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Abstract

The accurate prediction of protein-ligand bind-
ing affinities is crucial for drug discovery. Al-
chemical free energy calculations have become
a popular tool for this purpose. However, the
accuracy and reliability of these methods can
vary depending on the methodology. In this
study, we evaluate the performance of a rela-
tive binding free energy protocol based on the
alchemical transfer method (ATM), a novel ap-
proach based on a coordinate transformation
that swaps the positions of two ligands. The
results show that ATM matches the perfor-
mance of more complex free energy perturba-
tion (FEP) methods in terms of Pearson cor-
relation, but with marginally higher mean ab-
solute errors. This study shows that the ATM
method is competitive compared to more tradi-
tional methods in speed and accuracy and offers
the advantage of being applicable with any po-
tential energy function.

1 Introduction

The ability to accurately predict the binding
free energy of a ligand to a protein can provide
crucial information for drug discovery, as it al-
lows for the identification of compounds that
have a higher likelihood of binding to a tar-
get. Alchemical free energy calculations have
become the leading tools in this field.1–3 Free
energy approaches are especially relevant in hit-
to-lead and lead optimization stages of drug de-
sign while dealing with a series of similar lig-
ands. Both commercial and free tools for free
energy calculations have been developed over
the past few years, with extensive use in both
academia and the pharmaceutical industry.4–8

One of the most common approaches to al-
chemical calculations is Free Energy Perturba-
tion (FEP). This method involves many dis-
tinct equilibrium MD simulations for all states
along a λ coordinate that modifies a ligand A
into a ligand B alchemically. Commonly these
simulations are split between 12 or more λ-
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intermediates where the two ligands are inter-
changed.9 One of the most common method-
ologies that use this approach is Schrödinger’s
FEP+.7 Another way to approach alchemical
calculations is via Thermodynamic Integration
(TI), as in the Amber implementation.10 The
main difference with FEP is that TI calculates
the free energy difference by integrating the
derivative of the Hamiltonian with respect to
the alchemical progress parameter λ. The pmx5

protocol implements a similar strategy based on
non-equilibrium trajectories. Although differ-
ent, FEP and TI share a few common traits
such as the adoption of a double-decoupling
process that obtains the relative binding free
energy from the difference of the alchemical
free energies from separate solution and recep-
tor legs, and the requirement of softcore po-
tentials to avoid clashes and instabilities11–13.
Custom alchemical topologies and the need for
multiple simulations of distinct systems (recep-
tor complex and ligand in solvent) tend to re-
quire more user expertise. Furthermore, they
are usually not suited for ligand pairs with dif-
ferent net charges14, leading to potential issues
with the treatment of long-range electrostatic
interactions and artifacts in the free energy es-
timates, unless complex correction factors are
introduced.15

Recently, a novel approach to performing al-
chemical calculations has been proposed. The
Alchemical Transfer Method (ATM) is a pro-
tocol for the estimation of relative binding free
energies based on a coordinate transformation
that swaps the positions of two ligands. The
method performs the calculation in a single sol-
vent box and, unlike double-decoupling free en-
ergy perturbation approaches,7,10,16 avoids the
split of the binding free energy calculation into
receptor and solvation legs. Furthermore, ATM
does not require the implementation of soft-
core pair potentials. ATM is implemented in
the free and open-source OpenMM17 molecular
simulation package, allowing a simple and easy
route to large-scale automated deployments and
flexibility to employ any potential energy func-
tion. In spirit, ATM is similar to the separated
topologies method18 with the difference that
the latter achieves the transfer by decoupling

the first ligand while coupling the second by
modifying the force field parameters. Whereas
in ATM, the perturbation is implemented as a
coordinate displacement that swaps the posi-
tion of the two ligands. Recently, this approach
was reintroduced to be used in GROMACS.19

ATM can handle both relative (ATM-RBFE)
and absolute (ATM-ABFE) binding free energy
calculations. In this work we focus on testing
the accuracy and feasibility of the RBFE ap-
proach.
All the different free energy estimation meth-

ods have their pros and cons and can vary
in their accuracy and reliability. Therefore it
is important to rigorously evaluate their per-
formance against large and diverse benchmark
datasets.
In this work, we aim to evaluate the perfor-

mance of ATM,20,21 using the dataset of Wang
et al.,7 one of the most popular benchmarks for
evaluating relative binding free energy proto-
cols. We use ATM to calculate the difference in
binding free energies for 330 ligand pairs across
8 different protein systems. We also compared
our results with state-of-the art methodologies
such as FEP+7, Amber10 and pmx22. We show
that ATM, a methodology that requires less ex-
pertise and preparation than alternative proto-
cols, performs as well as other existing tools and
even better from a correlation point of view.

2 Methods

The aim of this study is to further expand the
benchmarking of ATM to a series of targets
tested in other similar methodologies and eval-
uate whether it can provide accurate and re-
liable estimates of relative binding free ener-
gies for these systems. To address this ques-
tion, we conducted a computational study in
which we applied ATM to the dataset of Wang
et al..7 This benchmark includes eight targets
relevant to pharmaceutical research (MCL-1,
TYK2, MCL-1, JNK1, PTP1B, BACE, Throm-
bin and p38) with a total of 330 ligand pairs.
ATM is based on a displacement coordinate

transformation that swaps the positions of two
ligands, one of which is initially placed in
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pulsive interactions at the alchemical intermedi-
ate state, which serves as the starting point for
the subsequent Hamiltonian replica exchange24

molecular dynamics that computes the free en-
ergies of the two ATM legs connecting the al-
chemical intermediate to physical end states at
λ = 0 and λ = 1. Cα atoms of the protein re-
ceptor were restrained using a flat-bottom har-
monic restraining potential with a tolerance of
1.5 Å.Additionally, we apply binding site re-
straints as a flat-bottom distance restraint be-
tween the geometrical centres of sets of recep-
tor atoms that surround the binding site and
ligand atoms. This defines the binding site vol-
ume as required by the quasi-chemical statis-
tical mechanics formulation of molecular bind-
ing.16 The restraints of the receptor and the
ligands are optional and employed here to limit
the conformational space that needs to be ex-
plored to reach convergence of the binding free
energy estimate.
The softplus alchemical potential30 was used

for all calculations with 11 λ-states distributed
between λ = 0 and 0.5 for each of the two ATM
legs (Supporting Table 1). AToM-OpenMM
performs asynchronous Hamiltonian replica ex-
changes in λ-space using the method described
by Gallicchio et al.24 Exchanges were performed
every 10 ps. To maintain a temperature of 300
K, a Langevin thermostat with a time constant
of 2 ps was employed. Each ligand pair was
simulated for a minimum of 50 ns per ∆∆G

estimate. The sampling time has been cho-
sen in order to be comparable to the aforemen-
tioned works, FEP+ studies sample between
36 and 60 ns per ∆∆G estimate whereas Lee
et al.10 employed a total of 48 ns per ligand
pair in Amber. In the case of pmx,22 calcula-
tions were carried out for 50 ns per pair for two
force fields, GAFF and CGenFF. Since we per-
formed ATM calculations on wall time rather
than simulation time, as at the time of per-
forming these calculations there was no sup-
port for simulation time-based runs, the sam-
pled simulation time is similar but not identi-
cal for all ligand pairs. Binding free energies
and their corresponding uncertainties were cal-
culated from the perturbation energy samples
using the UWHAM method.31 The obtained

relative binding free energies (∆∆G) were com-
pared to experimental measurements in terms
of the mean absolute error (MAE), root mean
square error (RMSE), and Pearson correlation
coefficient. The obtained values are compared
to the corresponding values reported in the lit-
erature.7,10,22

The parallel replica exchange alchemical
molecular dynamics simulations were per-
formed with the OpenMM 7.717 MD engine and
the ATM Meta Force plugin23 using the CUDA
platform on NVIDIA RTX 2080 Ti cards.

2.1 Results

We conducted a comparison of ATM’s rela-
tive binding free energies (∆∆G) estimates for
the benchmarking dataset of Wang et al.7 with
those of commercial and open-source alchemi-
cal approaches: FEP+,7 Amber.10 and pmx.22

In addition to differences in the methodology,
these comparisons test variations in protein
force fields, ligand parameterization techniques,
and differences in the behavior of MD packages
as potential sources of deviation in the obtained
results. In this study, we have chosen to main-
tain the parameters described in the previous
ATM publications as we believe it would pro-
vide a fair and consistent comparison.
The results of the simulations are displayed

in Figures 3 and 4, which highlight the rela-
tive (Pearson correlation) and absolute (MAE)
performance of the method. Table 1 contains
a comparison against other free energy meth-
ods. Comparison against the other mentioned
methodologies can be found in Supporting Fig-
ures 1, 2 and 4. We observe that ATM performs
similarly to the other approaches in overall
Pearson correlation (0.59), with values for spe-
cific systems ranging from 0.42 to 0.71. ATM’s
Pearson correlation coefficients are particularly
good for the MCL-1, JNK1, and Thrombin
datasets, where it outperforms the other meth-
ods albeit only by relatively small margins. For
the other protein targets, Pearson correlation
metrics fall within those of the other method-
ologies. For instance, in the case of p38, the
observed correlation is 0.71 for ATM, which
is the lowest when compared to the other ap-
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Figure 2: Top: Free energy diagram for an ATM-RBFE calculation, consisting of two independent
legs connected to single alchemical intermediate state. The first leg starts at λ=0 where ligand A
is bound to the receptor R’s binding site, and ligand B is present in the solvent bulk. Leg 1 ends at
λ=1/2 where both ligands A and B are simultaneously present at 50% both in the binding site and
in the solvent bulk. The second leg starts with ligand B bound to the binding site and ligand A in
the solvent bulk and ends in the same alchemical intermediate. Bottom: Graphical representations
for the described events.
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6 Supporting Information

Supporting Methods

Table 1: Alchemical schedule of the Solftplus Alchemical Potential for the two legs for the alchemical
transformations. α values are in (kcal/mol)−1 and u0 and w0 are in kcal/mol

λ λ1 λ2 α u0 w0

0.00 0.00 0.00 0.10 110 0

0.05 0.00 0.10 0.10 110 0

0.10 0.00 0.20 0.10 110 0

0.15 0.00 0.30 0.10 110 0

0.20 0.00 0.40 0.10 110 0

0.25 0.00 0.50 0.10 110 0

0.30 0.10 0.50 0.10 110 0

0.35 0.20 0.50 0.10 110 0

0.40 0.30 0.50 0.10 110 0

0.45 0.40 0.50 0.10 110 0

0.50 0.50 0.50 0.10 110 0
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