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Abstract 
This paper addresses the deconvolution problem of 
estimating a square-integrable probability density from 
observations contaminated with additive measurement errors 
having a known density. The estimator begins with a density 
estimate of the contaminated observations and minimizes a 
reconstruction error penalized by an integrated squared m-th 
derivative. Theory for deconvolution has mainly focused on 
kernel- or wavelet-based techniques, but other methods 
including spline-based techniques and this smoothness-
penalized estimator have been found to outperform kernel 
methods in simulation studies. This paper fills in some of 
these gaps by establishing asymptotic guarantees for the 
smoothness-penalized approach. Consistency is established 
in mean integrated squared error, and rates of convergence 
are derived for Gaussian, Cauchy, and Laplace error densities, 
attaining some lower bounds already in the literature. The 
assumptions are weak for most results; the estimator can be 
used with a broader class of error densities than the 
deconvoluting kernel. Our application example estimates the 
density of the mean cytotoxicity of certain bacterial isolates 
under random sampling; this mean cytotoxicity can only be 
measured experimentally with additive error, leading to the 
deconvolution problem. We also describe a method for 
approximating the solution by a cubic spline, which reduces 
to a quadratic program. 
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1 Introduction 

A smoothness-penalized density deconvolution estimator was introduced in Yang 

et al. [2020] which is fast to compute, amenable to shape constraints, and in 

simulation studies has substantially improved finite-sample performance over the 

common deconvoluting kernel density estimator of Stefanski and Carroll [1990]. A 

spline-based Bayesian approach for a related problem in Staudenmayer et al. [2008] 

outperforms deconvoluting kernels in simulation studies as well, and Sarkar 

et al. [2014] does yet better. In spite of these appealing properties, these estimators 

have not yet received much attention. This is perhaps due to a lack of theoretical 

guarantees; most asymptotic results for deconvolution estimators focus on kernel- or 

wavelet-based (e.g. Pensky and Vidakovic [1999]) methods, while these other 

methods have only been addressed in simulations. 

In this paper, we address a continuous version of the smoothness-penalized 

estimator in Yang et al. [2020] and provide some theoretical guarantees. We prove 

the consistency of the density estimates in L2 and derive upper bounds for the rate of 

convergence, which are found to be optimal when compared to lower bounds 

already in the literature. We also prove in Theorem 7, under stronger smoothness 

conditions inspired by typical assumptions in the ill-posed problem literature, fast 

rates of convergence which hold for any error density, whether smooth or super-

smooth. We are not aware of similar results for kernel-based deconvolution 

estimators. Along the way, we derive a representation of the estimator which is more 

convenient for theoretical work than the variational formulation in Yang et al. [2020] 

and investigate the finite-sample error for a few settings. 

Suppose a real-valued random variable of interest X has pdf f, and we wish to 

estimate f. However, we instead observe independent copies of Y X E  , a 

surrogate of X which has been contaminated with an independent error E. Suppose 

further that E has known pdf g. Under these conditions, the pdf h of Y is given by the 

convolution of g and f, i.e. 
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( ) * ( ) ( ) ( ) .h y g f y f t g y t dt    

The task of estimating the density f from a sample 1, , nY Y
 of independent random 

variables with pdf *h g f  is sometimes called a deconvolution problem, since we 

can think of the main goal as “undoing” the convolution with g. 

The method in Yang et al. [2020], to be described shortly, begins with a density 

estimate of h, and proceeds to estimate f through this density estimate of h. To that 

end, we will introduce one more abstraction: we will assume that we have access to 

an 2 ( )L
-consistent estimator of h, which we will denote hn (Estimators of functions 

will be indicated by a subscript n rather than the customary “hat” to avoid clutter 

when taking Fourier transforms, which will be denoted by an overset twiddle). The 

mean integrated squared error (MISE) of hn will be denoted 

2 2 2|| || ( )n n nh h h h     . We will think of hn as the “data” in this problem and 

express the performance of our estimator in terms of 
2
n . Note that since the 

estimator is consistent, we have 
2 0n 

. 

This setting occurs whenever a density estimate is required, but the variable is 

measured with error; it is therefore a nearly ubiquitous phenomenon, but typically 

ignored when the measurement error is small. For a window into the meaning of “

small” here, note that ignoring measurement error E means to estimate *g f  in 

place of f, incurring at a point x the error * ( ) ( ) [ ( ) ( )]g f x f x f x E f x    , where E 

has pdf g. Thus wherever f has large curvature on the scale of E, *g f  and f will not 

be similar, and in such cases measurement error should not be ignored. 

Because of the ubiquity of the setting, the application domains are diverse. In this 

paper, we estimate a conditional density that occurs when estimating the cytotoxicity 

of bacterial isolates; in Yang et al. [2021], the authors use deconvolution to estimate 

the density of a conditional expectation occurring in nested Monte Carlo simulations. 

Staudenmayer et al. [2008] apply deconvolution to nutritional data from a clinical trial 

involving a dietary supplement, and Stefanski and Carroll [1990] treat data on 

saturated fat intake. 
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The treatment of this problem makes great use of the Fourier transform. Following 

conventions in Folland [1992], for 1 2( ) ( )v L L 
 we will write 

( ) lim ( ) ( )
r i x i x

rr
v e v x dx e v x dx   


  

 for the Fourier transform of v, with the second 

equality holding as long as 1( )v L
. Let 1

1( ) j
n

iY
n

j

P e
n








 
 be the Fourier transform 

of the empirical distribution. If ( ) * ( )u x v w x , then ( ) ( ) ( )u v w   , so that the 

Fourier transform reduces convolution to multiplication. 

A well-known estimator of f in this setting is the deconvoluting kernel (density) 

estimator (DKE), introduced in Stefanski and Carroll [1990], which takes advantage 

of the reduction of convolution to multiplication. First, we form a kernel density 

estimate 1

1( ) (( ) / )
n

n j
j

h x K x Y
n

 
 

 
 of h, in which case 

( ) ( ) ( )n nh P K   
. Then 

we divide by ( )g   and inverse transform: 

1( ) ( ) ( ) / ( ) .
2

i x
n nf x e P K g d     


   (1) 

In Stefanski and Carroll [1990], they find that if 
* 1( ) (2 ) ( ) / ( / )i xK x e K g dt

      , 

then nf


 has representation 

*

1

1( ) (( ) / )
n

n j
j

f x K x Y
n



 
 

   

and are able to borrow from results on standard kernel density estimators in their 

analysis. To ensure that the Fourier inversion in Equation (1) is well-defined, 

Stefanski and Carroll [1990] require K to be chosen to satisfy 
sup | ( ) / ( / ) |K g


    
 

and 
| ( ) / ( / ) |K g d       for all 0  , suggesting band-limited kernels, including 

21( ) (sin( ) / )K x x x



, which has Fourier transform [ 2,2]( ) (1 | | /2)    1

. Note that 

in particular, ( ) ( )K x g x  typically cannot satisfy these conditions. Additionally, 

Stefanski and Carroll [1990] restrict attention to g for which | ( ) | 0g   , since the 

estimator involves division by ( )g  . Under appropriate choice of 
0n 

, the 
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estimator is consistent and attains optimal rates in several settings. In Fan [1991], 

optimal rates are addressed for f in a class of functions with mth derivative Hölder-

continuous. In Zhang [1990], optimal rates are addressed over for f in a class of 

functions satisfying 
2|| ( ) ||f M     . 

The density deconvolution technique introduced in Yang et al. [2020] discretizes both 

the functions and the convolution operator. The estimate hn is approximated on a 

grid by a vector nh , and the convolution operator by a matrix C, so that if v is a 

discrete approximation of a function v, then Cv  is a discrete approximation of *g v . 

Then a discrete approximation n
f

 of f is computed by solving the matrix problem 

2argmin || || ( ),n n Q   
x

f Cx h x  (2) 

where (·)Q  is a quadratic penalty. (Vectors and matrices will always be typeset in 

boldface, and we overload ||·||  to denote the vector 2-norm when the argument is a 

vector.) For (·)Q  the authors suggest, among other choices, the squared norm of a 

second-differencing operator applied to x: 
2

2 2( ) || ||Q x D x
. Heuristically, this approach 

yields an estimate n
f

 whose convolution n
Cf

 is close to the density estimate nh  

(due to the first term), but which is not too wiggly (due to the second term). They 

observe that Equation (2) can be formulated as a quadratic program and solved 

efficiently using standard methods, and that linear constraints can be introduced as 

well. 

In this paper, we analyze the exact, continuous version of the estimator introduced in 

Yang et al. [2020], with penalty 
( ) 2( ) || ||mQ v v , where 

( )mv  denotes the mth derivative 

of 2( )v L
, i.e. 

2 ( ) 2argmin || * || || || .m
n n

v
f g v h v     (3) 

The argument v is taken to range over the subset of 2 ( )L
 for which the objective 

function is well-defined, which we will make specific in Section 4. We will 

occasionally find it useful to use operator notation, with 2 2: ( ) ( ), : *T L L T v g v
 

and 
( )

2: ( ) ( ), : mL L L L v v
, so that we can alternatively write 
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2 2argmin || || || || .n n
v

f Tv h Lv     

In Section 6, we suggest an alternative to the discretization approach in Yang 

et al. [2020]. We instead solve Equation (3) out of an approximation space of 

piecewise polynomial spline functions. Calling this approximation ns


, we prove in 

Theorem 15 that the resulting approximation error 
2|| ||n ns f 
 can be made to 

decrease faster than the order of convergence of 
2|| ||nf f 
 by choosing a suitably 

rich approximation space. It follows that 
2|| ||ns f 
 has the same order of 

convergence. 

One appealing property of this estimator is that the computational techniques 

proposed here and in Yang et al. [2020] can be quite fast, with the computational 

complexity determined primarily by the dimension of the discretization grid or spline 

basis. We will see that computing the spline approximation can be formulated as a 

quadratic program, and that many useful linear constraints can be imposed. Among 

these, positivity and integrate-to-one constraints are easily imposed, as are support 

constraints and some shape constraints. Yang et al. [2020] even suggest a method 

for imposing a unimodal constraint by a family of “unimodal at a point x0” constraints, 

each of which can be imposed as a linear constraint. 

Finally, the DKE approach requires g to have non-vanishing Fourier transform and 

therefore cannot be applied to, for example, uniformly distributed errors. The 

estimator addressed here has no such requirement; instead, the Fourier transform of 

g must only be non-vanishing almost-everywhere, which is also a necessary 

condition for identifiability in this model. 

After an overview of the inherent difficulties of deconvolution in Section 2 and 

introducing the estimator in detail in Section 4, we prove global 2 ( )L
-consistency, 

as well as rates of convergence in Section 5. In Section 6, we address the practical 

issue of computing the estimate, investigate its performance in finite samples, and 

apply it to a problem on bacterial cytotoxicity. 
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2 Ill-Posedness of the Problem 

Deconvolving a density estimate is a typical “ill-posed” problem. We will see that ill-

posedness means a naive solution to the deconvolution problem must fail to be 

consistent, and any consistent deconvolution estimator must reflect some aspect of 

regularization. A problem is said to be well-posed if [Engl et al., 1996, Chapter 2] the 

following conditions are met: “ 1. For all admissible data, a solution exists, 2. For all 

admissible data, the solution is unique, and 3. The solution depends continuously on 

the data,” and ill-posed otherwise. 

For the deconvolution problem, consider the operator 2 2: ( ) ( )T L L
 which 

convolves a function with g, i.e. *v g v . Since *h g f , plugging in v f  clearly 

solves the following operator equation: 

.Tv h  (4) 

However, we do not know h. We have an estimate hn of h, and we would like to solve 

the analogous problem with our estimate hn on the right-hand side, i.e. 

.nTv h  (5) 

There is an immediate issue with this approach: there is no v solving this equation 

unless 
( )nh T

, i.e. nh T
 for some 2( )L 

. If hn is unrestricted, the problem 

of solving Equation (5) violates Condition 1 of well-posedness. However, we can 

overcome this problem by using a generalized inverse of T, so we will set it aside for 

the moment. 

Instead, we will focus on a more critical deficiency: the solution operator for 

Equation (5) is not continuous in hn. This means that a small perturbation of the right-

hand side can lead to arbitrarily large fluctuations in the solution, so that problem of 

solving Tv = hn is not a good approximation of solving Tv = h no matter how well hn 

approximates h. If we require 
( )nh T

 so that the solution operator is simply 
1T 
, 

then this discontinuity would entail that for any 0   and C > 0, we can have 

|| ||nh h  
, but 

1 1 1|| || || ||n nT h T h f T h C     
. No matter how good we require the 

estimate hn of h to be, its exact deconvolution may yet be an arbitrarily bad estimate 
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of f. Let’s prove it formally: the following proposition guarantees the existence of a 

function u so that taking nh h u 
 creates the unhappy situation just described. 

Proposition 1. Assume that the Fourier transform g  of g is a.e. non-vanishing, so 

that 2 2: ( ) ( )T L L  is injective (Supplemental Fact A.1). Let 
1

2: ( ) ( )T T L   be 

the inverse of T from its range. Then, for any M > 0, there is some ( )u T  for 

which 
1|| || || || .T u M u   

Proof of Proposition 1. We will construct a sequence 
( )n T 

 which is a Cauchy 

sequence in 2 ( )L
, but with the property that for n , we have 

1
1|| ( ) || 1n nT  

 
. 

Once we have this sequence, we can finish the proof in the following way. Fix M > 0. 

Since n  is Cauchy, we can choose n  large enough that 
1

1|| ||n n M
   

. Then 

1n nu    
 satisfies 

1
1 1|| ( ) || || ||,n n n nT M   

     

as needed. 

Now, if we can find such a sequence n , we are finished. To that end, let 

[0,1/ ]n nn  1
. It can be checked that 1|| || 1n n   

. Furthermore, the ψn constitute an 

“approximate identity,” so that by Folland [1999, Theorem 8.14a], we have 

|| * || 0ng g  
 as n . Now, let 

*n n ng T   
. To see that n  is Cauchy, 

apply the triangle inequality: 

|| || || || || || || * || || * || .n m n m n mg g g g g g               

For the other property, note that 

1 1
1 1 1|| ( ) || || ( ) || || || 1,n n n n n nT T T T      

         

finishing the proof. □ 

Now, even if 
( )nh T , a generalized inverse like the Moore-Penrose inverse 

†T  

may be used in place of 
1T 
, ensuring that Conditions 1 and 2 are met. But these 
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generalized inverses extend 
1T 
 from ( )T , so they too fail to be continuous by 

Proposition 1. 

We turn to a method of regularization solution. A regularized solution of Equation (4) 

is a family of operators 0{ }R   which approximate 
1T 
 or an extension thereof, and 

which has the property that for each α, 
R  is a continuous operator. For our choice 

of regularization by smoothness penalty, we will see in Theorem 2 that each 
R  is a 

bounded operator. In Theorem 6, we will see that the regularization does 

approximate the exact solution to Equation (4), and in Theorems 7 & 9, we will see 

the rates of convergence under a few different conditions. 

3 Assumptions 

We assume throughout that f and g are probability densities, and that 2( )nh L
. 

The following is a list of all further assumptions that recur in the theoretical results; in 

each statement we will name the assumptions required from this list. Assumptions 

that are used only for a single result are stated in that result. First, assumptions that 

will be made on the target density f: (F1) 2( )f L
; (F2) 

2| ( ) |k f d      for some 

1 2k m  . 

Now, assumptions that will be made on the error density g: (G1) g  vanishes only on 

a set of Lebesgue measure zero; (G2) 2( )g L
. (G3) 

| ( ) |g d    ; Note that 

Assumptions (G1)- (G3) all hold for Normal, Cauchy, and Laplace errors. Note also 

that if 2( )f L
, then by Young’s convolution inequality, 2( )h L

 as well. 

4 The Estimator 

One family of solution operators for Equation (5) which extend 
1T 
 are those which 

map hn to a least-squares solution, i.e. to a v minimizing 
|| ||nTv h

. The familiar 

Moore-Penrose generalized inverse 
†T  is a least-squares extension—it is the 

operator which maps hn to the least-squares solution v for which v has minimal norm 

|| ||v . Classical Tikhonov regularization approximates 
†T  by the family of operators 

0{ }S   mapping 
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2 2: argmin || || || || .n n
v

S h Tv h v    

Intuitively, the solution nS h  is a function which is reasonably small in 2 ( )L
 due to 

the second term, and for which 
|| ||n nTS h h 

 is reasonably small. 

Here we address a similar approach, but rather than preferring a function which is 

small in 2 ( )L
, we prefer one which is smooth, in the sense that its mth derivative, 

1m  , has small norm. Thus we have a family 0{ }R   mapping 

2 ( ) 2: argmin || || || || .m
n n

v
R h Tv h v    

This is a particular case of Tikhonov regularization with differential operators, which 

has been treated in an abstract, non-statistical framework in Locker and 

Prenter [1980], Engl et al. [1996, Chapter 8], and Nair et al. [1997]. 

Since our estimator will measure the smoothness of a possible estimate by the 

magnitude of its square-integrated mth derivative, the estimate must be chosen from 

among those functions for which this quantity is finite. To that end, let 
( )

2 2( ) { ( ) : ( ) for 0 }m kH v L v L k m    
 denote the Sobolev space of square-

integrable functions with square-integrable weak derivatives up to order m. Assume 

throughout that { | ( ) 0}A g    has Lebesgue measure zero. 

Definition 1. The Tikhonov functional with data 2( )u L
 and penalty parameter 

0   is a function defined by 

2 ( ) 2

(·; , ) : ( )
|| * || || || .

m

m

G u H
v g v u v







 
 

Definition 2. Let hn be a density estimate of h from the sample 1, , nY Y
, and let 0  . 

The Smoothness-penalized deconvolution of hn or Smoothness-penalized 

deconvolution estimate (SPeD) of f is defined variationally by 

( )
2 ( ) 2

( )

argmin ( ; , )

argmin || * || || || .

m

m

n n
v H

m
n

v H

f G v h

g v h v

 









  
 (6) 
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Remark. For a given 2( )nh L
 and 0  , the estimator nf



 in Definition 2 is 

uniquely defined [Locker and Prenter, 1980, Theorem 3.5]. Moreover, 
2 ( )m

nf H 
. 

4.1 Representations of the estimator 

Since the variational characterization of nf


 does not lend itself to easy analysis, in 

Theorem 2 we present an explicit representation for nf


, both in terms of hn and the 

Fourier transform of hn; if a kernel density estimator is used for hn, we will see that 

nf


 can be computed as a kernel estimate as well, though this is not the approach 

we take in the sequel. The Fourier representation will make clear the manner in 

which the Tikhonov regularization approximates the ill-posed exact deconvolution 

problem. 

Theorem 2. (Representing the solution) Let 

2 2

( ) 1( )  and ( ) lim ( ) .
| ( ) | 2

r i x
m rr

g x e d
g



  


     

   
 

   (7) 

Then 

(i) ( ) ( ) ( )n nf h

   
, 

(ii) ( ) * ( )n nf x h x

 , and 

(iii) if hn is a kernel density estimate with bandwidth ν, then there is another kernel 

,K   for which 

,
1

1( ) ( ).
n

n i
i

f x K x Y
n



 



   

Furthermore, 

(iv) 

1
2sup | ( ) | C



  



 for all M  , 

(v) If 1( )L 
, then 

( ) 1x dx  , so that 
( ) 1nf x dx  . 

(vi) 
1|| ||k

nD f C 
 for all M   and 0 2k m   with C depending only on g, m, 

and M. Under Assumption (G2), it holds for 2k m  as well. 
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(vii) 
1sup | ( ) |k

n
x
D f x C 

 for all M   and 0 2 1k m    with C depending 

only on g, m, and M. Under Assumption (G3), it holds for all 0 2k m  . 

Remark. Before moving on to the proof, it is worth making a few observations. 

 Except where mentioned in (vi) and (vii), Theorem 2 does not need any 

assumptions on g or hn beyond the fact that they are probability densities. 

 If g is an even function, then 
( ) 

 is even and purely real. 

 Theorem 2(iv) holds for any g, but can be made sharper with information 

about a particular choice of g. See, for example, the proof of Theorem 9(iii). 

 Theorem 2(iv) equivalently says that, with 
R  denoting the operator which 

maps n nh f 
, the operator norm has a bound 

1
2|| ||R C 




, showing that the 

solution operator for each α is bounded. 

 If the density estimate is a kernel density estimate nh


 with kernel appropriate 

for the DKE (e.g. bandlimited), then for fixed data and bandwidth λ, if we let 

0 , we have that n nf f 
, i.e. we obtain the DKE defined in Equation (2). 

Proof of Theorem 2. 

(i): 

By Theorem 3.1 of Locker and Prenter [1980], a function nf


 minimizes the Tikhonov 

functional 
( )nG f

 if and only if 
*( )nf L L 

 and nf


 satisfies the Euler-Lagrange 

equation 
* * *( ) .n nT T L L f T h 

 By Supplemental Fact A.2, this corresponds to 

** ,n n ng g f L Lf g h  
 where 

( ) ( ) ( )g u t g x t u x dx  , so taking Fourier 

transforms yields (see Supplemental Fact A.2 for details) 

2 2| ( ) | ( ) ( ) ( ) ( ),m
n n ng f f g h       

 and re-arranging gives 

2 2

( )( ) ( ) ( ) ( ),
| ( ) |n n nm

gf h h
g






    

 
 


 

as needed. 

(ii) and (iv): 
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It will be convenient to prove (iv) first. We prove the equivalent inequality that for all 

ω, 
| ( ) | .C   

 We do this by demonstrating two facts: first, that for all ω, 

1| ( ) | | |
2

m
    

, so that if we can bound 
| ( ) |  

 on a neighborhood of zero, 

we are finished, since the bound decreases as | |  . Second, we show that 

| ( ) |
| ( ) |
M

g  




, and that on a neighborhood | |   of zero, ( )g   is bounded 

away from zero: 0 | ( ) | 1c g    , and take 

1max{ / , }
2

mC M c 
. 

For the first, apply the inequality 
2x y xy 

 for , 0x y   to the denominator of  : 

2 2 2 2

| ( ) | | ( ) | 1| ( ) | | | .
| ( ) | 22 | ( ) |

m
m m

g g
g g



 
     

    

  


 

For the second, 

1
2 2 2

| ( ) | | ( ) || ( ) | | ( ) | ,
| ( ) | | ( ) |m

g g M g
g g

 
     

  

  


 

where the first inequality is because 
2 0m  , and the second inequality is by the 

assumption that M  . Finally, to see that g  is bounded away from zero on a 

neighborhood of zero, recall that g  is the Fourier transform of a probability density g. 

Thus (0) 1g  , and g  is continuous, proving (iv). 

Now, we will demonstrate that then 2( )L 
, so that the Fourier inversion in 

Equation (16) is legitimate. By the arguments proving (iv), we have also found a 

square-integrable function 

1
2

| | | |
1( ) ( | | ),
2

mb C     




  1 1
 such that 

| ( ) | | ( ) |b   
. Thus, 

2 2| ( ) | | ( ) | ,d b d         and 2( )L 
. Now, (ii) 

follows from (i) and the well-known properties of the Fourier transform. 

(iii) and (v)-(vii): Deferred to Supplemental Proof B.2. □ 

Regularized solutions are well-behaved approximations to a poorly behaved exact 

problem, and the Fourier view of our estimator gives a nice picture of the manner of 
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approximation. Suppose briefly that g  is even and non-vanishing. Taking the Fourier 

transform of Equation (5) reduces the convolution to multiplication, giving ngv h
, so 

that we may write 
/nv h g

. Thus in Fourier space, exact deconvolution of hn 

corresponds to multiplying nh  by 1/ g . In Theorem 2(i), we see that in Fourier space, 

our regularized solution nf


 corresponds to multiplying nh  by this   function. 

Inspection of 
( ) 

 shows that when | |  is small, 
( ) 1/ ( )g  

, but that when 

| |  is large, the 
2m  term dominates the expression and 

( ) 0  
, since ( )g   is 

bounded. Thus multiplying by   performs similarly to multiplying by 1/ g  at low 

frequencies, but   prevents high-frequency features of hn from transferring to nf


. 

This is pictured in Figure 1 for Gaussian g and a variety of α. 

4.2 Decomposing the error 

To analyze the error nf f 
 , it is useful to introduce a non-random function f



 for 

which f f   represents the systematic error induced by solving the α-regularized 

problem in place of the exact problem. 

Definition 3. The α-smoothed f, denoted f


, is given by ( )
argmin ( ; , ).mv H

f G v h 



 

Remark. The α-smoothed f is the smoothness-penalized deconvolution of the exact 

data h. In Supplemental Proposition A.1, it is shown to have representations 

*f h

  and 
f h

 , and approximates f in the sense that || || 0f f    as 

0 . 

As the next lemma shows, an appealing property of f


 is that, for fixed α, 
2|| ||nf f 
 becomes small when 

2 2|| ||n nh h  
 gets smaller, in contrast to the 

issue with exact deconvolution outlined in Proposition 1. 

Lemma 3. Assume (F1). There is a C depending only on g, such that for sufficiently 

small 0  , we have 
2 2|| || /n nf f C    

 

Proof of Lemma 3. By the Plancherel Theorem, 
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2 2

2 2

2 2 2

1|| || || ||
2
1 | ( ) | | ( ) ( ) |

2
sup | ( ) | || || || || /

n n

n

n n

f f f f

h h d

h h C h h

   








    


  

  

 

   

  

where the second inequality is by Theorem 2(iv). Taking expectations gives the 

result. □ 

Corollary 4. Assume (F1). For sufficiently small α, we have the upper bound 

2 2 2|| || / 2 || || .n nf f C f f       

Proof of Corollary 4. Note that 
2 2 2( ) 2 2a b a b   , which can be seen by expanding 

20 ( )a b  , adding 
2 2a b  to both sides, and re-arranging. Then the result follows 

from the triangle inequality and Lemma 3. □ 

The rate at which || || 0f f    with α depends intimately on the particular form of g. 

In Lemma 5, we present upper bounds for 
2|| ||f f   in terms of α. 

Lemma 5. Assume (F1), (F2). Then, with (·)W  denoting the principal branch of the 

Lambert W function, 

(i) (Normal errors) If 
21 /2( ) (2 ) xg x e   , then 

2
1 1

1 1

|| || ~
( ) log( )k k k km m

C Cf f
m W m m m



 
 

 

   

(ii) (Cauchy errors) If 
2

1( )
(1 )

g x
x


 , then 

2
1 1

2 1 2 2 1 22 2

|| || ~
( ) log( )k k k km m

C Cf f
m W m m m



 
 

 

   

(iii) (Laplace errors) If 

| |1( )
2

xg x e
, then 
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12 1|| || ,
4

k
m

f f C




 

    
 

The asymptotic equivalences in the first two parts follow from Supplemental 

Fact A.4(iv) 

Proof deferred to Supplemental Proof B.5. 

5 Asymptotics 

5.1 Consistency and Rates of Convergence 

If Assumption (G1) holds, then || || 0f f    as 0 , and the upper bound in 

Corollary 4 provides a sufficient condition for 2 ( )L
-consistency of nf



: 

Theorem 6. ( 2 ( )L  consistency) Assume (F1), (G1). Assume that 
2 0n  , and αn is 

chosen so that 
2 / 0n n    and 0n  . Then 

2lim || || 0.n
nn
f f


   

Proof of Theorem 6. This follows immediately from Corollary 4 and Supplemental 

Proposition A.1(iv). □ 

In deriving rates of convergence for ill-posed problems, it is typically assumed that 

the solution f is drawn from a “source set,” assuming some a priori degree of 

smoothness [Engl et al., 1996, Section 3.2]. In Nair et al. [1997] Theorem 5.1 and 

Engl and Neubauer [1985] Theorem 3.5, an abstract version of this Tikhonov 

problem is analyzed, and they find fast 
4/3  rates of convergence (in a stronger 

norm) compared to the often logarithmic rates in the statistical literature. The price is 

that strong assumptions are made on the target density. In Engl and 

Neubauer [1985], it is assumed that 
*( )f L L  and 

* *( )L Lf T T . With T the 

operator that convolves a function with g and L the mth-derivative operator, this 

assumption requires that 
2 ( )mf H , and 

(2 ) *mf g g   for some 2( )L 
, 

which we express in terms of the Fourier transforms in the theorem. Nothing is 
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required of g, since their result holds for any bounded operator T, and convolution 

with a probability measure is bounded on 2 ( )L
. 

Below is an analogue of those abstract results, in an explicitly statistical framework, 

and with a novel proof. The proof in the present framework turns out to be quite 

simple. 

Theorem 7. (Rates when f is very smooth) Suppose 
2 2| ( ) |m f d      and 

2 2| ( ) | | ( ) | | ( ) |mf g      for some 2( )L   (Note that this condition implies 

Assumption (F1)). Then for sufficiently small αn, 

2 2 2
1 2|| || / ,n

n n n nf f C C       

and if 

2
3

3n nC  , then 

4
2 3|| || ( ).n

n nf f O    

Proof of Theorem 7. Our task is to find the dependence of 
2|| ||f f   on α. 

2 2

22
2 2 2

2 2

22 2
2 2 2

2 2

1|| || || ||
2

1 || ( ) | ( ) | ,
2 | ( ) |

| ( ) | | ( ) | || || ,
2 | ( ) |

m
mn

m
n

n
nm

n

f f f f

g d
g

g d
g

 



 
    

   

 
    

   



  




 






 

which, combined with Corollary 4, gives the bound. The upper bound is minimized by 
2
3

n n 
, in which case the upper bound becomes 

4
2 3|| ||n nf f C 

, as needed. □ 

Remark. Note that Theorem 7 does not require Assumption (G1); identifiability 

issues are sidestepped by the second assumption on f , which guarantees that f  is 

zero whenever g  is zero. 
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Remark. If Z has pdf 
2( ) ( )mz H  , with 

2 ( ) ( )m     , and E1 and E2 are 

independent with pdf g, then the hypothesis of Theorem 7 is satisfied for the pdf f of 

1 2( )X Z E E  
. 

Corollary 8. Assume the conditions of Theorem 7, and assume that 

2
3

n nC  . 

If hn is a kernel density estimate with optimal choice of bandwidth, then 

2 8/15|| || ( ).n
nf f O n    

If hn is a histogram with optimal choice of bin widths, then 

2 4/9|| || ( ).n
nf f O n    

Proof of Corollary 8. If hn is a kernel density estimate with optimal bandwidth, then 
4

2 2 5|| || ( )n nh h O n


  
 ( Wand and Jones [1994], Section 2.5), and the result follows 

immediately. Similarly, if hn is a histogram with optimal binwidth, then by the same 

section, 

2
2 3|| || ( )n nh h O n



  
. □ 

The rates in Theorem 7 are appealing, but are found under conditions different than 

those typically assumed in the literature. Now, we will assume a particular form for g

—either Gaussian, Cauchy, or Laplace—and leverage the approximation bounds for 

the α-smoothed f from Lemma 5 to derive rates of convergence under a weaker 

smoothness assumption on f, namely Assumption (F2) that 
2| ( ) |k f d     . This 

is a slight weakening of the assumption in Zhang [1990]. 

Theorem 9. Assume (F2). Then, 

(i) (Normal errors) If 
21 /2( ) (2 ) xg x e   , then for α small enough, 

2 2 2
1 1

1

|| || /
log( )

n n
k km

Cf f C
m m

  






    

and if 

2
2 ( )kk

n n nW  



 then 

2 1|| || ([log ] ).k
n nf f O    
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(ii) (Cauchy errors) If 
2

1( )
(1 )

g x
x


 , then for α small enough, 

2 2
1 1

2 1 22

|| || /
log( )

n n
k km

Cf f C
m m

  






    

and if 

1
2 2( ) kk

n nW  


 , then 
2 1 2|| || ([log ] ).k

n nf f O      

(iii) (Laplace errors) If 

| |1( )
2

xg x e
, then for α small enough, 

2
2 2 2 2

1 2|| || ,
k

m m
n nf f C C   


     

and if 

2( 2)
2

m
k

n n 


 , then 

2
2 2|| || ( ).

k
k

n nf f O     

Proof deferred to Supplemental Proof B.9. 

Corollary 10. Let k = 1. Then if hn is a KDE or histogram estimate with optimal 

bandwidth or bin choice, we have, assuming the conditions of Theorem 9 hold, 

(i) (Normal errors) 
2 1|| || ([log ] )nf f O n  

 for KDE and histogram. 

(ii) (Cauchy errors) 
2 2|| || ([log ] )nf f O n    for KDE and histogram. 

(iii) (Laplace errors) 

4
2 15|| || ( )nf f O n



 
 for the KDE and 

2
2 9|| || ( )nf f O n



 
 

for the histogram. 

For normal and Cauchy errors, Corollary 10 shows that the smoothness-penalized 

deconvolution estimate attains the optimal rates derived in Zhang [1990]. However, 

for Laplace errors, the upper bound here is slower than the rate 
2/7n  attained by the 

deconvoluting kernel density estimator in Zhang [1990]. However, the SPeD 

estimator can attain the 
2/7n  rate for a certain choice of estimator hn. Recall (cf. 

Equation (1)) that the DKE can be thought of as involving a kernel estimate of h 

using a kernel (·)K  which has quickly decaying Fourier transform; in Zhang [1990] 

the kernel is required to be band-limited. If we use as our hn a kernel estimator 
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satisfying the conditions in Zhang [1990], then the SPeD estimator attains the 
2/7n  

rate. 

Proposition 11. Assume g is Laplace, and suppose 
2| ( ) |f d C      . Let (·)k  be 

a pdf satisfying 
2( ) ( ), ( ) , | ( ) |k x k x x k x dx xk x dx        , and ( ) 0k    for 

[ 1,1]   . Suppose that hn is a kernel density estimate with kernel k, 

i.e. 1

1( )
n

j
n

j

y Y
h y k

n 

 
   


. Suppose 

1
7

0n c n


 , and 

2( 2)
7( )
m

n O n
 



 . Then 

2
2 7|| || ( ).nf f O n



   

Proof deferred to Supplemental Proof B.11. 

The following examples show that there is a kind of critical variance or width 

imposed by the conditions of Theorem 7, at least for a subclass of densities: if 
2~ (0, )E N  , then a normal target density f with variance 

22   satisfies the 

conditions of Theorem 7, but a normal target density with variance 
22   does not. 

In contrast, notice that if (·)f  satisfies the conditions of Theorem 9, then a re-scaling 

1 ·(·) ( )f f
 


 satisfies them as well (possibly with a different constant for the rate). 

Example 1. Suppose 
2 2~ N(0, ), ~ N(0,2 )E X   , with 0  . Then the pdf f of X 

satisfies the conditions of both Theorem 9 and Theorem 7. For the former, it suffices 

to note that ( )kf H  for any 0k  . For the latter, letting 

2 /21( )
2

xx e 




, we can 

take 
(2 )( ) ( 1) ( )m mx x   . 

Example 2. Now take 
2~ N(0, )E  , but 

2~ N(0,2 )X   , with 
20 2   . Then the 

pdf f of X satisfies the conditions of Theorem 9, but not Theorem 7. The former holds 

for the same reason as before. To see why the conditions for Theorem 7 cannot 

hold, suppose that there was a ψ s.t. 
* *L Lf T T . Then we would have 

(2 )( 1) *m mf g g   , and taking Fourier transforms yields 
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2 2 2 22 (2 ) /2( 1) ( ) ( )m mi e e          , so that 
22 /2( ) ( 1) ( )m mi e    . But then 

2| ( ) |    as  , so 2( )L  . 

5.2 Constrained Solution 

We may wish to incorporate a priori knowledge about f into our estimate. Suppose 

we know that f  , a closed, convex set. One easy-to-manage approach is to first 

solve the unconstrained problem and find an estimate nf


 not necessarily belonging 

to , and then somehow project this unconstrained estimate onto . Define the 

projection operator 
P

 onto a closed, convex set 2( )L
 by 

argmin || || .
v

P u u v


   (8) 

In words, 
P

 maps u to the 2 ( )L
-nearest element of . The projection operator 

onto a closed convex set is non-expansive ( Engl et al. [1996], Section 5.4), meaning 

that for all 2, ( ), || || || ||u v L P u P v u v   
. An immediate consequence is that if 

f  , then projecting nf


 to  has error at least as small as nf


. Remembering that 

P f f
, we have 

|| || || || || ||n n nP f f P f P f f f        

Now, we know a priori that f is a probability density function, so we ought to ensure 

that our estimate is a probability density function as well. Consider the set 

2{ ( ) : ( ) 1, ( ) 0 }v L v t dt v t t      ; this is the set of square-integrable 

probability density functions, and now we can express this requirement as nf
 

. 

Unfortunately, while  is convex, it is not closed. To see this, note that the zero 

function is a limit point of : let 
[0, ] 1

n nn
  1

, and note that 

1
2|| 0 || || || 0n n n 



   
 

as n . Indeed, any non-negative function v with 
1v   is a limit point of . Thus 

the minimum in Equation (23) may not be attained, and the projection operator 
P

 is 

not well-defined. Instead, we can work with approximations to . Let 
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{ , ( ) 0 [ , ]}a v v t t a a       be the subset of  of functions with support contained 

in [ , ]a a . 

Lemma 12. For fixed a, the set a  is closed and convex. 

Proof deferred to Supplemental Proof B.12. 

Let the unconstrained estimator nf


 projected to a  be denoted a nnf P f






. The non-

expansiveness of the projection suggests that nf


 may inherit the asymptotics of nf


. 

If af C
 for some a and a , then this is immediate from the earlier argument. If 

af   for all a, we need to do a little more work, and for that we will need to know 

the size of 
|| ||

a
P f f

 in terms of a. 

Lemma 13. Assume (F1), [| | ]X     and that ( ) (1)f t o  as | |t  . Then for large 

enough a, 
|| || 2 [| | ]

a
P f f X a  

. If also 
| |[ ]Xe   , then 

| ||| || 2 [ ]
a

X aP f f e e  
. 

Proof deferred to Supplemental Proof B.13. 

With this in hand, we can say that our constrained estimator will be as good (in an 

asymptotic sense) as the unconstrained estimator, as long as we let a grow fast 

enough that the first term dominates: 

Lemma 14. Assume [| | ]X     and that ( ) (1)f t o  as | |t  . Then 

|| || || || .nnf f f f Ca


 


     

If 
| |[ ]Xe   , then 

|| || || || .annf f f f Ce


 


   
 

Proof of Lemma 14. Add and subtract a
P f

: 

|| || || ||

|| || || || || || 2 [| | ] .
a a a

a a a

nn

n n

f f P f P f P f f

P f P f P f f f f X a




   





    

      
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A similar approach yields the exponential version. □ 

6 The Estimator in Practice 

In this section we deal with using the estimator in practice, and compare its 

performance to the deconvoluting kernel density estimator in finite samples. 

6.1 Computing the Estimate 

The forms of nf


 in Theorem 2(i)-(iii) are useful, but not the most practical for work 

on the computer; we need a convenient way to project our estimate to the set of pdfs 

as described in Section 5.2, and to impose other shape constraints as desired. 

Instead, we compute the estimate in Equation (6) out of an approximation space 

( )m
nX H

 of splines of degree r > m. We will find that this turns out to be a 

quadratic program, so that linear constraints are easily imposed. 

Before discussing the details of the computations, we present a Theorem showing 

that this is a legitimate approximation to make. If we denote the spline approximation 

by ns


, Theorem 15 says that if the parameters of the spline space are selected 

appropriately, then n ns f 
 is of a smaller order than the rate of convergence we 

found in Theorem 9. This means that asymptotically, ns


 and nf


 are the same 

estimator. As a consequence, the spline approximation ns


 attains the same rate of 

convergence as the exact estimator nf


. 

Theorem 15. Suppose Xn is the space of rth-order splines, r > m, with uniform knot 

spacing γ on [ , ]a b  and uniform knot spacing 
*  on 

*[ , ]a m a  and 
*[ , ]b b m , with 

the condition that for all ns X
, and for 0 1k m   , we have 

( ) * ( ) *( ) ( ) 0k ks a m s b m     . Take our spline estimate to be 

2 (2) 2argmin || * || || ||
nn s X ns g s h s   

. Suppose also that 
ˆ | | ( ) (1)nY x h x dx O




  . 

Adopt the assumptions of either Theorem 7 or Theorem 9, and let 
2|| ||n nr f f 
 

denote the resulting rate of convergence of the exact estimator. Choose 
*, ,a  , and 
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b so that 
4 2( ) 4 *( ), (1 ) ( )r m

n no r o r         , and 
4 1(| | | |) ( )na b o r   . Then 

2|| || ( ).n n ns f o r    It follows also that 
2|| || ( ).n ns f O r    

Proof deferred to Supplemental Proof C.15. 

Now we describe how we compute ns


 in concrete terms. In all of the following, 

unless otherwise stated, we fix m = 2. Fix r = 3, and let 1 4( 3, , , )q qr     
 

denote the space of cubic splines (cf. [Powell, 1981, Chapter 3]) with knots 1 4, , q  

, with 1 (1)Y 
 and 4 ( )q nY  

, evenly spaced knots, no knots of multiplicity larger than 

one, and end conditions 
( ) ( )

1 4( ) ( ) 0k k
qs s   

 for k = 0, 1, 2. The end conditions 

specify that members of q  vanish outside the interval 1 4[ , ]q    and are twice 

continuously-differentiable at the boundary. This space q  has as a basis the 

collection of q unit-integral B-splines 1{ }qi ib  , so that if qs
, then 1

( ) ( )
q

i i
i

s x b x



. 

Note that 
( )m

q H
. 

We now take as our estimate 
2 (2) 2argmin || * || || || .

qn s ns g s h s   
 If 

1

( ) ( )
q

i i
i

s x b x



, then 

2 (2) 2 2|| * || || || 2 || || ,T T T
n ng s h s h      M d Pθ θ θ θ θ

 where θ  

is the vector of coefficients θi, and M, d, and P are a q × q matrix, 1q   vector, and q 

× q matrix respectively, with typical entries 
( * )( * ), ( * )ij i j i i nM g b g b d g b h   , and 

(2) (2)
ij i jP b b  . 

With this matrix representation, we can see, using standard techniques, and noting 

that 
2|| ||nh  does not depend on ns



, that the coefficients of ns


 are 
1( )n

   M P dθ
, 

so that 
,

1

( ) ( )
n

n n i i
i

s x b x 



. Analogous to the exact solution, ns



 need not be a pdf. To 

produce a pdf, we now solve 

1

2

0

argmin || || ,
s

n n
s

s s s










   (9) 
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At this stage, other linear constraints my be introduced by expressing them against 

the B-spline basis. If G is a matrix with typical entry ij i jG bb  , and, letting 

1 1 2 4, ,
xn qx x x     

 be a grid of evenly spaced values on the support of q , with 

xB  the xn q
 matrix with i, jth entry 

( )j ib x
, the coefficients of the solution to 

Equation (9) are given (approximately) by the linearly-constrained quadratic program 

1
0

argmin ( ) ( ).
T

x

T
n n n


 







  
1
B

G
θ

θ

θ θ θ θ θ  (10) 

The reason this is approximate is that the the convex constraint ( ) 0s x   for all x is 

approximated by the collection of linear constraints 1

( ) ( ) 0
q

i j j i
j

s x b x


 
, 

1, , xi n 
. 

Equation (10) is a quadratic program with q-dimensional objective and 
1xn 

 linear 

constraints. 

The entries of G and P can be computed by hand from the piecewise-polynomial 

representation of the B-splines. Computing the entries of M and d benefits from the 

Fourier representation 

21 1( ) ( ) | ( ) | and ( ) ( ) ( ) ,
2 2ij i j i i nM b b g d d g b h d       
 

    

which can then be computed by an appropriate quadrature, bypassing the problem 

of dealing with the convolutions. When hn is a kernel density estimate or a histogram, 

nh  is not difficult to compute, and the ib  are straightforward to compute, as B-spline 

basis functions can be represented as shifted, scaled self-convolutions of [0,1]1
. 

6.2 Finite Sample Behavior 

In Wand [1998], the author points out that while asymptotic rates for deconvolution 

are very slow no matter the size of the measurement error (cf. Theorem 9 here, 

Stefanski [1990], Zhang [1990], Fan [1991]), there is another side of the coin: for 

very small measurement error we ought to expect to be able to estimate f with MISE 

quite close to that of the error-free setting. For example, we could simply ignore 
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measurement error and increase our MISE by at most 
2|| * ||g f f , which becomes 

arbitrarily small as the measurement error decreases. Thus, we might expect that the 

pessimistic picture given by asymptotic rates is limited to truly large samples, 

especially when measurement error is small, and a direct investigation into small-

sample behavior is required for a better understanding of deconvolution estimators. 

To get a handle on the small-sample behavior, Wand [1998] creates two products for 

the deconvoluting kernel estimator: a log-log plot of the minimum attainable MISE, 

i.e. 

2

0
inf || ||nf f




, against the sample size, as well as a table listing the smallest 

sample size required for the minimum attainable MISE in deconvolution to be at least 

as small as the minimum attainable MISE in the no-measurement-error case with 

some fixed sample size. 

We will investigate these same properties for analogous quantity, the minimum 

attainable MISE for the SPeD estimator, given by 

2

0
inf || ||nf f




. Supplemental 

Figure B.2 shows a plot of 
2|| ||nf f 
 as a function of α. Since the MISE involves 

unknown quantities, in practice α will have to be chosen from the data, and the 

search for a good data-driven choice of α is ongoing; in Section 6.3, we use what is 

essentially an iterated bootstrap, but at this point do not claim that it is optimal. 

The settings addressed in Wand [1998], which we will use here as well, are as 

follows. The target random variable X has one of the following densities; (i) standard 

normal, (ii) normal mixture 

2 1 1N(0, 1) N(0, )
3 3 5

   
, (iii) Gamma( 4, 1)   , (iv) 

gamma mixture 

2 3Gamma( 5, 1) Gamma( 13, 1)
5 5

       
, with ζ and β the shape 

and rate parameters, respectively. We will consider normal measurement error E 

with Var( ) ·Var( )E p Y , with various choices of p. 

To investigate these properties for the smoothness-penalized deconvolution 

estimator, we must compute the MISE of our estimator, 
2MISE( ) ( )n nf f f   . 

From Theorem 2(i), we have that the Fourier transform of the estimate is given by 

( ) ( )nh  
; to simplify calculations, we approximate nh  by the Fourier transform of 
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the empirical distribution, 1

1( ) j
n

i Y
n

j

P e
n








 
, using instead 

1

( ) ( ) ( ) ( ) j
n

i Y
n n

j

f P e 

      




 
. Even though we have replaced the density 

estimate hn by the empirical distribution, which has no density at all, the 

approximation is quite good; see Figure B.2 in the supplemental material. The 

resulting MISE, derived in Supplemental Fact A.3, is 

2 2 2 21 1MISE( ) | ( ) ( ) 1| | ( ) | | ( ) | (1 | ( ) ( ) | )
2

g f dt g f d
n          



 
    

 
   

which we will evaluate numerically in the following. 

In Figure 2, we show plots of best-attainable MISE, i.e. 

2

0
inf || ||nf f




, for the SPeD 

(computed via Equation (11)), and the same, but with infimum over the bandwidth, 

for the DKE and a conventional kernel estimator on the non-contaminated X’s for 

reference (both computed via the expressions in Wand [1998]). For the 

deconvoluting kernel density estimate, we use a base kernel DKEK
 with Fourier 

transform 
2 3

DKE | | 1( ) (1 )    1
; this is κ1 in Wand [1998], and is the default choice 

in the deconvolve R package Delaigle et al.. For the error-free kernel estimator, we 

use kernel with Fourier transform 
4 1

ef ( ) (1 )    
. This relates to the smoothness-

penalized deconvolution estimator in the following sense: the error-free setting is 

equivalent to the measurement error problem where E is a point-mass at zero. In 

that case, ( ) 1g   , and then 
2 1( ) (1 )m    

. If we replace h  by nP  again in 

Theorem 2(iv), we have a kernel estimator with 
ef ef

1( ) ( )
2

i xK x e d   


 
. Note that 

ef 1K  , but efK
 is not non-negative. In fact, when m = 2, efK

 is a fourth-order 

kernel. 

In Figure 2, the smoothness-penalized deconvolution estimator gives a much more 

optimistic picture of the deconvolution problem in finite samples compared to the 

deconvoluting kernel estimator. The SPeD has nearly uniformly lower MISE, 

excepting a small range of n in setting (iv). In setting (i), which satisfies the 
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conditions of Theorem 7, the SPeD under 30% measurement error has better 

optimal MISE than the DKE under 10% measurement error, for sample sizes small 

enough to be commonly encountered in practice. 

Table 1 lists sample sizes required for the deconvolution estimators to attain MISE 

as small as the error-free setting. We can see that in every case listed in the table, 

the SPeD requires fewer samples than the DKE; in some cases the difference is 

dramatic. To achieve the same MISE as estimating the Gamma mixture density in 

setting (iv) in the error-free setting with a sample of size n = 1, 000 when there is 

10% measurement error, the SPeD would require 7, 963 samples, while the DKE 

would require 388, 770 samples. In practice, this may mean the difference between 

an expensive experiment and an impossible one. Another takeaway is how strongly 

the required n varies with the target density. In setting (i), the problem does not seem 

so bad; in setting (ii), it seems all but impossible. 

6.3 Application to Cytotoxicity Data 

Bacillus cereus sensu lato (s.l) is a group of closely-related bacteria with diverse 

relationships to humans, including B. thuringiensis, which is used on crops as a 

pesticide, B. anthracis, which can cause anthrax disease, and others which can 

cause other illness and spoil food Ceuppens et al. [2013]. These bacteria are 

ubiquitous in many environments, their taxonomy is “complex and equivocal,” 

Ceuppens et al. [2013], and distinguishing between members of B. cereus s.l. with 

typical methods can be difficult. Scientists are therefore interested in developing 

practical laboratory tests which can readily discriminate between harmful 

representatives of this group and those less likely to cause harm. 

As one element of that investigation, a colleague requires a density estimate of a 

certain conditional expectation. Suppose i is an isolate of B. cereus s.l., sampled 

from a large collection. Suppose it is cultured under certain conditions, centrifuged, 

and the supernatant is applied to human cells. Let Xi denote the mean normalized 

cytotoxicity of isolate i, and ij i ijC X  
 denote the cytotoxicity observed the jth time 

this procedure is applied to isolate i, and further assume that the ij , are i.i.d., have 

mean zero and are independent of Xi. We are interested in the density f of Xi as i 
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varies over the collection of isolates. However, the investigator only has access to a 

sample approximation 1

1 k

i ij
j

Y C
k 

 
 of Xi obtained by fixing i and repeatedly 

measuring the cytotoxicity. With 1

1 k

i ij
j

E
k




 
, we are in the setting described in the 

introduction. We do not know the density of g of Ei exactly, as assumed for the 

theory; however, we may approximate it by 
2N(0, / )k  as long as the ij  are not too 

skewed. We then only need to estimate 
2
 , which can be done at parametric rates 

much faster than the rates involved in deconvolution. 

We have been provided preliminary data, which comprise a table of measured 

cytotoxicity Cij from 1, , 6j k    replicates of isolates 1, , 313i n   . We have 

estimated 
2
  by fitting the linear model ij i ijC X  

 in R and extracting the residual 

standard error. Tuning parameter α was chosen by picking an arbitrary provisional α

0, seeking αi which minimizes 
1 2|| ||i

n ns s 
 assuming the Xi have pdf 

1i
ns
 

, and 

iterating until convergence. The results are shown in Figure 3, along with a standard 

kernel density estimate of the Yi. This example has a relatively small amount of 

measurement error, with proportion Var( ) / Var( ) 0.044p E Y  . To illustrate SPeD 

with greater measurement error and to see if the number of replicates may be 

reduced in future experiments, we have also split the replicates randomly into two 

groups (i) and (ii), and re-fit the estimator as if there were only three available 

replicates. This yields 0.082p   and 0.086p   for groups (i) and (ii), respectively. 

The two modes present in the full data are blurred to one mode in the reduced data, 

but our estimator does recover two modes in one of the two reduced data settings. 
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Fig. 1 For g  corresponding to N(0,1) . Thick line is 1/ g , while dashed lines are, 

from lower to upper, the multiplier   in Theorem 2(i) for 
2 41,10 ,10   . 

 

Fig. 2 MISE all under oracle choice of tuning parameter, densities (i)-(iv), left-to-

right. Solid black is MISE for kernel estimator in the error-free setting. Solid lines are 

SPeD, and dashed lines are DKE. Red and blue lines have 0.1,0.3p  , where 

Var( ) ·Var( )E p Y . 
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Fig. 3 Density estimates of cytotoxicity data described in Section 6.3. Standard 

Gaussian kernel density estimate of the Yi as solid black line. Smoothness-penalized 

density estimate of the Xi as dashed red line; QP estimator as dotted blue line. 

Individual data locations marked below plot. Leftmost panel is full data; right two 

panels each use only three of the available six replicates for each measurement. 
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Table 1 Minimum sample sizes for stated estimator, with p the proportion of 

measurement error, to achieve MISE as small as error-free kernel density estimation 

on the X’s with kernel efK
. The analogous value with respect to kernel DKEK

 is in 

parentheses. 

 

 

Sample size n = 100 n = 1, 000 

p  Tikhonov DKE Tikhonov DKE 

(i) Standard normal density  

    10%  146 (102) 243 (156) 1,525 (1,001) 7,386 (2,931) 

30%  303 (204) 1,761 (788) 4,170 (2,239) > 106 ( > 106) 

50%  1,221 (747) 924,510 (103,089) 34,945 (15,566) > 106 ( > 106) 

(ii) Normal mixture density  

    10%  687 (604) 1,798 (1,415) 56,150 (35,361) > 106 ( > 106) 

30%  303,719 (211,484) > 106 ( > 106) > 106 ( > 106) > 106 ( > 106) 

50%  > 106 ( > 106) > 106 ( > 106) > 106 ( > 106) > 106 ( > 106) 

(iii) Gamma(4) density  

    10%  179 (140) 266 (197) 2,548 (1,721) 17,342 (7,863) 

30%  695 (499) 8,016 (3,620) 42,254 (21,561) > 106 ( > 106) 

50%  9,451 (5,551) > 106 ( > 106) > 106 ( > 106) > 106 ( > 106) 

(iv) Gamma mixture density 

    10%  284 (270) 300 (282) 7,963 (6,020) 388,770 (151,942) 

30%  5,522 (4,993) 53,740 (41,039) > 106 ( > 106) > 106 ( > 106) 

50%  > 106 ( > 106) > 106 ( > 106) > 106 ( > 106) > 106 ( > 106) Acc
ep

ted
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pt


