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we refer to these perturbations as the sinusoidal perturbation and

random perturbation. We use them as references for the adversarial

capability evaluation in Section 4.2, and evaluate their impact on

AV perception models and fusion systems in Section 5.

3.2 Threat Model

We consider an adversary that generates an electromagnetic field

in the vicinity of an AV which uses data from a LiDAR sensor to

detect and classify objects on the road. The generated electromag-

netic field induces a voltage on the LiDAR’s internal TOF circuits,

creating perturbations in the resulting point cloud (see Figure 1).

This perturbation may alter the AV perception system’s behavior,

e.g., detecting a pedestrian instead of a car or not detecting any ob-

stacle in the affected area, which can result in dangerous automatic

maneuvering of the AV.
Attacker Goals. We consider two potential goals for the adver-

sary: (i) affect a specific region of space in the LiDAR FOV or (ii)

target and track a specific obstacle in the LiDAR FOV. In both cases,

the adversary aims to induce misclassification or misdetection of

one or more obstacles already present in the FOV.
Attacker Capability and Assumptions. To exploit this vul-

nerability, an adversary can consider the following parameters:

the distance between the adversary and the victim LiDAR (3�),

the distance between victim LiDAR and the target obstacle (3$ ),

affected horizontal FOV angle (perturbed angle) (\ ), the injected

IEMI frequency (5 ), and IEMI transmission gain (G). We assume the

adversary can control the output gain � of the IEMI transmitter,

which is linearly proportional to the output transmission power,

and the affected region in the LiDAR FOV or simply a horizontal

angle \ . This control can be achieved by synchronizing the trans-

mitted EMI signal with the rotation of the LiDAR, as demonstrated

in previous works [8, 12, 57] (see Appedix A for details). From our

experiments on the 3D spinning LiDAR (VLP-16) we found that

the adversary cannot perturb individual rows (meaning affecting a

specific vertical angle of the LiDAR FOV). This is due to the fact that

the interference affects all the TOF circuits stack of the 3D sensor in

the field region covered by the transmitting antenna range. Thus we

assume this same constraint in our analysis. We also assume that

the attacker can discover the vulnerable frequencies by acquiring

the same type of LiDAR sensor used by the victim AV. Based on

these assumptions, we characterize the key parameter ranges in

Section 4.2.
Previous Knowledge. Our analysis focuses on TOF spinning

LiDARs. The adversary can acquire information about the target Li-

DAR from publicly available sources (e.g., manuals and datasheets).

The adversary can track the approximate position of the target

obstacle to aim the attack in the required FOV of the victim LiDAR

using basic tracking algorithms [9]. We also assume that the at-

tacker has knowledge of the type of machine learning model used

by the victim AV Perception module. We consider this assumption

reasonable since attackers can leverage information from publicly

available sources released by companies [6] (e.g., open source code

base) or obtain white-box access by additional engineering efforts

to reverse engineer the model [39, 40, 73]. The attacker does not

require access to the victim’s LiDAR sensor or tamper with the AV.
Attack Scenario. As in previous works [8, 12], we assume the

attacker can hide the attack equipment in a car or place it near the

road, as depicted in Figure 1. This is possible because EMI injection

does not require precise aiming and can pass through walls and

glass. Note that in this work, we only characterize single-scene

static scenarios as proof-of-concept analysis.

4 VULNERABILITY CHARACTERIZATION

4.1 TOF Circuit Susceptibility to IEMI

As a preliminary study to understand the cause of the interference

effect, we place the VLP-16 LiDAR in a controlled area with no

obstacles and no legitimate return echoes.

The rotation speed of the LiDAR is set at 300 RPM and dual

mode setting to ensure the maximum horizontal resolution [26].

For the IEMI injection, we use an N210 USRP [47] with a ZHL-

5W-202-S+ amplifier [37] and a trapezoidal directional antenna. A

photodetector and a Raspberry Pi controller allow to control of the

affected region (defined by the horizontal angle \ ) in the LiDAR

FOV, as shown in Figure 2. We use this setup for all the experiments

in this work with the VLP-16 LiDAR. The safety considerations

regarding the performed injection are described in Section 7.

As shown in Figure 10 in the Appendix, at increasing transmit-

ting power, the IEMI generates cloud points in the targeted area.

Since the transmitted laser pulses never return, we conclude that

the receiver part of the TOF circuits of the LiDAR is likely to be

susceptible to the EMI waves.

Off-the-shelf APD Module. To confirm the aforementioned

hypothesis that the receiving circuit is susceptible to our IEMI, we

analyze an off-the-shelf Hamamatsu C12703-01 APD module [20].

This high-sensitivity photodetector is typically employed in TOF

receiving circuitry, as described in Section 2.1.

To achieve fine-grade precision in the injection, we built a flying

probe [72] and performed a frequency sweep ranging from 400–

1000 MHz to find potential susceptible frequencies. During this

experiment, we also place a Faraday pouch on the back of the board

to eliminate the IEMI effect on cables and power connection.

As per our hypothesis, a sine wave IEMI injection at 31 mW and

550 MHz produces an output voltage variation. We then placed the

tip of the probe in four different areas of the circuit corresponding

to specific hardware components within the circuit (a measurement

junction (1), a voltage regulator (2), and two internal operational

amplifiers (3-4)) to identify potential susceptible components, as

shown in Figure 10 in the Appendix. The measured average output

voltage for 300 captures has the highest value when the injected

EMI wave is closer to the two amplifiers, suggesting they are most

significantly impacted. These results also confirm findings of pre-

vious work on the susceptibility of operational amplifiers to EMI

injection [60]. Furthermore, the low vulnerable frequency compared

to the board’s spectral response range (minimum 300 GHz [20])

suggests that electromagnetic induction, rather than the photo-

electric effect (which requires a minimum frequency to generate

current [53]), causes the output variation. Thus, the vulnerability

is not dependent upon the wavelength the LiDAR uses.

Aliasing Effect. As shown in Figure 2, the amplifier circuit

output is then fed to the ADC for digital processing. Since the APD

module does not provide an ADC, we explore the presence of an

aliasing effect in the VLP-16 LiDAR to understand whether the

ADC contributes to the observed perturbation patterns.
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is identical in the XY and XZ planes as it is a property of each

cloud point). We hypothesize that this occurs because the higher

power injections are able to surpass the static noise threshold in the

VLP-16 [18]. Because the induced voltage falls below the legitimate

return pulse voltage, but above the noise threshold, it appears as a

low-intensity point.

4.3 Perturbation Modeling

To study the effect of the perturbations caused by the IEMI on AV

object detection models, we synthesize the perturbations measured

for the VLP-16 LiDAR. We first conducted real-world experiments

at increasing EMI signal power injected (until 25 dB gain, meaning

the maximum EMI power achievable by our hardware setup) and

increasing distances. We found a linear relationship between the

power of the injected signal and the amplitude of the resulting

interference in the point cloud (similar to previous works’ findings

on EMI injection on sensors [31]). Then, we used those data to

model the sinusoidal and random pattern distribution up to 70 dB

using Equation 1 (in Appendix B) and a uniform distribution model,

to show the attack’s consequences under more powerful injections

(see Appendix B for details).

5 EVALUATION

5.1 Evaluation on Detection Models

We synthesize the perturbations modeled in Section 4.3, on the

KITTI dataset [1], a widely used dataset for AD research that com-

prises diverse real-world driving scenes. Then we assess the effects

of the EMI perturbations on two popular state-of-art LiDAR-based

object detection models, PointPillars [32] and PointRCNN [52], to

examine the impact on object detection and classification rates for

different detection architectures. PointPillars adopts a voxel-based

approach [46] that voxelized irregular point clouds into grids with

multiple channels, forming a bird-eye view of the scene, and then

processes it using convolutional neural networks. On the other

hand, PointRCNN uses a point-based method with PointNet [45] as

its backbone and a two-stage detection process that employs point

feature vectors instead of voxelization to preserve the point cloud’s

geometric features.

5.1.1 Object Misdetection and Misclassification. In this evaluation,

we consider target objects from three different classes: pedestrian,

cyclist, and car, which are the most relevant classes for AVs in the

KITTI dataset. We consider all the pedestrian (4458) and cyclist

(1627) objects available in the dataset for our evaluation. In the case

of car obstacles, we only select the car obstacles from the test set

of the KITTI dataset (14386) to reduce the computational cost.

To evaluate the effect of the signal gain on detection models, we

first set \ to be the horizontal span of the respective target object

and synthesize the perturbation for each obstacle independently.

We increment the gain by 1 dB increments until 70dB as we observe

it to cause a significant effect on the performance of the tested

models. We then study the effect of \ on model performance. For

this, we set the gain to be 70 dB and increment the \ at 3◦ intervals

corresponding to the minimum resolution of the perturbation in

the real world until we reach 40◦. We choose 40◦ as the maximum \

since we observe it to be the maximum perturbation angle required

to cover any target object in the LiDAR FOV over the KITTI dataset.

Evaluation Metrics. We evaluate the effect of the synthesized

perturbations on LiDAR-based models using Object Detection Rate

(ODR) and Classification Rate (CLR) as metrics. We consider the

object detection of an individual object successful if the correspond-

ing prediction has an Intersection over Union (IOU) greater than

the desired threshold with respect to the ground truth. Similarly,

we consider object classification successful if the detected object

is classified as the correct object class. We perform two different

analyses based on the IOU threshold. In the first analysis, we set

the IOU threshold to 0 (WIOU). Here, if the predicted object has an

IOU with respect to the ground truth greater than 0, we consider it

a successful prediction. In the second analysis, we evaluate based

on the default IOU thresholds as proposed in the corresponding

works of each model (DIOU). The DIOU values for PointRCNN are

0.7 for cars and 0.5 for cyclists and pedestrians classes [32]. The

DIOU values for PointPillars are 0.6 for cars and 0.5 for cyclists and

pedestrians classes [52].

Results and Observations. Table 1 shows object detection and

classification results for PointPillars and PointRCNN models for

WIOU and DIOU analyses. PointPillars drops at least 20% in ODR

and 30% in CLR for cyclist and pedestrian object classes. Car object

class shows only an 11% drop of ODR and CLR in WIOU analysis

and a 19% drop in DIOU analysis. PointRCNN shows a 19%, 13%, and

1% drop in pedestrian, cyclist, and car objects classes, respectively.

PointRCNN shows a poor performance in DIOU analysis relative to

PointPillars, and the ODR and CLR are further depleted with IEMI

perturbations. We believe that the robustness of the car obstacles

is due to the significantly larger size of the obstacle compared to

pedestrian and cyclist objects.

We also study the effect of the perturbation angle \ on ODR for

both models. The ODR drops by 32%, 51%, and 31% in pedestrian,

cyclist, and car object detection for PointPillars in DIOU analysis.

For PointRCNN, we observe an ODR drop of 26%, 25%, and 59%

in pedestrian, cyclist, and car, respectively, in DIOU analysis. The

results visualized in Figure 7 indicate that increasing \ beyond the

span of the target obstacle does not decrease ODR further. Figures 7

(a) and (b) show a sudden drop in the ODR with 3◦, indicating that

even small perturbation angles can significantly impact the model’s

object detection. Finally, PointRCNN-based architecture has been

shown to be robust to geometric variations of the point cloud data

in previous works [69]. We hypothesize that this is the reason for

the smaller misclassification rate compared to PointPillars.

5.1.2 Object Creation Evaluation. We observe that the perturba-

tions induce False Positives (FP) in the object detection results. To

measure the effect, we synthesize both sinusoidal and random per-

turbations in the entire front view of the point cloud (80◦) at 70 dB

gain over the validation set of the KITTI dataset (3769 scenes). We

then evaluate the number of fake obstacles induced by the pertur-

bations in the form of FPs and report the recall and precision values

of the model with the IEMI perturbations.

Results and Observations. We observe that the sinusoidal

perturbations induce 8.76 FPs per frame and 7.95 FPs per sample

over the validation set of the KITTI dataset for PointPillars. For
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(a) PointPillars Pedestrian
(b) PointRCNN Pedestrian (c) Apollo Pedestrian

Figure 7: Object Detection Rates (ODR) for pedestrian at increasing perturbation angles (\ ) and 70 dB transmitted IEMI gain1.

Table 1: ODR and CLR of LiDAR-based models on WIOU and

DIOU for sinusoidal and random perturbations at 70dB gain.

Point Cloud

Type

Pedestrian Cyclist Car

WIOU DIOU WIOU DIOU WIOU DIOU

PointPillars ODR (%) / CLR (%)

No Perturbations 81/73 46/45 88/75 74/69 89/88 77/77

Random 60/43 15/14 66/23 24/18 86/85 71/71

Sinusoidal 67/38 17/13 70/45 44/40 78/77 58/58

PointRCNN ODR (%) /CLR (%)

No Perturbations 70/51 31/26 61/43 40/26 87/86 70/40

Random 65/40 21/15 55/41 30/20 86/85 68/37

Sinusoidal 51/31 12/8 48/36 18/13 86/85 46/19

Apollo ODR (%) / CLR (%)

No Perturbations 78/57 21/21 71/44 20/15 72/66 40/38

Random 75/42 7/5 67/38 9/5 69/64 31/30

Sinusoidal 62/24 4/2 58/28 4/2 67/62 28/23

PointRCNN, the perturbations induce 4.77 and 4.97 FPs per sam-

ple. As a result, the precision (resp. recall) of PointRCNN over

the entire KITTI validation set drops from 0.33 (resp. 0.35) to 0.32

(resp. 0.30) for random perturbations and to 0.23 (resp. 0.15) for

sinusoidal perturbations. For Pointpillars, on the other hand, the

precision drops from 0.447 to 0.444 and 0.408 for random and si-

nusoidal perturbations, respectively. Meanwhile, the recall drops

from 0.776 to 0.753 and 0.719 for random and sinusoidal pertur-

bations, respectively. Note that both models exhibit low precision

even without any perturbations. Although the perturbation creates

fake obstacles, precision drops only by a small amount because the

fake obstacles do not correlate with the false positives perceived in

the no perturbation case.

5.2 Evaluation on Segmentation Models

Baidu Apollo 5.0 [6], is an open-source framework for industry-

grade AV systems adopted by several AV companies such as Chery,

Hyundai, Volvo, and Ford [3]. Apollo’s segmentation model filters

the region of interest from the point cloud (typically 60 m), maps

the information into a 512 × 512 grid, and extracts feature informa-

tion for each cell. A deep neural network takes this feature matrix

and gives the probability of each cell belonging to an obstacle. Can-

didate objects are then selected from these probabilities based on

object scores, object height, and classification scores. For evaluating

misclassification rates and object creation of Apollo, we use the

same metrics of Section 5.1.

Impact on Object Segmentation and Classification. We first

study the impact of the IEMI perturbations on the Apollo model

for the segmentation and classification of the samples described

in Section 5.1. For this analysis, we only consider a 70 dB gain to

evaluate the maximum effect caused by the perturbations, and 0.5 as

the DIOU values for cars, cyclists, and pedestrians classes [6] Similar

to Section 5.1, we consider a perturbation angle wide enough to

cover the corresponding target obstacle to studying the impact of

gain variation. We then study the effect of the perturbation angle \

on segmentation with 3◦ increments until 40◦.

Results and Observations. Table 1 shows the ODR and CLR

results of Apollo segmentation with sinusoidal and random pertur-

bations. The DIOU analysis shows a drop in ODR to less than 5%

in pedestrian and cyclist obstacle classes and 30% in car obstacle

classes. The WIOU shows a maximum drop of 16%. The CLR rate,

however, drops below 30% for all the obstacle classes.

The results demonstrate that the ODR of the segmentation model

declines gradually with increasing \ , unlike PointPillars and PointR-

CNN, as shown in Figure 7. While ODR for car, cyclist, and pedes-

trian obstacle classes drop to a minimum of 67%, 58%, and 62% in

gain analysis, the ODR for the same classes drops to 39%, 19%, and

16%, respectively at 40◦ perturbation angle. Object detection models

extract features from local sub-parts of the point cloud individually.

Segmentation models, on the other hand, annotate the scene point

by point, giving more granular information about the scene. We hy-

pothesize that this makes the segmentation model more susceptible

to our EMI perturbations in the region around the target obstacle.

Impact on Object Creation. We study the impact of the per-

turbations on inducing new objects into the segmentation model,

measuring the number of false positives introduced. To do this, we

synthesize the perturbations in the entire front view of the point

cloud with a 70 dB gain for the KITTI validation set, similar to

Section 5.1.2. The precision for Apollo segmentation drops from

0.28 to 0.18 for random perturbations and 0.09 for sinusoidal pertur-

bations. On the other hand, the recall drops from 0.58 to 0.55 and

0.52 for sinusoidal and random perturbations. The drop in precision
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hypothesize this similarity is because both PointPillars and PiFiNet

use a voxel-based method to form voxelized grids of multiple chan-

nels. The results indicate that at a 2 m target pedestrian distance,

the IOU of the object drops below 0.5 for only 2 and 14 dB gains in

random and sine signal injection, respectively. The average IOU at

a 2 m pedestrian distance drops from 0.56 to 0.37 with a standard

deviation (STD) of 0.04 over 20 frames. For 4 m and 6 m pedestrian

obstacle distances, the average IOU drops from 0.38 and 0.43 to

0.22 with STD of 0.09 and 0.13. These results confirm that signal

injection at higher gains leads to a greater IOU drop.

We also found that the injection induces fake obstacles into real-

world data. The sinusoidal perturbations create 5.1 FPs per frame,

while random perturbations create 6.3 FPs per collected frame. This

reduces the precision (resp. recall) of the model from 0.33 (resp.

0.68) to 0.16 (resp. 0.56) for sinusoidal perturbations and to 0.13

(resp. 0.48) for random perturbations.

6 DEFENSES

6.1 Existing Defenses

6.1.1 Hardware Defenses. An obvious defense to prevent EMI sig-

nal injection is shielding. However, active shielding can cause in-

accurate output in sensors due to parasitic interference [48, 54].

Shielding enclosures and EMI materials such as Mu-Metal [13] in-

stead can impact the LiDAR rotation speed due to added weight.

Enclosure-based shielding is also limited by the need for gaps near

the photodiodes and laser diodes to allow emitting and receiving

pulses. Finally, shielding can only attenuate the interference [50],

and an EMI signal with sufficient gain can still be able to penetrate

through the shielding and affect amplifiers, as demonstrated in

previous work [31, 60].

Tu et al. [61] propose detecting EMI injection by using a dummy

sensor. During IEMI injection, the offset in the output of the dummy

sensor can be used to retrieve the legitimate sensor data from the

original sensor. However, the use of a dummy sensor would increase

the size and cost of the LiDARs. Moreover, since the EMI signal

can affect differently different circuit parts, the effectiveness of

this defense strategy might vary considerably based on the EMI

injection directionality.

6.1.2 Point Cloud Denoising. The IEMI signal injection adds per-

turbations to the LiDAR point cloud data. Thus, a possible way to

mitigate its effects is to reconstruct the original point cloud using

denoising models [35, 43]. We study the Score Based (SB) denoising

model [35], which uses score matching to estimate unconditional

distributions in data. SB outperforms previous state-of-art denoising

models [25, 43] under various noise signals (e.g., isotropic Gaussian

noise, and simulated LiDAR noise).
Baseline Model Methodology. We use the training pipeline

provided by SB to train themodel on the KITTI dataset. In particular,

following the model configuration, 1) we only consider the objects

(e.g., cars, pedestrians, cyclists) in the 40◦ FOV in front of the vehicle,

and 2) the cloud points were reduced to 10,000 points using the

farthest point down sampling [74]. Finally, we include uniform

random noise in the samples to train the model. We call this the

reference Baseline Model.
Results and Observations. We evaluate the model’s denois-

ing capability on the same test samples used in Section 5.3. Since

Table 2: Object Detection Rates (ODR) for No Noise, Baseline

Model on Uniform Random Noise (Baseline + U), Baseline

Model on IEMI perturbation (Baseline + IEMI), variation in

ODR for Sinusoidal Model with sinusoidal IEMI perturbation

(Sin. Mod. Var.), and variation in ODR for Random Model

with random IEMI perturbation (Rand. Mod. Var.)

Class
No Baseline Baseline Sin. Mod. Rand. Mod.

Noise + U + IEMI Var. Var.

PointPillars ODR (%) / CLR (%)

Pedestrian 78/57 78/56 472 -31/-12 6/-3

Cyclist 84/77 82/77 46/7 -19/-40 1/-9

Car 98/96 97/96 67/66 -28/-30 -29/-28

PointRCNN ODR (%) / CLR (%)

Pedestrian 81/44 81/44 36/5 6/-3 -15/-15

Cyclist 65/47 64/45 40/36 5/7 -15/-5

Car 88/87 88/87 42/41 6/4 -39/-40

denoising aims to improve the object detection performance, we

evaluate the denoising model using Object Detection Rate (ODR)

and CLassification Rate (CLR) with WIOU. Table 2 shows the re-

sulting ODR of PointPillars and PointRCNN on the denoised point

clouds. The rates show that the baseline model on uniform random

noise (Baseline + U) could reconstruct the original point cloud from

the uniform noise perturbations. This demonstrates that the model

can denoise point clouds from the KITTI dataset.

We then evaluate the performance of the baseline model on

our synthesized IEMI perturbations (Baseline + IEMI). The results

in Table 2 show that the ODR of the baseline model significantly

decreases with IEMI perturbations indicating that the model is

insufficient to reconstruct the point clouds stably.

6.1.3 Adversarial Denoising. To improve the denoising results, we

perform adversarial training of the SB model using our IEMI per-

turbations (random and sinusoidal) following the same method-

ology and metrics as the baseline model evaluation. We call the

resulting models the Sinusoidal Model and the Random Model. Our

evaluation considers the denoising effectiveness at the maximum

synthesized adversarial capability (70 dB gain).

Results and Observations. Table 2 demonstrates how the ODR

and CLR vary on Sine (Sin. Mod. Var.) and Random (Rand. Mod.

Var.) denoising models. The evaluation shows that the best-case

results increase the ODR only by 6% and the CLR by 7% out of all

the scenarios. We hypothesize this is because current denoising

models [25, 35, 43] are designed to consider 1-2 cm cloud point

perturbations. While IEMI injection considers larger displacements.

6.1.4 Subsampling. 3D point subsampling methods might be used

to improve the robustness of models under noisy data and adversar-

ial attacks [34, 38, 68]. However, our EMI injection perturbs all the

cloud points in the affected region, reducing the effectiveness of sub-

sampling. We verify our hypothesis applying such algorithm [68]

on 300 random samples (100 cars, 100 pedestrians, 100 cyclists from

the KITTI dataset). For PointRCNN, the object detection rate in-

creased by 8% at maximum, for Apollo the data show a degradation

(maximum 21% drop). Finally, for PointPillars, the object detection
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rate increased only for the pedestrians class by 3% maximum (we

measure a drop for the remaining classes).

6.2 Proposed Defenses

6.2.1 Ground Point Based Detection. LiDAR ground filtering in

AV Perception systems discards the ground cloud points from the

LiDAR FOV outside the Region-of-Interest (ROI), in front of the

vehicle’s trajectory. Since the IEMI perturbations affect the entire

point cloud region within the perturbation angle \ , it also perturbs

the ground points in that region. Our methodology extracts the

ground points of the LiDAR scene (e.g., using a ground point seg-

mentation model integrated with Apollo-based Perception systems)

and analyzes them to detect potential IEMI injection.

Evaluation Method and Results.

Our approach assumes that the minimum affected \ is 3◦, con-

sistent with the adversary’s capability. We consider the ROI to be

an 8 m distance in the front view of the LiDAR. Then, we calculate

the SNR for the Z-coordinates of all the cloud points in the ROI.

During the injection, we expect the SNR of the ground points to

show a spike by scanning for increasing horizontal angles \ . We

evaluated our methodology over the entire KITTI validation set and

observed a 94.35% TNR and 98.74% TPR for binary IEMI detection.

Furthermore, the methodology could predict the correct \ value

with a 78.62% accuracy. The average runtime of this method over

the KITTI dataset is 14.4 ms/scene with Intel Core i7-10870H CPU

(2.2GHz) and 32GB RAM.

6.2.2 Point Intensity Based Detection. Our analysis shows that for

high gain values (above 20 dB), the average intensity of the points in

the perturbation region drops by almost five times in the case of the

Velodyne LiDAR sensor family due to the static calibration settings

of the sensor [26]. Thus a faster and simpler alternative defense

approach can leverage this factor to detect potential injection.

Using the same methodology as the in-ground point-based de-

tection, the potential IEMI injection is detected if a region’s average

point intensity is below a given threshold (which we set to 0.1).

This methodology achieves a 100% TNR and TPR over the entire

KITTI dataset. The strategy also predicted the perturbation angle \

with 100% accuracy. The average runtime of this method with the

same Intel machine is 0.49 ms/scene.

7 OBSERVATIONS AND LIMITATIONS

Safety and Ethics Considerations. All the experiments in this

work were conducted in a controlled environment using shields and

Faraday Cages. In addition, all researchers were trained regarding

EMI safety procedures and regulations [2]. We are in the process of

notifying the LiDAR manufacturer companies about our findings.

Solid-State LiDARs. Although our proof-of-concept analysis

is based on a spinning TOF 3D LiDAR (VLP-16), our experiments

of Section 4.1 show this vulnerability affects the receiving part

of ToF circuits. We thus believe that solid-state LiDARs that use

the same basic functioning (TOF) as spinning LiDARs [7, 14] can

be also affected by our IEMI. However, the adversarial control of

the affected region (i.e., the horizontal angle) will depend on the

scanning methodology used by the solid-state LiDAR. We leave this

analysis as future work.

Point Cloud Ring. We observed that the VLP-16 LiDAR produces

an external ring of cloud points at 50 mwith the LiDAR location for

high-gain injections. We limited our proof-of-concept evaluation to

the linear behavior of the VLP-16 since the AV perception model’s

ROI is generally relatively closer (a max of 44 m in KITTI).

Limitations and Future Work. Our setup is limited to static

scenarios evaluation, and we have not conducted end-to-end evalu-

ations on real autonomous vehicles. We discuss the challenges and

practicality of our attack under real-world constraints in Appen-

dix A. Another limitation is that we only study and characterize

the perturbation on one 3D and one 2D LiDAR. However, our pre-

liminary analysis demonstrates the severity of the threat for TOF

circuits, demanding future investigations.

8 RELATEDWORK

Injection attacks on sensors have been performed using various out-

of-band signals, including acoustic [71], optical [56], and EMI [31,

60]. These signals have been exploited also to affect embedded

systems, including medical devices [41]. Several works [8, 11, 57]

uses laser pulses to spoof fake cloud points on target LiDARs to

create not-existent obstacles. Hallyburton et al. [19] use a similar

methodology to attack camera-LiDAR-based sensor fusion models.

Unlike the aforementioned works, EMI perturbations do not require

high aiming precision.

Recent attack methodologies have synthesized adversarial ob-

jects to elude object detection in ML models [12, 59, 76]. Xiang

et al. [65] initially showed that 3D point clouds can be vulnera-

ble to projected adversarial perturbations. Tu et al. [59] create

3D-printed adversarial structures to avoid detection while, Cao et

al. [10] and Abdelfattah et al. [4] show that such attacks can also

evade camera-LiDAR fusion models.

9 CONCLUSIONS

Our work identifies a new class of LiDAR sensors and TOF cir-

cuit vulnerabilities resulting in manipulations of object detection

algorithms used in AVs. Our evaluation results demonstrate the

effectiveness of the induced perturbations using EM waves against

two object detectors PointPillars and PointRCNN and one industry-

grade detector Apollo. While it is clear that EMI injection can cause

Perception and fusion models to fail, it is not clear the extent of this

threat over AV technology. In this work, we begin to characterize

this threat to understand how better address it.
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