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Abstract

This paper addresses the deconvolution problem of
estimating a square-integrable probability density from
observations contaminated with additive measurement errors
having a known density. The estimator begins with a density
estimate of the contaminated observations and minimizes a
reconstruction error penalized by an integrated squared m-th
derivative. Theory for deconvolution has mainly focused on
kernel- or wavelet-based techniques, but other methods
including spline-based techniques and this smoothness-
penalized estimator have been found to outperform kernel
methods in simulation studies. This paper fills in some of
these gaps by establishing asymptotic guarantees for the
smoothness-penalized approach. Consistency is established
in mean integrated squared error, and rates of convergence
are derived for.Gaussian, Cauchy, and Laplace error densities,
attaining some lower bounds already in the literature. The
assumptions are weak for most results; the estimator can be
used with a broader class of error densities than the
deconvoluting kernel. Our application example estimates the
density of the mean cytotoxicity of certain bacterial isolates
under random sampling; this mean cytotoxicity can only be
measured experimentally with additive error, leading to the
deconvolution problem. We also describe a method for
approximating the solution by a cubic spline, which reduces
to a quadratic program.
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1 Introduction

A smoothness-penalized density deconvolution estimator was introduced in Yang

et al. [2020] which is fast to compute, amenable to shape constraints, and in
simulation studies has substantially improved finite-sample performance over the
common deconvoluting kernel density estimator of Stefanski and Carroll [1990]. A
spline-based Bayesian approach for a related problem in Staudenmayer et al. [2008]
outperforms deconvoluting kernels in simulation studies as well, and Sarkar

et al. [2014] does yet better. In spite of these appealing properties, these estimators
have not yet received much attention. This is perhaps due to a lack of theoretical
guarantees; most asymptotic results for deconvolution estimators focus'en kernel- or
wavelet-based (e.g. Pensky and Vidakovic [1999]) methods, while these other

methods have only been addressed in simulations.

In this paper, we address a continuous version of the smoothness-penalized
estimator in Yang et al. [2020] and provide some theoretical guarantees. We prove
the consistency of the density estimates in:sL> and derive upper bounds for the rate of
convergence, which are found to be optimal when compared to lower bounds
already in the literature. We also prove in‘Theorem 7, under stronger smoothness
conditions inspired by typical assumptions in the ill-posed problem literature, fast
rates of convergence which hold,forany error density, whether smooth or super-
smooth. We are not aware of similar results for kernel-based deconvolution
estimators. Along the way, we derive a representation of the estimator which is more
convenient for theoretical work than the variational formulation in Yang et al. [2020]

and investigate the finite-sample error for a few settings.

Suppose a real-valued random variable of interest X has pdf 7 and we wish to
estimate £ However, we instead observe independent copies of Y =X+ £ a
surrogate of X'which has been contaminated with an independent error £. Suppose
further that £ has known pdf g. Under these conditions, the pdf A of Yis given by the

convolution of gand 7 i.e.



hy)=g*f()=]fOgy -1t

The task of estimating the density /from a sample i independent random
variables with pdf h=g"1 is sometimes called a deconvolution problem, since we

can think of the main goal as “undoing” the convolution with g.

The method in Yang et al. [2020], to be described shortly, begins with a density
estimate of A, and proceeds to estimate 7through this density estimate of A. To that

end, we will introduce one more abstraction: we will assume that we have access to

an L,(R) -consistent estimator of A, which we will denote A, (Estimators of functions
will be indicated by a subscript 7 rather than the customary “hat” to avoid elutter
when taking Fourier transforms, which will be denoted by an overset twiddle). The
mean integrated squared error (MISE) of A, will be denoted

2 _ 2_ EAY
O =BllA, =hll Ej(h" 7 . We will think of A, as the “data”in‘this problem and

express the performance of our estimator in terms of 55. Note that since the
estimator is consistent, we have 5, = 0

This setting occurs whenever a density estimate.is'required, but the variable is
measured with error; it is therefore a nearly ubiquitous phenomenon, but typically
ignored when the measurement error(is small. For a window into the meaning of “
small” here, note that ignoring measurement error £ means to estimate g%/ in
place of £ incurring at a pointex the error &/ ()~ f(X)=E[f(x—E) = f ()] \yhere £
has pdf g. Thus wherever.fhas/large curvature on the scale of £, g*/ and fwill not

be similar, and in sueh ¢ases measurement error should not be ignored.

Because of the'ubiquity of the setting, the application domains are diverse. In this
paper, we estimate a conditional density that occurs when estimating the cytotoxicity
of bacterial isolates; in Yang et al. [2021], the authors use deconvolution to estimate
the density of a conditional expectation occurring in nested Monte Carlo simulations.
Staudenmayer et al. [2008] apply deconvolution to nutritional data from a clinical trial
involving a dietary supplement, and Stefanski and Carroll [1990] treat data on

saturated fat intake.



The treatment of this problem makes great use of the Fourier transform. Following

veL(R)UL(R)

conventions in Folland [1992], for we will write

V(@) =1lim J. ' eV(x)dx = Ie_i“’xv(x)dx . ]
rowd-r for the Fourier transform of v, with the second

Bla)=~Y ™
nj= be the Fourier transform

equality holding as long as ¥ €L (R | et
of the empirical distribution. If u(x) =vEwX) then U@) =VW@)M®) o4 that the

Fourier transform reduces convolution to multiplication.

A well-known estimator of fin this setting is the deconvoluting kernel (density)
estimator (DKE), introduced in Stefanski and Carroll [1990], which takes advantage
of the reduction of convolution to multiplication. First, we form a kernel density

B0 = K(x=Y)/ 2)

N OF
estimate of A, in which case " (@) Z£,(@QK(A0) 114,

we divide by 8(®) and inverse transform:
110 =~ [e” B (@R (o) g@)do. (1)
2

* _ -1 iwox 7 ~
In Stefanski and Carroll [1990], they find that iz ©) = 27 JemR@/ g At

A
then /i has representation
1 & -
i) == K, (x~Y))/2)
nA ‘3

and are able to borrow'from results on standard kernel density estimators in their

analysis. To ensure that the Fourier inversion in Equation (1) is well-defined,

sup| K(w)/ g(w/ A)|<
Stefanski‘and.Carroll [1990] require K'to be chosen to satisfy «

and J.IK(w)/g(a)M) dw <o for all >0 suggesting band-limited kernels, including

1
K(x)=—(sin(x)/ x) _ _
a , Which has Fourier transform k(@)= 1,501~ /2). Note that

in particular, K()=28() typically cannot satisfy these conditions. Additionally,

Stefanski and Carroll [1990] restrict attention to g for which | 8(w) > 0, since the

estimator involves division by £(®) under appropriate choice of A, = O, the



estimator is consistent and attains optimal rates in several settings. In Fan [1991],
optimal rates are addressed for fin a class of functions with mth derivative Holder-

continuous. In Zhang [1990], optimal rates are addressed over for fin a class of

functions satisfying || @/ (@) F<M <o

The density deconvolution technique introduced in Yang et al. [2020] discretizes both

the functions and the convolution operator. The estimate A, is approximated on a

h

grid by a vector ", and the convolution operator by a matrix C, so thatifvis a

discrete approximation of a function v, then CV is a discrete approximation of g%y,

Then a discrete approximation , of fis computed by solving the matrix problem

f% =argmin||Cx—h, |’ +aQ(x), (2)

where 20) is a quadratic penalty. (Vectors and matrices will always be typeset in
boldface, and we overload I'll'to denote the vector 2-normwhen the argument is a

vector.) For 90) the authors suggest, among other choices; the squared norm of a

(x) =D

2
second-differencing operator applied to x: 0 ¥ ”2. Heuristically, this approach

a a

yields an estimate f." whose convolution € js\ciose to the density estimate h,
(due to the first term), but which is nottoo wiggly (due to the second term). They
observe that Equation (2) can be formulated as a quadratic program and solved
efficiently using standard methods, .and that linear constraints can be introduced as

well.

In this paper, we analyzesthe exact, continuous version of the estimator introduced in

_ (m) 112 m
Yang et al. [2020], with penalty ) =v™ i , Where V™ denotes the mth derivative
of VELM) o

£ =argminfig*v—h,|" +a v P (3)

4

The argument v is taken to range over the subset of L,(R) for which the objective

function is well-defined, which we will make specific in Section 4. We will

occasionally find it useful to use operator notation, with £ - L2(R) = Ly(R). T:vi> g*v

L:D(L)—> L,(R), L:v>v"

and , SO that we can alternatively write



f* =argmin||Tv—h, |} +a| Lv|].
In Section 6, we suggest an alternative to the discretization approach in Yang

et al. [2020]. We instead solve Equation (3) out of an approximation space of

o

piecewise polynomial spline functions. Calling this approximation * , we prove in

Blls,

a |12
Theorem 15 that the resulting approximation error —J |l can be made to

a 2
decrease faster than the order of convergence of Ellf =11 by choosing a suitably

Ells,

2
rich approximation space. It follows that =/l has the same order of

convergence.

One appealing property of this estimator is that the computational techniques
proposed here and in Yang et al. [2020] can be quite fast, with the computational
complexity determined primarily by the dimension of the discretization grid or spline
basis. We will see that computing the spline approximation can be formulated as a
quadratic program, and that many useful linear constraints ¢an be imposed. Among
these, positivity and integrate-to-one constraints are.easily imposed, as are support
constraints and some shape constraints. Yang et al/[2020] even suggest a method
for imposing a unimodal constraint by a family of “unimodal at a point xo” constraints,

each of which can be imposed as a linear constraint.

Finally, the DKE approach requires gto*have non-vanishing Fourier transform and
therefore cannot be applied to; for example, uniformly distributed errors. The
estimator addressed here has no such requirement; instead, the Fourier transform of
g must only be non-vanishing almost-everywhere, which is also a necessary

condition for identifiability in this model.

After an overviewof the inherent difficulties of deconvolution in Section 2 and

introducing the estimator in detail in Section 4, we prove global L,(R) -consistency,
as well as rates of convergence in Section 5. In Section 6, we address the practical
issue of computing the estimate, investigate its performance in finite samples, and

apply it to a problem on bacterial cytotoxicity.



2 lllI-Posedness of the Problem

Deconvolving a density estimate is a typical “ill-posed” problem. We will see that ill-
posedness means a naive solution to the deconvolution problem must fail to be
consistent, and any consistent deconvolution estimator must reflect some aspect of
regularization. A problem is said to be well-posed if [Engl et al., 1996, Chapter 2] the
following conditions are met: “ 1. For all admissible data, a solution exists, 2. For all
admissible data, the solution is unique, and 3. The solution depends continuously on

the data,” and ill-posed otherwise.

T:L,(R)—> L(R) \pich

For the deconvolution problem, consider the operator
convolves a function with g, i.e. €™V Since "=8"/ | plugging in = S clearly

solves the following operator equation:
Tv=h. (4)

However, we do not know A. We have an estimate A, of A, and we would like to solve

the analogous problem with our estimate 4, on.the right-hand side, i.e.

There is an immediate issue with thisiappreach: there is no v solving this equation

h, €R(T) o 1 =TV sodsome ¥ L2 it b, is unrestricted, the problem

unless
of solving Equation (5) violates, Condition 1 of well-posedness. However, we can
overcome this problem by.using a generalized inverse of 7, so we will set it aside for

the moment.

Instead, we will focus on a more critical deficiency: the solution operator for

Equation (5).is not continuous in A, This means that a small perturbation of the right-
hand side can lead to arbitrarily large fluctuations in the solution, so that problem of
solving 7v = hpis not a good approximation of solving 7v = A no matter how well A,

h, e R(T)

approximates A. If we require so that the solution operator is simply T_l,

then this discontinuity would entail that for any €>0 and C> 0, we can have
-1 -1 _ -l
I, =R ll< ¢ but IT"2=T"h, [H.f =T"h, > C No matter how good we require the

estimate A, of Ato be, its exact deconvolution may yet be an arbitrarily bad estimate



of £ Let’s prove it formally: the following proposition guarantees the existence of a

h =h+u

function v so that taking creates the unhappy situation just described.

Proposition 1. Assume that the Fourier transform g of g /s a.e. non-vanishing, so

T:L,(R)— L,(R) TR - L[R) 4,

that /s injective (Supplemental Fact A.1). Let

the inverse of T from its range. Then, for any M > 0, there is some * €R(T) for

which | T[> M |u]].

¢, eRAT)

Proof of Proposition 1. We will construct a sequence which is a Cauchy

-1 _
sequence in Lz(R), but with the property that for 77 €N we have I7(¢, = 4. 0N 1.

Once we have this sequence, we can finish the proof in the following way. Fix #/> 0.

1
|| ¢n _¢n+1 ”< M .

Since s, is Cauchy, we can choose " €N |arge enough that Then

U=6¢,~ 9.1 satisfies

1T (4, = . 1> M 6, — . .

as needed.

Now, if we can find such a sequence ¢, , we are finished. To that end, let

V. ="loum It can be checked that | % ~ %1 IF1 Furthermore, the wn constitute an

“approximate identity,” so that.by Folland [1999, Theorem 8.14a], we have

lg*w, —gl>0 a6 n>o Now, et % =& Vi =TV. To see that # is Cauchy,
apply the triangle inequality:

16, =, Il 4, — gl %]l 4, - g IHIg*w, —gll+ | g*vw, - gl
For the other preperty, note that

1778, =4, )IHIT" Ty, Ty, ) =l v, —v,. =1,
finishing the proof. 0

Now, even if h, éR(T), a generalized inverse like the Moore-Penrose inverse T'

may be used in place of T, ensuring that Conditions 1 and 2 are met. But these



generalized inverses extend T from R(T), so they too fail to be continuous by

Proposition 1.

We turn to a method of regularization solution. A regularized solution of Equation (4)
is a family of operators R} which approximate T™ or an extension thereof, and
which has the property that for each ¢, R. is a continuous operator. For our choice

of regularization by smoothness penalty, we will see in Theorem 2 that each Riisa
bounded operator. In Theorem 6, we will see that the regularization does
approximate the exact solution to Equation (4), and in Theorems 7 & 9, we will see

the rates of convergence under a few different conditions.

3 Assumptions

We assume throughout that fand g are probability densities, and that h, eL,(R).

The following is a list of all further assumptions that recur in the theoretical results; in
each statement we will name the assumptions requiredfrom this list. Assumptions

that are used only for a single result are stated in thatresult. First, assumptions that

k 7 2
will be made on the target density £ (F1) A eL2(R); (F2) -[|w J@)fdo<e for some
1<k<2m

Now, assumptions that will be made.on.the error density g. (G1) £ vanishes only on

a set of Lebesgue measure zero; (G2) € eL,(R), (G3) ILg(w) |dw<oo; Note that
Assumptions (G1)- (G3) all'hold for Normal, Cauchy, and Laplace errors. Note also

heL,(R)

that if 4 ELZ(R), then by’Young’s convolution inequality, as well.

4 The Estimator

One family of solution operators for Equation (5) which extend T™" are those which

ITv="%, 1l The familiar

map A, to a least-squares soluftion, i.e. to a v minimizing
Moore-Penrose generalized inverse T "isa least-squares extension—it is the
operator which maps £, to the least-squares solution v for which vhas minimal norm
VIl Classical Tikhonov regularization approximates T' by the family of operators

{Szx}a>0 mapp|ng



S, h, > argmin|| Tv—h, ||2 +a||v||2 .

v

Intuitively, the solution Sah, is a function which is reasonably small in L,(R) due to

the second term, and for which IS5, = A, | is reasonably small.

Here we address a similar approach, but rather than preferring a function which is
small in L,(R) , we prefer one which is smooth, in the sense that its mth derivative,

m21_has small norm. Thus we have a family Rt mapping

R, :h > argmin||Tv—h, |} +a|v" | .

This is a particular case of Tikhonov regularization with differential operators, which
has been treated in an abstract, non-statistical framework in Locker and

Prenter [1980], Engl et al. [1996, Chapter 8], and Nair et al. [1997].

Since our estimator will measure the smoothness of a possible estimate by the
magnitude of its square-integrated mth derivative, the estimate must be chosen from
among those functions for which this quantity is:finite. To that end, let

H"(R)={v € L,(R): """ e L,(R) for 0 <k < i} yeriot& the Sobolev space of square-
integrable functions with square-integrable weak derivatives up to order m. Assume

throughout that A=10|g(@)=0} pag Lebesgue measure zero.

uel,(R)

Definition 1. The Tikhonov functional with data and penalty parameter

a>0 js a function defined by

GGu,a):H"(R) HR
v lg*v—ulf +a|v™ .

Y. andlet @>0

The Smoothness-penalized deconvolution of 4, or Smoothness-penalized

Definition 2. Let A, be a density estimate of /4 from the sample LE

deconvolution estimate (SPeD) of fis defined variationally by

f.* =argmin G(v;h,, o)
veH™ (R) ( )
=argmin || g*v—h, ||2 +al| pm ||2 .
veH™ (R)



h, €L, (R) and @>0 the estimator 1 in Definition 2 is

fi cH™(®).

Remark. For a given

uniquely defined [Locker and Prenter, 1980, Theorem 3.5]. Moreover,

4.1 Representations of the estimator

Since the variational characterization of s does not lend itself to easy analysis, in

Theorem 2 we present an explicit representation for fna, both in terms of A, and the

Fourier transform of A,; if a kernel density estimator is used for A, we will see that

o can be computed as a kernel estimate as well, though this is not the approach
we take in the sequel. The Fourier representation will make clear the manner in
which the Tikhonov regularization approximates the ill-posed exact deconvelution

problem.

Theorem 2. (Representing the solution) Let

&(@)
|&(@)] +aw™

@, (0)= and @, (x)= liijr e o (wydw. (7)
row D d-r

Then

i) 1(@)= (@), (@)
(i/) f;x (x) = (Da *hn (x) , and
(1ii) if hn Is a kernel density estimate with bandwidth v, then there is another kerne/

Ke for which
« 1<
) == 3K, =),
i=1

Furthermore,

1
sup| @, (w)|<Ca ?
(iv) o forall @<M

(v) If Pe ELI(R)’ then J.(Pa(x)dlel so fhaz‘-'.f” (x)dx:1'

k ra -1
il P I ECa por aypa <M apg 0<k<2m with C depending only on g, m,
and M. Under Assumption (G2), it holds for k =2m gs well.



sup | D" £,(x)[< Ca™
(Vi) x forall <M ang 0<k<2m—1 wjth C depending

only on g, m, and M. Under Assumption (G3), it holds for all 0 <k <2m
Remark. Before moving on to the proof, it is worth making a few observations.

o Except where mentioned in (vi) and (vii), Theorem 2 does not need any

assumptions on gor A, beyond the fact that they are probability densities.

« If gis an even function, then P.(@) is even and purely real.
« Theorem 2(iv) holds for any g, but can be made sharper with information

about a particular choice of g. See, for example, the proof of Theorem 9(iii).

e Theorem 2(iv) equivalently says that, with R, denoting the operator which
1

b= 1

maps , the operator norm has a bound || %« II= €@ * #ghowing that the

solution operator for each ais bounded.
hi

« If the density estimate is a kernel density estimate “» with kernel appropriate

for the DKE (e.g. bandlimited), then for fixed data and bandwidth A, if we let

a A
a—0 we have that =>4 , i.e. we obtain the DKE defined in Equation (2).

Proof of Theorem 2.
(i):

By Theorem 3.1 of Locker and Prenter [1980], a function o minimizes the Tikhonov

functional G () if and only. if i €D(LL) and s satisfies the Euler-Lagrange

(T'T+aL L) ff =T h

equation »**By Supplemental Fact A.2, this corresponds to

grg* [ al Lt =g dh, oo gxul)= | gle—Nu(dx it Fourier

transforms yields'(see Supplemental Fact A.2 for details)

g /(@) + 0™ [ (@) = (@), 4 g re-arranging gives

Fe(@)=—29 (@)=, (@) (@)
| g(@)|” +aw

as needed.

(if) and (iv):



It will be convenient to prove (iv) first. We prove the equivalent inequality that for all
w, \/El 9. (@) < C. We do this by demonstrating two facts: first, that for all w,

1
Vo |p (@) < o] 5
2 , so that if we can bound x/EI u(®)] on a neighborhood of zero,

we are finished, since the bound decreases as |@ |_’°o. Second, we show that
JM

|8(®)| | and that on a neighborhood | 2= € of zero, &(®) is bounded

C= max{«/]\?/c,%g_”’}

Ja |, (@) |<

O<c<lg(w) L1

away from zero: , and take

For the first, apply the inequality X+y=2 2‘/5 for X7 >0 to the denominatdr ofy %"

Va| g oo 18— g FD 2y
&) +aw™ 2a|g@)f " 2

For the second,

Ja | p @) -Na— SO 7 12O]  prey,

|g(@) [ +aw |g(@)]
where the first inequality is because aw™ > 0 “and the second inequality is by the
assumption that @ <M _ Finally, to see'that £ is bounded away from zero on a
neighborhood of zero, recall that $+is the’Fourier transform of a probability density g.

Thus g(O):l’ and € is continueusyproving (iv).

€L, (C)

Now, we will demonstrate-that then Pa , so that the Fourier inversion in

Equation (16) is legitimate. By the arguments proving (iv), we have also found a

1
) 1 -m
_ . b(w)=« 2(1\(0\<5C+_1|w\25|a’| ),
square-integrablefunction 2 such that

b(@) 1 5,@)| s, [P (@ o [h@fdo<e 16 c1,©) ow. i

follows from (i) and the well-known properties of the Fourier transform.
(iii) and (v)-(vii): Deferred to Supplemental Proof B.2. O

Regularized solutions are well-behaved approximations to a poorly behaved exact

problem, and the Fourier view of our estimator gives a nice picture of the manner of



approximation. Suppose briefly that £ is even and non-vanishing. Taking the Fourier

h

transform of Equatlon 5) reduces the convolution to multiplication, giving gv= ", SO
/g

h‘lzx

that we may write ¥ Thus in Fourier space, exact deconvolution of A

corresponds to multlplylng » by /g

f

» corresponds to multiplying h, by this Pa function.

. In Theorem 2(i), we see that in Fourier space,

our regularized solution

Inspection of Pu(®) shows that when || is small, (ﬁa(w)zl/g(w), but that when

(0)=0

|®] is large, the @™ term dominates the expression and %= _since &(@) s

bounded. Thus multiplying by Pa performs similarly to multiplying by /8 atlow

frequencies, but P prevents high-frequency features of A, from transferring to fna.

This is pictured in Figure 1 for Gaussian g and a variety of a.

4.2 Decomposing the error

To analyze the error o= , it is useful to introduce a non-random function " for

which =/ represents the systematic error inducediby selving the a-regularized

problem in place of the exact problem.

f“ =argmin G(v;h, ).

Definition 3. The a~smoothed 7 denoted fa, is given by veH" (®)
Remark. The a-smoothed fis the smoothness-penalized deconvolution of the exact

data A. In Supplemental Proposition A.1, it is shown to have representations

[“=p."h and [ =p.h ,«and approximates fin the sense that 1/ =10 a5
a—>0

As the next lemma shows, an appealing property of s that, for fixed a,

=E| 4, —n|]

Bl £ = fCF becomes small when gets smaller, in contrast to the

issue with exact deconvolution outlined in Proposition 1.

Lemma 3. Assume (F1). There is a C depending only on g, such that for sufficiently

a a (12 D
small @>0  we pave Bl —17I=Co, /a

Proof of Lemma 3. By the Plancherel Theorem,



WA e A Al
T
= [, I, @) - @) do
T

<sup|@, (@) [l h,~hI’<C|h,~h|} la

where the second inequality is by Theorem 2(iv). Taking expectations gives the

result. O
Corollary 4. Assume (F1). For sufficiently small a, we have the upper bound
Bl f-fIP<CS /a+2|lf“~fIF.

2 2 2
Proof of Corollary 4. Note that (a+b)"<2a"+2b , Which can be seen by expanding

0= (a_b)z, adding a’+b’ to both sides, and re-arranging. Then.the result follows

from the triangle inequality and Lemma 3. ©

The rate at which I/ =/ =0 with a depends intimately on the particular form of g.

a 2
In Lemma 5, we present upper bounds for 175 £l Finterms of a.

Lemma 5. Assume (F1), (F2). Then, with ) denoting the principal branch of the
Lambert W function,

(i) (Normal errors) IF8(X) = @) e /2, then

o C C
I/ =< > n
m W le ") m*log(m™'a ™)
1
g(x) = o
(i1) w(Cauchy errors) If 7(1+X7)  then
. C C
1=l "~ i

m2kW(m_10£7%)2k mZk log(m—laiﬁ)Zk

Il

(x):le

g
(fif)  (Laplace errors) If 2 then



k
3 1) me
I/ —fIIZSC(—4) :
(24

The asymptotic equivalences in the first two parts follow from Supplemental
Fact A.4(iv)

Proof deferred to Supplemental Proof B.5.

5 Asymptotics

5.1 Consistency and Rates of Convergence

If Assumption (G1) holds, then 1/ =710 g a— 0 and the upper bound.in

L,(R)

Corollary 4 provides a sufficient condition for -consistency of o

2
Theorem 6. (L2 (R) consistency) Assume (F1), (G1). Assume.that 3, —>0

D
o, /la, =0 and —)O' Then

,andanis

chosen so that
imB| £ - |F=0.

Proof of Theorem 6. This follows immediately.from Corollary 4 and Supplemental

Proposition A.1(iv). O

In deriving rates of convergence for ill-posed problems, it is typically assumed that
the solution fis drawn from@ “source set,” assuming some a priori degree of
smoothness [Engl et al4 1996, Section 3.2]. In Nair et al. [1997] Theorem 5.1 and
Engl and Neubauer 1985} Theorem 3.5, an abstract version of this Tikhonov
problem is analyzed, ‘and they find fast 5" rates of convergence (in a stronger
norm) compared to the often logarithmic rates in the statistical literature. The price is

that strong assumptions are made on the target density. In Engl and

Neubauer [1985], it is assumed that feDLL) gng LLf €R(TT) ith Tthe

operator that convolves a function with gand L the mth-derivative operator, this
2m @m) _
assumption requires that / €H"(R) ang /™" =2*&*V for some ¥ L)

which we express in terms of the Fourier transforms in the theorem. Nothing is



required of g, since their result holds for any bounded operator 7, and convolution
L,(R)

with a probability measure is bounded on
Below is an analogue of those abstract results, in an explicitly statistical framework,
and with a novel proof. The proof in the present framework turns out to be quite
simple.

[l f(@)Pdo <o

Theorem 7. (Rates when fis very smooth) Suppose and

| f(@)H g@) o™ 7 (@) for some ¥ €L2R) inote that this condition implies

Assumption (F1)). Then for sufficiently small an,

Ell £ - f <G8,/ a,+Cyay

n?o

2

and if % = G9, , then

E| £ - fP=0(52).

Proof of Theorem 7. Our task is to find the dependence of L =sIF on a.

17=fIF =507 =7
V4

2
1 a,o™" ~
=22 G f ra 8@ o

—2m

(o) do,

(@) fdo<a |y,

@, | | &(@)]”

" 277 || 8(0) a0

which, combined with.Corollary 4, gives the bound. The upper bound is minimized by
2
a, &)

n

4
E|l f,-fIP<Cs;

, inwhich case the upper bound becomes , as needed. O

Remark. Note that Theorem 7 does not require Assumption (G1); identifiability

issues are sidestepped by the second assumption on f, which guarantees that /s

zero whenever & is zero.



Remark. If Zhas pdf X2 €H"(R) it @”"7@)=¥(®) and £ and £ are

independent with pdf g, then the hypothesis of Theorem 7 is satisfied for the pdf Fof
X=Z+(E -E,)

2

Corollary 8. Assume the conditions of Theorem 7, and assume that “» = Co, :

If hn is a kernel density estimate with optimal choice of bandwidth, then

Bl £, = f1P=0n"").

If hn is a histogram with optimal choice of bin widths, then

E|l £ = f1F=0m").
Proof of Corollary 8. If A, is a kernel density estimate with optimalbandwidth, then

4
2 2 5
6, =l 4, —h|'= 0@ *) ( Wand and Jones [1994], Section:2.5),.and the result follows

immediately. Similarly, if A, is a histogram with optimal binwidth, then by the same
2

- 2
section, 9 =l —hll= 00 *) 4

The rates in Theorem 7 are appealing,.but are found under conditions different than

those typically assumed in the literature. Now, we will assume a particular form for g
—either Gaussian, Cauchy, or Laplace—and leverage the approximation bounds for
the a-smoothed ffrom Lemma 5 to derive rates of convergence under a weaker

0" f(@)Pda <o

smoothness assumption.on'/ namely Assumption (F2) that J This

is a slight weakening of the assumption in Zhang [1990].

Theorem 9. Assume (F2). Then,

-1 _—x*/2
(i) (Normal errors) If 8X) =27 "¢ " then for a small enough,

CZ

Bl £ = fIF<CS, /a+

1
m" log(m'a ™)

2
and it % = O (0,") ppep BILLT = /1= Ollog 5,'T).



(x)

g =
(i) (Cauchy errors) If (l+x7) , then for a small enough,

B/ - fP<CSla+ S

m** log(m™'a 2 )*

!
and if % = O (S V" ppon BILLT =1 IF= O(log5,'T).

=

1
g(x)=—e
(fif)  (Laplace errors) If 2 | then for a small enough,

2 k

E|l £ - fIF<CSia ™2 +Coam?,

2(m+2) 2k

and it % =" then BILL —fIP=0(5).

Proof deferred to Supplemental Proof B.9.

Corollary 10. Let k = 1. Then if h, is a KDE or histogram estimate with optimal

bandwidth or bin choice, we have, assuming the eondlitions of Theorem 9 hold,

a 2_ <l

(i) (Normal errors) Bl Jx" = 1= OognI™) 1 kpE ang nistogram.
a 2_ -2

(ii) (Cauchy errors) Bl /" =1 I = QU08RT™) 10 kpE and histogram.

4 2
a 2. s a 2 _z
(1ii) (Laplace errors) B/ ZAIT=00 ") for the KDE anag Bl /1" =/ II'=0O(n ")

for the histogram.

For normal and Cauchy;errors, Corollary 10 shows that the smoothness-penalized
deconvolution estimate attains the optimal rates derived in Zhang [1990]. However,
for Laplace errors, the upper bound here is slower than the rate n" attained by the
deconvoluting kernel density estimator in Zhang [1990]. However, the SPeD
estimator can attain the 7~ rate for a certain choice of estimator hn. Recall (cf.
Equation (1)) that the DKE can be thought of as involving a kernel estimate of A
using a kernel K() which has quickly decaying Fourier transform; in Zhang [1990]

the kernel is required to be band-limited. If we use as our A, a kernel estimator



—2/7

satisfying the conditions in Zhang [1990], then the SPeD estimator attains the 7
rate.
o o
Proposition 11. Assume g is Laplace, and suppose I wf(@)fdo=C<eo Let*0) pe
— I(— 2 ' ~
k() = (), [ k(e <o, [k (o)ldv <o F(@)=0 g

a pdf satisfying
@ £[-L1] Suppose that hn /s a kernel density estimate with kernel k,
( Y-
h,(y)= 1 _2(m+2)
ie. L A J . Suppose " =" apg @ =00 T ) 1phan

2
E|l £ =fIP=0@ 7).
Proof deferred to Supplemental Proof B.11.

The following examples show that there is a kind of critical variance or width
imposed by the conditions of Theorem 7, at least for a subelass.of densities: if

E~ N(O’O'Z), then a normal target density fwith variance 26" + ¢ satisfies the
conditions of Theorem 7, but a normal target density/with variance 20" ~ ¢ does not.

In contrast, notice that if fC) satisfies theonditions of Theorem 9, then a re-scaling

f()——f(—)

0 satisfies them as well (possibly with a different constant for the rate).

Example 1. Suppose £~ N(0s" ), X #N(0,20° +£) \ith £>0 . Then the pdf fof X

satisfies the conditions of both Theorem 9 and Theorem 7. For the former, it suffices

V(x) —x 2/2¢

k

to note that / € IR for.any k>0 For the latter, letting Vzﬂg , We can
take w(x)= (1" o (x) .

Example 2. Now take £~ N(0,0%) byt X ~N(0,26"=8) \ith 0<£<206” Then the
pdf fof X satisfies the conditions of Theorem 9, but not Theorem 7. The former holds

for the same reason as before. To see why the conditions for Theorem 7 cannot
hold, suppose that there was a ¢ s.t. LLf =TTY Then we would have

@m) _
D"/ =g*&*V and taking Fourier transforms yields



()" (G@)"e T = T H0) | g that V(@)= (=D)"G@)" ™ Byt then

@) >0 g5 @0 go ¥ ELR).

5.2 Constrained Solution

We may wish to incorporate a priori knowledge about finto our estimate. Suppose

we know that / €8 , a closed, convex set. One easy-to-manage approach is to first

solve the unconstrained problem and find an estimate o not necessarily belonging

to B, and then somehow project this unconstrained estimate onto B . Define the

projection operator s onto a closed, convex set B L,(R) by

Py =argmin || u—v]. (8)

veB

P

5 maps uto the L,(R)

In words, -nearest element of B. The projection operator

onto a closed convex set is non-expansive ( Engl et al. [1996],:Section 5.4), meaning

that for all *>V SL(R) || B =Fvlislu=vIl Ap immediafe eonsequence is that if
4 EB, then projecting a to B has error at least 4s small as fna. Remembering that

Bf=1 , we have

1B =S I Bty =B IS = S

Now, we know a priorithat fis\a probability density function, so we ought to ensure
that our estimate is a probability density function as well. Consider the set

= N = >
C=tvel,(®): Iv(t)dt )20V ey ; this is the set of square-integrable

probability density functions, and now we can express this requirement as o GC.

Unfortunatelypwhile C is convex, it is not closed. To see this, note that the zero

1
=—1

1
l//n n _ — — o 2
function is a limit point of C: let n ™ and note that | 7. ~Ol=l v, lI=n > >0

as "% Indeed, any non-negative function v with J~V<1 is a limit point of C . Thus

the minimum in Equation (23) may not be attained, and the projection operator P is

not well-defined. Instead, we can work with approximations to C. Let



C.=1v eCy(n)=0V1 £[-a,al} 1o the subset of C of functions with support contained
in [_aaa] .

Lemma 12. For fixed a, the set C, /s closed and convex.

Proof deferred to Supplemental Proof B.12.

a

C

Let the unconstrained estimator h projected to “« be denoted o =Hetu . The non-

a

expansiveness of the projection suggests that /s may inherit the asymptotics,of fna.
If feC, for some gaand @ = then this is immediate from the earlier. argument."If
/€€, for all a, we need to do a little more work, and for that we will need to know

the size of I,/ =/l in terms of a.

Lemma 13. Assume (F1), Ell XI1<0 ang that T =00) gs\t[2% he, for large

IR f =S IS2BIX VI BIP < oo, (W, f = 1 S 2L e

enough a,
Proof deferred to Supplemental Proof B.13.

With this in hand, we can say that our‘constrained estimator will be as good (in an
asymptotic sense) as the unconstrained estimator, as long as we let a grow fast

enough that the first term dominates:

Lemma 14. Assume B X V1<% anq that O =00) gsltl>® 1hen
If = LI = f |l Cat’.
JF L <o g L f = L ISILA = F Il +Ce ™.
F f.
Proof of Lemma 14. Add and subtract "% :

1SN =Bt =B S+ B f =1l
SNB S =R fI+IB S~ f I = f 2B X [la ™



A similar approach yields the exponential version. O

6 The Estimator in Practice

In this section we deal with using the estimator in practice, and compare its

performance to the deconvoluting kernel density estimator in finite samples.

6.1 Computing the Estimate

The forms of a in Theorem 2(i)-(iii) are useful, but not the most practical for work
on the computer; we need a convenient way to project our estimate to the set.of pdfs
as described in Section 5.2, and to impose other shape constraints as desired.
Instead, we compute the estimate in Equation (6) out of an approximation space

X, < H"(R) of splines of degree r> m. We will find that this turns out to be a

quadratic program, so that linear constraints are easily imposed.

Before discussing the details of the computations, we present-a Theorem showing

that this is a legitimate approximation to make. If we"denote the spline approximation
by S:, Theorem 15 says that if the parameters ofithe:spline space are selected
appropriately, then i is of a smaller order than the rate of convergence we
found in Theorem 9. This means that @asymptotically, S and s are the same
estimator. As a consequence, the spline approximation S attains the same rate of

o
convergence as the exact estimator /i .

Theorem 15. Suppose' Xy is the space of rth-order splines, r > m, with uniform knot

spacing y on [a.0] ‘and Uniform knot spacing 7 onla—vmal gpglbb+ym]

the condition that.for all S €

s(k)(a — 7*m) =g

,and for 0sk<m—1ywe pave
(€2) * —
(b+ym)=0  T1ake our spline estimate to be

s =argmin, oy Il g*s—h, P +als I gnoce aiso that ™ Bf e[ h,(x)dx=0(1)

_ a 2
Adopt the assumptions of either Theorem 7 or Theorem 9, and let n=Els5 =/

denote the resulting rate of convergence of the exact estimator. Choose V7 % | and



—4 _ 2(r—m)

bsothat® V' =o)aly A+ =0(r) gy a(alalb) ! =0() e,

Proof deferred to Supplemental Proof C.15.

o
Now we describe how we compute *» in concrete terms. In all of the following,

(l" =3, ésla""é:qM)

unless otherwise stated, we fix m=2. Fix r=3, and let ~ ¢ —
denote the space of cubic splines (cf. [Powell, 1981, Chapter 3]) with knots G102 Sy
, with a <Xy and Sqra > Y<">, evenly spaced knots, no knots of multiplicity larger.than

Ky _ 0 _
one, and end conditions $7(&) =57(5,.4) =0 for k=0, 1, 2. The end conditions

[gl s §q+4]

specify that members of "« vanish outside the interval and are twice

continuously-differentiable at the boundary. This space ¢ has as a basis the
q
. . by L se S(x)zzefbf(x)
collection of g unit-integral B-splines “i’i=1| so that if 4, then i=1 .

Note that "y < H (R).

, s = argmin *s k'’ +al s
We now take as our estimate ” gmun, 18 al |

S0 =3 0h,()

) 112
[ If

lg*s—h | +a s =0"M0-20"d+| 1 |} +a0" PO

, then > where 0

is the vector of coefficients &, and’'M,'d, and P are a g x g matrix, ¢ x1 vector, and g

M. = *b)g*b.),d = *b,
x g matrix respectively, withtypicalrentries = 7 J. (8%b)(g™b)).d -[ (& b’)h”,and

— | P>
Bf _Ibi bj .

With this matrixarepresentation, we can see, using standard techniques, and noting

2 a a a _ -1
that |17 I does not depend on * , that the coefficients of & are % =(M+aP)"d

sy ()= 2 0,.b,(x) .
i=1

so that . Analogous to the exact solution, *» need not be a pdf. To

produce a pdf, we now solve

o
s, =argmin||s—sF,  (9)
[s=1

520



At this stage, other linear constraints my be introduced by expressing them against

the B-spline basis. If G is a matrix with typical entry Y =Ib"bf, and, letting

G=X <X X, =S e g grid of evenly spaced values on the support of = ¢, with

B. the > 9 matrix with / th entry b,(%) | the coefficients of the solution to

Equation (9) are given (approximately) by the linearly-constrained quadratic program

0, =argmin (0—-0°) G(0—-0%).  (10)
B 650

The reason this is approximate is that the the convex constraint s(¥) 20 for all xis

q
s(x)=Y0b,(x)= 0%,
approximated by the collection of linear constraints J=1 PR

Equation (10) is a quadratic program with g-dimensional objective and.”*« +1 linear

constraints.

The entries of G and P can be computed by hand from the piecewise-polynomial
representation of the B-splines. Computing the.entries of M and d benefits from the

Fourier representation

M, = [b()b(@)| g(@)do  and" d = L [ (@b (@), (@)do,
2r : 2r
which can then be computed by an.appropriate quadrature, bypassing the problem

of dealing with the convolutions. When £, is a kernel density estimate or a histogram,

h, is not difficult to compute, and the b are straightforward to compute, as B-spline

basis functions can'be represented as shifted, scaled self-convolutions of 1[0’11.
6.2 Finite Sample Behavior

In Wand [1998], the author points out that while asymptotic rates for deconvolution
are very slow no matter the size of the measurement error (cf. Theorem 9 here,
Stefanski [1990], Zhang [1990], Fan [1991]), there is another side of the coin: for
very small measurement error we ought to expect to be able to estimate Ffwith MISE

quite close to that of the error-free setting. For example, we could simply ignore



measurement error and increase our MISE by at most lg*f-r ”2, which becomes
arbitrarily small as the measurement error decreases. Thus, we might expect that the
pessimistic picture given by asymptotic rates is limited to truly large samples,
especially when measurement error is small, and a direct investigation into small-

sample behavior is required for a better understanding of deconvolution estimators.

To get a handle on the small-sample behavior, Wand [1998] creates two products for

the deconvoluting kernel estimator: a log-log plot of the minimum attainable MISE,

infE[ £ =S . . -
i.e. 20 , against the sample size, as well as a table listing the smallest

sample size required for the minimum attainable MISE in deconvolution to be.at least
as small as the minimum attainable MISE in the no-measurement-error case with

some fixed sample size.

We will investigate these same properties for analogous quantity;sthe minimum

: . : inf B || /7~ Al
attainable MISE for the SPeD estimator, given by «>¢ . Supplemental

a 2
Figure B.2 shows a plot of B[/ = /1" as a function:of'a. Since the MISE involves
unknown quantities, in practice a will have to beichasen from the data, and the
search for a good data-driven choice of ais.ongoing; in Section 6.3, we use what is

essentially an iterated bootstrap, but atithis point do not claim that it is optimal.

The settings addressed in Wand [1998], which we will use here as well, are as

follows. The target random variable X has one of the following densities; (i) standard
EN(O,a: 1)+%N(0,0': l)

normal, (i) normal mixture 57, (iiiy Gamma(g=4.5=1) ()

zGamma(c;: 50= 1)+§Gamma(cj: 13,=1)
5 , with Cand Sthe shape

and rate parameters, respectively. We will consider normal measurement error £

with Var(E)= pVar(Y) ith various choices of p.

gamma mixture

To investigate these properties for the smoothness-penalized deconvolution

MISE(/;") = B[ (/7 = )"

estimator, we must compute the MISE of our estimator,

From Theorem 2(i), we have that the Fourier transform of the estimate is given by

Co(@)h, (@) ; to simplify calculations, we approximate h, by the Fourier transform of



}’”)n (Cl)) — i e—in)Yl

the empirical distribution, =

(@)= (@P(0) = 3§ (@)™

, using instead

. Even though we have replaced the density
estimate A, by the empirical distribution, which has no density at all, the
approximation is quite good; see Figure B.2 in the supplemental material. The

resulting MISE, derived in Supplemental Fact A.3, is
1.~ - ~ | Y
MISE(«a) = ZD P (@)&(@) 1| f(w)|"dt + ;Il%(w) (-] &(o) f(@) Iz)dw}

which we will evaluate numerically in the following.

. . _infE|| £ I
In Figure 2, we show plots of best-attainable MISE, i.e. ¢ , for the SPeD
(computed via Equation (11)), and the same, but with infimum over the bandwidth,
for the DKE and a conventional kernel estimator on the non-contaminated X's for

reference (both computed via the expressions in Wand [1998]). For the

deconvoluting kernel density estimate, we use a base kernel Kok with Fourier

_ . 2\3
transform Koe (@) = 1gyq (1= @7) ; this is k1 inWand [1998], and is the default choice

in the deconvolve R package Delaigle et al.. For the error-free kernel estimator, we

A 41
use kernel with Fourier transform *e(@ =0+®")" Thig relates to the smoothness-
penalized deconvolution estimatorin the following sense: the error-free setting is
equivalent to the measurement.error problem where Eis a point-mass at zero. In

(0)=1+ao™)™

that case, g(‘”):l, and then %- . If we replace h by k again in

1 iwx
ch ()C) = 2_7?,"[6 ch(a))da)

Theorem 2(iv), we have a kernel estimator with . Note that

K, =1
I < but Keatvis not non-negative. In fact, when m= 2, K+ is a fourth-order

kernel.

In Figure 2, the smoothness-penalized deconvolution estimator gives a much more
optimistic picture of the deconvolution problem in finite samples compared to the
deconvoluting kernel estimator. The SPeD has nearly uniformly lower MISE,

excepting a small range of nin setting (iv). In setting (i), which satisfies the



conditions of Theorem 7, the SPeD under 30% measurement error has better
optimal MISE than the DKE under 10% measurement error, for sample sizes small

enough to be commonly encountered in practice.

Table 1 lists sample sizes required for the deconvolution estimators to attain MISE
as small as the error-free setting. We can see that in every case listed in the table,
the SPeD requires fewer samples than the DKE; in some cases the difference is
dramatic. To achieve the same MISE as estimating the Gamma mixture density in
setting (iv) in the error-free setting with a sample of size n= 1, 000 when there is
10% measurement error, the SPeD would require 7, 963 samples, while the DKE
would require 388, 770 samples. In practice, this may mean the difference between
an expensive experiment and an impossible one. Another takeaway is how,strongly
the required n varies with the target density. In setting (i), the problem does not seem

so bad; in setting (ii), it seems all but impossible.
6.3 Application to Cytotoxicity Data

Bacillus cereus sensu lafo (s./)is a group of closely-related bacteria with diverse
relationships to humans, including B. thuringiensis; which is used on crops as a
pesticide, B. anthracis, which can cause anthrax'disease, and others which can
cause other illness and spoil food Ceuppens et al. [2013]. These bacteria are
ubiquitous in many environments «theirtaxonomy is “complex and equivocal,”
Ceuppens et al. [2013], and distinguishing between members of B. cereus s./. with
typical methods can be difficult. Scientists are therefore interested in developing
practical laboratory tests which.can readily discriminate between harmful

representatives of this group and those less likely to cause harm.

As one element ofithat investigation, a colleague requires a density estimate of a
certain conditional expectation. Suppose /is an isolate of B. cereus s./., sampled
from a large collection. Suppose it is cultured under certain conditions, centrifuged,

and the supernatant is applied to human cells. Let X;denote the mean normalized

=X, +¢,

cytotoxicity of isolate / and G i denote the cytotoxicity observed the jth time

gl

this procedure is applied to isolate / and further assume that the 7, are i.i.d., have

mean zero and are independent of Xi. We are interested in the density fof X;as /



varies over the collection of isolates. However, the investigator only has access to a

k
Y= %ZCU
sample approximation /=t of X;obtained by fixing /and repeatedly
k
E = %z &
measuring the cytotoxicity. With /=t we are in the setting described in the

introduction. We do not know the density of g of £;exactly, as assumed for the

N(0, 5%/ k)

theory; however, we may approximate it by as long as the %i are not too

2
skewed. We then only need to estimate “+, which can be done at parametric rates

much faster than the rates involved in deconvolution.

We have been provided preliminary data, which comprise a table of measured

k=6 replicates of isolates =17 =313%\ye have

C=Xi+e in R and extracting the residual

cytotoxicity Cjfrom =1
2

estimated - by fitting the linear model

standard error. Tuning parameter awas chosen by picking an,arbitrary provisional a

a a1 (12 a;_y
Blls, =5 I assuming the.Xthave pdf &, and

0, Seeking a;which minimizes
iterating until convergence. The results are shown in“Figure 3, along with a standard
kernel density estimate of the Y. This example has a relatively small amount of
measurement error, with proportion ? = Vat(E)/Var(Y) ~0.044 14 jjjystrate SPeD
with greater measurement error and to_see if the number of replicates may be
reduced in future experiments, we have also split the replicates randomly into two
groups (i) and (ii), and re-fit theestimator as if there were only three available
replicates. This yields P~ 0082 g5y #~0.086 o groups (i) and (i), respectively.
The two modes present’in thefull data are blurred to one mode in the reduced data,

but our estimator does reecover two modes in one of the two reduced data settings.
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Fig. 1 For g corresponding to NO.1) ‘Thick line is 1/ &, while dashed lines are,
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from lower to upper, the multiplier ?« in Theorem 2(i) for ¢~ L107,107%
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Fig. 2 MISE all under oracle choice of tuning parameter, densities (i)-(iv), left-to-
right. Solid black is MISE for kernel estimator in the error-free setting. Solid lines are

SPeD, and dashed lines‘are DKE. Red and blue lines have P = 0'1’0'3, where
Var(E) = p-Var(Y)
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Fig. 3 Density estimates of cytotoxicity data described in Section 6.3. Standard
Gaussian kernel density estimate of the Y;as solid black line. Smoothness-penalized
density estimate of the X;as dashed red line; QP estimator as dotted blue'line.
Individual data locations marked below plot. Leftmost panel is full data; right two

panels each use only three of the available six replicates for each.measurement.



Table 1 Minimum sample sizes for stated estimator, with p the proportion of

measurement error, to achieve MISE as small as error-free kernel density estimation

on the X's with kernel X« . The analogous value with respect to kernel Koke is in

parentheses.

Sample size n=100 n=1,000
p Tikhonov DKE Tikhonov DKE
(i) Standard normal density
10% 146 (102) 243 (156)| 1,525 (1,001) 7,386 (2,931)
30% 303 (204) 1,761 (788)| 4,170 (2,239) > 106 ( > 109)
50% 1,221 (747)||924,510 (103,089)(|34,945 (15;566) > 106 ( > 109)

(i) Normal mixture density

10% 687 (604) 1,798 (1,415)|56,150(35,361) > 108 (> 106)
30% 303,719 (211,484) > 106 (> 408)[\, > 108 (> 109) > 106 (> 106)
50% > 108 (> 106) >@08/( #106)| > 108 (> 109) > 106 (> 106)

(iif) Gamma(4) density

10% 179 (140) 266 (197)| 2,548 (1,721)| 17,342 (7,863)
30% 695 (499) 8,016 (3,620)|142,254 (21,561) > 106 ( > 108)
50% 9,451 (5,551) > 106 (> 108)| > 108 (> 106) > 106 ( > 108)

(iv) Gamma mixture density

10% 284 (270) 300 (282)| 7,963 (6,020)(388,770 (151,942)
30% 5,522 (4,993)| 53,740 (41,039)|| > 106 (> 106) > 108 (> 106)

50%

> 108 (> 106)

> 106 (> 106)

> 108 (> 109)

> 106 (> 106)




