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ABSTRACT

When a simulation model contains input distributions that need to be calibrated from external data, proper

simulation output analysis needs to account for not only the noises from the Monte Carlo sample generation,

but also the statistical noises from these input data. The latter issue is known commonly as the input

uncertainty in the literature. An array of methods have been proposed to address input uncertainty, but one

recurrent challenge faced by many of these methods is the demanding simulation load. In this paper, we

present a method, based on a sort of modified bootstrap, to handle input uncertainty with multiplicatively

less computation than these existing methods. In particular, this ªcheapº bootstrap is able to construct

confidence intervals that account for both input data and Monte Carlo noise efficiently by substantially

reducing the number of outer samples in a nested procedure.

1 INTRODUCTION

Stochastic simulation models often contain parameters or input distributions that are unknown in advance

and need to be calibrated from external data. The statistical errors from these calibrations could propagate

to the simulation outputs and impact output analysis, on top of the Monte Carlo noises incurred from

running the simulation itself. A statistically valid output analysis therefore needs to account for both the

input data and the Monte Carlo noises. This problem, which is beyond classical output analysis that only

focuses on the Monte Carlo noises, is known commonly as the input uncertainty problem in the simulation

literature. It has gathered growing interests over recent years. See, e.g., the surveys Henderson (2003),

Barton (2012), Song et al. (2014), Lam (2016), Corlu et al. (2020), Barton et al. (2022), and Nelson

(2013) Chapter 7.

To address input uncertainty, an array of methods have been proposed, including various bootstrap

methods (Barton and Schruben 1993; Barton and Schruben 2001; Cheng and Holloand 1997; Song and

Nelson 2015; Lam and Qian 2022), delta method or infinitesimal jackknife (Cheng and Holland 1998;

Cheng and Holland 2004; Lin et al. 2015; Song and Nelson 2019; Lam and Qian 2019; Lam et al.

2022), batching or sectioning (Glynn and Lam 2018), and Bayesian approaches (Chick 2001; Zouaoui and

Wilson 2003; Zouaoui and Wilson 2004; Xie et al. 2014) that are conceptually related to the bootstrap.

Despite the growing literature, a recurrent challenge faced by many of these methods is the demanding

simulation effort. This challenge is arguably fundamental in the input uncertainty problem, and in fact

is what distinguishes the problem from standard statistical inference: Roughly speaking, the two sources

of errors, from the input data and Monte Carlo respectively, are entangled in a convoluted fashion and,

in order to utilize standard statistical procedures, one needs to use a large amount of simulation effort to

wash away the Monte Carlo error so that addressing input uncertainty reduces essentially to a standard

inference problem. As we will explain later, this overwhelming simulation effort is typically manifested

as the requirement of an overall simulation size comparable or of higher order than the input data size. In
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practice, the latter means the required simulation size can be ªa lotº more than the input data size, and

thus can be costly if the simulation model is large-scale and expensive to run.

The goal of this paper is to introduce a sort of modified bootstrap procedure to handle input uncertainty

with substantially less simulation effort than many of the existing methods. In particular, compared to the

bootstrap methods used in the input uncertainty literature, the reduction in simulation effort is multiplicative.

To explain in more detail, the task of addressing input uncertainty can be cast as the construction of output

confidence intervals (CIs) that are statistically valid under both input and Monte Carlo noises, or the closely

related task of estimating the output variance. Due to the two sources of noises, using the bootstrap to

construct a CI or estimate the variance would require a nested simulation. Namely, in the outer layer, we

resample the input data many times to obtain resample input distributions. Then, we use each resample input

distribution to drive many simulation replications to obtain the outputs, which constitutes the inner layer.

A CI is then constructed by properly aggregating the averages of outputs in the inner layer. The leveraging

of bootstrap approaches from statistics, including quantile-based methods such as the basic bootstrap and

the percentile bootstrap (Efron and Tibshirani 1994; Davison and Hinkley 1997), and also the standard

error or variance bootstrap (Efron 1992), would require adequate sample sizes in both the outer and inner

layers, thus leading to a multiplicative demand of simulation. The crux of the method proposed in this

paper is to reduce the outer-layer sample size to a very low number, while retaining desirable statistical

guarantees, thus effectively removing the multiplicative computation effort.

Our method uses, and can be viewed as a multi-input generalization, of the cheap bootstrap method

proposed in Lam (2022). This latter method considers a twist of the standard bootstrap principle that allows

the use of very few, i.e., as low as one, resample to construct statistically valid CIs in estimating statistical

functionals. To explain, standard bootstrap methods are based on the principle that the resample distribution

approximates the sampling distribution of the original estimate. The key is that while the latter is difficult

to obtain, the former can be estimated readily by using Monte Carlo to generate many resamples, thus

forming an approximation of the sampling distribution which then can be used for inference. The cheap

bootstrap instead utilizes the independence between the original estimate and all resample estimates and,

coupled with asymptotic normality, it can construct valid CIs via a pivotal t-statistic using as few as one

resample. Our proposed method here takes this cheap bootstrap approach further to consider a functional

of multiple input distributions, with simulation noises. This adaption allows us to use, in principle, as few

as one resample in the outer layer.

In the following, we first introduce in detail the input uncertainty problem (Section 2) and describe

the computational challenges (Section 3). We then introduce the cheap bootstrap (Section 4) and its use in

handling input uncertainty (Section 5). We contrast our method to some recent approaches that also aim

to reduce computation for input uncertainty quantification (Section 6). Finally, we show some numerics to

support the strengths of our method (Section 7).

Throughout the paper, ª⇒º denotes convergence in distribution, ª
d
=º denotes equality in distribution,

and ª
d≈º stands (heuristically) for ªapproximately equal in distributionº. For two positive sequences ak and

bk, we say ak = O(bk) if ak/bk ≤C for all k for some constant C > 0, ak = o(bk) if ak/bk → 0 as k → ∞,

ak = ω(bk) if ak/bk → ∞ as k → ∞, and ak = Θ(bk) if C ≤ ak/bk ≤C for all k for some constants C,C > 0.

2 THE INPUT UNCERTAINTY PROBLEM

Consider the estimation of a quantity, say ψ(P) ∈ R, where P = (P1, . . . ,Pm) is a list of independent input

probability distributions and ψ is a function that can be simulated. That is, given a list of distributions Q,

we have the capability to generate unbiased samples of ψ(Q), say ψ̂r(Q). As a basic example, think of

P = (P1,P2) as the interarrival time and service time distributions of a queueing system, and ψ(P) is the

expected average waiting time over a certain number of customers.

Suppose the input distributions P in the simulation model are unknown, but input data are available. More

specifically, suppose we have i.i.d. data X j1, . . . ,X jn j
for input model Pj, and n j is its sample size. In the case
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where we do not assume or utilize parametric information, then, to obtain a point estimate of ψ(P), a natural

approach is to construct the empirical distributions P̂ = (P̂1, . . . , P̂m), where P̂j(·) = (1/n j)∑
n j

i=1 I(X ji ∈ ·)
with I(·) denoting the indicator function. Then, we use these empirical input distributions to run a number

of simulation runs, say R runs ψ̂r(P̂),r = 1, . . . ,R, and take average to obtain a point estimate ψ̂(P̂).
The goal is to construct a CI for ψ(P). Alternately, we can also cast our goal as to estimate the output

variance, and more specifically the noise contribution coming from each input data source and the Monte

Carlo in the variance decomposition. These two goals are closely related, as the variance estimate can be

used directly to construct a CI. To this end, to facilitate the formulation of a limit theorem, we introduce

a scale parameter n, and impose the scaling that n j/n → q j and R/n → q. Then, under mild conditions

(Glynn and Lam 2018), we have the central limit theorem (CLT)

√
n(ψ̂(P̂)−ψ(P))⇒ N

(

0,
m

∑
j=1

σ2
j

q j

+
τ2

q

)

(1)

as n → ∞. In other words, we have

ψ̂(P̂)−ψ(P)
d≈ N

(

0,
m

∑
j=1

σ2
j

n j

+
τ2

R

)

. (2)

Here ∑
m
j=1 σ2

j /n j represents the variance contributed from the input data noise, or what we would simply

call the input variance, and each σ2
j /n j is the contribution from the noise in estimating input model j. The

term τ2/R is the variance from the Monte Carlo noise. Note that our point estimate has two ªhatsº, one

above ψ and one above P, which signifies that it contains two sources of noises and hence the CLT entails

two components in the variance.

The constants in the variance can be written in further mathematical detail. The constant in the Monte

Carlo noise τ2 =Var(ψ̂r(P)) which is the variance of one simulation run under the true input distributions

P. The constants in the input variance σ2
j = VarPj

(IFj(X j;P)), where X j is a random variable governed

by Pj and VarPj
denotes the variance under Pj, IF(·;P) is the so-called influence function which can be

interpreted as a Gateaux derivative of ψ(P) with respect to the distribution Pj, i.e.,

lim
ε→0+

ψ((1− ε)P+ ε(0, . . . ,0,δx,0, . . . ,0))−ψ(P)

ε
= IFj(x;P) (3)

where δx is the delta mass at x. The influence function IFj(·;P) has a mean-zero property that EPj
[IFj(X j;P)] =

0 where EPj
denotes the expectation under Pj that governs X j.

In terms of variance estimation, we can decompose

Var(ψ̂(P̂)) =Var(ψ(P̂))+E[Var(ψ̂(P̂)|P̂)] =Var(ψ(P̂))+
E[Var(ψ̂r(P̂)|P̂)]

R
(4)

where

Var(ψ(P̂))≈
m

∑
j=1

σ2
j

n j

(5)

and

E[Var(ψ̂r(P̂)|P̂)]≈ τ2.

Thanks to the CLT (1) or (2), we can construct a (1−α)-level normality CI


ψ̂(P̂)− z1−α/2

√

√

√

√

m

∑
j=1

σ2
j

n j

+
τ2

R
, ψ̂(P̂)+ z1−α/2

√

√

√

√

m

∑
j=1

σ2
j

n j

+
τ2

R



 (6)

where z1−α/2 is the (1−α/2)-th quantile of the standard normal distribution. The question then becomes

how to estimate σ2
j and τ2, or any other approaches to construct CI without directly using the CLT.
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3 EXISTING APPROACHES AND COMPUTATIONAL CHALLENGES

We focus on the CI construction problem. In the literature, the two major approaches are bootstrap re-

sampling and the direct use of the delta method. We present some details and explain their computational

challenges.

3.1 Quantile-Based Bootstrap

The idea of the bootstrap, as described in the introduction, is to use the resample distribution to approximate

the sampling distribution of the original estimate. For concreteness, suppose we are interested in estimating

ψ(P) for an input distribution P, and given i.i.d. data X = {X1, . . . ,Xn}, we use ψ(P̂) as a point estimate

(suppose for now that ψ(·) can be evaluated exactly and there is only one input distribution). Then the

bootstrap principle stipulates the following. For a resample, i.e., sampling with replacement from X n

times to get X∗
1 , . . . ,X

∗
n , we construct the resample empirical distribution P∗(·) = (1/n)∑

n
i=1 I(X∗

i ∈ ·). Then

the distribution of ψ(P∗)−ψ(P̂), conditional on P̂, is approximately the same as that of ψ(P̂)−ψ(P).
Under regularity conditions, this approximation can be mathematically formulated as the CLT

√
n(ψ(P̂)−ψ(P))⇒ N(0,σ2) (7)

which is guaranteed by the delta method, and

√
n(ψ(P∗)−ψ(P̂))⇒ N(0,σ2) (8)

conditional on X1,X2, . . ., where N(0,σ2) is the same limiting variable as the CLT for the original estimate.

While ψ(P̂)−ψ(P) is generally unobtainable, we can resample many times, say B times, to obtain

P∗b,b = 1, . . . ,B, and get an accurate approximation of the distribution of ψ(P∗)−ψ(P̂).
To construct CI, note that if we could find the α/2-th and (1−α/2)-th quantiles of ψ(P̂)−ψ(P), say

qα/2 and q1−α/2, then [ψ(P̂)−q1−α/2,ψ(P̂)−qα/2] would give a (1−α) CI. The basic bootstrap uses the

α/2-th and (1−α/2)-th quantiles of the simulated ψ(P∗)−ψ(P̂), say q∗α/2
and q∗

1−α/2
, to approximate

qα/2 and q1−α/2, giving an implementable interval [ψ(P̂)−q∗
1−α/2

,ψ(P̂)−q∗α/2
]. The percentile bootstrap

simply uses [q∗α/2
,q∗

1−α/2
], by exploiting the symmetry of the limiting distribution in the CLT. In the input

uncertainty setting, note that ψ(·) cannot be exactly evaluated but requires noisy simulation, and thus to

approximate q∗α/2
and q∗

1−α/2
we need to generate ψ̂(P∗)− ψ̂(P̂), where ψ̂(·) is obtained by simulating

many, say R, replications and taking average, which thus amounts to a total of BR simulation runs.

To dive further into the above issue, note that as long as the resamples correctly approximate the quantiles

of ψ̂(P̂)−ψ(P), where ψ̂(P̂) is the original point estimate obtained from averaging many simulation runs

driven by P̂, then the bootstrap method is valid. Unfortunately, the resample quantity ψ̂(P∗)− ψ̂(P̂) has

two ªhatsº above the ψ on both P∗ and P̂, or in other words the ªcenteringº of ψ̂(P∗), which is ψ̂(P̂),
contains simulation noise. Because of this there is a systematic mismatch of the quantiles of the resample

and the quantiles of the original estimate. To address this, one can use an ω(n) amount of simulation

runs, i.e., larger order than the sample size, to obtain the original estimate ψ̂(P̂) which is also used as

the ªcenteringº of the resample estimate. If we further use an ω(n) amount of simulation runs to obtain

each resample estimate ψ̂(P̂∗b), then essentially the simulation noises become negligible and the basic or

percentile bootstrap becomes statistically valid. However, computationally this is very heavy. An alternative

is to use only O(n) amount of simulation runs for each resample estimate, which gives rise to a larger

variability of ψ̂(P∗)− ψ̂(P̂) than ψ̂(P̂)−ψ(P), and properly ªshrinkº the estimates or quantiles back to the

latter level (Song et al. 2022). Nonetheless, the overall simulation efforts in all these schemes are ω(n),
i.e., the total simulation effort is of larger order than the sample size.
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3.2 Variance-Based Bootstrap

Besides quantile-based bootstraps described above, we can also use the bootstrap to estimate the variances

inside the normality CI (6) to construct a CI. By (5), we need to estimate Var(ψ(P̂)) (keeping one input

distribution here for simplicity) and E[Var(ψ̂r(P̂)|P̂)]. The latter can be readily estimated by using the

sample variance of all simulation runs and is relatively easy to handle. For the input variance Var(ψ(P̂)),
we again invoke the bootstrap principle to use Var∗(ψ(P∗)) as an approximation of Var(ψ(P̂)), where Var∗
denotes the variance of the resample, conditional on the original data. In the input uncertainty context, ψ(·)
can only be noisily evaluated and thus we need a nested simulation that first resample to get P∗b,b = 1, . . . ,B,

and for each P∗b we run R simulation runs to obtain ψ̂(P∗b). Then an estimate of Var(ψ(P̂)) can be

obtained by an analysis-of-variance (ANOVA) estimator

1

B−1

B

∑
b=1

(ψ̂(P∗b)− ψ̂)2 − 1

BR(R−1)

B

∑
b=1

R

∑
r=1

(ψ̂r(P
∗b)− ψ̂(P∗b))2 (9)

where ψ̂ = (1/B)∑
B
b=1 ψ̂(P∗b). The second term in (9) is a bias-reducing adjustment, i.e., the second term

in the last expression of (4). Estimator (9) can be viewed as estimating the between-group variance in a

random effect model.

It turns out that the variance of the natural estimator (9) for Var∗(ψ(P∗)) is of order

O

(

1

Bn2
+

1

BR2

)

(10)

(note that variance is the only source of error for the estimation of Var∗(ψ(P∗)) here since this estimator is

unbiased). Since the input variance Var(ψ(P̂)) is of order 1/n, its estimator needs to have an error o(1/n)
in order to be accurate enough for CI construction purpose. To achieve this using (9), we argue that the

total simulation effort BR must be necessarily ω(n), i.e., of larger order than the data size. First, we must

choose B = ω(1) so that the first term in (10) is o(1/n2). Second, suppose we choose BR = O(n), then R

must be o(n) and the second term in (10) is ω(1/n2) which makes the overall error of the estimator of larger

order than 1/n2, leading to a contradiction. Lam and Qian (2022) calls this ω(n) overall computational

need a ªcomplexity barrierº in using the natural ANOVA estimator for running the variance bootstrap.

3.3 Delta Method

An alternative approach to construct CI is to use the delta method, which gives rise to (6) where the

constants in the standard error, namely σ2
i and τ2, are directly estimated by using their mathematical forms.

As discussed before, while τ2 can be readily estimated, σ2
i ’s are more difficult as they involve the influence

function, which is a functional derivative that, in general, can only be observed noisily. In fact, when

the simulation model is black-box, i.e., only unbiased output is available but not gradient information,

then estimating the influence function requires finite-difference or zeroth-order derivative estimation, which

is well-known to possess slow convergence rate. Moreover, the influence function is the derivative with

respect to the input distribution, which is infinite-dimensional in nature and adds to the sophistication.

To make the discussion above more precise, suppose we only have one input distribution, which gives

an input variance σ2. This variance can be estimated directly using

1

n

n

∑
i=1

IF(Xi; P̂)2

where Xi’s are data points for P, and we have used the fact that EP̂[IF(Xi; P̂)] = 0. By using (3), we can

estimate IF(Xi; P̂) via
ψ̂((1− ε)P+ ε(0, . . . ,0,δXi

,0, . . . ,0))− ψ̂(P)

ε
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for some ε that scales with n. We can further reduce the estimation bias via an appropriate U-statistic

construction. Nonetheless, it turns out that to ensure the estimated σ2 is relatively consistent, i.e., the

estimation error of σ2 is o(1/n), the minimum simulation budget is Θ(n) by choosing ω(1/n1/4)≤ ε ≤ o(1)
(Lam et al. 2022). This is better than the quantile-based and variance bootstraps discussed before, but it

requires some careful procedural tuning to ensure the required simulation load is on par with the data size.

4 CHEAP BOOTSTRAP

The cheap bootstrap method is a resampling-based approach to construct CI that requires as few as one

resample. It works as follows. For simplicity, let us first consider the case where ψ can be evaluated exactly

and there is only one input distribution. Instead of using the standard bootstrap principle which stipulates

the approximation of the sampling distribution with the resample distribution, one uses the asymptotic

independence among the original estimate and all resample estimates. More concretely, suppose, given the

data, the original estimate is ψ(P̂) and we resample to obtain B resample estimates ψ(P∗b),b = 1, . . . ,B.

We have

(
√

n(ψ(P̂)−ψ(P)),
√

n(ψ(P∗1)−ψ(P̂)), . . . ,
√

n(ψ(P∗B)−ψ(P̂)))⇒ (σZ0,σZ1, . . . ,σZB) (11)

where Zi
i.i.d.∼ N(0,1). This convergence can be shown to be an implication of (7) and (8) (Lam 2022).

Intuitively, since the resample CLT holds universally conditional on any realization of the data sequence,

the resample and the original estimates should be independent asymptotically, which gives exactly the

statement (11).

With (11), the cheap bootstrap method uses the CI

[ψ(P̂)− tB,1−α/2S,ψ(P̂)+ tB,1−α/2S] (12)

where

S2 =
1

B

B

∑
b=1

(ψ(P∗b)−ψ(P̂))2

and tB,1−α/2 is the (1−α/2)-th quantile of tB, the t-distribution with degree of freedom B. Note that S2

resembles the sample variance of the resamples ψ(P∗b), but it does not use B−1 in the denominator as

in ªtextbookº sample variance and the centering in the squares is ψ(P̂) instead of the sample mean of

ψ(P∗b)’s. The critical value is now calibrated by a t-distribution with degree of freedom equal to the

resampling effort B. Importantly, (12) is defined and, as we see momentarily, works when B is as small

as 1. In particular, when B = 1, (12) reduces simply to

[ψ(P̂)− t1,1−α/2|ψ(P∗)−ψ(P̂)|,ψ(P̂)+ tB,1−α/2|ψ(P∗)−ψ(P̂)|]

where ψ(P∗) is now the single resample estimate. The following appears in Lam (2022):

Theorem 1 Suppose (7) and (8) hold. Then, for any fixed B ≥ 1, (11) holds and consequently (12) is an

asymptotically exact (1−α) CI for ψ(P), i.e.,

P(ψ(P) ∈ [ψ(P̂)− tB,1−α/2S,ψ(P̂)+ tB,1−α/2S])→ 1−α

as n → ∞.

This theorem can be justified by noting that

ψ(P̂)−ψ(P)

S
(13)
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is a pivotal statistic where the nuisance parameter, in this case the unknown standard deviation σ , can be

canceled out so that the statistic converges to tB by using elementary properties of normal variables. More

precisely, we have

ψ(P̂)−ψ(P)

S
=

√
n(ψ(P̂)−ψ(P))

√

(1/B)∑
B
b=1(

√
n(ψ(P∗b)−ψ(P̂)))2

⇒ σZ0
√

(1/B)∑
B
b=1(σZb)2

=
Z0

√

(1/B)∑
B
b=1 Z2

b

d
= tB.

It is worth pointing out that a good CI not only requires a valid coverage, but ought to be short and

less variable. Indeed, when B is very small, e.g., B = 1, then the interval width is large, signaling a lack of

extracted statistical information. However, the interval width sharply decreases as B moves away from 1,

towards a level that is close to the interval width of the normality CI, which can be viewed as when using

B = ∞. These observations can be readily justified since the cheap bootstrap uses and follows the behavior

of a t-interval, asymptotically as n → ∞. For further details, see Lam (2022).

5 A CHEAP PROCEDURE FOR INPUT UNCERTAINTY QUANTIFICATION

The discussion in Section 4 assumes ψ(·) can be exactly evaluated. When ψ(·) can only be observed

noisily, the limit theorem (11) becomes more complex and the construction of pivotal statistic that cancels

out the nuisance parameters becomes more involved. To be more precise, suppose we consider the general

situation now where we have m input distributions P = (P1, . . . ,Pm), each with input data size n j. We

use R simulation runs to estimate each ψ̂(P̂) and ψ̂(P∗b). Here, the resample empirical distributions P∗b

are obtained by resampling, for each input model j, n j times via sampling with replacement to obtain

X∗
ji, i = 1, . . . ,n j, and the resamplings for different input models are conducted independently. We use the

scale parameter n, with ni = nqi and R = nq. Then we have

(
√

n(ψ̂(P̂)−ψ(P)),
√

n(ψ̂(P∗1)− ψ̂(P̂)), . . . ,
√

n(ψ̂(P∗B)− ψ̂(P̂)))

⇒
(√

m

∑
j=1

σ2
i

qi

Z0 +
τ√
q

W0,

√

m

∑
j=1

σ2
i

qi

Z1 +
τ√
q

W1 −
τ√
q

W0, . . . ,

√

m

∑
j=1

σ2
i

qi

ZB +
τ√
q

WB −
τ√
q

W0

)

(14)

where Zi,Wi, i= 0, . . . ,B are all i.i.d. N(0,1). The limit in the convergence (14) arises from the combinations

of input noises represented by Zi’s and simulation noises represented by Wi’s. The convergence (14) can

be guaranteed by using a similar argument as that for (11), under additional moment assumptions on the

simulation noise.

Thus, in contrast to the asymptotic independence in (11), in the input uncertainty context we have an

asymptotic joint distribution structure (14) that is more complex. To proceed, we study two approaches,

both of which can be viewed as a multi-input generalization to Lam (2022) that considers only the case

of one input model.

The first approach, which we call ªcentered at original estimateº is to consider the statistic (ψ̂(P̂)−
ψ(P))/SO where S2

O = (1/B)∑
B
b=1(ψ̂(P∗b)− ψ̂(P̂))2. This statistic is the natural analog of (13). By a

similar argument as before, we have

ψ̂(P̂)−ψ(P)

SO

⇒

√

∑
m
j=1

σ2
i

qi
Z0 +

τ√
q
W0

√

1
B ∑

B
b=1

(

√

∑
m
j=1

σ2
i

qi
Zb +

τ√
q
Wb − τ√

q
W0

)2

which can be written as
θZ0 +W0

√

1
B ∑

B
b=1 (θZb +Wb −W0)

2
(15)
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where θ =

√

∑
m
j=1

σ2
i

ni
/(τ/

√
R) is the ratio of the input noise over the simulation noise for the original

estimate and each resample estimate, measured by the standard deviation. This quantity is unknown, but

we can take a worst-case approach. Define F(q;θ) as the distribution function of (15). Consider the critical

value

qO,1−α/2 = min

{

q : min
θ≥0

F(q;θ)≥ 1− α

2

}

.

Then we construct a (1−α) CI as [ψ̂(P̂)−qO,1−α/2SO, ψ̂(P̂)+qO,1−α/2SO]. Note that even though qO,1−α/2

does not have a closed form, it can be readily computed by running many Monte Carlo replications for

normal variables ± not the simulation model ψ(·) itself. We have

Theorem 2 Suppose (14) holds. Then, for any fixed B ≥ 1,

liminf
n→∞

P(ψ(P) ∈ [ψ̂(P̂)−qO,1−α/2SO, ψ̂(P̂)+qO,1−α/2SO])≥ 1−α.

Unlike Theorem 1, Theorem 2 guarantees only an asymptotically correct coverage, i.e., at least 1−α ,

instead of asymptotically exact coverage. This is due to the conservativeness in determining the critical

value qO,1−α/ because of the unknown nuisance parameter θ that cannot be straightforwardedly canceled

out. Nonetheless, we see that this conservativeness appears negligible in our numerical experiments in

Section 7.

The second approach, which we call ªcentered at resample meanº, uses the statistic (ψ̂(P̂)−ψ(P))/SM

where S2
M = (1/(B−1))∑

B
b=1(ψ̂(P∗b)−ψ̂)2 and ψ̂ = (1/B)∑

B
b=1 ψ̂(P∗b) is the sample mean of the resample

estimates. With this statistic, now we have

ψ̂(P̂)−ψ(P)

SM

⇒

√

∑
m
j=1

σ2
i

qi
Z0 +

τ√
q
W0

√

1
B−1 ∑

B
b=1

(

√

∑
m
j=1

σ2
i

qi
Zb +

τ√
q
Wb −

(

√

∑
m
j=1

σ2
i

qi

ÅZ + τ√
q

ÅW

))2

d
= tB−1

by canceling out the nuisance parameter given by the overall standard deviation
√

∑
m

j=1
σ2

i

qi
+ τ2

q
. Thus, we

can use the (1−α) CI [ψ̂(P̂)− tB−1,1−α/2SM, ψ̂(P̂)+ tB−1,1−α/2SM] with the guarantee:

Theorem 3 Suppose (14) holds. Then, for any fixed B ≥ 2,

P(ψ(P) ∈ [ψ̂(P̂)− tB−1,1−α/2SM, ψ̂(P̂)+ tB−1,1−α/2SM])→ 1−α

as n → ∞.

Unlike the ªcentered at original estimateº approach, here in Theorem 3 the asymptotic coverage is

exact. However, we now need B ≥ 2 instead of B ≥ 1 in Theorem 2. Even though this difference may

sound immaterial since in practice using B = 1 or B = 2 would give rise to very wide intervals and is

undesirable anyway (even if the coverage is correct), the difference in the degree of freedom B versus

B−1 does show up when one uses a moderately small B, e.g., B = 5, which could be a reasonable choice

in practice given the computational demand in addressing input uncertainty. In our experiments, we find

that both approaches are comparable in terms of coverage accuracy and interval width.

6 COMPARISONS WITH OTHER RECENT REMEDIES

We discuss and contrast the cheap bootstrap with several recent approaches that aim to reduce computation

when addressing input uncertainty. The first is a subsampling approach (Lam and Qian 2022) that leverages

the mathematical form of the input-contributed variance which is reciprocal in the input data size. Thanks
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to this form, by using subsample, i.e., resample of size smaller than the original data size, in the outer

layer, to obtain an estimate of the input variance and rescale, it turns out to require less overall budget than

standard variance bootstrap. The second is to use subsampled infinitesimal jackknife (Lam et al. 2022),

which applies the delta method directly. It first subsamples a subset of input data from the original data

set before carrying out the influence function estimation, which makes the estimation error scale with the

subsample size instead of the full sample size, and turns out to reduce overall simulation budget. While

both subsampling and subsampled infinitestimal jackknife can achieve similar overall simulation effort as

our cheap bootstrap approach, they both require choosing the subsample size as a tuning parameter, while

the cheap bootstrap does not utilize subsampling in the procedure.

Another approach that reduces computation in input uncertainty, and arguably the closest to ours, is

the batching or sectioning approach (Glynn and Lam 2018). This approach first batches the input data

into several batches, and for each batch, uses the input data to construct input distributions which then

are used to drive adequate simulation runs. A valid CI is then constructed by aggregating the averages of

simulation outputs in the batches via a t-statistic. Note that batching generally faces a tradeoff between

the number of batches and the sample size per batch, i.e., for a given total sample size, if the number of

batches increases then the sample size per batch would decrease and vice versa, while ideally we would

like both the number of batches and the sample size per batch to be large ± the former reduces the interval

width, while the latter ensures the accuracy of the normal approximation. In contrast, cheap bootstrap is

free from this tradeoff, as the number of resamples can grow unboundedly without affecting the sample

size in each resample. Because of this, it is expected that the cheap bootstrap would outperform batching

unless the input data size is very big. Finally, note that we could also use batched jackknife that alleviates

the aforementioned tradeoff faced by batching, but this requires more sophisticated procedural parameter

tuning as one would need to carefully cancel out the nuisance parameter, namely the overall variance which

consists of both the input data and the Monte Carlo contributions.

7 NUMERICAL EXPERIMENTS

We present two numerical examples and compare our methods to some existing approaches. The first

example is an M/M/1 queue where our goal is to estimate the expected average waiting time of the first

10 customers. The ground-truth interarrival time and service time distributions are exponential with rates

1 and 1.1 respectively. The queue starts from the empty state and the first customer immediately arrives.

We assume we collect i.i.d. data for the interarrival and service times, which we use to construct empirical

distributions to drive our simulation. Similar examples have been used in, e.g., Barton et al. (2014), Song

and Nelson (2015), Zouaoui and Wilson (2004). Our second example is the computer communication

network considered in Cheng and Holloand (1997), Lin et al. (2015), Lam and Qian (2022). We follow

the specifications in Section 5 of Lam and Qian (2022) and skip the details here due to space limit. We are

interested in estimating the average delay of the first 30 messages that arrive to the system. We consider

the situation that all arrival rates and distribution of message lengths are unknown and have an i.i.d. data

source for each of them, resulting in the need to calibrate 13 input models in total.

For each example, we vary our number of resamples B from 1 or 2 to 20 and apply our ªcentered at

original estimateº and ªcentered at resample meanº approaches. We use R = 50, thus the overall simulation

effort is 50B. We compare our approaches to 1) the basic bootstrap, where we again use R = 50 to evaluate

each ψ̂(·); 2) the percentile bootstrap with the same specification of R; 3) ªcentered at original estimateº

but using tB,1−α/2 as the critical value instead of qO,1−α/2; 4) sectioning input data. For each setting, we

repeat our experiments 1000 times to calculate the empirical coverage and average interval width, and we

run 1 million simulation runs to approximate the ground truths. For the M/M/1 example, we use input

data sizes n1 = 100 and n2 = 100. For the computer network example, we use ni, i = 1, . . . ,13 that follows

Lam and Qian (2022), with ni’s ranging from 30 to 60. Our goal is to construct a 95% CI.

Tables 1 and 2 show the empirical coverages and average interval widths obtained by all the methods,

as we vary the number of resamples B from 1 to 20 for the bootstrap approaches, and the number of batches



Lam

Table 1: Comparisons of interval performances for the queueing example.

B

Cheap bootstrap Cheap bootstrap Basic Percentile Centered at Sectioning

centered at centered at bootstrap bootstrap original estimate

original estimate resample mean with t

Coverage Width Coverage Width Coverage Width Coverage Width Coverage Width Coverage Width

1 0.95 7.53 NA NA NA NA NA NA 0.95 7.50 NA NA

2 0.96 2.77 0.94 6.46 0.31 0.34 0.27 0.34 0.96 2.76 0.95 6.33

3 0.96 2.14 0.94 2.48 0.49 0.52 0.40 0.52 0.96 2.14 0.94 2.38

4 0.96 1.90 0.93 1.91 0.60 0.63 0.47 0.63 0.96 1.90 0.95 1.81

5 0.96 1.78 0.94 1.71 0.68 0.71 0.53 0.71 0.96 1.78 0.94 1.60

6 0.96 1.72 0.94 1.61 0.72 0.78 0.58 0.78 0.96 1.72 0.94 1.48

7 0.96 1.69 0.94 1.57 0.76 0.84 0.61 0.84 0.96 1.69 0.93 1.40

8 0.95 1.66 0.93 1.52 0.78 0.88 0.63 0.88 0.95 1.65 0.94 1.38

9 0.95 1.64 0.93 1.50 0.80 0.91 0.65 0.91 0.95 1.64 0.94 1.36

10 0.95 1.61 0.93 1.47 0.82 0.94 0.67 0.94 0.95 1.61 0.94 1.33

11 0.95 1.60 0.93 1.45 0.84 0.97 0.68 0.97 0.95 1.60 0.94 1.32

12 0.95 1.59 0.93 1.44 0.85 0.99 0.70 0.99 0.95 1.58 0.94 1.32

13 0.96 1.58 0.94 1.43 0.86 1.01 0.71 1.01 0.96 1.58 0.94 1.30

14 0.96 1.57 0.93 1.42 0.87 1.02 0.72 1.02 0.95 1.57 0.93 1.29

15 0.95 1.56 0.93 1.41 0.88 1.04 0.72 1.04 0.95 1.55 0.95 1.29

16 0.95 1.55 0.94 1.40 0.88 1.05 0.73 1.05 0.95 1.55 0.95 1.29

17 0.95 1.54 0.94 1.39 0.89 1.06 0.73 1.06 0.95 1.54 0.94 1.28

18 0.95 1.54 0.93 1.38 0.89 1.07 0.73 1.07 0.95 1.53 0.94 1.28

19 0.96 1.53 0.94 1.37 0.89 1.08 0.73 1.08 0.96 1.52 0.93 1.28

20 0.95 1.52 0.94 1.37 0.90 1.09 0.74 1.09 0.95 1.52 0.94 1.28

in the sectioning approach (where B there represents the number of batches). Note that some methods do

not give any outputs when B is 1. These include the cheap bootstrap centered at resample mean which

requires B ≥ 2, quantile-based bootstraps including basic and percentile bootstraps which cannot output two

distinct finite numbers for two quantiles when there is only one resample, and sectioning which requires

the number of batches to be at least 2.

As we see in the tables, the cheap bootstrap methods consistently give rise to accurate coverages close

to 95%, starting from B = 1 when centered at original estimate and B = 2 when centered at resample

mean. The coverages of the former are all 95%− 97%, while the latter are all 93%− 96%. In contrast,

quantile-based bootstraps are severely under-covered for small B, and even when B = 20, their coverages

still bear a significant gap with the nominal 95%. For example, when B = 2, the basic bootstrap gives

31% for the first example and 34% for the second example, and the percentile bootstrap gives 27% for

the first example and 32% for the second example. When B = 20, the basic bootstrap gives 90% for both

examples, and the percentile bootstrap gives 74% for the first example and 85% for the second example.

These obervations are unsurprising since the quantile-based bootstraps are not designed to work for very

small B, but require a sufficiently large B for the resample distribution to well approximate the sampling

distribution.

The coverages of centered at original estimate but using a t-quantile to calibrate the critical value are

similar to the use of qO,1−α , suggesting that the conservativeness brought by the worst-case analysis in

determining qO,1−α/2 is quite light. Finally, sectioning appears to perform well for the first example, with

all coverages ranging in 93%− 95%, but deteriorate as B increases beyond 10 in the second example,

dropping to only 38% when B = 20. This is because when B increases, the data size per batch decreases,

and in the second example when B goes beyond 10, the data size per batch could become too small for

normal approximation to work well.

Regarding interval width, cheap bootstrap CI are initially wide. For instance, the average widths are

7.53 and 11.07 for the first and second examples respectively when B = 1 for centered at original estimate,

and 6.46 and 11.12 respectively when B = 2 for centered at resample mean. However, the widths drop

sharply as B increases and gradually level off. For instance, the widths decrease from 7.53 to 2.77 and

from 11.07 to 4.22 for the first and second examples respectively when B increases from 1 to 2 for centered

at original estimate, and from 6.46 to 2.48 and from 11.12 to 4.07 respectively when B increases from
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Table 2: Comparisons of interval performances for the computer communication network example.

B

Cheap bootstrap Cheap bootstrap Basic Percentile Centered at Sectioning

centered at centered at bootstrap bootstrap original estimate

original estimate resample mean with t

Coverage Width Coverage Width Coverage Width Coverage Width Coverage Width Coverage Width

1 0.95 11.07 NA NA NA NA NA NA 0.95 11.04 NA NA

2 0.97 4.22 0.96 11.12 0.34 0.59 0.32 0.59 0.97 4.20 0.95 12.84

3 0.96 3.19 0.95 4.07 0.50 0.86 0.48 0.86 0.96 3.18 0.96 4.64

4 0.96 2.88 0.95 3.15 0.61 1.04 0.57 1.04 0.96 2.87 0.96 3.75

5 0.96 2.68 0.95 2.78 0.68 1.16 0.62 1.16 0.96 2.68 0.96 3.44

6 0.96 2.58 0.95 2.61 0.72 1.26 0.66 1.26 0.96 2.58 0.94 3.33

7 0.95 2.50 0.95 2.48 0.75 1.33 0.70 1.33 0.95 2.50 0.96 3.29

8 0.96 2.45 0.95 2.42 0.77 1.40 0.73 1.40 0.96 2.45 0.94 3.41

9 0.96 2.42 0.95 2.36 0.80 1.44 0.74 1.44 0.96 2.41 0.94 3.56

10 0.96 2.38 0.95 2.32 0.81 1.49 0.77 1.49 0.96 2.38 0.94 3.75

11 0.96 2.36 0.95 2.29 0.82 1.53 0.78 1.53 0.96 2.35 0.91 4.17

12 0.96 2.35 0.95 2.27 0.84 1.56 0.79 1.56 0.96 2.34 0.88 4.49

13 0.96 2.32 0.95 2.25 0.85 1.59 0.80 1.59 0.96 2.32 0.86 4.74

14 0.96 2.32 0.95 2.23 0.86 1.62 0.81 1.62 0.96 2.31 0.79 5.18

15 0.96 2.31 0.95 2.22 0.87 1.65 0.82 1.65 0.96 2.30 0.77 5.49

16 0.96 2.28 0.95 2.21 0.88 1.67 0.83 1.67 0.96 2.28 0.73 6.28

17 0.96 2.27 0.95 2.20 0.88 1.68 0.83 1.68 0.96 2.27 0.62 7.20

18 0.96 2.27 0.95 2.19 0.88 1.70 0.84 1.70 0.96 2.26 0.54 7.50

19 0.96 2.27 0.95 2.18 0.89 1.72 0.85 1.72 0.96 2.26 0.47 8.01

20 0.96 2.25 0.95 2.17 0.90 1.73 0.85 1.73 0.96 2.25 0.38 8.47

2 to 3 for centered at resample mean. The decrease continues to be sharp, though less intensely, when

B increases from 2 to 3 for centered at original estimate and from 3 to 4 for centered at resample mean,

afterwards the decrease becomes more gradual. In contrast, the quantile-based bootstraps appear to be

shorter and have a small increase in interval widths as B increases. Note, however, that these short intervals

are statistically invalid in terms of coverage. Centered at original estimate but using a t-quantile to calibrate

the critical value gives interval widths similar to using qO,1−α/2, much like the coverage performances.

Finallly, sectioning, like the cheap bootstraps, also generate wide intervals when the number of batches

is small. For instance, the average width is 6.33 for the first example and 12.84 for the second example

when B = 2. However, while the width follows a trend similar to the cheap bootstraps as B increases,

which decreases sharply initially and gradually levels off, for the first example, the width first decreases

and bounces back up when B is around 11 in the second example. This suggests a degradation of the

normality approximation within each batch in the latter, so that the behavior of the interval widths deviate

from the asymptotic t-statistic.
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