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ABSTRACT

Autonomous Vehicles (AVs) using LiDAR-based object detection
systems are rapidly improving and becoming an increasingly vi-
able method of transportation. While effective at perceiving the
surrounding environment, these detection systems are shown to be
vulnerable to attacks using lasers which can cause obstacle misclas-
sifications or removal. These laser attacks, however, are challenging
to perform, requiring precise aiming and accuracy. Our research
exposes a new threat in the form of Intentional Electro-Magnetic-
Interference (IEMI), which affects the time-of-flight (TOF) circuits
that make up modern LiDARs. We show that these vulnerabilities
can be exploited to force the AV Perception system to misdetect,
misclassify objects, and perceive non-existent obstacles. We evalu-
ate the vulnerability in three AV perception modules (PointPillars,
PointRCNN, and Apollo) and show how the classification rate drops
below 50%. We also analyze the impact of the IEMI injection on two
fusion models (AVOD and Frustum-ConvNet) and in real-world sce-
narios. Finally, we discuss potential countermeasures and propose
two strategies to detect signal injection.
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Figure 1: Overview of the IEMI injection on LiDAR. The per-
turbations by the IEMI signal injection can cause misdetec-
tion (bottom-left), misclassification (bottom-middle) or cre-
ate new obstacles in AV perception models (bottom-right).

1 INTRODUCTION

Self-driving cars are being rapidly developed and are already achiev-
ing unprecedented levels of autonomy. Companies such as Tesla,
Waymo, and Lucid are providing Autonomous Vehicle (AV) services
for operation in real-world scenarios [3]. This autonomy is achieved
through the Perception systems in AVs that analyze surrounding
environments to facilitate object detection and safe-driving deci-
sions. In addition, many AVs have adopted LIDAR (Light Detection
and Ranging) sensor-based detection in their perception stacks to
ensure reliable object detection. LIDAR sensors collect depth mea-
surements from the vehicle’s surroundings to construct a precise
3D point cloud of the environment.

Recently, researchers have demonstrated attacks that can com-
promise LiDAR-based detection systems [8, 12, 23, 57]. Generally,
these works alter the sensing mechanisms to manipulate the raw
sensor data. The attacks can further be designed so that the pre-
ceding machine-learning (ML) models behave as desired by the
attacker [8, 12]. These attacks can induce fake obstacles [12] in
or altogether remove obstacles from AV perception [8, 10]. At the
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same time, other works use adversarial perturbations to induce
misdetection and misclassifications [4, 10, 12, 23, 65, 76].

These previous works use light signal injection to spoof return
signals to LIDAR sensors to achieve desired results from the detec-
tion model. The impact of such light injection attacks at the sensor
and ML model levels has been extensively studied; this has thus
revealed several accuracy and practicality constraints. In particular,
light injection attacks require extreme precision for aiming and
tracking the target sensor. This can be difficult to achieve when the
target sensor is on a moving vehicle.

As a result of previous work’s focus on light injection, the vul-
nerabilities of LIDAR sensors to other potential attack vectors have
been overlooked. Motivated by this observation, we study the im-
pact of Intentional Electro-Magnetic Interference (IEMI) on LiDAR
sensors. In particular, we demonstrate that it is possible to impact
AV perception with IEMI injection and the potential vulnerability of
AV systems to such injections. This vulnerability lies in the suscep-
tibility to EM waves of time-of-flight (TOF) circuits that compose
modern 3D spinning LiDAR sensors used in autonomous driving
systems. This work focuses on the following research questions:
(i) How does IEMI injection impact the sensing mechanisms of TOF
circuits and LiDAR sensors and, consequently, 3D point cloud acqui-
sition? (ii) How can the effect of IEMI injection on sensor output be
characterized? (iii) How can these injections be leveraged to degrade
the performance of object detection models, and what are potential
ways to defend them?

This work explores LIDAR sensor’s susceptibility to intentional
EMI injection. We observe that the sensor data perturbations caused
by the injected signal can misdetect and misclassify objects and cre-
ate non-existent objects in the LIDAR perception models, as shown
in Figure 1. This paper makes the following key contributions.
LiDAR’s Susceptibility to IEMI.  This work identifies and
presents a novel signal injection vulnerability in TOF circuits used
in LiDARs, that can manipulate selected parts of the raw sensor
data. We comprehensively analyze the injected signal’s effect on
sensor circuitry in a spinning LiDAR sensor to demonstrate how
the vulnerability can be exploited in the real world.

Causality. The susceptibility of TOF sensors to EMI signal injec-
tion can stem from any region of the sensor. We study the causality
of this phenomenon in TOF sensors. An extensive understanding of
this effect is required to be able to secure future devices. We form a
hypothesis regarding the causality of this vulnerability based on
tests of how various components in the circuit are affected.

Vulnerability Characterization. To understand how EMI
signal injection can be leveraged to impact object detection, we
model the vulnerability to characterize the perturbations caused
by the injection of sensor data. To do this, we first characterize the
injection and quantize the effect in terms of various parameters (in
Section 4.2). Afterward, we model the resulting perturbations in
the 3D point cloud and their relation to the injected signal.

Impacts on AV Perception Models. We evaluate the impact of
the injection on state-of-the-art object detection models (PointPil-
lars [32] and PointRCNN [52]) and the industry-grade segmentation
model Baidu Apollo [6], in both synthesized and real-world scenar-
ios and estimate the IEMI signal required to impact the AV system’s
performance significantly. The injection drops the classification
rate to less than 50% for all the models in the case of pedestrian and
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Figure 2: (Left) Block diagram of the fundamental compo-
nents of TOF circuits. (Right) Faraday Cage setup.

cyclist obstacles while dropping the detection rate to nearly 20% for
each class. We further evaluate the effect of such perturbations on
two state-of-the-art camera-LiDAR fusion models, AVOD [30] and
Frustum-ConvNet [62], to demonstrate how sensor fusion models
do not fully mitigate the vulnerability. The injection drops the ob-
ject detection rates for pedestrian and cyclist classes below 50% in
the case of AVOD and for pedestrian and car classes in the case
of Frustum-ConvNet. Overall, the object detection rates of all the
classes are reduced by over 10% for both models. Finally, we perform
real-world analysis to demonstrate the practicality of exploiting the
vulnerability, where we study the effect of EMI injection on object
detection models in controlled outdoor scenarios. The injection
reduced the Intersection Over Union (IOU) values of the detected
objects by nearly 20%, dropping them below the required threshold
for detection (0.5). We also discover and evaluate how the EMI
perturbations can generate additional, not existent objects in the
AV field-of-view (FOV).

Defense. Finally, we investigate existing defense methods against
signal injection, and we demonstrate that state-of-the-art denois-
ing techniques only improve model performance by 6%. Then, we
propose and evaluate two novel IEMI injection detection methods:
Ground Point Based and Point Intensity Based. The first method
achieves a 98.74% True Positive Rate (TPR) and 94.35% True Nega-
tive Rate (TNR), while the latter achieves a 100% TPR and TNR.

2 BACKGROUND
2.1 Time-Of-Flight Sensors in AVs

Time-of-flight sensors fire and receive returning laser pulses to
measure the distance between the sensor and nearby objects using
the equation d = t - ¢/2 where d is the distance to the target, t is the
time taken for the fired pulse to return, and c is the speed of light [6].
Groups of TOF sensors are used in LIDAR sensors [26, 51] to create
maps of obstacles’ reflection distances called point clouds. Spinning
3D LiDAR sensors, in particular, construct the entire vehicle FOV
by rotating stacks of TOF circuits horizontally 360° to capture the
reflections.

In this paper, we focus on spinning LiDAR sensors that AV
companies, including General Motors’ Cruise [22], and Google’s
Waymo [5] use, due to their wide FOV for obstacle avoidance, higher
resolution than RADARs, and more comprehensive 3D data than
cameras [33, 70].

TOF Circuit Functioning.
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A TOF circuit can be broadly divided into an emitter circuit that
includes pulse timing, laser driving circuitry, and lasers and a re-
ceiver circuit that include photodiodes, amplifiers, and ADCs [17].
The laser and its driver circuitry transmit controlled light pulses of
a given frequency and time. The reflections (or return echoes) from
nearby obstacles are then received by a photodiode, e.g., avalanche
photodiodes (APDs), which produce photocurrent. The photocur-
rent is then amplified by a transimpedence amplifier (TIA) and
digitized by an analog-digital converter (ADC) before being pro-
cessed, as shown in Figure 2 (left).

2.2 Intentional EMI Attacks

Fluctuations in an electromagnetic field or EMI surrounding a sus-
ceptible electrical component in a circuit (e.g., an amplifier, a diode,
or a wire) will induce an electric current (or voltage) that can appear
in the circuit output signal [29, 44].

Traditional circuit protection techniques against EMI usually
include adding filters and shielding into their designs [29]. However,
several works have shown how EMI can interfere with the correct
functioning of hardware components, such as ADCs, GPIO pin
readings [63], and amplifiers [15, 49]. In addition, researchers have
demonstrated how malicious actors can leverage intentional EMI
(IEMI) to actively manipulate the output signal of a circuit or sensor
readings [28, 31, 60].

2.3 Perception in AVs and Adversarial Attacks

The AV navigation system typically comprises four main compo-
nents: Perception, Localization, Planning, and Control [42]. Percep-
tion refers to the ability of the AV system to collect and process
relevant information from the surrounding environment. The later
modules then use the collected information to contextualize the
current situation, decide how to achieve the vehicle’s goals, and
execute the chosen driving actions.

LiDAR gathers 3D depth measurements as point clouds (see Sec-
tion 2.1). The perception module’s challenge is identifying which
points represent relevant objects and then classifying them. Identi-
fying potential relevant objects in the vehicle’s trajectory is done
through the segmentation of the point cloud into easy-to-process
chunks, such as 2D grids [30, 67], voxels [75], or pillars [32]. Al-
ternatively, models such as Pointnet [45], Apollo [6], and PointR-
CNN [52] feed the raw point cloud to a model, which then generates
bounding boxes around potential clusters of interest.

Adversarial Attacks on Autonomous Systems.  Adversarial
example attacks add nearly imperceptible amounts of noise to a
model’s input to force a change in the output [16, 58].
Adversarial example attacks can be performed against LIDAR
point clouds by perturbing or adding points [11, 21, 45, 45, 64, 65].
However, these attacks are simulated and not particularly realiz-
able in the real world or focused on only one model type. Instead,
physical attacks are able to manipulate the perception models to
detect non-existent obstacles [9, 12, 57] or hide real obstacles with
fake noise around legitimate objects [10, 23, 59, 76]. In addition,
some attacks entirely remove the point cloud of existing obstacles
[8]. While the above works represent threats to AVs, we present
a novel AV vulnerability in the form of EMI injection, which not
only decreases detection against many of the most popular object
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Figure 3: (Left) Point cloud of a flat vertical object with no
injection (XY plane). (Middle) Resulting sinusoidal pattern
during EMI injection at 960.9 MHz. (Right) Resulting random
pattern during EMI injection at 977.4 MHz.

detection models but also affects the basic TOF circuits used in
several LIDAR sensor families, as described in Section 4.

3 THREAT OVERVIEW AND MODEL
3.1 Vulnerability Overview
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Figure 4: (Left) Slamtec 2D LiDAR perturbations with and
without the 949.8 MHz sine injection. (Right) Slamtec S2 XY
plane displacement vs injection power.

As described in Section 2.2, researchers have demonstrated how
EMI can be used to maliciously alter the outputs of hardware compo-
nents (e.g., ADC, amplifiers, etc.) and sensors [15, 31, 49, 60, 63, 66].

With this intuition, our goal is to discover whether TOF circuits

can be affected by this external interference.
EMI Signal Injection. The circuit’s susceptibility to EMI signals
can differ significantly depending on the injected electromagnetic
(EM) wave frequency. These frequencies are mainly determined by
the circuit’s design. Hence, we first identify the existence of an EM
wave that can affect the output distance of LiDARs. To accomplish
this, we perform, in a controlled environment (Figure 2 right), a
frequency sweep of sine wave injections in 400-1000 MHz on two
different types of spinning LiDARs based on TOF circuits: (i) the
Slamtec 2D spinning LiDAR [51] with a single row of points and
(ii) the 3D spinning LiDAR Velodyne VLP-16 with 16 rows of points
to produce a 3D point cloud [26]. Both sensors are susceptible to
specific frequencies, as shown in Figures 3 and 4.

In the 2D Slamtec LiDAR, the induced perturbation results in a
displacement along the XY axis. While in the VLP-16, we identified
two types of 3D patterns: a sinusoidal pattern (with the maximum
amplitude measured with an IEMI sine wave injection at 960.9 MHz)
and a random cloud point distribution along each row (with the
maximum distribution with an IEMI sine wave injection at 977.4
MHz) along both XY and XZ axes and all the 360° VLP-16 LIDAR
FOV. With changes in distances, we also observed a drop in the
cloud point recorded reflection intensities. In the rest of the paper,
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we refer to these perturbations as the sinusoidal perturbation and
random perturbation. We use them as references for the adversarial
capability evaluation in Section 4.2, and evaluate their impact on
AV perception models and fusion systems in Section 5.

3.2 Threat Model

We consider an adversary that generates an electromagnetic field
in the vicinity of an AV which uses data from a LiDAR sensor to
detect and classify objects on the road. The generated electromag-
netic field induces a voltage on the LiDAR’s internal TOF circuits,
creating perturbations in the resulting point cloud (see Figure 1).
This perturbation may alter the AV perception system’s behavior,
e.g., detecting a pedestrian instead of a car or not detecting any ob-
stacle in the affected area, which can result in dangerous automatic
maneuvering of the AV.

Attacker Goals. We consider two potential goals for the adver-
sary: (i) affect a specific region of space in the LIDAR FOV or (ii)
target and track a specific obstacle in the LIDAR FOV. In both cases,
the adversary aims to induce misclassification or misdetection of
one or more obstacles already present in the FOV.

Attacker Capability and Assumptions. To exploit this vul-
nerability, an adversary can consider the following parameters:
the distance between the adversary and the victim LiDAR (dy),
the distance between victim LiDAR and the target obstacle (dp),
affected horizontal FOV angle (perturbed angle) (6), the injected
IEMI frequency (f), and IEMI transmission gain (G). We assume the
adversary can control the output gain G of the IEMI transmitter,
which is linearly proportional to the output transmission power,
and the affected region in the LiDAR FOV or simply a horizontal
angle 0. This control can be achieved by synchronizing the trans-
mitted EMI signal with the rotation of the LiDAR, as demonstrated
in previous works [8, 12, 57] (see Appedix A for details). From our
experiments on the 3D spinning LiDAR (VLP-16) we found that
the adversary cannot perturb individual rows (meaning affecting a
specific vertical angle of the LIDAR FOV). This is due to the fact that
the interference affects all the TOF circuits stack of the 3D sensor in
the field region covered by the transmitting antenna range. Thus we
assume this same constraint in our analysis. We also assume that
the attacker can discover the vulnerable frequencies by acquiring
the same type of LIDAR sensor used by the victim AV. Based on
these assumptions, we characterize the key parameter ranges in
Section 4.2.

Previous Knowledge. Our analysis focuses on TOF spinning
LiDARSs. The adversary can acquire information about the target Li-
DAR from publicly available sources (e.g., manuals and datasheets).
The adversary can track the approximate position of the target
obstacle to aim the attack in the required FOV of the victim LiIDAR
using basic tracking algorithms [9]. We also assume that the at-
tacker has knowledge of the type of machine learning model used
by the victim AV Perception module. We consider this assumption
reasonable since attackers can leverage information from publicly
available sources released by companies [6] (e.g., open source code
base) or obtain white-box access by additional engineering efforts
to reverse engineer the model [39, 40, 73]. The attacker does not
require access to the victim’s LIDAR sensor or tamper with the AV.
Attack Scenario. As in previous works [8, 12], we assume the
attacker can hide the attack equipment in a car or place it near the
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road, as depicted in Figure 1. This is possible because EMI injection
does not require precise aiming and can pass through walls and
glass. Note that in this work, we only characterize single-scene
static scenarios as proof-of-concept analysis.

4 VULNERABILITY CHARACTERIZATION
4.1 TOF Circuit Susceptibility to IEMI

As a preliminary study to understand the cause of the interference
effect, we place the VLP-16 LiDAR in a controlled area with no
obstacles and no legitimate return echoes.

The rotation speed of the LiDAR is set at 300 RPM and dual
mode setting to ensure the maximum horizontal resolution [26].
For the IEMI injection, we use an N210 USRP [47] with a ZHL-
5W-202-S+ amplifier [37] and a trapezoidal directional antenna. A
photodetector and a Raspberry Pi controller allow to control of the
affected region (defined by the horizontal angle 6) in the LIDAR
FOV, as shown in Figure 2. We use this setup for all the experiments
in this work with the VLP-16 LiDAR. The safety considerations
regarding the performed injection are described in Section 7.

As shown in Figure 10 in the Appendix, at increasing transmit-

ting power, the IEMI generates cloud points in the targeted area.
Since the transmitted laser pulses never return, we conclude that
the receiver part of the TOF circuits of the LiDAR is likely to be
susceptible to the EMI waves.
Off-the-shelf APD Module. To confirm the aforementioned
hypothesis that the receiving circuit is susceptible to our IEMI, we
analyze an off-the-shelf Hamamatsu C12703-01 APD module [20].
This high-sensitivity photodetector is typically employed in TOF
receiving circuitry, as described in Section 2.1.

To achieve fine-grade precision in the injection, we built a flying
probe [72] and performed a frequency sweep ranging from 400—
1000 MHz to find potential susceptible frequencies. During this
experiment, we also place a Faraday pouch on the back of the board
to eliminate the IEMI effect on cables and power connection.

As per our hypothesis, a sine wave IEMI injection at 31 mW and

550 MHz produces an output voltage variation. We then placed the
tip of the probe in four different areas of the circuit corresponding
to specific hardware components within the circuit (a measurement
junction (1), a voltage regulator (2), and two internal operational
amplifiers (3-4)) to identify potential susceptible components, as
shown in Figure 10 in the Appendix. The measured average output
voltage for 300 captures has the highest value when the injected
EMI wave is closer to the two amplifiers, suggesting they are most
significantly impacted. These results also confirm findings of pre-
vious work on the susceptibility of operational amplifiers to EMI
injection [60]. Furthermore, the low vulnerable frequency compared
to the board’s spectral response range (minimum 300 GHz [20])
suggests that electromagnetic induction, rather than the photo-
electric effect (which requires a minimum frequency to generate
current [53]), causes the output variation. Thus, the vulnerability
is not dependent upon the wavelength the LiDAR uses.
Aliasing Effect.  As shown in Figure 2, the amplifier circuit
output is then fed to the ADC for digital processing. Since the APD
module does not provide an ADC, we explore the presence of an
aliasing effect in the VLP-16 LiDAR to understand whether the
ADC contributes to the observed perturbation patterns.
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Figure 5: (Top) Injection of 960 MHz. (Middle) Increment
of the injected sine wave frequency by 200 Hz (Bottom)
Increment of 400 Hz.

The amplifier output voltage should be converted at a certain
sampling rate by LiDAR internal ADCs. According to the Nyquist-
Shannon sampling theorem, the sampling rate should be at least
twice the signal’s maximum frequency. If the system acquires data
at an insufficient rate, the signal will be incorrectly processed at a
lower frequency, generating the aliasing effect [27].

Using the same setup as the first experiment, we found that, by
varying the injected frequency, the sinusoidal perturbation pattern
in Figure 3 periodically repeats at 9 kHz frequency intervals. This
behavior suggests that the induced voltage produced by IEMI injec-
tion is internally sampled with a fixed sample rate of 9 kHz as the
injected sine wave aliases to the same sinusoidal perturbation after
a complete cycle. Figure 5 shows the manipulation of the aliasing
effect by shifting the injection to produce different sinusoidal pat-
terns and, eventually, a near DC pattern. With a 3 kHz shift, we
also produce the random pattern.Based on this analysis, we believe
that the sinusoidal and random point cloud perturbations described
in Section 3 are the results of the aliasing.

4.2 Adversary Capability

We characterize the adversary’s capability based on the parameters
listed in Section 3 and real-world experiments.

Minimum Horizontal Angle.  As described in Section 3, the
injected sine wave affects all horizontal lines (along the Z axis)
and all the horizontal FOV angle (along the azimuth - XY plane) of
the 3D LiDAR. An adversary can only control the firing timing to
match with 3D LiDAR scans to affect a specific horizontal angle 6.
This angle is proportional to the LiDAR horizontal revolution time
(0/360 = t/p) where t is the time taken to scan a target region, and p
is the revolution period (as determined by the RPM). To characterize
the minimum horizontal angle (meaning the minimum region an
adversary can influence with our setup), we measure the maximum
time taken for the USRP to synchronize with the LIDAR and achieve
a successful injection. After recording 600 LiDAR revolutions, we
found a maximum latency of ~1.6 ms, corresponding to ~ 3° of
the LiDAR FOV. This result depends on the hardware latency of
the trigger circuit and USRP transmitter as well as the software
latency of the controller. We thus consider this as the minimum
attack angle achievable by the attacker in all the experiments in
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Figure 6: (Left) Mean distance displacements vs gain. (Right)
Mean sinusoidal amplitude values vs gain.

this work. We believe this value can be further reduced using more
sophisticated equipment.

Target Object Distance.  To characterize the perturbation on
the point cloud of existing obstacles at different distances dp, we
placed a flat surface as the target object at increasing distances (1
m, 2 m, 3 m, and 4 m) away from the target LiDAR in an indoor
controlled environment. We recorded 150 frames each for the no-
injection case (meaning the point cloud without the perturbation)
and during the sine wave injection at the two relevant frequencies
(960.9 and 977.4 MHz) that induce both the sinusoidal and random
perturbation. We found the resulting sinusoidal wavelength (in
the space domain) linearly increases with increasing do'. We also
found that sinusoidal amplitude remains constant with dp. We
did not observe any change in the point cloud distribution for the
random pattern, which remains constant. Based on our causality
analysis, the wavelength increases with dp because the induced
output voltage remains constant with constant gain. However, the
scale of the perturbation changes with distance (as the measured
chord length is a function of angle and object distance).

EMI Transmitter Distance. To test the effect that parameter d4
has on the perturbations, we placed a flat object at a distance of 1
m from the LiDAR and performed 25 dB gain sine wave injections
(the maximum allowed by our setup) with the antenna placed at
various distances from the LiDAR. We found that the perturbation
is still detectable (SNR above 0 dB) above 1 m from the LiDAR!.
In this experiment, we were only able to test up to 160 cm away
due to controlled space limitations. Leveraging this analysis and
EMI transmission theory (particularly the effects of near-field and
far-field injections) the attacker can estimate the EMI emission
power required for achieving further distances.

We use the maximum gain G of 25 dB in
our setup, corresponding to 2 W of EMI transmission power after
amplification (0 dB USRP gain corresponds to 50 mW). We follow
the same procedure: placing a flat object 1 m away and locating the
transmitter at 0.5 cm from the LiDAR. From our causality analysis,
we expect that increasing the gain (meaning increasing the trans-
mitted power of the EM wave) increases the induced voltage, which

IEMI Emission Power.

causes a more substantial effect on the point cloud. This experi-
ment shows that the sinusoidal pattern’s peak amplitude increases
with increasing gain while the wavelength remains constant. The
mean displacement of the random distribution also increases. We
also found that the intensity decreased (note that the intensity

Supplementary data and graphs can be found at: hitps://cpseclab.github.io/EMILidar/
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is identical in the XY and XZ planes as it is a property of each
cloud point). We hypothesize that this occurs because the higher
power injections are able to surpass the static noise threshold in the
VLP-16 [18]. Because the induced voltage falls below the legitimate
return pulse voltage, but above the noise threshold, it appears as a
low-intensity point.

4.3 Perturbation Modeling

To study the effect of the perturbations caused by the IEMI on AV
object detection models, we synthesize the perturbations measured
for the VLP-16 LiDAR. We first conducted real-world experiments
at increasing EMI signal power injected (until 25 dB gain, meaning
the maximum EMI power achievable by our hardware setup) and
increasing distances. We found a linear relationship between the
power of the injected signal and the amplitude of the resulting
interference in the point cloud (similar to previous works’ findings
on EMI injection on sensors [31]). Then, we used those data to
model the sinusoidal and random pattern distribution up to 70 dB
using Equation 1 (in Appendix B) and a uniform distribution model,
to show the attack’s consequences under more powerful injections
(see Appendix B for details).

5 EVALUATION

5.1 Evaluation on Detection Models

We synthesize the perturbations modeled in Section 4.3, on the
KITTI dataset [1], a widely used dataset for AD research that com-
prises diverse real-world driving scenes. Then we assess the effects
of the EMI perturbations on two popular state-of-art LIDAR-based
object detection models, PointPillars [32] and PointRCNN [52], to
examine the impact on object detection and classification rates for
different detection architectures. PointPillars adopts a voxel-based
approach [46] that voxelized irregular point clouds into grids with
multiple channels, forming a bird-eye view of the scene, and then
processes it using convolutional neural networks. On the other
hand, PointRCNN uses a point-based method with PointNet [45] as
its backbone and a two-stage detection process that employs point
feature vectors instead of voxelization to preserve the point cloud’s
geometric features.

5.1.1 Object Misdetection and Misclassification. In this evaluation,
we consider target objects from three different classes: pedestrian,
cyclist, and car, which are the most relevant classes for AVs in the
KITTI dataset. We consider all the pedestrian (4458) and cyclist
(1627) objects available in the dataset for our evaluation. In the case
of car obstacles, we only select the car obstacles from the test set
of the KITTI dataset (14386) to reduce the computational cost.

To evaluate the effect of the signal gain on detection models, we
first set 0 to be the horizontal span of the respective target object
and synthesize the perturbation for each obstacle independently.
We increment the gain by 1 dB increments until 70dB as we observe
it to cause a significant effect on the performance of the tested
models. We then study the effect of 6 on model performance. For
this, we set the gain to be 70 dB and increment the 0 at 3° intervals
corresponding to the minimum resolution of the perturbation in
the real world until we reach 40°. We choose 40° as the maximum 6
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since we observe it to be the maximum perturbation angle required
to cover any target object in the LIDAR FOV over the KITTI dataset.

Evaluation Metrics. We evaluate the effect of the synthesized
perturbations on LiDAR-based models using Object Detection Rate
(ODR) and Classification Rate (CLR) as metrics. We consider the
object detection of an individual object successful if the correspond-
ing prediction has an Intersection over Union (IOU) greater than
the desired threshold with respect to the ground truth. Similarly,
we consider object classification successful if the detected object
is classified as the correct object class. We perform two different
analyses based on the IOU threshold. In the first analysis, we set
the IOU threshold to 0 (WIOU). Here, if the predicted object has an
10U with respect to the ground truth greater than 0, we consider it
a successful prediction. In the second analysis, we evaluate based
on the default IOU thresholds as proposed in the corresponding
works of each model (DIOU). The DIOU values for PointRCNN are
0.7 for cars and 0.5 for cyclists and pedestrians classes [32]. The
DIOU values for PointPillars are 0.6 for cars and 0.5 for cyclists and
pedestrians classes [52].

Results and Observations. Table 1 shows object detection and
classification results for PointPillars and PointRCNN models for
WIOU and DIOU analyses. PointPillars drops at least 20% in ODR
and 30% in CLR for cyclist and pedestrian object classes. Car object
class shows only an 11% drop of ODR and CLR in WIOU analysis
and a 19% drop in DIOU analysis. PointRCNN shows a 19%, 13%, and
1% drop in pedestrian, cyclist, and car objects classes, respectively.
PointRCNN shows a poor performance in DIOU analysis relative to
PointPillars, and the ODR and CLR are further depleted with IEMI
perturbations. We believe that the robustness of the car obstacles
is due to the significantly larger size of the obstacle compared to
pedestrian and cyclist objects.

We also study the effect of the perturbation angle & on ODR for
both models. The ODR drops by 32%, 51%, and 31% in pedestrian,
cyclist, and car object detection for PointPillars in DIOU analysis.
For PointRCNN, we observe an ODR drop of 26%, 25%, and 59%
in pedestrian, cyclist, and car, respectively, in DIOU analysis. The
results visualized in Figure 7 indicate that increasing 6 beyond the
span of the target obstacle does not decrease ODR further. Figures 7
(a) and (b) show a sudden drop in the ODR with 3°, indicating that
even small perturbation angles can significantly impact the model’s
object detection. Finally, PointRCNN-based architecture has been
shown to be robust to geometric variations of the point cloud data
in previous works [69]. We hypothesize that this is the reason for
the smaller misclassification rate compared to PointPillars.

5.1.2  Object Creation Evaluation. We observe that the perturba-
tions induce False Positives (FP) in the object detection results. To
measure the effect, we synthesize both sinusoidal and random per-
turbations in the entire front view of the point cloud (80°) at 70 dB
gain over the validation set of the KITTI dataset (3769 scenes). We
then evaluate the number of fake obstacles induced by the pertur-
bations in the form of FPs and report the recall and precision values
of the model with the IEMI perturbations.

Results and Observations. = We observe that the sinusoidal
perturbations induce 8.76 FPs per frame and 7.95 FPs per sample
over the validation set of the KITTI dataset for PointPillars. For
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Figure 7: Object Detection Rates (ODR) for pedestrian at increasing perturbation angles () and 70 dB transmitted IEMI gain!.

Table 1: ODR and CLR of LiDAR-based models on WIOU and
DIOU for sinusoidal and random perturbations at 70dB gain.

Point Cloud ‘
Type | WIOU DIOU | WIOU DIOU | WIOU DIOU

Pedestrian ‘ Cyclist ‘ Car

PointPillars ODR (%) / CLR (%)

No Perturbations 81/73 46/45 88/75 74/69 89/88 77/77
Random 60/43 15/14 66/23 24/18 86/85 71/71
Sinusoidal 67/38 17/13 70/45 44/40 78/77 58/58
PointRCNN ODR (%) /CLR (%)
No Perturbations 70/51 31/26 61/43 40/26 87/86 70/40
Random 65/40 21/15 55/41 30/20 86/85 68/37
Sinusoidal 51/31 12/8 48/36 18/13 86/85 46/19
Apollo ODR (%) / CLR (%)

No Perturbations 78/57 21/21 71/44 20/15 72/66 40/38
Random 75/42 7/5 67/38 9/5 69/64 31/30
Sinusoidal 62/24 4/2 58/28 4/2 67/62 28/23

PointRCNN, the perturbations induce 4.77 and 4.97 FPs per sam-
ple. As a result, the precision (resp. recall) of PointRCNN over
the entire KITTI validation set drops from 0.33 (resp. 0.35) to 0.32
(resp. 0.30) for random perturbations and to 0.23 (resp. 0.15) for
sinusoidal perturbations. For Pointpillars, on the other hand, the
precision drops from 0.447 to 0.444 and 0.408 for random and si-
nusoidal perturbations, respectively. Meanwhile, the recall drops
from 0.776 to 0.753 and 0.719 for random and sinusoidal pertur-
bations, respectively. Note that both models exhibit low precision
even without any perturbations. Although the perturbation creates
fake obstacles, precision drops only by a small amount because the
fake obstacles do not correlate with the false positives perceived in
the no perturbation case.

5.2 Evaluation on Segmentation Models

Baidu Apollo 5.0 [6], is an open-source framework for industry-
grade AV systems adopted by several AV companies such as Chery,
Hyundai, Volvo, and Ford [3]. Apollo’s segmentation model filters
the region of interest from the point cloud (typically 60 m), maps
the information into a 512 X 512 grid, and extracts feature informa-
tion for each cell. A deep neural network takes this feature matrix
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and gives the probability of each cell belonging to an obstacle. Can-
didate objects are then selected from these probabilities based on
object scores, object height, and classification scores. For evaluating
misclassification rates and object creation of Apollo, we use the
same metrics of Section 5.1.

Impact on Object Segmentation and Classification. We first
study the impact of the IEMI perturbations on the Apollo model
for the segmentation and classification of the samples described
in Section 5.1. For this analysis, we only consider a 70 dB gain to
evaluate the maximum effect caused by the perturbations, and 0.5 as
the DIOU values for cars, cyclists, and pedestrians classes [6] Similar
to Section 5.1, we consider a perturbation angle wide enough to
cover the corresponding target obstacle to studying the impact of
gain variation. We then study the effect of the perturbation angle 6
on segmentation with 3° increments until 40°.

Results and Observations. Table 1 shows the ODR and CLR
results of Apollo segmentation with sinusoidal and random pertur-
bations. The DIOU analysis shows a drop in ODR to less than 5%
in pedestrian and cyclist obstacle classes and 30% in car obstacle
classes. The WIOU shows a maximum drop of 16%. The CLR rate,
however, drops below 30% for all the obstacle classes.

The results demonstrate that the ODR of the segmentation model
declines gradually with increasing 0, unlike PointPillars and PointR-
CNN, as shown in Figure 7. While ODR for car, cyclist, and pedes-
trian obstacle classes drop to a minimum of 67%, 58%, and 62% in
gain analysis, the ODR for the same classes drops to 39%, 19%, and
16%, respectively at 40° perturbation angle. Object detection models
extract features from local sub-parts of the point cloud individually.
Segmentation models, on the other hand, annotate the scene point
by point, giving more granular information about the scene. We hy-
pothesize that this makes the segmentation model more susceptible
to our EMI perturbations in the region around the target obstacle.

Impact on Object Creation. We study the impact of the per-
turbations on inducing new objects into the segmentation model,
measuring the number of false positives introduced. To do this, we
synthesize the perturbations in the entire front view of the point
cloud with a 70 dB gain for the KITTI validation set, similar to
Section 5.1.2. The precision for Apollo segmentation drops from
0.28 to 0.18 for random perturbations and 0.09 for sinusoidal pertur-
bations. On the other hand, the recall drops from 0.58 to 0.55 and
0.52 for sinusoidal and random perturbations. The drop in precision
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Figure 8: Object Detection Rates for AVOD (left) and Frustum-
ConvNet (right). Results for 500 random samples per object
class with synthesized perturbations at 70 dB gain.

is more significant than that in recall indicating that the rate of
fake obstacle creation is high.

5.3 Sensor Fusion Evaluation

Camera-LiDAR sensor fusion models extract features from each
of the sensors used and allow them to complement each other to
improve the accuracy of 3D object detection. This analysis shows
that the perturbations caused by the IEMI injection deteriorate the
performance of state-of-the-art sensor fusion models. We evaluate
two popular camera-LiDAR sensor fusion architectures: AVOD [30]
and Frustum-ConvNet [62]. AVOD is a feature-level fusion model
that extracts feature maps from RGB images from cameras and BEV
images of the LIDAR individually and then combines them. Frustum-
ConvNet is a cascaded semantic-level fusion model that creates
frustum-level features on the LiDAR point cloud from each region
proposal from the camera image. AVOD and Frustum-ConvNet are
highly representative of state of the art and have been used in prior
works to evaluate attacks [8, 19].
Methodology. For this analysis, we randomly select 500 objects
for each of the cyclist, pedestrian, and car classes from the valida-
tion set of the KITTI dataset. We then synthesize perturbations on
the LiDAR point cloud, as discussed in Section 4.3. Similar to the
synthesized evaluation in Section 5.1, we set 8 to be the horizontal
span of the target object and synthesize the perturbations for each
object corresponding to a 70 dB signal gain. We do not perturb or
alter the input images to the fusion models.
Evaluation Metrics. We consider ODR and CLR as a metric to
evaluate the effect of perturbations on sensor fusion models. Here,
we consider the default IOU thresholds for each model (0.7 for car
and 0.5 for pedestrian and cyclist obstacles for both models).
Results and Observations. Figure 8 shows the classification rates
for the two sensor fusion models when injecting the sinusoidal and
random perturbations for pedestrian, cyclist, and car classes. The
perturbations drop the ODR below 50% for pedestrian and cyclist
object classes in AVOD and pedestrian and cyclist object classes
in Frustum-ConvNet. The ODR for the car object class in AVOD
and the cyclist object class in Frustum-ConvNet show robustness
against the perturbations.

The CLR for both models follows a similar trend as ODR with
a drop below 50% for pedestrians and cyclists in AVOD. No other
scenarios in Frustum-ConvNet show misclassifications, indicating
that the CLR remains the same as ODR. This happens because the
model’s region proposals for object detection come from camera
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Figure 9: IOU of predicted pedestrian objects from PiFiNet at
2,4, and 6 meters away from the VLP-16 LIDAR for sinusoidal
(left) and random (right) perturbation injection.

image data that is not perturbed by our injection. Our results show
a significant deterioration of the model performance on pedestrian
and cyclist obstacle classes in AVOD and pedestrian and car ob-
stacles in Frustum-ConvNet. Furthermore, the perturbation signal
generates new obstacles in the sensor fusion models. For AVOD,
the precision drops by a maximum of 0.43 to 0.33, and the recall
drops from 0.56 to 0.45. For Frustum-ConvNet, the precision drops
from 0.69 to 0.52 while the recall from 0.46 to 0.32.

5.4 Real World Scenario

We further conduct a proof-of-concept experiment in a real-world
scenario, by injecting the EMI signal into a Velodyne VLP-16 LiDAR.
The antenna was placed at 0.5 cm from the victim LiDAR. Since the
LiDAR has only 16 channels, the detection models of Section 5.1
cannot be used, as they have been trained on the KITTI dataset,
which contains point cloud samples collected from a 64-channel
Velodyne HDL-64E. Hence, we use PiFiNet [24], an attentive pil-
lar network-based model trained on the JRDB dataset [36]. The
JRDB Dataset is a large-scale multi-modal dataset collected from a
social mobile manipulator JackRabbot [55]. This dataset contains
predominantly indoor scenarios and it does not contain any vehicle
classes which makes it suitable for our controlled scenario. We thus
conduct our experiments using a pedestrian obstacle.
Methodology. We test the PiFiNet model under our IEMI injection
with the target pedestrian obstacle at 2, 4, and 6 m away from the
victim LiDAR in a static scenario. We observe that beyond 6 m,
in our real-world setup, the PiFiNet model could not detect the
target pedestrian obstacle even without any injection. This could
be because, at far distances, the point cloud formed by VLP-16
becomes sparse. Considering this, we only analyze near LiDAR
detection scenarios. We manually annotate the ground truth 3D
bounding box around the pedestrian obstacle. We increment the
transmitted signal gain in 1 dB intervals and measure the [OU metric
of the predicted bounding box with respect to ground truth. We
repeat the experiment for frequencies corresponding to sinusoidal
and random perturbations. We limit the gain to 25 dB for safety.
Results and Observations. Figure 9 shows the results of PiFiNet
for pedestrian object detection with EMI signal injection. We av-
erage the IOU values of 25 VLP-16 frames for each pedestrian
position and signal gain. The random perturbations in the LiDAR
frame correspond to a sharp drop in IOU for smaller gain values.
The sinusoidal perturbations lead to a gradual drop in IOU with
increasing gain, similar to what was observed for PointPillars. We
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hypothesize this similarity is because both PointPillars and PiFiNet
use a voxel-based method to form voxelized grids of multiple chan-
nels. The results indicate that at a 2 m target pedestrian distance,
the IOU of the object drops below 0.5 for only 2 and 14 dB gains in
random and sine signal injection, respectively. The average IOU at
a 2 m pedestrian distance drops from 0.56 to 0.37 with a standard
deviation (STD) of 0.04 over 20 frames. For 4 m and 6 m pedestrian
obstacle distances, the average IOU drops from 0.38 and 0.43 to
0.22 with STD of 0.09 and 0.13. These results confirm that signal
injection at higher gains leads to a greater IOU drop.

We also found that the injection induces fake obstacles into real-
world data. The sinusoidal perturbations create 5.1 FPs per frame,
while random perturbations create 6.3 FPs per collected frame. This
reduces the precision (resp. recall) of the model from 0.33 (resp.
0.68) to 0.16 (resp. 0.56) for sinusoidal perturbations and to 0.13
(resp. 0.48) for random perturbations.

6 DEFENSES

6.1 Existing Defenses

6.1.1 Hardware Defenses. An obvious defense to prevent EMI sig-
nal injection is shielding. However, active shielding can cause in-
accurate output in sensors due to parasitic interference [48, 54].
Shielding enclosures and EMI materials such as Mu-Metal [13] in-
stead can impact the LiDAR rotation speed due to added weight.
Enclosure-based shielding is also limited by the need for gaps near
the photodiodes and laser diodes to allow emitting and receiving
pulses. Finally, shielding can only attenuate the interference [50],
and an EMI signal with sufficient gain can still be able to penetrate
through the shielding and affect amplifiers, as demonstrated in
previous work [31, 60].

Tu et al. [61] propose detecting EMI injection by using a dummy
sensor. During IEMI injection, the offset in the output of the dummy
sensor can be used to retrieve the legitimate sensor data from the
original sensor. However, the use of a dummy sensor would increase
the size and cost of the LIDARs. Moreover, since the EMI signal
can affect differently different circuit parts, the effectiveness of
this defense strategy might vary considerably based on the EMI
injection directionality.

6.1.2  Point Cloud Denoising. The IEMI signal injection adds per-
turbations to the LiDAR point cloud data. Thus, a possible way to
mitigate its effects is to reconstruct the original point cloud using
denoising models [35, 43]. We study the Score Based (SB) denoising
model [35], which uses score matching to estimate unconditional
distributions in data. SB outperforms previous state-of-art denoising
models [25, 43] under various noise signals (e.g., isotropic Gaussian
noise, and simulated LiDAR noise).

Baseline Model Methodology. = We use the training pipeline
provided by SB to train the model on the KITTI dataset. In particular,
following the model configuration, 1) we only consider the objects
(e.g., cars, pedestrians, cyclists) in the 40° FOV in front of the vehicle,
and 2) the cloud points were reduced to 10,000 points using the
farthest point down sampling [74]. Finally, we include uniform
random noise in the samples to train the model. We call this the
reference Baseline Model.

Results and Observations. We evaluate the model’s denois-
ing capability on the same test samples used in Section 5.3. Since
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Table 2: Object Detection Rates (ODR) for No Noise, Baseline
Model on Uniform Random Noise (Baseline + U), Baseline
Model on IEMI perturbation (Baseline + IEMI), variation in
ODR for Sinusoidal Model with sinusoidal IEMI perturbation
(Sin. Mod. Var.), and variation in ODR for Random Model
with random IEMI perturbation (Rand. Mod. Var.)

Class No Baseline | Baseline | Sin. Mod. | Rand. Mod.
a Noise +U + IEMI Var. Var.
PointPillars ODR (%) / CLR (%)
Pedestrian | 78/57 78/56 472 -31/-12 6/-3
Cyclist 84/77 82/77 46/7 -19/-40 1/-9
Car 98/96 97/96 67/66 -28/-30 -29/-28
PointRCNN ODR (%) / CLR (%)
Pedestrian | 81/44 81/44 36/5 6/-3 -15/-15
Cyclist 65/47 64/45 40/36 5/7 -15/-5
Car 88/87 88/87 42/41 6/4 -39/-40

denoising aims to improve the object detection performance, we
evaluate the denoising model using Object Detection Rate (ODR)
and CLassification Rate (CLR) with WIOU. Table 2 shows the re-
sulting ODR of PointPillars and PointRCNN on the denoised point
clouds. The rates show that the baseline model on uniform random
noise (Baseline + U) could reconstruct the original point cloud from
the uniform noise perturbations. This demonstrates that the model
can denoise point clouds from the KITTI dataset.

We then evaluate the performance of the baseline model on
our synthesized IEMI perturbations (Baseline + IEMI). The results
in Table 2 show that the ODR of the baseline model significantly
decreases with IEMI perturbations indicating that the model is
insufficient to reconstruct the point clouds stably.

6.1.3  Adversarial Denoising. To improve the denoising results, we
perform adversarial training of the SB model using our IEMI per-
turbations (random and sinusoidal) following the same method-
ology and metrics as the baseline model evaluation. We call the
resulting models the Sinusoidal Model and the Random Model. Our
evaluation considers the denoising effectiveness at the maximum
synthesized adversarial capability (70 dB gain).

Results and Observations. Table 2 demonstrates how the ODR
and CLR vary on Sine (Sin. Mod. Var.) and Random (Rand. Mod.
Var.) denoising models. The evaluation shows that the best-case
results increase the ODR only by 6% and the CLR by 7% out of all
the scenarios. We hypothesize this is because current denoising
models [25, 35, 43] are designed to consider 1-2 cm cloud point
perturbations. While IEMI injection considers larger displacements.

6.1.4  Subsampling. 3D point subsampling methods might be used
to improve the robustness of models under noisy data and adversar-
ial attacks [34, 38, 68]. However, our EMI injection perturbs all the
cloud points in the affected region, reducing the effectiveness of sub-
sampling. We verify our hypothesis applying such algorithm [68]
on 300 random samples (100 cars, 100 pedestrians, 100 cyclists from
the KITTI dataset). For PointRCNN, the object detection rate in-
creased by 8% at maximum, for Apollo the data show a degradation
(maximum 21% drop). Finally, for PointPillars, the object detection
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rate increased only for the pedestrians class by 3% maximum (we
measure a drop for the remaining classes).

6.2 Proposed Defenses

6.2.1 Ground Point Based Detection. LIDAR ground filtering in
AV Perception systems discards the ground cloud points from the
LiDAR FOV outside the Region-of-Interest (ROI), in front of the
vehicle’s trajectory. Since the IEMI perturbations affect the entire
point cloud region within the perturbation angle 0, it also perturbs
the ground points in that region. Our methodology extracts the
ground points of the LiDAR scene (e.g., using a ground point seg-
mentation model integrated with Apollo-based Perception systems)
and analyzes them to detect potential IEMI injection.

Evaluation Method and Results.

Our approach assumes that the minimum affected 6 is 3°, con-
sistent with the adversary’s capability. We consider the ROI to be
an 8 m distance in the front view of the LiDAR. Then, we calculate
the SNR for the Z-coordinates of all the cloud points in the ROL
During the injection, we expect the SNR of the ground points to
show a spike by scanning for increasing horizontal angles 6. We
evaluated our methodology over the entire KITTI validation set and
observed a 94.35% TNR and 98.74% TPR for binary IEMI detection.
Furthermore, the methodology could predict the correct 6 value
with a 78.62% accuracy. The average runtime of this method over
the KITTI dataset is 14.4 ms/scene with Intel Core i7-10870H CPU
(2.2GHz) and 32GB RAM.

6.2.2  Point Intensity Based Detection. Our analysis shows that for
high gain values (above 20 dB), the average intensity of the points in
the perturbation region drops by almost five times in the case of the
Velodyne LiDAR sensor family due to the static calibration settings
of the sensor [26]. Thus a faster and simpler alternative defense
approach can leverage this factor to detect potential injection.

Using the same methodology as the in-ground point-based de-
tection, the potential IEMI injection is detected if a region’s average
point intensity is below a given threshold (which we set to 0.1).
This methodology achieves a 100% TNR and TPR over the entire
KITTI dataset. The strategy also predicted the perturbation angle 0
with 100% accuracy. The average runtime of this method with the
same Intel machine is 0.49 ms/scene.

7 OBSERVATIONS AND LIMITATIONS

Safety and Ethics Considerations.  All the experiments in this
work were conducted in a controlled environment using shields and
Faraday Cages. In addition, all researchers were trained regarding
EMI safety procedures and regulations [2]. We are in the process of
notifying the LIDAR manufacturer companies about our findings.

Solid-State LiDARs.  Although our proof-of-concept analysis
is based on a spinning TOF 3D LiDAR (VLP-16), our experiments
of Section 4.1 show this vulnerability affects the receiving part
of ToF circuits. We thus believe that solid-state LIDARs that use
the same basic functioning (TOF) as spinning LiDARSs [7, 14] can
be also affected by our IEMI. However, the adversarial control of
the affected region (i.e., the horizontal angle) will depend on the
scanning methodology used by the solid-state LIDAR. We leave this
analysis as future work.
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Point Cloud Ring. We observed that the VLP-16 LiDAR produces
an external ring of cloud points at 50 m with the LiDAR location for
high-gain injections. We limited our proof-of-concept evaluation to
the linear behavior of the VLP-16 since the AV perception model’s
ROl is generally relatively closer (a max of 44 m in KITTI).
Limitations and Future Work. Our setup is limited to static
scenarios evaluation, and we have not conducted end-to-end evalu-
ations on real autonomous vehicles. We discuss the challenges and
practicality of our attack under real-world constraints in Appen-
dix A. Another limitation is that we only study and characterize
the perturbation on one 3D and one 2D LiDAR. However, our pre-
liminary analysis demonstrates the severity of the threat for TOF
circuits, demanding future investigations.

8 RELATED WORK

Injection attacks on sensors have been performed using various out-
of-band signals, including acoustic [71], optical [56], and EMI [31,
60]. These signals have been exploited also to affect embedded
systems, including medical devices [41]. Several works [8, 11, 57]
uses laser pulses to spoof fake cloud points on target LIDARs to
create not-existent obstacles. Hallyburton et al. [19] use a similar
methodology to attack camera-LiDAR-based sensor fusion models.
Unlike the aforementioned works, EMI perturbations do not require
high aiming precision.

Recent attack methodologies have synthesized adversarial ob-
jects to elude object detection in ML models [12, 59, 76]. Xiang
et al. [65] initially showed that 3D point clouds can be vulnera-
ble to projected adversarial perturbations. Tu et al. [59] create
3D-printed adversarial structures to avoid detection while, Cao et
al. [10] and Abdelfattah et al. [4] show that such attacks can also
evade camera-LiDAR fusion models.

9 CONCLUSIONS

Our work identifies a new class of LiDAR sensors and TOF cir-
cuit vulnerabilities resulting in manipulations of object detection
algorithms used in AVs. Our evaluation results demonstrate the
effectiveness of the induced perturbations using EM waves against
two object detectors PointPillars and PointRCNN and one industry-
grade detector Apollo. While it is clear that EMI injection can cause
Perception and fusion models to fail, it is not clear the extent of this
threat over AV technology. In this work, we begin to characterize
this threat to understand how better address it.
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Figure 10: (Left) Remote signal injection at various measure-
ment points (no injection, a PCB junction (1), a voltage regula-
tor (2), and two internal operational amplifiers (3-4)). (Right)
Before and during the IEMI injection at §=45° (VLP-16).

A ADVERSARIAL SETUP DETAILS

To perturb the point cloud in a specific target region of the LIDAR’s
FOV, the attacker needs to synchronize with the spinning LiDAR
transmitted pulses. In our methodology (used in previous works for
laser injection attacks against LIDAR sensors [8, 12]), a photodiode
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with a wide FOV is used to capture LiDAR pulses and activate the
IEMI injection in the window of time when the LiDAR scans a
particular region (horizontal angle). To target a specific object in
the LIDAR FOV, the attacker can use a tracking system to track the
position of moving objects with respect to the victim AV [9].
Aiming to a Moving Vehicle.  Attacking a moving vehicle
from the roadside involves tracking the victim LiDAR and aiming
the antenna toward the sensor location. Prior research [8, 9] has
shown that laser-based spoofing attacks using our same synchro-
nization methodology are feasible against moving vehicles, despite
the LiDAR scan signal becoming sparser at greater distances. To
overcome this, the team used multiple photodiodes and a robot
turret. It’s worth noting that the precision required for aiming a
directional antenna is lower than that for a focused laser beam, as
the antenna’s transmission coverage area is wider. Additionally, a
directional antenna with high coverage width can provide more
stable injection at larger distances.

B PERTURBATION MODELING DETAILS

Modeling Sinusoidal Perturbations.
sinusoidal perturbation using the following system of equations of
a typical sine wave:

We characterize the

y=Ay-cos(2-7- x/Ay)

1)
z2=Az-cos(2-m-x/z)

where x, y, and z represent Cartesian coordinates of a given point
in the point cloud in the 3D space, the As are the wavelengths of the
sinusoidal pattern in a given plane, and the As are the sinusoidal
amplitude measured in a given plane. Note that we model the
perturbation as a sinusoidal wave in the time domain, while in
our case, it represents a spatial displacement of the cloud points
in each vertical line. We characterize the change in point intensity
values based on the relation. The amplitude A is then modeled as
a linear function of the gain G, as A = a - G + ff with a = 0.00032
and f = 0.00228 for the XZ plane and a = 0.0019 and § = 0.0012
for the XY plane as derived from our empirical experiments. In the
same fashion, A is defined as a linear function of the target object
distance dp, as A =y - dp + ¢, where y = 0.07 and ¢ = 0.001 for the
XZ plane and y = 0.07 and ¢ = 0.0004 for the XY plane.
Modeling Random Perturbations.
perturbations with respect to point cloud distributions within a
certain range AR for each LiDAR horizontal point cloud line, as
shown in Figure 3 (Right). Based on our empirical experiments in
Section 4.2, the random point cloud displacement and range only
depend on the injection gain G. We thus model such displacement
AD as a standard deviation with respect to the original point cloud
location before the EMI injection as AD = a - G +  with a = 0.0005
and f = 0.15 for the XY plane and o = 0.0003 and # = 0.13 for
the XZ plane. AR =y - G + ¢ models the affected range along each
horizontal point cloud line. Where, for the XY plane, y = 0.558
and ¢ = 1.847 for maximum displacement and y = —0.298 and ¢ =
—0.421 for minimum displacement. The maximum displacement in
the XZ plane is given by y = 0.121 and ¢ = 0.364, and the minimum
displacement by y = —0.082 and ¢ = —0.758. Similar to sinusoidal
perturbations, we characterize the change in point intensity values
based on our empirical experiments.

We characterize the random



