical interface eases the inclusion of reference datasets,
but modelers not well-versed with SWAT input/output files may still
find it challenging to manually link reference datasets with the corre-
sponding subbasin and/or river IDs. The current version of SWATShare,
as noted above, offers a parsimonious yet highly efficient way so that
modelers can link large, spatially distributed datasets with the model in
a single step, without having to deal with coding to prepare the data in a
specific format or being well-versed about the model’s file structure and
nomenclature.

2.2.4. Multi-objective calibration

SWATShare can calibrate various internal dynamics and signatures
across the watershed in addition to calibrating streamflow only at the
watershed outlet (Kunnath-Poovakka et al., 2016; Nijzink et al., 2018;
Rajib et al., 2018a). Specifically, SWATShare offers the option of cali-
brating up to five hydrology and water quality variables, simultaneously
and across different spatial scales, including streamflow (river reach),
evapotranspiration (subbasin), sediment (river reach), phosphorus
(river reach), and nitrate (river reach). More variables can be added in
the future with minimal changes in the overall workflow. However, the
data- and computation-intensive nature of multi-objective calibration is
a deterring factor (Asgari et al., 2022) which drives modelers towards
the traditional streamflow-only calibration and produces right answers
for wrong reasons (Rajib et al., 2018a). Besides the interoperability with
data platforms and the ease of linking data with model structure (sec-
tions 2.2.2-2.2.3), the free access to HPC in SWATShare reduces data and
computational burden at the modelers’ end and encourages the use of
multi-objective calibration to obtain accurate understanding of hydro-
logic processes. Executing multi-objective calibrations remains chal-
lenging in many contemporary autocalibration tools (e.g., high model
structural literacy requirements to enable multi-objective calibration in
PyWrfHydroCalib and SWAT-CUP; no multi-objective option in
PEST-GSSHA), but SWATShare users can activate multi-objective cali-
bration simply by clicking a few check-boxes on the interface
(Fig. 3a-b).

2.2.5. Multi-criteria convergence to the optimal solution

Model performance criteria measure calibration performance by
expressing the agreement between simulation and reference data.
Commonly used criteria, e.g., Percent Bias (PBIAS), Correlation (r), Nash
Sutcliffe Efficiency (NSE), Kling Gupta Efficiency (KGE) (Knoben et al.,
2019; Krause et al., 2005; Legates and McCabe, 1999) are not equally
representative benchmarks for different hydrologic regimes (Knoben
et al., 2019), and also the choice of criteria during model calibration is
often arbitrary (see Moriasi et al., 2007). Therefore, the so-called best
parameter set (the optimal solution) based on a single criterion is hardly
the best for all criteria simultaneously. Considering multiple criteria
simultaneously may produce a trade-off solution, generally known as
Pareto optimal solutions or non-dominated solutions. These solutions are
optimal in the sense that no other solutions in the parameter space are
better than them or can dominate them when all the criteria are
considered (Ercan and Goodall, 2016). While many existing tools (e.g.,
SWAT-CUP and PyWrfHydro) use a single criterion to search optimality,
SWATShare lets modelers select a combination of up to three criteria to
search Pareto optimality (Fig. 3b).

2.2.6. Spatially distributed parameter search

Employing spatially distributed reference data in multi-objective
calibrations (e.g., evapotranspiration from satellites, streamflow and
water quality from multiple gage stations across the watershed) does not
automatically guarantee spatially distributed parameter search. For
example, despite being fed with spatially distributed data, autocalibra-
tion tools often let parameters undergo the same degree of change across
the entire watershed during the iteration process (e.g., Rajib et al.,
2016). Because such an approach overlooks the relative locations of
calibration nodes and the space-time-variable continuum of the data
(Dembélé et al., 2020; Gardner et al., 2018; Jadidoleslam et al., 2020), it
can mislead the parameter search to an equifinal solution. As a remedial
solution, the new SWATShare interface provides an option similar to
SWAT-CUP so that modelers can divide a watershed into multiple zones
according to the spatial distribution/proximity of the calibration nodes
(and also the knowledge of watershed properties), and correspondingly
apply different degrees of change to the same parameter across these
zones (Fig. 4a). The increased computational need for such a highly
discretized, spatially distributed parameter search is supported by
SWATShare’s HPC resource.

2.2.7. Feedback of optimal parameters into the model

As noted above, choice of performance criteria in traditional hy-
drologic model calibration practices is largely arbitrary. As such, de-
velopers of autocalibration tools often automate the iterative parameter
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search process but decouple the final step from the calibration workflow
where the best parameter values are fed into the model source code to
produce the optimal model. This is to let modelers check which per-
formance criteria shows the best performance, select the corresponding
best parameter set, and do manual parameter adjustments if necessary
(e.g., Mengistu et al., 2019). The contemporary SWAT autocalibration
tools, e.g., SWAT-CUP and R-SWAT-FME, invariably use this approach.
Although such an approach gives modelers some flexibility to evaluate
the physical consistency of the calibration results outside the autocali-
bration workflow (Abbaspour, 2015), it is subjective and highly sus-
ceptible to equifinality, not to mention the cumbersome tasks of
handling model parameters manually and chances of errors therein.
SWATShare, on the other hand, applies a feedback loop to automatically
insert the best parameter set into the model after finishing a batch of
iterations. The underlying idea here is to trade-off the aforesaid flexi-
bility for other opportunities, such as use of spatially distributed data,
multi-criteria optimization, and in-depth visualization of model outputs

(elaborated in section 2.2.8), which can ultimately reduce subjectivity
and equifinality in model calibration and may in fact produce a more
robust calibrated model.

2.2.8. Instantaneous visualization and evaluation of calibration
performance

When a calibration job is completed, SWATShare sends an email
notification to the modeler thus providing more flexibility in SWAT-
Share’s remote work environment. Through an interactive interface
similar to SWAT-CUP, modelers can evaluate calibration performance
by visualizing the time series of simulated and reference data along with
the performance metrics. SWATShare allows users to make explainable
adjustments to the prior calibration protocol and subsequently re-run
the calibration as necessary. SWATShare enables this by displaying the
corresponding calibration nodes (i.e., subbasin, river) in a dynamic map
so that the modelers can visually interpret the variation of model per-
formance at different spatial scales (e.g., upstream-to-downstream
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gradient) and geophysical properties across the watershed (e.g., topog-
raphy, land use, climate) (Fig. 4b).

Further, SWATShare lets modelers instantaneously create time-series
and spatial maps for all the simulated hydrologic processes corre-
sponding to the most optimal parameter set. Especially, for the spatial
maps (Fig. 4c), SWATShare shows a precipitation time-series so that
modelers can correlate the spatial patterns of water balance components
with climatic drivers and sense inconsistencies in their choice of cali-
bration protocol. Such an instantaneous yet comprehensive evaluation
of calibration performance through multiple layers of visualization aids
is a feature unique to SWATShare currently absent in the contemporary
autocalibration tools. Additionally, calibration statistics (e.g., optimal
parameter values, performance metrics) and the calibrated model can be
downloaded from SWATShare to facilitate offline experiments and/or
published through SWATShare (Fig. 2) for broader community
consumption.

2.3. The software architecture and simulation workflow

SWATShare architecture, as shown in Fig. 5, consists of three main
structural components: front end web interface, back end services, and
external resources. Although the three main structural components
remain the same as in the previous SWATShare version (Rajib et al.,
2016), the associated software architecture has been modified to better
fit the sustainability model and the common geospatial data manage-
ment and analysis infrastructure myGeoHub provides to the other hos-
ted projects (Kalyanam et al., 2019).

2.3.1. Front end interface

The front end of SWATShare is an interactive web application
deployed through myGeoHub (Kalyanam et al., 2019, 2020;
https://mygeohub.org) — a geospatial science gateway in the HUBzero
CI. HUBzero is a CI to create and host interactive web portals for sci-
entific research, education, and outreach activities (McLennan and
Kennell, 2010). It provides out-of-the-box data management tools for
users such as group, project, publication, ticket tracking, wiki, forum,
and an automated process to contribute contents and publish online

HUBZero / MyGeoHub

SWATShare
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’ Discovery Visualization

FRONT END

Apache/PHP Tomcat Web Service

Data Upload / Download Model Management
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Fig. 5. SWATShare software architecture.
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tools. The access control for SWATShare is integrated with the HUBzero
authentication system. It enables private model and simulation man-
agement for each modeler as well as resource usage monitoring and data
sharing. The earlier version of the SWATShare’s graphical user interface
was implemented using Adobe Flash. Since Adobe no longer supports
Flash Player after year 2020, a new version of SWATShare as a HUBzero
component is implemented using PHP and JavaScript, which are the
main programming languages for web application development on the
HUBzero platform. Specifically, it is a single-page application (SPA)
providing dynamic content by actively communicating with myGeoHub
web server eliminating the need to refresh the entire web page. This
enables a faster transition, and thus a better user experience as if they
were using a native application.

2.3.2. Back end services

The back end of the SWATShare system is built on Redhat Linux
distribution. It consists of a set of services that are responsible for
handling modelers’ requests through the web interface. In particular,
the Apache/PHP services provide data upload and download functions
via HTTP messages. The Tomcat web services are written in JAVA and
support REpresentational State Transfer (REST) web APIs for managing
models, users, and simulations. They also perform geospatial data pro-
cessing functions including model output transformation, data visuali-
zation, model validation, and metadata extraction, using open source
python and R software, such as gdal (Warmerdam et al., 2022), fiona
(Gillies, 2020), dataRetrieval (De Cicco et al., 2022), and hydroGOF
(Zambrano-Bigiarini, 2020). The metadata for users, simulations, and
models are stored securely in a MySQL database. This
Linux-Apache-MySQL-PHP (LAMP) software stack is a widely used web
development platform having an open-source ecosystem, and providing
cost efficiency (Lawton, 2005). The uncalibrated models uploaded by
different modelers and their corresponding calibrated models/outputs
are stored in a high-performance file system.

2.3.3. External resources

SWATShare utilizes and interoperates with several external re-
sources. A GeoServer is used for rendering interactive maps that allows
users to search models by geographic location and metadata. GeoServer
is a standard-conforming, community-based tool that has proved stable
and efficient in GIS application developments (Parker et al., 2015).
SWAT model autocalibration usually require a large amount of
computational resources. For instance, one calibration job for a SWAT
model normally includes more than 500 iterative simulations. In order
to get better performance and scalability, SWATShare connects to the
HPC resources at the Extreme Science and Engineering Discovery
Environment (XSEDE) Comet cluster and a Purdue campus cluster. This
enables users to get simulation results much sooner than using their
desktop environments. Moreover, they can run multiple simulations at
the same time without performance degradation. SWATShare also
connects to HydroShare (Tarboton et al., 2018), a collaborative CI
aiming at enabling the hydrologic user community to share their data,
models, and analysis. Users from either system can easily access data
and tools across the networks without the need to create new accounts or
manually import or export models.

2.3.4. Simulation workflow

SWATShare runs calibration as well as normal simulations remotely
on HPC resources via secure shell (ssh). The overview of the simulation
workflow is described in Fig. 6. When the modeler submits a job, the
web front end collects the user input and creates a simulation specifi-
cation file that describes the input, simulation name, simulation period,
and SWAT executable version (see, e.g., Fig. 3a). It then invokes the
SWATShare job submission web service with the simulation specifica-
tion. Additional calibration details are collected and passed to the web
service, such as the optimization algorithm to use, the number of iter-
ations, and parameter information, and reference data files (see, e.g.,
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Fig. 6. Overview of the SWATShare simulation workflow.

Fig. 3b—c, 4a).

When the SWATShare web service receives the request, it prepares a
job submission module to be submitted to the HPC resources. In
particular, it parses the specification and creates a simulation module
containing the SWAT model input file, a definition file including cali-
bration information, and the reference data file(s). Along with the input
files, the module also includes a simulation execution engine consisting
of several automation scripts and a SWAT executable. Next, the web
service sends a job request with the module to the Slurm workload
manager on the head node of the remote cluster via ssh. The job will
enter a waiting queue until a suitable compute node is available. When a
compute node is assigned, the automation scripts in the simulation
module are executed and the simulation is run iteratively. The SWAT-
Share job monitoring web service keeps track of the job status. When the
job completes, it fetches the simulation output from the file system of the
computational resource and stores it to a Network File System (NSF)
mounted to the back-end server. Finally, it checks for successful run of a
simulation and updates the MySQL database accordingly.

3.0. Implementation case studies

In our previous study, we conducted modeling experiments to

introduce SWATShare’s model sharing, high performance computation,
and visualization capabilities in a real-time multi-user environment
(Rajib et al., 2016). In the present study, we conducted experiments to
demonstrate (i) how the new CI capabilities of SWATShare calibration
facilitate data-model interoperability, (ii) how SWATShare allows
spatially distributed parameter search as opposed to a conventional
approach, and (iii) whether the SWATShare calibration results are
consistent with those from a widely used desktop-based SWAT calibra-
tion tool SWAT-CUP.

3.1. Data-model interoperability

SWATShare’s data-model interoperability is demonstrated in Fig. 7
using a SWAT model originally developed by Rajib et al. (2018b) for the
Upper Wabash River watershed in central Indiana, United States. This
watershed has 7 streamflow gage stations that satisfies the data avail-
ability criteria and are considered as calibration nodes. To activate
data-model interoperability, a CSV file listing the gage and the corre-
sponding river IDs is uploaded. SWATShare retrieves other key inputs
from the prior steps, including the simulation period, time-step, and
objective variable (see Fig. 3a-b) and feeds this information into the
dataRetreival software (De Cicco et al., 2022) to seamlessly fetch the
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Fig. 7. The steps SWATShare would follow to enable data-model interoperability for calibrating a SWAT model of the Upper Wabash watershed, United States. The

A C D E E G H
—°—>| 3 13 14 28 2 37 4 ‘

1 45 782 2424 165  116.1 337 425 o
2 48.4 87.5 320 148  106.5 50.4 626

3 49.3 583 362.5 11.2 487 317 648

4 47 419 3511 9.8 17.4 21.9 620 <+—

5 50.7 725 3681 14.8 311 23.8 623

6 56.4 1223 390.8 394 1141 4.7 767

7 617 1036  339.8 27.5 1246 487 827

Q /7 a en 7 LIS M A ae 207 T2R

information in (1) are the only user inputs; the rest of the steps including the R code in (3) are automatically executed by SWATShare.
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required time-series data from USGS. Next, SWATShare uses a python
post-processor to transform the downloaded time-series in a specified
format while linking them with the corresponding river IDs. In addition
to the Wabash watershed test presented here, this functionality has been
tested using different watersheds with varying density of gage stations,
simulation period, and objective variables (e.g., water quality). For the
Upper Wabash test case, a modeler with moderate SWAT modeling, GIS,
and programming experience could save one working day (about 8 h) in
data processing tasks when using SWATShare’s data-model interopera-
bility functionality as opposed to the manual data search, download, and
processing for 7 gaging stations.

3.2. Spatially distributed parameter search

Fig. 8 shows SWATShare’s capability to perform spatially distributed
parameter search using the same model setup for the Upper Wabash
watershed demonstrated earlier. The 7 streamflow gage stations used in
the model’s calibration are somewhat uniformly distributed across 43
subbasins and numerous Hydrologic Response Units (HRUs) within the
subbasins (Fig. 8a).

By making a +25% change in the default curve number (CN2) or
replacing the default channel roughness (CH_N2) with a new value be-
tween 0.01 and 0.15 irrespective of subbasins and river reaches
(Fig. 8b), these parameters are allowed to undergo the same degree of
change across the entire watershed without considering the relative
locations of calibration nodes (i.e., gage station locations). On one hand,
this spatially uniform optimization limits the ability of a parameter to
represent watershed features (e.g., land use and topography). On the
other hand, such an approach makes a distributed model function like a
lumped model, thus underutilizing the data, labor, and computational
cost of highly resolved process-based simulations. Yang et al. (2019)
conceptualized this as the Calibration Density and Consistency problem
while Xie et al. (2021) linked this to a dimensionality problem. Creating
a model with high spatial resolutions (Fenicia et al., 2016; Kuppel et al.,
2018; Marcé et al., 2008) or using spatially distributed reference data in
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model calibrations (Rajib et al., 2018a) alone does not address this
problem.

As a remedial solution, the new calibration interface in SWATShare
uses an approach suggested by Abbaspour (2015) to explicitly relate
reference data with the corresponding model subbasins and/or HRUs.
This functionality is demonstrated in Fig. 8c that shows how the same
parameter (e.g., Curver Number (CN2)) can undergo different degrees of
optimization across three different watershed zones. Briefly, the
sub-basins are grouped in three zones according to their proximity to
gage stations in an upstream-to-downstream gradient. The parameter
optimization is further distributed at HRU-level in one of the subbasins
according to different land use types (see Fig. 8a and c). The resulting
calibrated model with spatially distributed parameter search option
produced notable changes in model outputs. For example,
subbasin-level surface runoff after a particular storm event is —30% to
+60% different in the spatially distributed option compared to that in
the spatially uniform option. Although this demonstration is based on
point observations at a limited number of gage stations, the spatially
distributed parameter search option shown here makes SWATShare a
user-friendly, futuristic tool for calibrating large-scale high-resolution
hydrologic models with increasingly available gridded Earth observa-
tion datasets.

3.3. Consistency across SWATShare and SWAT-CUP calibration results

In this experiment, separate SWATShare and SWAT-CUP calibrations
of 30 SWAT models across four different climate zones in the United
States (see Fig. 9a) are conducted. This is the first calibration experiment
at such an extensive scale because prior studies often considered a single
watershed to evaluate alternative calibration tools (e.g., Paul and
Negahban-Azar, 2018; Yang et al., 2008). This extensive calibration
experiment facilitates a conclusive understanding of whether and to
what extent SWATShare and SWAT-CUP results are consistent. The
metadata corresponding to each of these test models can be accessed
through the Discovery function of SWATShare (Fig. 2) using the
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Fig. 8. Effect of spatially distributed parameter search approach in SWATShare as opposed to the commonly used spatially uniform approach (demonstrated using
the Curve Number parameter as an example). The model used in this example is adapted from Rajib et al. (2018b).
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(b) SWATShare versus SWAT-CUP streamflow accuracy
(Kling Gupta Efficiency averaged across all climate zones)
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(c) SWATShare versus SWAT-CUP streamflow accuracy
(Kling Gupta Efficiency for individual watersheds)
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Fig. 9. Comparison of SWATShare and SWAT-CUP calibration performance. The map shows 30 watersheds across four different climates zones used for this
comparison (also see supplementary information S1). The climate zones are based on a global climate classification map (Beck et al., 2018) where Cfa = humid
subtropical, Csa = Mediterranean hot summer, Dfa = hot summer continental, Dfb = warm summer continental.

supplementary information in S1.

All 30 models are simulated at a daily time-step with a 2-year period
of initialization (2001-2002), followed by a 5-year -calibration
(2003-2007) and a 3-year validation (2008-2010) using gage station
streamflow data as reference. Identical set of calibration parameters (N
= 18) and their respective initial ranges are selected across all 60 setups
(see supplementary information S1). The models are calibrated with the
NSGA-II algorithm in SWATShare and the Sequential Uncertainty
Fitting-versions 2 (SUFI-2) algorithm in SWAT-CUP. SUFI-2 in SWAT-
CUP is used because of its well-documented applications in the litera-
ture. Models in SWATShare are set with 20 generations and 100 itera-
tions, whereas models in SWAT-CUP are set with 1000 iterations each
across two successive batches of iterations. This is a measure to ensure
an equivalent number of total simulations although such a distribution
of generation, iteration, and batch numbers may not translate the same
meaning across two conceptually different calibration tools.

The results indicate that SWATShare and SWAT-CUP yield nearly
consistent calibration performance in terms of streamflow Kling Gupta
Efficiency (KGE) (Knoben et al., 2019) values averaged separately for
calibration and validation, and across all the watersheds located within
a climate zone (Fig. 9b). These averaged estimates of calibration per-
formance are also supported by individual watershed-KGE values
(Fig. 9¢c; note the adherence of KGE values around the SWATShare -
SWAT-CUP 1:1 line). Despite such consistency in overall calibration
performance, optimal parameter values in SWATShare may be incon-
sistent with those in SWAT-CUP. As a result, the most optimal parameter
values in SWATShare, with a few exceptions, showed low correlation

(a) Correlation between SWATShare

with the corresponding parameter values in SWAT-CUP (Fig. 10a).
Importantly, a behavioral change is observed revealing how some of these
parameters represented hydrologic processes in the two calibration
tools. For example, the optimal value for parameter ESCO in SWATShare
is greater than EPCO across all four climate zones - a pattern completely
opposite compared to SWAT-CUP (Fig. 10b). Because ESCO and EPCO
are the key parameters controlling SWAT’s soil moisture accounting and
evapotranspiration mechanisms (Neitsch et al., 2011; Rajib et al., 2016),
their opposite behavior shown in Fig. 10b indicates two potentially
different states of water balance in the same model regardless of similar
calibration performances. Although it is hard to disentangle the under-
lying factors for such behavioral change in parameters’ responses, these
findings add new insights into how the choice of calibration tool can
cause equifinality.

4. Conclusions and future directions

Data for streamflow, climate, hydrography, topography, land use,
and soil over the internet date back to early 2000s. Naturally, devel-
opment and use of Cyberinfrastructure (CI) for hydrology, or water re-
sources in general, had long been focused on instantaneous access to
data, standardizations of data publication and integration, and plat-
forms for data storage and sharing. Therefore, CIs and Open Science
platforms geared towards hydrologic modeling needs had been limited.
SWATShare 1.0 (https://mygeohub.org/groups/water-hub/swatshare)
partially filled this gap by providing a collaborative platform for sharing,
simulation, and visualization of SWAT models (Rajib et al., 2016). This

and SWAT-CUP parameter values B (b) Difference in calibrated parameter values
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Fig. 10. Comparison of the most optimal parameter values for SWAT models calibrated separately with SWATShare and SWAT-CUP. SWATShare and SWAT-CUP in
this model intercomparison experiment used NSGA-II and SUFI-2 optimization algorithms respectively.

11


https://mygeohub.org/groups/water-hub/swatshare

A. Rajib et al.

paper introduces SWATShare 2.0 — a substantially improved version
incorporating a new autocalibration tool and demonstrating how CI
capabilities can be harnessed to solve five root causes of inefficiency in
traditional hydrologic model calibration practices, including (i) plat-
form dependence, (ii) limited computing resource, (iii) lack of pro-
gramming literacy, (iv) lack of model structural literacy, and (v) no
data-model interoperability. The online interface of SWATShare en-
sures platform independence by letting modelers perform complex
calibration tasks in a web browser without requiring any specific com-
puter operating system, software packages, and their versions and
licenses. The free access to High Performance Computing (HPC)
resource allows SWATShare to lower the computational burden, and
thereby offer multi-objective calibration options involving up to five
hydrology and water quality variables and a highly discretized param-
eter search option involving spatially distributed datasets. SWATShare’s
data-model interoperability, by seamlessly and instantaneously
extracting streamflow and water quality datasets through the USGS web
services and automatically recognizing and linking those datasets with
corresponding model subbasin and/or river IDs, show a unique example
of CI capabilities currently absent in any other hydrologic model auto-
calibration tools. Searching the optimal solution using a combination of
up to three performance criteria, direct feedback of optimal parameters
into the model, and instantaneous visualization and evaluation of cali-
bration performance are the additional functionalities that further in-
crease the efficiency of the autocalibration process in SWATShare
without the need for excessive pre- and post-processing tasks. SWAT-
Share’s online interface serves as the one-stop platform to let modelers
perform all the above calibration steps through an intuitive, hierarchical
progression, thus minimizing the need for a modeler to have high pro-
gramming and model-structural literacy. Finally, and more importantly,
results from SWATShare autocalibration show that its streamflow pre-
diction is comparable with that from the commonly used offline cali-
bration platform SWATCUP, but for some of the study areas, parameters
estimated from SWATShare may be more meaningful to the physical
processes.

While SWATShare demonstrates an example application using the
SWAT model, except the model, most of the workflow is generic and can
be adopted for any model. For example, the SWAT model itself is
evolving and is currently being modified as SWAT+. SWAT+ can be
brought under SWATShare via simple code modifications to incorporate
the model’s new file naming conventions and data structures, without
having to change SWATShare’s overall workflow. Plan to do this is
already underway.

No doubt the above developments of SWATShare addressed a critical
need of the hydrologic modeling community. Yet, future developments
and re-developments of SWATShare harnessing newer and better CI and
Open Science capabilities to address broader community needs are
imminent. There is a push and also broader consensus within the sci-
entific community, including hydrology, for reproducibility. Repro-
ducibility cannot be accomplished without the ability to run complete
scientific workflows which may, and in most cases they do, demand a
more extensive architecture for interoperability and computing. For
example, currently SWATShare cannot create a SWAT model directly
from input datasets; it relies on modelers to upload their existing
models, meaning modelers cannot run complete scientific workflows —
from model creation to model calibration — within SWATShare interface.
Fortunately, besides access to XSEDE distributed HPC (https://www.
xsede.org), SWATShare’s current capabilities to interoperate across
multiple CIs including myGeoHub (https://mygeohub.org), HydroShare
(https://www.hydroshare.org), and USGS’ National Water Information
System (https://waterdata.usgs.gov/nwis) have already created the
building blocks to achieve that reproducibility goal. Efforts to link models
and enable model interoperability is also booming. The generalizable
software pieces developed for SWATShare can further excel these
interoperability efforts by brining other models and myriad open access
autocalibration codes under one platform. In essence, with calls for

12

Environmental Modelling and Software 158 (2022) 105561

adopting FAIR or Open Science principles and increasing need for
convergent approaches to address societal problems involving water and
climate, platforms like SWATShare can serve as a blueprint for new CI-
enabled developments in hydrology, and beyond hydrology in other
disciplinary domains of Earth system sciences.
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