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Abstract We apply the Alchemical Transfer Method
(ATM) and a bespoke fixed partial charge force field
to the SAMPL9 bCD host-guest binding free energy
prediction challenge that comprises a combination of
complexes formed between five phenothiazine guests
and two cyclodextrin hosts. Multiple chemical forms,
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competing binding poses, and computational model-
ing challenges pose significant obstacles to obtaining
reliable computational predictions for these systems.
The phenothiazine guests exist in solution as racemic
mixtures of enantiomers related by nitrogen inversions
that bind the hosts in various binding poses, each re-
quiring an individual free energy analysis. Due to the
large size of the guests and the conformational reorga-
nization of the hosts, which prevent a direct absolute
binding free energy route, binding free energies are ob-
tained by a series of absolute and relative binding al-
chemical steps for each chemical species in each binding
pose. Metadynamics-accelerated conformational sam-
pling was found to be necessary to address the poor
convergence of some numerical estimates affected by
conformational trapping. Despite these challenges, our
blinded predictions quantitatively reproduced the ex-
perimental affinities for the S-cyclodextrin host and, to
a lesser extent, those with a methylated derivative. The
work illustrates the challenges of obtaining reliable free
energy data in in-silico drug design for even seemingly
simple systems and introduces some of the technologies
available to tackle them.

Keywords Binding free energy, ligand Binding,
alchemical method, alchemical transfer, SAMPL, bind-
ing modes, conformational sampling, metadynamics,
[B-cyclodextrin

1 Introduction

Developing in-silico methodologies capable of consis-
tent and reliable binding free energy estimates would
be a major breakthrough for drug design and other ar-
eas of chemical research.[1, 2, 3, 4] With several ad-
vanced simulation software packages now routinely used
in industry and academia to model binding affinities of
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protein-drug complexes,[5, 6] the field has made signifi-
cant strides toward this goal. Alchemical methods have
emerged as the industry standard partly because they
can target the changes of binding affinities upon specific
chemical modifications of the ligands directly.[7, 8, 9]
Theoretical and methodological aspects of free energy
are continuously refined and improved.[10, 11, 12, 13]
However, many challenges remain about the quality of
potential energy models[14] and the correct representa-
tion of all of the relevant conformations of the molecular
systems.[15]

The validation of computational predictions with re-
spect to experimental binding affinities has given the
community an understanding of the pitfalls of the mod-

extensive alchemical process involving absolute as well
as relative binding free energy calculations to obtain the
binding constants of each pose in the host-guest systems
and how these constants are combined|[35] to yield val-
ues comparable to the experimental readouts. Reach-
ing convergence for some complexes involving slow in-

tramolecular degrees of freedom required advanced metadynamics-

based conformational sampling strategies,[36, 37] which
we incorporated into the alchemical binding free energy
calculations. This significant intellectual and computa-
tional effort resulted in converged binding free energy
estimates with a very good experimental agreement for
the bCD host. The effort also illustrates the major chal-
lenges inherent in modeling complex molecular bind-

els, with indications of ways in which they can be avoided.[161g phenomena as well as the theories and technologies

9] Blinded validations, such as the Statistical Assess-

available to tackle these challenges.

ment of the Modeling of Proteins and Ligands (SAMPL),[17]

have played a particularly important role in this process.[18,

19, 20, 21] Because computational predictions are for-
mulated without prior knowledge of experimental re-
sults, the evaluation of the models’ relative performance
is free of implicit biases and reflects more faithfully the
expected reliability of the computational models in ac-
tual research and discovery settings.

Many SAMPL challenges include host-guest systems
are considered to be straightforward, as well as more ap-
proachable, theoretically and experimentally, than macro-
molecular systems in terms of testing for reliability in
free energy prediction tools.[22, 23] In this work, we
report our findings in tackling the SAMPL9 bCD chal-
lenge set, which includes the binding of five phenothiazine-
based drugs[24] to the S-cyclodextrin host and its methy-

2 Molecular Systems

The bCD SAMPLY challenge concerned the binding of
five phenothiazine drugs (Figure 1)[38] to 8-cyclodextrin
(hereafter bCD) and a modified 8-cyclodextrin (here-
after mCD) (Figure 2). The guests[24] share a 3-ring
phenothiazine scaffold with a variable alkylamine sidechain
on the nitrogen atom of the central ring. Unlike the
other guests, PMT’s alkylamine sidechain is branched
at a chiral center. The CPZ, TDZ, and TFP guests also
have a small substituent (chlorine, thiomethyl, and tri-

lated derivative.[25, 26] Molecular complexes of -cyclodextfioromethyl, respectively) on one of the aromatic rings

(bCD) are well-known and are used in a variety of
biomedical and food science applications.[27] They are
extensively modeled|[28, 29, 30, 31, 32, 33] and thus pro-
vide a familiar testing ground for computational mod-
els. However, as we will show, the binding equilibrium
between phenothiazines and cyclodextrin hosts is far
from straightforward and requires deploying the most
advanced computational tools and methods in our ar-
senal. As also discussed in later sections, handling con-
formational heterogeneity in the form of chirality and
multiple binding poses has been the greatest challenge
in our computational protocol.

This paper is organized as follows. We first describe
the above molecular systems in detail to illustrate how
these exist in equilibrium as a mixture of many con-
formations, each with its distinct binding characteris-
tics. We then review the Alchemical Transfer Method
(ATM)[33, 34] and the FFEngine bespoke force field
parameterization used here to estimate the binding free
energies of the cyclodextrin complexes. We describe the

of the phenothiazine scaffold.

The S-cyclodextrin host (Figure 2) is a cyclic oligosac-
charide of seven D-glucose monomers forming a bind-
ing cavity with a wide opening surrounded by secondary
hydroxyl groups (top in Figure 2) and a narrower open-
ing (bottom) surrounded by primary hydroxyl groups.
Hence, we will refer to the wide opening as the sec-
ondary face of bCD and the narrow opening as the
primary face. The second host, heptakis-2,6-dimethyl-
B-cyclodextrin (mCD, Figure 2), is a derivative of (-
cyclodextrin in which all of the primary hydroxyl groups
and half of the secondary ones are methylated, affecting
the size, accessibility, and hydrophobicity of the bind-
ing cavity. Although mCD does not have secondary and
primary hydroxyl groups, for simplicity, we will refer
to the two openings of mCD as secondary and pri-
mary faces by analogy with bCD. Being composed of
chiral monomers, bCD and mCD are themselves chi-
ral molecules with potentially different affinities for the
enantiomers of optically active guests.[39]
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Fig. 1 The phenothiazine molecular guests included in the SAMPLY S-cyclodextrin challenge.
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Fig. 2 The p-cyclodextrin (left) and the heptakis-2,6-
dimethyl-S-cyclodextrin (right) molecular hosts included in
the SAMPL9 pS-cyclodextrin challenge. The top face f-
cyclodextrin is surrounded by primary hydroxyl groups and
the bottom face by secondary hydroxyl groups. The cor-
responding faces of heptakis-2,6-dimethyl-g-cyclodextrin are
partially or totally methylated relative to S-cyclodextrin.

2.1 Multiple Chemical Species of the Guests

The amine group of the alkylamine sidechain is ex-
pected to be largely protonated in solution and the
host-guest complex at pH 7.4 of the experiment. How-
ever, the two tautomers of the protonated piperazine
group of the TFP guest are likely to exist at apprecia-
ble concentrations and can contribute to host binding
to different extents. Similarly, in the case of TDZ, pro-
tonation of the alkyl nitrogen produces two enantiomers
that can interact differently with the cyclodextrin hosts.
Moreover, rather than being planar, the phenothiazine
ring system is bent at the connecting central ring with
conformations with both positive and negative bends
present in equal amounts in solution (Figure 3). As il-
lustrated for TDZ in Figure 3, when a substituent of the
phenothiazine moiety is present, the species with posi-
tive and negative bend are conformational enantiomers,
each with the potential to interact differently with the
cyclodextrin hosts.[39, 40]

The experimental binding assay reports an average
over the contributions of the various chemical species
of the guests. However, because interconversions be-
tween species cannot occur in molecular mechanics sim-
ulations or occur too slowly relative to the molecu-
lar dynamics timescales, to obtain a binding affinity
estimate comparable with the experimental observa-
tions, it is necessary to model the binding of each rele-

S TDZ R

Fig. 3 Ilustration of the two conformational enantiomers of
the TDZ guest. Similarly to the CPZ and TFP guests, chiral-
ity is induced by the phenothiazine substituent (a thioether
here). The unsubstituted guests PMZ and PMT do not pos-
sess conformational chirality.

vant species individually and combine the results.[41] In
this work, we have considered the two conformational
enantiomers for each guest (including those of PMZ
and PMT with the unsubstituted phenothiazine scaf-
fold compounds to test for convergence), plus the two
chiral forms of the protonated alkyl nitrogen of TDZ
and the two forms of TFP protonated at the distal and
proximal alkyl nitrogens, for a total of 14 guest species.
We labeled the seven species with R chirality of the
phenothiazine scaffold as PMZ1R, CPZ1R, PMTIR,
TDZNRI1R, TDZNS1S, TFP1aR, and TFP1bR, where
the first part of the label identifies the compound, fol-
lowed by the net charge (+1 for all the species consid-
ered) with ‘a’ and ‘b’ label identifying the distal and
proximal protonated forms of TFP respectively, plus
‘NR’ and ‘NS’ labels to distinguish the R and S chi-
ral forms of the protonated alkyl nitrogen of TDZ. The
last letter identifies the chirality of the phenothiazine
scaffold so that the seven species with S chirality are
named PMZ1S, CPZ1S, etc.

2.2 Multiple Binding Poses
We modeled the guests binding to the cyclodextrin hosts

in four distinet binding modes (Figure 4) in which the
phenothiazine moiety goes through the bCD cavity.[24])
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To identify the binding modes, we will refer to the nar-
row opening of the f-cyclodextrin circled by primary
hydroxyl groups as the primary face of the host (the
bottom opening in Figure 2). Similarly, the wider open-
ing (top in Figure 2) surrounded by secondary hydroxyl
groups will be referred to as the secondary face of the
hosts. The guests can bind the cyclodextrin hosts with
the alkylamine sidechain pointing towards the host’s
secondary (denoted by ‘s") or primary (denoted by ‘p’)
faces (Figure 4). Each of these poses is further classified
in terms of the position of the small substituent of the
phenothiazine moiety, which can be at either the sec-
ondary or primary faces of the host. Hence the binding
modes of the guest/cyclodextrin complexes are labeled:
‘ss’, ‘sp’, ‘ps’, and ‘pp’, where the first letter refers to
the position of the alkylamine sidechain and the second
to the position of the small substituent (Figure 4).

The binding mode labels are combined with the la-
bels discussed above that identify the chemical form of
the guest to obtain the labels for each form of the guest
in each binding mode. For example, the guest PMT
with +1 charge with R chirality in the ‘ss’ binding mode
is labeled as PMT1Rss.

For the purpose of the alchemical calculations, the
binding modes are defined geometrically in terms of the
polar angle # and the azimuthal angle ¢ illustrated in
Figure 6. # is the angle between the molecular axes of
the host and the guest and determines the orientation
of the alkylamine sidechain relative to the host. The
molecular axis of the cyclodextrin host (labeled z in
Figure 6) is oriented from the primary to the secondary
faces going through the centroid of the atoms lining the
faces (see Computational Details). The molecular axis
of the guests goes from the sulfur and nitrogen atoms of
the central phenothiazine ring. The angle 1) describes
the rotation around the molecular axis of the guest and
determines the position of the of the phenothiazine sub-
stituent. The ‘sp’ binding mode, for example, is defined
by 0 < 6 < 90° and 90° < ¢) < 180° (see Figure 4 and
Computational Details).

3 Theory and Methods
3.1 Design of the Alchemical Process

The alchemical calculations aim to estimate the guests’
absolute binding free energies (ABFEs) to each host.
Direct alchemical ABFE calculations failed to reach
convergence for these systems partly due to the rel-
atively large sizes of the guests and partly because of
the slow conformational reorganization of the cyclodex-
trin hosts from a closed apo state to an open guest-
bound state.[42, 31] To overcome these obstacles, we
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Fig. 4 Tllustration of the classification of the four binding
poses of the phenothiazine/cyclodextrin complexes based on
the polar and twist angles introduced in Figure 6. Poses are
labeled as ‘ss’, ‘sp’, etc. where ‘s’ refers to the secondary
face of the host and ‘p’ to the primary face of the host. The
first letter of the label refers to the orientation of the alky-
lamine sidechain that can protrude out from the secondary
face (poses ‘ss’ and ‘sp’) or from the primary face of the host
(poses ‘ps’ and ‘pp’). Similarly, the second letter refers to the
position of the small substituent of the phenothiazine moiety
protruding out from either the primary or secondary faces of
the host.

adopted a step-wise process made of a series of rela-
tive binding free energy calculations (RBFE) starting
from the ABFE of a small guest that could be reli-
ably estimated. Specifically, we obtained the ABFE of
trans-4-methylcyclohexanol (Figure 5)-the G1 guest of
the SAMPL7 bCD challenge[43]—for the secondary and
primary binding modes to each host. We defined the
‘G1s’ binding mode of the G1 guest as the one in which
the hydroxyl group points toward the secondary face of
the cyclodextrin host, while it points to the opposite
face in the ‘G1p’ mode (Figure 7).

Each binding mode of the complex with Gl was
then alchemically converted to an intermediary phe-
nothiazine guest (N-methylphenothiazine, or MTZ, in
Figure 5), similar to the SAMPL9 phenothiazine deriva-
tives with a small methyl group replacing the large
alkylamine sidechains. Even though M'TZ does not have
conformational chirality (Figure 3), we treated its S and
R enantiomers individually to test the convergence of
the RBFE estimates for each binding pose. We used
atom indexes to distinguish the S and R enantiomers
of these symmetric guests. Calculations were conducted
to obtain the RBFEs from the Gls to the MTZRsp,
MTZRss, MTZSsp, and MTZSss binding poses of the
complexes of MTZ with bCD and mCD, and from Glp
to the MTZRps, MTZRpp, MTZSps, and MTZSpp of
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Trans-4-methylcyclohexanol ~ N-methylphenothiazine
Gl MTZ

Fig. 5 The structures and abbreviations of the molecular
guests used as intermediate compounds in the alchemical pro-
cess.

Fig. 6 Illustration of the geometrical definition of the bind-
ing poses of the phenothiazine/cyclodextrin complexes. The
definition is based on the polar (8) and twist (¢) angles of
the molecular axis of the guest with respect to the coordinate
frame of the host, which includes the z-axis that runs from
the primary to the secondary face of the host. See Compu-
tational Details for the specific definition of the guests’ and
hosts’ coordinate frames.

the same complexes, all independently and from dif-
ferent starting conformations. The MTZRsp, MTZRss,
MTZSsp, and MTZSss complexes are equivalent and
should yield the same RBFE values within uncertainty.

Similarly, the MTZRps, MTZRpp, MTZSps, and MTZSpp

should yield equivalent RBFEs but distinguishable from

those of the MTZRsp, MTZRss, MTZSsp, MTZSss group.

Next, RBFEs were obtained for each complex of
MTZ to the corresponding complex of PMZ. For ex-
ample, the MTZRsp binding pose of the MTZ complex
with bCD and mCD were converted to the PMZ1Rsp
binding pose of the corresponding complexes between
PMZ and the hosts. Finally, the RBFEs between each
pose of PMZ and the corresponding binding poses of
the other guests were obtained. During this process, we
monitored convergence by looking at the discrepancy
between the RBFEs corresponding to the equivalent
symmetric poses of the achiral PMZ and PMT guests.
The overall alchemical process to obtain the ABFEs
of the SAMPL9 phenothiazine guests is summarized in
Figure 8.
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Fig. 7 The ‘s’ and ‘p’ binding modes of the G1/8-

cyclodextrin complex. The ‘s’ mode, in which the hydroxyl
group points towards the secondary face of the host, is used
as a starting species for the ‘ss” and ‘sp’ binding modes of the
phenothiazine/cyclodextrin complexes. The ‘p’ mode, which
points towards the primary face, is the starting species for
the ‘ps’ and ‘pp’ modes (Figure 4).

3.1.1 Free Energy of Binding for Complezes with
Multiple Binding Modes

The observed binding constant Kj, of the complex RL
of a receptor R with a ligand L present in forms or poses
L;, i =1,2,... is the weighted average of the binding
constant Kb( /) for each form with weights equal to the
relative population Py(#) of each form in solution[41, 35]

= > ROK) (1)

When expressed in terms of binding free energies, Eq.
(1) becomes

AGp=1In Z Py(i)e=ACs()/ksT @)

where AGYy, is the overall binding free energy and AGy (i)
the binding free energy of mode i. Statistical mechanics-
based derivations of the latter formula, which we re-
fer to as the Free Energy Combination Formula, are
available.[41, 35] The Free Energy Combination For-
mula can also be derived using elementary notwm db

follows: Kj = CO RL =% CO RL — Z ]
and C°{ft = Kb( ) and il = Po( ), Where co 1
mol/L, [RL] = > ,[RL;] is the total molar concen-

tration of the complex and [RL,] is the concentration
of mode i of the complex. Similar definitions apply
to the concentrations of the ligand [L] and [L;], and
Py(i) = [L;]/]L] is the population of mode i of the lig-
and in solution.

Moreover, as also shown in the Appendix, the frac-
tional contribution of binding mode 7 to the overall
binding constant is the population, P (i) of mode i of
the complex:[35]

Po(i) Ky (i)
— il (3)

Below we used this property to infer the probability of
occurrence of each mode of the host-guest complexes.

Pi(i) =
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G1s
MTZRsp MTZRss MTZSsp MTZSss
PMZ1Rsp PMZ1Rss PMZ1Ssp PMZ1Sss
PMT1Rsp PMT1Rss PMT1Ssp PMT1Sss
CPZ1Rsp CPZ1Rss CPZ1Ssp CPZ1Sss
TDZNR1Rsp TDZNS1Rsp TDZNR1Rss TDZNS1Rss TDZNR1Ssp TDZNS1Ssp TDZNR1Sss TDZNS1Sss

TFP1aRsp TFP1bRsp TFP1aRss TFP1bRss

TFP1aRpp TFP1bRpp TFP1aRps TFP1bRps

TFP1aSsp TFP1bSsp TFP1aSss TFP1bSss

TFP1aSpp TFP1bSpp TFP1aSps TFP1bSps

TDZNR1Rpp TDZNS1Rpp TDZNR1Rps TDZNS1Rps TDZNR1Spp TDZNS1Spp TDZNR1Sps TDZNS1Sps
CPZ1Rpp CPZ1Rps CPZ1Spp CPZ1Sps
PMT1Rpp PMT1Rps PMT1Spp PMT1Sps
PMZ1Rpp PMZ1Rps PMZ1Spp PMZ1Sps
MTZRpp MTZRps MTZSpp MTZSps
G1p

Fig. 8 The map of relative binding free energy calculations to obtain the binding free energies of each pose of each guest
starting from the absolute binding free energy of the corresponding poses of the G1 guest. Nodes of the same color contribute
to the binding free energy estimate of one of the five guests: PMZ (yellow), PMT (green), CPZ (cyan), TDZ (violet), and TFP

(purple).

In this specific application, the binding modes re-
fer to the ‘ss’, ‘sp’, etc. orientations of the R and S
enantiomers of each guest. We individually obtained the
binding constants K (i) for each binding mode. In the
corresponding alchemical simulations, the orientation of
the ligand in the binding site is set by restraining po-
tentials based on the 8 and ¢ angles (see Figure 6 and
Computational Details). These orientations are equally
likely in solutions. We also assume an equal likelihood
of the R and S conformational enantiomers of the guests
in solution, leading to Py(i) = 1/8 for each pose of each
guest. The TDZ and TFP guests have twice as many
poses due to point chirality and multiple protonation
states of their alkylamine sidechain that are approxi-
mately equally likely in solution based on pKa analysis
with Epik.[44] Hence, for simplicity, we set Py(i) = 1/16
for each state of the TDZ and TFP guests.

3.2 The Alchemical Transfer Method

The Alchemical Transfer Method (ATM) is based on
a coordinate displacement perturbation of the ligand

between the receptor-binding site and the explicit sol-
vent bulk and a thermodynamic cycle connected by a
symmetric intermediate in which the ligand interacts
with the receptor and solvent environments with equal
strength.[33, 20] The perturbation energy v for trans-
ferring the ligand from the solution to the binding site
is incorporated into a A-dependent alchemical potential
energy function of the form

Ux(x) = Un(z) + Wi (u) (4)

where x represents the system’s coordinates, Uy(x) is
the potential energy function that describes the un-
bound state, and W), is the softplus alchemical potential[13,
33, 20] such that the system’s potential energy function
is transformed from that of the unbound state to that of
the bound state as A goes from 0 to 1. This alchemical
process computes the excess component of the free en-
ergy of binding. The ideal term —kpgT In C°Ve, where
C° = 1 mol/L and Ve is the volume of the binding
site is added in post-processing to obtain the standard
free energy of binding.

In this work, we used the strategy above to com-
pute the absolute binding free energy (ABFE) of the G1
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guest in two different poses. The binding free energies
of the phenothiazine guests are obtained by a series of
relative binding free energy (RBFE) calculations start-
ing from G1 (Figure 8). The alchemical RBFE imple-
mentation of the ATM method[34] is similar to ABFE
implementation except that one ligand of the pair un-
der investigation is transferred from the solution to the
binding site while the other ligand is transferred in
the opposite direction. The receptor and the two lig-
ands are placed in a single solvated simulation box in
such a way that one ligand is bound to the receptor
and the other is placed in an arbitrary position in the
solvent bulk. Molecular dynamics simulations are then
conducted with a A-dependent alchemical potential en-
ergy function that connects, in an alchemical sense, the
state of the system where one guest is bound to the
receptor and the other in solution, to the state where
the positions of the two guests are reversed. The free
energy change of this process yields the relative binding
free energy of the two guests. To enhance convergence,
the two ligands are kept in approximate alignment to
prevent the one in solution to reorient away from the
orientation of the bound pose. We have shown mathe-
matically that the alignment restraints implemented in
ATM do not bias the binding free energy estimates.[34]

In this work, we employed metadynamics conforma-
tional sampling to obtain converged RBFE estimates
for the PMT guest. Well-tempered metadynamics[45]
is a well-established enhanced sampling technique to
sample rare events during MD simulations when they
are separated from other metastable states by large en-
ergy barriers. The technique uses a bias potential, Up;as,
that lowers energy barriers along a slow degree of free-
dom. In this work, the metadynamics biasing poten-
tial is obtained along a dihedral angle, ¢, of the alky-
lamine sidechain of PMT (see Computational Details)
from a simulation in a water solution, using OpenMM’s
well-tempered metadynamics implementation by Peter
Eastman.[37] The alchemical binding free energy cal-
culation is then conducted with the biasing potential,
Ubias(¢), added to the alchemical potential energy func-
tion in Eq. (4). The resulting binding free energy esti-
mate is then unbiased using a book-ending approach[46]
by computing the free energy differences of the system
without the biasing potential from samples collected
with the biasing potential at the endpoints of the al-
chemical path. In this work, we used a simple unidirec-
tional exponential averaging formula

—kpT In{exp(Upias/kBT))bias

to evaluate the free energy corrections for unbiasing.
Due to the larger excursions of the dihedral angle with
metadynamics, the unbiased ensemble is a subset of the

biased ensemble and the exponential averaging estima-
tor converges quickly in this case.

3.3 Force Field Parametrization

Force field parameters were assigned to the hosts and
the guests using an in-house development FFEngine
workflow at Roivant Discovery. FFEngine is a workflow
for the bespoke parametrization of ligands with the Am-
ber force field functional form.[47] The partial charges
were derived from GFN2-xTB/BCC with pre-charges
from semi-empirical QM method GFN2-xTB,[48] and
bond charge correction (BCC) parameters fitted to the

HF/6-31G* electrostatic potential (ESP) with the COSMO

implicit solvation model from a 50,000 drug-like com-
pounds dataset. The ESP with an implicit solvation
model was deemed necessary for these highly polar and
charged host-guest systems even though it is expected
to yield a fixed charge model slightly more polarized
than the default GAFF2/Amber one.

3.4 Computational Details

The guests were manually docked to the hosts in each
binding pose using Maestro (Schrédinger, Inc.) in each
of the four binding poses. A flat-bottom harmonic posi-
tional restraint with a force constant k. = 25 kcal /mol/A?
and a tolerance of 4 A was applied to define the binding
site region.[49, 35] For this purpose, the centroid of the
guest was taken as the center of the central ring of the
phenothiazine core, and the centroid of the cyclodextrin
host was defined as the center of the oxygen atoms form-
ing the ether linkages between the sugar monomers.
Boresch-style[50] orientational restraints were imposed
to keep each complex in the chosen binding pose. These
were implemented as flat-bottom restraints acting on
the # and ¢ angles in Figure 6 with a force constant
of k, = 0.05 kcal/mol/deg?, and centers and tolerances
tailored for each pose. For example, the orientational
restraints for the ‘sp’ pose are centered on # = 0° and
¢ = 180° with +90° tolerances for both. The 6§ angle
is defined as the angle between the z-axis of the host,
defined as the axis going through the centroid of the
oxygen atoms of the primary hydroxyl groups and the
centroid of the oxygen atoms of the secondary hydroxyl
groups, and the molecular axis of the guest, defined as
the axis going through the S and N atoms of the central
ring of the phenothiazine core. The ¢ angle is defined
as the dihedral angle between the plane formed by the
C1-N-S triplet of atoms of the phenothiazine core of the
guest and the plane spanned by the z-axis of the host
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and the molecular axis of the guest, where C1 repre-
sents the carbon atom of the phenothiazine host with
the substituent of the phenothiazine moiety. Very loose
flat-bottom harmonic positional restraints (4 A toler-
ance and 25 kcal/mol/A? force constant) were applied
to the ether linkages oxygen atoms of the cyclodextrins
to keep the hosts from wandering freely in the simu-
lation box. The ATM displacement vector was set to
(—30,0,0) A .

Force field parameters were assigned as described
above. In RBFE calculations, the second ligand in the
pair was placed in the solvent by translating it along
the displacement vector. The resulting system was then
solvated using tleap[51] in a TIP3P box with a 10 A
solvent buffer and sodium and chloride counterions to
balance the negative and positive charges, respectively.
The systems were energy minimized, thermalized, and
relaxed in the NPT ensemble at 300 K and 1 atm pres-
sure. Annealing of the systems to A = 1/2 in the nVT
ensemble followed to obtain initial structures to initi-
ate the parallel replica exchange ATM calculations. Al-
chemical calculations were conducted with the OpenMM
7.7 MD engine on the CUDA platform with a 2 fs time-

step, using the AToM-OpenMM software.[52] Asynchronous

Hamiltonian Replica Exchange[53] in A space was at-
tempted every 20 ps and binding energy samples were
collected at the same frequency. The ATM-RBFE em-
ployed 22 A\ states distributed between A = 0 to A
= 1 using the non-linear alchemical soft-plus potential
and the soft-core perturbation energy with parameters
Umax = 200 kcal/mol, u. = 100 kcal/mol, and a =
1/16.[13] The input files of the simulations are provided
in our lab’s GitHub repository (https://github.com
/GallicchioLab/SAMPL9-bCD). We collected approxi-
mately 20 ns trajectories for each replica corresponding
to approximately 440 ns for each of the 64 alchemical
steps for each host (Figure 8). Overall, we simulated
the systems for over 6 us. UWHAM[54] was used to
compute binding free energies and the corresponding
uncertainties after discarding the first half of the tra-
jectory.

To obtain the torsional flattening biasing potential,
we simulated the PMT guest in solution with metady-
namics over the (C-N-C-C) alkylamine sidechain tor-
sional angle highlighted in Figure 10. A well-tempered
metadynamics bias factor of 8 was used, with a Gaus-
sian height of 0.3 kcal/mol and width of 10°.[45] The
bias potential was collected for 20 ns, updating it every
100 ps. The resulting potential of mean force is shown
in Figure 10. The metadynamics-derived biasing poten-
tial was used in all the RBFE calculations involving the
PMT guest to accelerate the sampling of the slow tor-
sional degree of freedom in question.

4 Results
4.1 Binding Free Energy Predictions

The calculated binding free energies of the cyclodex-
trin/phenothiazine complexes obtained by combining
the pose-specific binding free energies are listed in Ta-
ble 1 compared to the experimental measurements. We
provide the results of each individual free calculation
in the Supplementary Information. The second column
of Table 1 reports the blinded computational predic-
tions submitted to the SAMPL9 organizers and the
results of revised predictions (third column) obtained
subsequently to correct setup errors and resolve un-
converged calculations. Specifically, we uncovered cases
where binding poses were misidentified and where cen-
ters of ligands and the hosts had reversed chirality dur-
ing energy minimizations due to close initial atomic
overlaps. As discussed below, in the initial predictions,
we were also unable to obtain consistent binding free
energy predictions for symmetric poses. In the binding
mode analysis reported below we used exclusively data
from the corrected molecular simulations.

The predictions for the bCD complexes are in rea-
sonable agreement with the experiments. The revised
predictions, in particular, are all within 1.5 kcal/mol of
the experimental measurements and within 1 kcal/mol
for four of the five bCD complexes. Although the range
of the binding affinities is small, some trends are re-
produced and the weakest binder (PMT) is correctly
identified. The quality of the predictions for the mCD
host is not as good, and it worsened upon revision. The
experiments show that the phenothiazine guests bind
slightly more strongly to mCD than bCD. However,
except for CPZ, the calculations predict significantly
weaker binding to mCD relative to bCD. The computed
free energies of the mCD complexes are on overage over
2 kcal/mol less favorable than the experimental ones.
The revised prediction for the mCD-TDZ complex is
particularly poor and fails to identify this complex as
the most stable in the set. While a detailed investigation
of the sources of the poor prediction for mCD has not
been carried out, our model could not have identified
the best possible binding poses for this more flexible
host. mCD is also more hydrophobic and the energy
model may overpredict the reorganization free energy
to go from the apo to the holo conformational ensemble
for this host.

4.2 Binding Mode Analysis

We used the binding mode-specific binding constants
we obtained (see Supplementary Information) to infer
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Table 1 The binding free energy predictions submitted to the SAMPLY challenge compared to the revised predictions and

the experimental measurements.

Name AGy(SAMPLY)* ¢ AG,(ATM)*:%?  AGy(expt)®©
bCD-TDZ —4.28 £0.90 —4.56 £ 0.47 -5.73
bCD-TFP —6.51+1.11 —5.424+0.99 -5.09
bCD-PMZ —3.73 £0.48 —4.03+0.45 —5.00
bCD-PMT —2.53+£0.70 —3.00 £ 0.47 —4.50
bCD-CPZ —7.28 £0.92 —4.64 +£0.70 —5.45
mCD-TDZ —5.16 +£1.40 —2.96 £+ 0.68 —6.50
mCD-TFP —4.14 £ 0.62 —3.98+0.70 —5.57
mCD-PMZ —2.37+£0.54 —2.34 £ 0.55 —5.08
mCD-PMT —1.80£0.99 —1.58 £ 0.60 —-5.39
mCD-CPZ —5.22+0.90 —5.13 £ 0.88 —5.43

@In kcal/mol. *Errors are reported as twice the standard deviation. “Blinded computational predictions submitted to the
SAMPLY challenge organizers. Revised ATM computational predictions. ®°SAMPL9 blinded experimental isothermal

calorimetry data.[25]

the population of each binding mode for each complex
shown in Figure 9. The results indicate that the com-
plexes visit many poses with appreciable population.
The only exceptions are TFP binding to bCD and CPZ
binding to mCD which are predicted to exist with over
75% population in only one pose (‘sp’ in the R con-
figuration in the case of the TFP-bCD complex and
‘sp’ in the S configuration in the case of the CPZ-
mCD complex). In general, the guests bind the hosts
preferentially in the ‘sp’ and ‘ss’ modes with the alky-
lamine sidechain placed near the primary face of the
hosts (Figure 4). This trend is less pronounced for the
complexes between PMT, PMZ, and TDZ with bCD,
which occur in the ‘sp’/‘ss’ and ‘pp’/‘ps’ modes with
similar frequency, and it is more pronounced for all
complexes with mCD which strongly prefer the alky-
lamine sidechain towards the primary face. Unlike the
alkylamine sidechain, the substituents of the phenoth-
iazine aromatic ring of the CPZ, TDZ, and TFP guests
are preferentially placed towards the secondary face of
the cyclodextrin hosts. This is evidenced by the higher
probability of the ‘sp’ binding modes (red and green
bars in Figure 9) over the ‘ss’ binding modes (blue and
yellow).

Reassuringly, the calculations predict that the pop-
ulations of the symmetric binding modes of the com-
plexes with the PMZ and PMT guests are more evenly
distributed than for the other complexes. Lacking a sub-
stituent of the phenothiazine moiety (Figure 1), the
PMZ and PMT guests do not display conformational
chirality (Figure 3). Hence, their ‘ssS’, ‘spS’, ‘ssR’, and
‘spR’ binding modes are chemically equivalent and should
have the same population. Similarly, the binding modes
‘psS’, ‘ppS’, ‘psR’, and ‘ppR’ of these guests are mutu-
ally equivalent. Still, they are distinguishable from the
‘ssS’, ‘spS’, ‘ssRf, ‘spR’ group by the position of the

alkylamine sidechain (Figure 4). We used these equiv-
alences to assess the level of convergence of the bind-
ing free energy estimates. Although redundant for sym-
metric poses, we simulated each binding mode of these
guests individually, starting from different initial config-
urations, and checked how close the pose-specific bind-
ing free energies varied within each symmetric group.
For example, the computed populations of the ‘ssS’,
‘spS’, ‘ssRf, and ‘spR’ poses of the PMZ-bCD com-
plex vary in a narrow range between 7.5 and 15.9%,
indicating good convergence. However, the correspond-
ing populations for the complex with mCD are not as
consistent—the ’ssS’ mode predicted to be significantly
less populated (4%) than the other modes (20-40%)—
reflecting poorer convergence.

The pose-specific binding free energy estimates probe
the chiral binding specificity of the hosts. Except for
the TFP guest that is predicted to bind predominantly
in the R chiral form (88% population), bCD shows lit-
tle chiral preference. mCD displays a slightly stronger
chiral specificity, with CPZ predicted to bind predomi-
nantly in the S form and TFP in the R form.

4.3 Comparison between Predicted Binding Pose
Populations and NMR Experiments

In addition to providing the Isothermal Calorimetry
(ITC) binding affinity data for the SAMPL9 bCD blinded
challenge, Gilson and collaborators probed the confor-
mational propensities of the phenothiazine complexes
with bCD and mCD by proton Nuclear Magnetic Res-
onance (NMR) Nuclear Overhauser Effect (NOE)
measurements.[25] Our calculated binding pose popula-
tion distributions generally agree with the experimental
observations.
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Fig. 9 Binding mode populations of the complexes with bCD (left) and mCD (right).

Consistent with the significant conformational vari-
ability that we predicted, only a sparse set of NOEs
of the complexes of bCD and mCD with the symmetric
guests PMT and PMZ are observed.[25] NOE signals for
these complexes include only a few interactions between
the phenothiazine moieties and protons at either face of
the host, as seen in the molecular simulations. No NOE
interactions are observed for the mCD-PMT complex.
The high conformational variability of the complexes
with the TDZ guest (Figure 9A) is similarly confirmed
by the lack of NOEs involving the alkylamine sidechain
and the observed NOEs with the phenothiazine core,
indicating that it binds in both orientations with the
substituted end near both the primary and secondary
faces of the host.

In agreement with our predictions (Figure 9A), the
observed NOEs indicate binding of the CPZ and TFP
guests in a single dominant binding pose, but not always
the predicted pose. The set of NOEs of the bCD-CPZ
complex,[25] is in agreement with the prediction that
the bCD-CPZ complex has an aggregate ‘sp’ binding
pose population of over 80% (Figure 9A). However, the
computational prediction that the mCD-CPZ complex
exists predominantly in the ‘spS’ binding pose (Figure
9B) does not appear to be well supported by the exper-
imental NOEs between the secondary face of mCD and
the protons of the phenothiazine moiety closest to the
substituent.[25] Finally, the predictions that the TFP
guest binds the bCD and mCD hosts mainly in the
‘sp’ pose, in which the alkylamine sidechain is oriented
toward the secondary face of the host and the trifluoro-
methyl group toward the primary face, is not born out
in the experimental NOEs that indicate a strong prefer-
ence for ‘ps’ and ‘pp’ poses. The contrast between these
structural inconsistencies and the good alignment be-
tween the computed and experimental binding free en-

ergies for these complexes (Table 1) are potentially a
further indication that binding pose populations can
be very sensitive to minute shifts in interatomic inter-
action energies.

4.4 Enhanced Conformational Sampling of the PMT
Guest

As discussed above, the ‘ssS’, ‘spS’; ‘ssR’, and ‘spR’
binding poses of the PMT guest, which lacks phenoth-
iazine substituent, are chemically indistinguishable and
should yield equivalent pose-specific ABFE estimates.
Similarly, the ‘psS’, ‘ppS’, ‘psR’, and ‘ppR’ should yield
the same binding free energy within statistical uncer-
tainty. Yet, in our first attempt submitted to SAMPL,
our predictions did not achieve the expected consis-
tency (Table 2, second column). In Table 2 we show
the binding free energy estimates for each PMT bind-
ing pose relative to the same pose of PMZ, whose poses
are equivalent in the same way as for PMT. For in-
stance, while the four top poses for bCD are expected
to yield the same RBFEs, the actual estimates show a
scatter of more than 4 kcal/mol. The other groups of
equivalent binding poses of bCD and mCD also show
significant scatter, indicating poor convergence.

The molecular dynamics trajectories analysis later
revealed that the observed scatter of relative binding
free energy estimates was due to the conformational
trapping of the PMT guest in the starting conforma-
tion, which was randomly set during the system setup.
Simulations with PMT trapped in some conformations
overestimated the RBFE while those in the other under-
estimated it. We pin-pointed the conformational trap-
ping to the branched alkylamine side chain of PMT
which showed hindered rotation around one of its tor-
sional angles (Figure 10) caused by a large {ree energy
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Fig. 10 The potential of mean force (PMF) in water so-
lution along the highlighted torsional angle, ¢, of PMT1
computed by well-tempered metadynamics sampling.[45] The
PMF identifies two major gauche conformational states at
positive and negative angles around 60° and —120° sepa-
rated by a large free energy barrier at 180° of more than
7 kcal/mol from the global minimum at —50°. The free en-
ergy barrier is sufficiently high that interconversions between
the two stable conformational states are not observed in the
time-scale of the alchemical calculations without the metady-
namics landscape-flattening potential.

barrier separating the gauche(+) and gauche(-) con-
formers (Figure 10). The variations of conformers in
the alchemical calculation broke the symmetry between
equivalent poses and caused the scatter in the observed
RBFEs.

To correct these inconsistencies, we modified our al-
chemical binding protocol to include a metadynamics-
derived flattening potential bias that reduced the mag-
nitude of the free energy barrier separating the con-
formers of the alkylamine sidechain of PMT (see Meth-
ods and Computational Details). We confirmed that
the biasing potential successfully induced rapid confor-
mational transitions between these conformers, which
were rarely achieved with the conventional ATM proto-
col. Consequently, integrating metadynamics-enhanced
sampling with ATM (ATM-MetaD) indeed produced
much better convergence of binding free energy esti-
mates of symmetric poses starting from different initial
conformers (Table 2). For example, the large discrep-
ancy of RBFE estimates between the ‘spS‘ and ‘spR’
binding poses was reduced to less than 1 keal/mol with
ATM-metaD and in closer consistency with statistical
uncertainties. With only one exception, improved con-
vergence was also achieved for the equivalent binding
poses of bCD and mCD, falling within a 1 kecal/mol
range of each other (Table 2).

Table 2 Relative binding free energy estimates of the bind-
ing poses of PMT relative to the same binding pose of PMZ
for the two cyclodextrin hosts bCD and mCD and with and
without metadynamics enhanced sampling.

Pose AAG,(ATM)*b¢  AAG,(ATM+MetaD)e b4
bCD
spS 3.94+£0.39 0.44+0.25
EENS 2.80+£0.39 0.58£0.25
spR 0.28 +£0.34 1.12£0.24
ssR 4.62 £ 0.45 1.65 £0.25
psS 1.98 £0.36 1.49£0.24
ppS 2.03+£0.39 1.10 £0.24
psR 0.77£0.29 1.46 £0.24
ppR 0.28 £0.39 0.57+£0.24
mCD
spS 1.93 £0.37 0.96 £0.25
EENS 0.57 £ 0.44 0.11 +0.26
spR 1.59£0.41 0.30 £ 0.25
ssR 0.25£0.42 1.90 £0.25
psS 1.26 £0.39 —0.14+0.24
ppS 0.20£0.42 0.95+0.25
psR 1.54 £0.41 —0.41+0.25
ppR 0.10£0.38 0.10+0.24

@In keal/mol. ®Errors are reported as twice the standard
deviation. “Estimates computational predictions submitted
to the SAMPLY challenge organizers. Revised ATM
estimates with metadynamics conformational sampling.

5 Discussion

Molecular binding equilibria are central to applications
ranging from pharmaceutical drug design to chemical
engineering. Obtaining reliable estimates of binding affini-
ties by molecular modeling is one of the holy grails
of computational science. Enabled by recent develop-
ments in free energy theories and models and increased
computing power, early static structure-based virtual
screening tools, such as molecular docking, are increas-
ingly complemented by more rigorous dynamical free
energy models of molecular recognition representing the
conformational diversity of molecules at atomic resolu-
tion. However, many challenges still remain to achieve a
sufficient level of usability and performance for free en-
ergy models to apply them to chemical research widely.
By offering a platform to assess and validate computa-
tional models against high-quality experimental datasets
in an unbiased fashion, the SAMPL series of blinded
challenges have significantly contributed to the advance-

ment of free energy models.[55] By participating in SAMPL

challenges we have refined and improved our models
against host-guest and protein-ligand datasets[56, 57,
19, 58, 22, 20] and built an appreciation for the com-
plexities of molecular recognition phenomena and the
level of detail required to model them accurately.
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The present SAMPL9 bCD challenge highlights the
importance of properly treating conformational hetero-
geneity to obtain reliable quantitative descriptions of
binding equilibria. We undertook this challenge with
the mindset that host-guest systems are simpler surro-
gates of more challenging and conformationally diverse
protein-ligand complexes and, hence, more suitable to
assess computational methodologies. However, as later
confirmed by the NMR NOE experimental analysis,[25]
we realized that the phenothiazine/cyclodextrin com-
plexes could be far more chemically and conformation-
ally diverse than expected. Most of the guests exist in
solution as mixtures of enantiomers related by nitrogen
inversion (Figure 3) which are distinctly recognized by
the chiral hosts. As a result, one enantiomer could be
significantly enriched relative to the other when bound
to the host. In addition, each enantiomer binds the host
in four generally distinct binding orientations that dif-
fer in the placement of the alkylamine sidechain and the
the substituent of the phenothiazine moiety relative to
the host (Figure 4). While in the experimental setting
the guests and the complexes rapidly transition from
one pose to another, this level of conformational hetero-
geneity poses serious challenges for standard molecular
dynamics conformational sampling algorithms, which
are generally limited to one binding pose.

When facing these complexities, it is tempting to
limit the modeling to the most important binding pose.
While it is true that often the most favorable pose
contributes the most to the binding affinity and that
neglecting minor poses results in small errors, bind-
ing pose selection remains an unresolved issue. Clearly,
identifying the major pose cannot be carried out by
binding free energy analysis of each pose because that
is precisely what one seeks to avoid in such a scenario.
Whichever approach is adopted, it must be capable of
identifying the most stable pose of each complex among
many competing poses. The present results illustrate
this challenge. For example, the populations derived
from our free energy analysis (9) indicate that the ‘spR’
binding pose is often one of the most populated (red in
Figure 9). However, CPZ is predicted to strongly prefer
the ‘spS’ pose when binding to mCD (orange in Figure
9B), and limiting the modeling to the ‘spR’ pose would
result in a gross underestimation of the binding free en-
ergy. Similarly, the TDZ-bCD complex is predicted to
exist in a variety of poses (Figure 9A), including, for
instance, the ‘psR’ pose with the alkylamine sidechain
pointing towards the primary face of bCD, with the
‘spR’ pose contributing only a small fraction of the ob-
served binding affinity. Clearly, at least in this case,
limiting the modeling to one carefully selected prede-

termined pose would lead to significant mispredictions
for individual complexes.

To obtain an estimate of the observed binding con-
stants, in this work, we opted to compute the bind-
ing free energies of all of the relevant binding poses of
the system and to integrate them using the free en-
ergy combination formula [Eq. (1)]. The combination
formula requires the populations of the conformational
states of the guest in solution that, in this case, are eas-
ily obtained by symmetry arguments. Still, the work
involved 64 individual alchemical free energy calcula-
tions (Figure 8) and hundreds of nanoseconds of sim-
ulation on GPU devices. While we attempted to auto-
mate the process as much as possible, setup errors were
made and it is likely that some yet undiscovered de-
fects are still affecting our revised results. We assessed
the convergence of the pose-specific binding free energy
estimates by monitoring the consistency between the
results for symmetric poses. As a result of this assess-
ment, we realized that one guest (PMT) was affected by
slow conformational reorganization that required meta-
dynamics treatment. This best-effort attempt resulted
in good quantitative predictions for the complexes with
B-cyclodextrin host. However, our model failed to prop-
erly describe the binding free energies of the complexes
with the methylated derivative (mCD). Force field lim-
itations that cause excessive reorganization of the host
in solution and the existence of alternative binding modes
not considered in our analysis are some of the possible
explanations of why our free energy predictions consis-
tently underestimated the binding affinities of the com-
plexes with mCD (Table 1).

6 Conclusions

In this work, we describe our effort to obtain alchemi-
cal computational estimates of the binding constants of
a set of phenothiazine guests to cyclodextrin hosts as
part of the SAMPL9 bCD challenge using the Alchemi-
cal Transfer Method. The free energy modeling of these
systems proved significantly more challenging than ex-
pected due to the multiple conformational states of the
guests and the multiple binding poses of the complexes
which had to be treated individually. Overall, 64 indi-
vidual alchemical calculations were employed to obtain
binding free energy estimates comparable to the experi-
mental observations. The predictions were quantitative
for the S-cyclodextrin host but failed to accurately de-
scribe the observed binding affinities to the methylated
derivative. The work shows that even simple molecular
systems can require extensive modeling efforts to treat
conformational heterogeneity appropriately and it illus-
trates the role that multiple binding poses can play in
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protein-ligand binding prediction and, ultimately, drug
design.
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8 Data Availability

Input files of the AToM-OpenMM simulations are avail-

able on the GitHub repository github. com/GallicchioLabf-e~#Ve(®dx

where the denominator is the configurational partition func-
tion of the complex in the bound state, and the numerator,
where the integration is restricted to regions of conforma-
tional space corresponding to binding mode i, is the config-
urational partition function of binding mode i in the bound
state. Next, multiply and divide Eq. (5) by the partition func-
tion fiexp[—BUO(a:)]dw of binding mode ¢ in the unbound
state, noting that:

f, e BUL(=) dy

e = 0 ®)

where K3 (%) is the binding mode-specific binding constant.

To obtain an expression for the reminder ratio of the par-
tition function of binding mode ¢ in the unbound ensemble to
the partition function of the complex in the bound ensemble,
multiply and divide by the partition function of the system
in the unbound ensemble fexp[—BUo (z)]dz noting that:

f. effBUU(x)d:U

Fesmmg = PO ™

where Pp(7) is the population of binding mode 4 in the un-
bound ensemble and

[e=BUi@) dg
=K, (8)

SAMPL9-bCD. The AToM-OpenMM software is freely avail- is the overall binding constant. Collecting the terms above

able for download on GitHub.[52] A detailed list of the
results and their analysis are provided in the Supple-
mentary Information. Simulation MD trajectories are
available from the corresponding author upon reason-
able request.

9 Supplementary information

Spreadsheets SAMPL9-bCDpc-FFEngine and SAMPL9-
mCDpc-FFEngine containing: (i) the absolute binding
free energy of host G1 in the ‘s’ and ‘p’ binding modes,
(ii) the relative binding free energies between G1 in the
‘p’ and ‘s’ poses and MTZ in the ‘ss’, ‘sp’, etc. bind-
mg modes, (iii) the relative binding free energy between
MTZ and PMZ in each of the eight binding modes, (iv)
the relative binding free energies between PMZ and the
other guests in each of the eight binding poses, (v) the
binding mode specific binding constants for each com-
plex in each binding mode, and (vi) the calculated pop-
ulations of each binding mode for each complex.

A Proof of Eq. (3)

Consider the potential energy function Up(x) of the unbound
state of the receptor-ligand complex and Uy (x) the one corre-
sponding to the bound state. Here x represents, collectively,
the degrees of freedom of the system. The probability that
the complex to in binding mode 1 is

f‘ e—BUL(Z) do

Pl(’l/) = fe_BUl(x)dCC

(%)

yields (3).
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