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competing binding poses, and computational model-

ing challenges pose significant obstacles to obtaining

reliable computational predictions for these systems.

The phenothiazine guests exist in solution as racemic

mixtures of enantiomers related by nitrogen inversions
that bind the hosts in various binding poses, each re-
quiring an individual free energy analysis. Due to the

large size of the guests and the conformational reorga-

nization of the hosts, which prevent a direct absolute

binding free energy route, binding free energies are ob-

tained by a series of absolute and relative binding al-

chemical steps for each chemical species in each binding

pose. Metadynamics-accelerated conformational sam-

pling was found to be necessary to address the poor

convergence of some numerical estimates affected by

conformational trapping. Despite these challenges, our

blinded predictions quantitatively reproduced the ex-

perimental affinities for the β-cyclodextrin host and, to
a lesser extent, those with a methylated derivative. The

work illustrates the challenges of obtaining reliable free

energy data in in-silico drug design for even seemingly

simple systems and introduces some of the technologies

available to tackle them.

Keywords Binding free energy, ligand Binding,

alchemical method, alchemical transfer, SAMPL, bind-
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β-cyclodextrin

1 Introduction

Developing in-silico methodologies capable of consis-

tent and reliable binding free energy estimates would

be a major breakthrough for drug design and other ar-

eas of chemical research.[1, 2, 3, 4] With several ad-

vanced simulation software packages now routinely used

in industry and academia to model binding affinities of
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protein-drug complexes,[5, 6] the field has made signifi-

cant strides toward this goal. Alchemical methods have

emerged as the industry standard partly because they

can target the changes of binding affinities upon specific

chemical modifications of the ligands directly.[7, 8, 9]

Theoretical and methodological aspects of free energy

are continuously refined and improved.[10, 11, 12, 13]

However, many challenges remain about the quality of
potential energy models[14] and the correct representa-
tion of all of the relevant conformations of the molecular

systems.[15]

The validation of computational predictions with re-

spect to experimental binding affinities has given the

community an understanding of the pitfalls of the mod-

els, with indications of ways in which they can be avoided.[16,

9] Blinded validations, such as the Statistical Assess-

ment of the Modeling of Proteins and Ligands (SAMPL),[17]

have played a particularly important role in this process.[18,

19, 20, 21] Because computational predictions are for-

mulated without prior knowledge of experimental re-

sults, the evaluation of the models’ relative performance

is free of implicit biases and reflects more faithfully the

expected reliability of the computational models in ac-

tual research and discovery settings.

Many SAMPL challenges include host-guest systems

are considered to be straightforward, as well as more ap-

proachable, theoretically and experimentally, than macro-

molecular systems in terms of testing for reliability in

free energy prediction tools.[22, 23] In this work, we

report our findings in tackling the SAMPL9 bCD chal-

lenge set, which includes the binding of five phenothiazine-

based drugs[24] to the β-cyclodextrin host and its methy-

lated derivative.[25, 26] Molecular complexes of β-cyclodextrin

(bCD) are well-known and are used in a variety of

biomedical and food science applications.[27] They are

extensively modeled[28, 29, 30, 31, 32, 33] and thus pro-

vide a familiar testing ground for computational mod-

els. However, as we will show, the binding equilibrium

between phenothiazines and cyclodextrin hosts is far

from straightforward and requires deploying the most

advanced computational tools and methods in our ar-

senal. As also discussed in later sections, handling con-

formational heterogeneity in the form of chirality and
multiple binding poses has been the greatest challenge
in our computational protocol.

This paper is organized as follows. We first describe
the above molecular systems in detail to illustrate how
these exist in equilibrium as a mixture of many con-

formations, each with its distinct binding characteris-

tics. We then review the Alchemical Transfer Method

(ATM)[33, 34] and the FFEngine bespoke force field

parameterization used here to estimate the binding free

energies of the cyclodextrin complexes. We describe the

extensive alchemical process involving absolute as well

as relative binding free energy calculations to obtain the
binding constants of each pose in the host-guest systems
and how these constants are combined[35] to yield val-

ues comparable to the experimental readouts. Reach-

ing convergence for some complexes involving slow in-

tramolecular degrees of freedom required advanced metadynamics-

based conformational sampling strategies,[36, 37] which

we incorporated into the alchemical binding free energy

calculations. This significant intellectual and computa-

tional effort resulted in converged binding free energy

estimates with a very good experimental agreement for

the bCD host. The effort also illustrates the major chal-

lenges inherent in modeling complex molecular bind-

ing phenomena as well as the theories and technologies

available to tackle these challenges.

2 Molecular Systems

The bCD SAMPL9 challenge concerned the binding of

five phenothiazine drugs (Figure 1)[38] to β-cyclodextrin

(hereafter bCD) and a modified β-cyclodextrin (here-

after mCD) (Figure 2). The guests[24] share a 3-ring

phenothiazine scaffold with a variable alkylamine sidechain

on the nitrogen atom of the central ring. Unlike the

other guests, PMT’s alkylamine sidechain is branched

at a chiral center. The CPZ, TDZ, and TFP guests also

have a small substituent (chlorine, thiomethyl, and tri-

fluoromethyl, respectively) on one of the aromatic rings

of the phenothiazine scaffold.

The β-cyclodextrin host (Figure 2) is a cyclic oligosac-

charide of seven D-glucose monomers forming a bind-

ing cavity with a wide opening surrounded by secondary

hydroxyl groups (top in Figure 2) and a narrower open-

ing (bottom) surrounded by primary hydroxyl groups.

Hence, we will refer to the wide opening as the sec-

ondary face of bCD and the narrow opening as the

primary face. The second host, heptakis-2,6-dimethyl-

β-cyclodextrin (mCD, Figure 2), is a derivative of β-

cyclodextrin in which all of the primary hydroxyl groups
and half of the secondary ones are methylated, affecting

the size, accessibility, and hydrophobicity of the bind-
ing cavity. Although mCD does not have secondary and
primary hydroxyl groups, for simplicity, we will refer
to the two openings of mCD as secondary and pri-

mary faces by analogy with bCD. Being composed of

chiral monomers, bCD and mCD are themselves chi-

ral molecules with potentially different affinities for the

enantiomers of optically active guests.[39]
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guest in two different poses. The binding free energies

of the phenothiazine guests are obtained by a series of

relative binding free energy (RBFE) calculations start-

ing from G1 (Figure 8). The alchemical RBFE imple-

mentation of the ATM method[34] is similar to ABFE

implementation except that one ligand of the pair un-

der investigation is transferred from the solution to the

binding site while the other ligand is transferred in
the opposite direction. The receptor and the two lig-
ands are placed in a single solvated simulation box in

such a way that one ligand is bound to the receptor

and the other is placed in an arbitrary position in the

solvent bulk. Molecular dynamics simulations are then

conducted with a λ-dependent alchemical potential en-

ergy function that connects, in an alchemical sense, the

state of the system where one guest is bound to the

receptor and the other in solution, to the state where

the positions of the two guests are reversed. The free

energy change of this process yields the relative binding

free energy of the two guests. To enhance convergence,

the two ligands are kept in approximate alignment to

prevent the one in solution to reorient away from the

orientation of the bound pose. We have shown mathe-

matically that the alignment restraints implemented in

ATM do not bias the binding free energy estimates.[34]

In this work, we employed metadynamics conforma-
tional sampling to obtain converged RBFE estimates

for the PMT guest. Well-tempered metadynamics[45]

is a well-established enhanced sampling technique to

sample rare events during MD simulations when they

are separated from other metastable states by large en-

ergy barriers. The technique uses a bias potential, Ubias,

that lowers energy barriers along a slow degree of free-
dom. In this work, the metadynamics biasing poten-
tial is obtained along a dihedral angle, ϕ, of the alky-

lamine sidechain of PMT (see Computational Details)
from a simulation in a water solution, using OpenMM’s
well-tempered metadynamics implementation by Peter

Eastman.[37] The alchemical binding free energy cal-

culation is then conducted with the biasing potential,

Ubias(ϕ), added to the alchemical potential energy func-

tion in Eq. (4). The resulting binding free energy esti-

mate is then unbiased using a book-ending approach[46]

by computing the free energy differences of the system

without the biasing potential from samples collected

with the biasing potential at the endpoints of the al-
chemical path. In this work, we used a simple unidirec-
tional exponential averaging formula

−kBT ln〈exp(Ubias/kBT )〉bias

to evaluate the free energy corrections for unbiasing.
Due to the larger excursions of the dihedral angle with

metadynamics, the unbiased ensemble is a subset of the

biased ensemble and the exponential averaging estima-

tor converges quickly in this case.

3.3 Force Field Parametrization

Force field parameters were assigned to the hosts and

the guests using an in-house development FFEngine

workflow at Roivant Discovery. FFEngine is a workflow

for the bespoke parametrization of ligands with the Am-

ber force field functional form.[47] The partial charges

were derived from GFN2-xTB/BCC with pre-charges

from semi-empirical QM method GFN2-xTB,[48] and

bond charge correction (BCC) parameters fitted to the

HF/6-31G* electrostatic potential (ESP) with the COSMO

implicit solvation model from a 50,000 drug-like com-

pounds dataset. The ESP with an implicit solvation

model was deemed necessary for these highly polar and

charged host-guest systems even though it is expected

to yield a fixed charge model slightly more polarized

than the default GAFF2/Amber one.

3.4 Computational Details

The guests were manually docked to the hosts in each
binding pose using Maestro (Schrödinger, Inc.) in each
of the four binding poses. A flat-bottom harmonic posi-
tional restraint with a force constant kc = 25 kcal/mol/Å2

and a tolerance of 4 Å was applied to define the binding

site region.[49, 35] For this purpose, the centroid of the
guest was taken as the center of the central ring of the

phenothiazine core, and the centroid of the cyclodextrin
host was defined as the center of the oxygen atoms form-
ing the ether linkages between the sugar monomers.

Boresch-style[50] orientational restraints were imposed

to keep each complex in the chosen binding pose. These

were implemented as flat-bottom restraints acting on

the θ and φ angles in Figure 6 with a force constant

of ka = 0.05 kcal/mol/deg2, and centers and tolerances

tailored for each pose. For example, the orientational

restraints for the ‘sp’ pose are centered on θ = 0◦ and

φ = 180◦ with ±90◦ tolerances for both. The θ angle

is defined as the angle between the z-axis of the host,
defined as the axis going through the centroid of the

oxygen atoms of the primary hydroxyl groups and the

centroid of the oxygen atoms of the secondary hydroxyl

groups, and the molecular axis of the guest, defined as

the axis going through the S and N atoms of the central

ring of the phenothiazine core. The φ angle is defined

as the dihedral angle between the plane formed by the
C1-N-S triplet of atoms of the phenothiazine core of the

guest and the plane spanned by the z-axis of the host
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and the molecular axis of the guest, where C1 repre-

sents the carbon atom of the phenothiazine host with

the substituent of the phenothiazine moiety. Very loose

flat-bottom harmonic positional restraints (4 Å toler-

ance and 25 kcal/mol/Å2 force constant) were applied

to the ether linkages oxygen atoms of the cyclodextrins
to keep the hosts from wandering freely in the simu-

lation box. The ATM displacement vector was set to
(−30, 0, 0) Å .

Force field parameters were assigned as described
above. In RBFE calculations, the second ligand in the

pair was placed in the solvent by translating it along

the displacement vector. The resulting system was then

solvated using tleap[51] in a TIP3P box with a 10 Å

solvent buffer and sodium and chloride counterions to
balance the negative and positive charges, respectively.

The systems were energy minimized, thermalized, and
relaxed in the NPT ensemble at 300 K and 1 atm pres-
sure. Annealing of the systems to λ = 1/2 in the nVT

ensemble followed to obtain initial structures to initi-
ate the parallel replica exchange ATM calculations. Al-
chemical calculations were conducted with the OpenMM
7.7 MD engine on the CUDA platform with a 2 fs time-

step, using the AToM-OpenMM software.[52] Asynchronous
Hamiltonian Replica Exchange[53] in λ space was at-

tempted every 20 ps and binding energy samples were

collected at the same frequency. The ATM-RBFE em-

ployed 22 λ states distributed between λ = 0 to λ

= 1 using the non-linear alchemical soft-plus potential

and the soft-core perturbation energy with parameters
umax = 200 kcal/mol, uc = 100 kcal/mol, and a =

1/16.[13] The input files of the simulations are provided

in our lab’s GitHub repository (https://github.com

/GallicchioLab/SAMPL9-bCD). We collected approxi-

mately 20 ns trajectories for each replica corresponding

to approximately 440 ns for each of the 64 alchemical

steps for each host (Figure 8). Overall, we simulated
the systems for over 6 µs. UWHAM[54] was used to

compute binding free energies and the corresponding

uncertainties after discarding the first half of the tra-

jectory.

To obtain the torsional flattening biasing potential,

we simulated the PMT guest in solution with metady-

namics over the (C-N-C-C) alkylamine sidechain tor-

sional angle highlighted in Figure 10. A well-tempered

metadynamics bias factor of 8 was used, with a Gaus-
sian height of 0.3 kcal/mol and width of 10◦.[45] The

bias potential was collected for 20 ns, updating it every

100 ps. The resulting potential of mean force is shown

in Figure 10. The metadynamics-derived biasing poten-

tial was used in all the RBFE calculations involving the

PMT guest to accelerate the sampling of the slow tor-

sional degree of freedom in question.

4 Results

4.1 Binding Free Energy Predictions

The calculated binding free energies of the cyclodex-

trin/phenothiazine complexes obtained by combining

the pose-specific binding free energies are listed in Ta-

ble 1 compared to the experimental measurements. We

provide the results of each individual free calculation

in the Supplementary Information. The second column
of Table 1 reports the blinded computational predic-
tions submitted to the SAMPL9 organizers and the
results of revised predictions (third column) obtained

subsequently to correct setup errors and resolve un-

converged calculations. Specifically, we uncovered cases

where binding poses were misidentified and where cen-

ters of ligands and the hosts had reversed chirality dur-
ing energy minimizations due to close initial atomic
overlaps. As discussed below, in the initial predictions,

we were also unable to obtain consistent binding free

energy predictions for symmetric poses. In the binding

mode analysis reported below we used exclusively data

from the corrected molecular simulations.

The predictions for the bCD complexes are in rea-
sonable agreement with the experiments. The revised

predictions, in particular, are all within 1.5 kcal/mol of

the experimental measurements and within 1 kcal/mol

for four of the five bCD complexes. Although the range

of the binding affinities is small, some trends are re-

produced and the weakest binder (PMT) is correctly

identified. The quality of the predictions for the mCD
host is not as good, and it worsened upon revision. The
experiments show that the phenothiazine guests bind

slightly more strongly to mCD than bCD. However,

except for CPZ, the calculations predict significantly

weaker binding to mCD relative to bCD. The computed

free energies of the mCD complexes are on overage over
2 kcal/mol less favorable than the experimental ones.
The revised prediction for the mCD-TDZ complex is
particularly poor and fails to identify this complex as

the most stable in the set. While a detailed investigation

of the sources of the poor prediction for mCD has not

been carried out, our model could not have identified

the best possible binding poses for this more flexible
host. mCD is also more hydrophobic and the energy
model may overpredict the reorganization free energy

to go from the apo to the holo conformational ensemble

for this host.

4.2 Binding Mode Analysis

We used the binding mode-specific binding constants

we obtained (see Supplementary Information) to infer
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Table 1 The binding free energy predictions submitted to the SAMPL9 challenge compared to the revised predictions and
the experimental measurements.

Name ∆Gb(SAMPL9)a,b,c ∆Gb(ATM)a,b,d ∆Gb(expt)a,e

bCD-TDZ −4.28± 0.90 −4.56± 0.47 −5.73
bCD-TFP −6.51± 1.11 −5.42± 0.99 −5.09
bCD-PMZ −3.73± 0.48 −4.03± 0.45 −5.00
bCD-PMT −2.53± 0.70 −3.00± 0.47 −4.50
bCD-CPZ −7.28± 0.92 −4.64± 0.70 −5.45
mCD-TDZ −5.16± 1.40 −2.96± 0.68 −6.50
mCD-TFP −4.14± 0.62 −3.98± 0.70 −5.57
mCD-PMZ −2.37± 0.54 −2.34± 0.55 −5.08
mCD-PMT −1.80± 0.99 −1.58± 0.60 −5.39
mCD-CPZ −5.22± 0.90 −5.13± 0.88 −5.43

aIn kcal/mol. bErrors are reported as twice the standard deviation. cBlinded computational predictions submitted to the
SAMPL9 challenge organizers. dRevised ATM computational predictions. eSAMPL9 blinded experimental isothermal
calorimetry data.[25]

the population of each binding mode for each complex

shown in Figure 9. The results indicate that the com-

plexes visit many poses with appreciable population.

The only exceptions are TFP binding to bCD and CPZ

binding to mCD which are predicted to exist with over

75% population in only one pose (‘sp’ in the R con-

figuration in the case of the TFP-bCD complex and

‘sp’ in the S configuration in the case of the CPZ-

mCD complex). In general, the guests bind the hosts

preferentially in the ‘sp’ and ‘ss’ modes with the alky-

lamine sidechain placed near the primary face of the

hosts (Figure 4). This trend is less pronounced for the
complexes between PMT, PMZ, and TDZ with bCD,
which occur in the ‘sp’/‘ss’ and ‘pp’/‘ps’ modes with
similar frequency, and it is more pronounced for all

complexes with mCD which strongly prefer the alky-

lamine sidechain towards the primary face. Unlike the

alkylamine sidechain, the substituents of the phenoth-

iazine aromatic ring of the CPZ, TDZ, and TFP guests
are preferentially placed towards the secondary face of
the cyclodextrin hosts. This is evidenced by the higher

probability of the ‘sp’ binding modes (red and green

bars in Figure 9) over the ‘ss’ binding modes (blue and

yellow).

Reassuringly, the calculations predict that the pop-

ulations of the symmetric binding modes of the com-

plexes with the PMZ and PMT guests are more evenly

distributed than for the other complexes. Lacking a sub-

stituent of the phenothiazine moiety (Figure 1), the

PMZ and PMT guests do not display conformational

chirality (Figure 3). Hence, their ‘ssS’, ‘spS’, ‘ssR‘, and

‘spR’ binding modes are chemically equivalent and should

have the same population. Similarly, the binding modes

‘psS’, ‘ppS’, ‘psR‘, and ‘ppR’ of these guests are mutu-

ally equivalent. Still, they are distinguishable from the

‘ssS’, ‘spS’, ‘ssR‘, ‘spR’ group by the position of the

alkylamine sidechain (Figure 4). We used these equiv-

alences to assess the level of convergence of the bind-

ing free energy estimates. Although redundant for sym-
metric poses, we simulated each binding mode of these
guests individually, starting from different initial config-

urations, and checked how close the pose-specific bind-

ing free energies varied within each symmetric group.

For example, the computed populations of the ‘ssS’,

‘spS’, ‘ssR‘, and ‘spR’ poses of the PMZ-bCD com-

plex vary in a narrow range between 7.5 and 15.9%,
indicating good convergence. However, the correspond-

ing populations for the complex with mCD are not as

consistent–the ’ssS’ mode predicted to be significantly

less populated (4%) than the other modes (20-40%)–

reflecting poorer convergence.

The pose-specific binding free energy estimates probe
the chiral binding specificity of the hosts. Except for

the TFP guest that is predicted to bind predominantly

in the R chiral form (88% population), bCD shows lit-

tle chiral preference. mCD displays a slightly stronger

chiral specificity, with CPZ predicted to bind predomi-

nantly in the S form and TFP in the R form.

4.3 Comparison between Predicted Binding Pose
Populations and NMR Experiments

In addition to providing the Isothermal Calorimetry

(ITC) binding affinity data for the SAMPL9 bCD blinded
challenge, Gilson and collaborators probed the confor-
mational propensities of the phenothiazine complexes

with bCD and mCD by proton Nuclear Magnetic Res-

onance (NMR) Nuclear Overhauser Effect (NOE)

measurements.[25] Our calculated binding pose popula-

tion distributions generally agree with the experimental

observations.
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The present SAMPL9 bCD challenge highlights the

importance of properly treating conformational hetero-
geneity to obtain reliable quantitative descriptions of
binding equilibria. We undertook this challenge with

the mindset that host-guest systems are simpler surro-

gates of more challenging and conformationally diverse

protein-ligand complexes and, hence, more suitable to

assess computational methodologies. However, as later
confirmed by the NMR NOE experimental analysis,[25]
we realized that the phenothiazine/cyclodextrin com-

plexes could be far more chemically and conformation-

ally diverse than expected. Most of the guests exist in

solution as mixtures of enantiomers related by nitrogen

inversion (Figure 3) which are distinctly recognized by

the chiral hosts. As a result, one enantiomer could be
significantly enriched relative to the other when bound
to the host. In addition, each enantiomer binds the host

in four generally distinct binding orientations that dif-

fer in the placement of the alkylamine sidechain and the

the substituent of the phenothiazine moiety relative to

the host (Figure 4). While in the experimental setting

the guests and the complexes rapidly transition from

one pose to another, this level of conformational hetero-

geneity poses serious challenges for standard molecular

dynamics conformational sampling algorithms, which

are generally limited to one binding pose.

When facing these complexities, it is tempting to

limit the modeling to the most important binding pose.

While it is true that often the most favorable pose

contributes the most to the binding affinity and that

neglecting minor poses results in small errors, bind-

ing pose selection remains an unresolved issue. Clearly,

identifying the major pose cannot be carried out by

binding free energy analysis of each pose because that

is precisely what one seeks to avoid in such a scenario.

Whichever approach is adopted, it must be capable of

identifying the most stable pose of each complex among

many competing poses. The present results illustrate
this challenge. For example, the populations derived
from our free energy analysis (9) indicate that the ‘spR’

binding pose is often one of the most populated (red in

Figure 9). However, CPZ is predicted to strongly prefer

the ‘spS’ pose when binding to mCD (orange in Figure

9B), and limiting the modeling to the ‘spR’ pose would

result in a gross underestimation of the binding free en-
ergy. Similarly, the TDZ-bCD complex is predicted to
exist in a variety of poses (Figure 9A), including, for

instance, the ‘psR’ pose with the alkylamine sidechain

pointing towards the primary face of bCD, with the

‘spR’ pose contributing only a small fraction of the ob-

served binding affinity. Clearly, at least in this case,

limiting the modeling to one carefully selected prede-

termined pose would lead to significant mispredictions

for individual complexes.
To obtain an estimate of the observed binding con-

stants, in this work, we opted to compute the bind-

ing free energies of all of the relevant binding poses of

the system and to integrate them using the free en-

ergy combination formula [Eq. (1)]. The combination

formula requires the populations of the conformational

states of the guest in solution that, in this case, are eas-

ily obtained by symmetry arguments. Still, the work

involved 64 individual alchemical free energy calcula-

tions (Figure 8) and hundreds of nanoseconds of sim-

ulation on GPU devices. While we attempted to auto-

mate the process as much as possible, setup errors were

made and it is likely that some yet undiscovered de-

fects are still affecting our revised results. We assessed

the convergence of the pose-specific binding free energy

estimates by monitoring the consistency between the

results for symmetric poses. As a result of this assess-

ment, we realized that one guest (PMT) was affected by

slow conformational reorganization that required meta-

dynamics treatment. This best-effort attempt resulted

in good quantitative predictions for the complexes with

β-cyclodextrin host. However, our model failed to prop-
erly describe the binding free energies of the complexes

with the methylated derivative (mCD). Force field lim-
itations that cause excessive reorganization of the host
in solution and the existence of alternative binding modes

not considered in our analysis are some of the possible

explanations of why our free energy predictions consis-

tently underestimated the binding affinities of the com-

plexes with mCD (Table 1).

6 Conclusions

In this work, we describe our effort to obtain alchemi-

cal computational estimates of the binding constants of

a set of phenothiazine guests to cyclodextrin hosts as

part of the SAMPL9 bCD challenge using the Alchemi-

cal Transfer Method. The free energy modeling of these

systems proved significantly more challenging than ex-

pected due to the multiple conformational states of the

guests and the multiple binding poses of the complexes

which had to be treated individually. Overall, 64 indi-

vidual alchemical calculations were employed to obtain

binding free energy estimates comparable to the experi-

mental observations. The predictions were quantitative

for the β-cyclodextrin host but failed to accurately de-

scribe the observed binding affinities to the methylated

derivative. The work shows that even simple molecular

systems can require extensive modeling efforts to treat

conformational heterogeneity appropriately and it illus-

trates the role that multiple binding poses can play in
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protein-ligand binding prediction and, ultimately, drug

design.
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9 Supplementary information

Spreadsheets SAMPL9-bCDpc-FFEngine and SAMPL9-

mCDpc-FFEngine containing: (i) the absolute binding

free energy of host G1 in the ‘s’ and ‘p’ binding modes,

(ii) the relative binding free energies between G1 in the

‘p’ and ‘s’ poses and MTZ in the ‘ss’, ‘sp’, etc. bind-

ing modes, (iii) the relative binding free energy between

MTZ and PMZ in each of the eight binding modes, (iv)

the relative binding free energies between PMZ and the

other guests in each of the eight binding poses, (v) the

binding mode specific binding constants for each com-

plex in each binding mode, and (vi) the calculated pop-

ulations of each binding mode for each complex.

A Proof of Eq. (3)

Consider the potential energy function U0(x) of the unbound
state of the receptor-ligand complex and U1(x) the one corre-
sponding to the bound state. Here x represents, collectively,
the degrees of freedom of the system. The probability that
the complex to in binding mode i is

P1(i) =

∫
i
e−βU1(x)dx

∫
e−βU1(x)dx

(5)

where the denominator is the configurational partition func-
tion of the complex in the bound state, and the numerator,
where the integration is restricted to regions of conforma-
tional space corresponding to binding mode i, is the config-
urational partition function of binding mode i in the bound
state. Next, multiply and divide Eq. (5) by the partition func-
tion

∫
i
exp[−βU0(x)]dx of binding mode i in the unbound

state, noting that:
∫
i
e−βU1(x)dx

∫
i
e−βU0(x)dx

= Kb(i) (6)

where Kb(i) is the binding mode-specific binding constant.
To obtain an expression for the reminder ratio of the par-

tition function of binding mode i in the unbound ensemble to
the partition function of the complex in the bound ensemble,
multiply and divide by the partition function of the system
in the unbound ensemble

∫
exp[−βU0(x)]dx noting that:

∫
i
e−βU0(x)dx

∫
e−βU0(x)dx

= P0(i) (7)

where P0(i) is the population of binding mode i in the un-
bound ensemble and
∫
e−βU1(x)dx

∫
e−βU0(x)dx

= Kb (8)

is the overall binding constant. Collecting the terms above
yields (3).
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rat H Viñas, and Gloria Tardajos. Complexation
and chiral drug recognition of an amphiphilic phenoth-
iazine derivative with β-cyclodextrin. J. Pharm. Sci.,
97(4):1484–1498, 2008.

25. Brenda Andrade, Ashley Chen, and Michael K Gilson.
Binding of phenothiazine drugs to heptakis-methylated
β-cyclodextrin derivatives: Thermodynamics and struc-
ture. Phys. Chem. Chem. Phys., In press., 2023.

26. The SAMPL9 blind prediction challenges for computa-
tional chemistry.

27. Gary L Bertrand, James R Faulkner Jr, Soon M Han, and
Daniel W Armstrong. Substituent effects on the bind-
ing of phenols to cyclodextrins in aqueous solution. The

Journal of Physical Chemistry, 93(18):6863–6867, 1989.
28. Wei Chen, Chia-En Chang, and Michael K Gilson. Calcu-

lation of cyclodextrin binding affinities: energy, entropy,
and implications for drug design. Biophysical journal,
87(5):3035–3049, 2004.

29. Lauren Wickstrom, Peng He, Emilio Gallicchio, and
Ronald M. Levy. Large scale affinity calculations of cy-
clodextrin host-guest complexes: Understanding the role
of reorganization in the molecular recognition process. J.
Chem. Theory Comput., 9:3136–3150, 2013.

30. Niel M Henriksen and Michael K Gilson. Evaluating
force field performance in thermodynamic calculations
of cyclodextrin host–guest binding: Water models, par-
tial charges, and host force field parameters. Journal of

chemical theory and computation, 13(9):4253–4269, 2017.
31. Peng He, Sheila Sarkar, Emilio Gallicchio, Tom Kurtz-

man, and Lauren Wickstrom. Role of displacing con-
fined solvent in the conformational equilibrium of β-



SAMPL9 with ATM 15

cyclodextrin. J. Phys. Chem. B, 123(40):8378–8386,
2019.

32. Andrea Rizzi, Travis Jensen, David R Slochower, Matteo
Aldeghi, Vytautas Gapsys, Dimitris Ntekoumes, Stefano
Bosisio, Michail Papadourakis, Niel M Henriksen, Bert L
De Groot, Zoe Cournia, Alex Dickson, Julien Michel,
Michael K. Gilson, Michael R. Shirts, David L. Mobley,
and John D. Chodera. The SAMPL6 SAMPLing chal-
lenge: Assessing the reliability and efficiency of binding
free energy calculations. J. Comp. Aid. Mol. Des., pages
1–33, 2020.

33. Joe Z Wu, Solmaz Azimi, Sheenam Khuttan, Nanjie
Deng, and Emilio Gallicchio. Alchemical transfer ap-
proach to absolute binding free energy estimation. Jour-
nal of Chemical Theory and Computation, 17(6):3309–
3319, 2021.

34. Solmaz Azimi, Sheenam Khuttan, Joe Z Wu, Rajat K
Pal, and Emilio Gallicchio. Relative binding free en-
ergy calculations for ligands with diverse scaffolds with
the alchemical transfer method. J. Chem. Inf. Model.,
62(2):309–323, 2022.

35. Emilio Gallicchio and Ronald M Levy. Recent theoretical
and computational advances for modeling protein-ligand
binding affinities. Adv. Prot. Chem. Struct. Biol., 85:27–
80, 2011.

36. Giovanni Bussi, Alessandro Laio, and Pratyush Tiwary.
Metadynamics: A unified framework for accelerating
rare events and sampling thermodynamics and kinetics.
Handbook of Materials Modeling: Methods: Theory and

Modeling, pages 1–31, 2018.
37. Peter Eastman, Jason Swails, John D Chodera, Robert T

McGibbon, Yutong Zhao, Kyle A Beauchamp, Lee-Ping
Wang, Andrew C Simmonett, Matthew P Harrigan,
Chaya D Stern, Rafal P Wiewiora, Bernard R Brooks,
and Vijay S Pande. OpenMM 7: Rapid development
of high performance algorithms for molecular dynamics.
PLoS Comput. Biol., 13(7):e1005659, 2017.

38. Svein G Dahl, Edward Hough, and Petter-Arnt Hals.
Phenothiazine drugs and metabolites: molecular confor-
mation and dopaminergic, alpha adrenergic and mus-
carinic cholinergic receptor binding. Biochemical phar-

macology, 35(8):1263–1269, 1986.
39. Mikhail Rekharsky and Yoshihisa Inoue. Chiral recog-

nition thermodynamics of β-cyclodextrin: The thermo-
dynamic origin of enantioselectivity and the enthalpy-
entropy compensation effect. J. Am. Chem. Soc.,
122(18):4418–4435, 2000.

40. Cassandre Quinton, Lambert Sicard, Nicolas Vanthuyne,
Olivier Jeannin, and Cyril Poriel. Confining nitrogen
inversion to yield enantiopure quinolino [3, 2, 1-k] phe-
nothiazine derivatives. Advanced Functional Materials,
28(39):1803140, 2018.

41. Guha Jayachandran, Michael R Shirts, Sanghyun Park,
and Vijay S Pande. Parallelized-over-parts computation
of absolute binding free energy with docking and molec-
ular dynamics. J. Chem. Phys., 125:084901, 2006.

42. Lauren Wickstrom, Nanjie Deng, Peng He, Ahmet
Mentes, Crystal Nguyen, Michael K Gilson, Tom Kurtz-
man, Emilio Gallicchio, and Ronald M Levy. Parameter-
ization of an effective potential for protein–ligand bind-
ing from host–guest affinity data. J. Mol. Recognition,
29(1):10–21, 2016.
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