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Abstract

The accurate prediction of protein-ligand bind-
ing affinities is crucial for drug discovery. Al-
chemical free energy calculations have become
a popular tool for this purpose. However, the
accuracy and reliability of these methods can
vary depending on the methodology. In this
study, we evaluate the performance of a rela-
tive binding free energy protocol based on the
alchemical transfer method (ATM), a novel ap-
proach based on a coordinate transformation
that swaps the positions of two ligands. The
results show that ATM matches the perfor-
mance of more complex free energy perturba-
tion (FEP) methods in terms of Pearson cor-
relation, but with marginally higher mean ab-
solute errors. This study shows that the ATM
method is competitive compared to more tradi-
tional methods in speed and accuracy and offers
the advantage of being applicable with any po-
tential energy function.

1 Introduction

The ability to accurately predict the binding
free energy of a ligand to a protein can provide
crucial information for drug discovery, as it al-
lows for the identification of compounds that
have a higher likelihood of binding to a tar-
get. Alchemical free energy calculations have
become the leading tools in this field.' Free
energy approaches are especially relevant in hit-
to-lead and lead optimization stages of drug de-
sign while dealing with a series of similar lig-
ands. Both commercial and free tools for free
energy calculations have been developed over
the past few years, with extensive use in both
academia and the pharmaceutical industry. +®

One of the most common approaches to al-
chemical calculations is Free Energy Perturba-
tion (FEP). This method involves many dis-
tinct equilibrium MD simulations for all states
along a A coordinate that modifies a ligand A
into a ligand B alchemically. Commonly these
simulations are split between 12 or more -



intermediates where the two ligands are inter-
changed.? One of the most common method-
ologies that use this approach is Schrodinger’s
FEP+." Another way to approach alchemical
calculations is via Thermodynamic Integration
(TI), as in the Amber implementation.!® The
main difference with FEP is that TI calculates
the free energy difference by integrating the
derivative of the Hamiltonian with respect to
the alchemical progress parameter A\. The pmx?®
protocol implements a similar strategy based on
non-equilibrium trajectories. Although differ-
ent, FEP and TI share a few common traits
such as the adoption of a double-decoupling
process that obtains the relative binding free
energy from the difference of the alchemical
free energies from separate solution and recep-
tor legs, and the requirement of softcore po-
tentials to avoid clashes and instabilities* '3,
Custom alchemical topologies and the need for
multiple simulations of distinct systems (recep-
tor complex and ligand in solvent) tend to re-
quire more user expertise. Furthermore, they
are usually not suited for ligand pairs with dif-
ferent net charges'4, leading to potential issues
with the treatment of long-range electrostatic
interactions and artifacts in the free energy es-
timates, unless complex correction factors are
introduced. 1

Recently, a novel approach to performing al-
chemical calculations has been proposed. The
Alchemical Transfer Method (ATM) is a pro-
tocol for the estimation of relative binding free
energies based on a coordinate transformation
that swaps the positions of two ligands. The
method performs the calculation in a single sol-
vent box and, unlike double-decoupling free en-
ergy perturbation approaches, "% avoids the
split of the binding free energy calculation into
receptor and solvation legs. Furthermore, ATM
does not require the implementation of soft-
core pair potentials. ATM is implemented in
the free and open-source OpenMM 7 molecular
simulation package, allowing a simple and easy
route to large-scale automated deployments and
flexibility to employ any potential energy func-
tion. In spirit, ATM is similar to the separated
topologies method!® with the difference that
the latter achieves the transfer by decoupling

the first ligand while coupling the second by
modifying the force field parameters. Whereas
in ATM, the perturbation is implemented as a
coordinate displacement that swaps the posi-
tion of the two ligands. Recently, this approach
was reintroduced to be used in GROMACS. ¥
ATM can handle both relative (ATM-RBFE)
and absolute (ATM-ABFE) binding free energy
calculations. In this work we focus on testing
the accuracy and feasibility of the RBFE ap-
proach.

All the different free energy estimation meth-
ods have their pros and cons and can vary
in their accuracy and reliability. Therefore it
is important to rigorously evaluate their per-
formance against large and diverse benchmark
datasets.

In this work, we aim to evaluate the perfor-
mance of ATM,?%2! using the dataset of Wang
et al.,” one of the most popular benchmarks for
evaluating relative binding free energy proto-
cols. We use ATM to calculate the difference in
binding free energies for 330 ligand pairs across
8 different protein systems. We also compared
our results with state-of-the art methodologies
such as FEP+7, Amber!? and pmx??. We show
that ATM, a methodology that requires less ex-
pertise and preparation than alternative proto-
cols, performs as well as other existing tools and
even better from a correlation point of view.

2 Methods

The aim of this study is to further expand the
benchmarking of ATM to a series of targets
tested in other similar methodologies and eval-
uate whether it can provide accurate and re-
liable estimates of relative binding free ener-
gies for these systems. To address this ques-
tion, we conducted a computational study in
which we applied ATM to the dataset of Wang
et al..” This benchmark includes eight targets
relevant to pharmaceutical research (MCL-1,
TYK2, MCL-1, JNK1, PTP1B, BACE, Throm-
bin and p38) with a total of 330 ligand pairs.
ATM is based on a displacement coordinate
transformation that swaps the positions of two
ligands, one of which is initially placed in



the binding site of the receptor and the other
into the solvent bulk.?! The potential energies
of the system before and after the displace-
ment are combined into a A-dependent poten-
tial function, such that the system is progres-
sively transformed from the state in which the
first ligand is bound to the receptor and the
second is in solution, to the reversed situation
in which the second ligand is bound to the re-
ceptor and the first is not. ATM protocol does
not require soft-core pair potentials or modifi-
cations of the energy routines of the molecular
dynamics engine, and it does not require split-
ting the binding free energy calculation into
receptor and solvation legs. ATM is imple-
mented as an OpenMM plugin.?® Further de-
tails of the methodology can be found in previ-
ous work, 292124

We used the AToM-OpenMM package?® to
set up and run the alchemical calculations.
The AToM-OpenMM workflow (Fig. 1) pre-
pares the complex systems for simulation using
the LEaP program in AmberTools19.?® Amber
ff14SB parameters®?” were assigned to the re-
ceptors while GAFF2/AM1-BCC?% were used
for the ligands. Fach complex system built in
LEaP consists of the receptor and a pair of
aligned ligands. One of the ligands is selected
to be translated along the diagonal of the sol-
vent box so it is placed outside the receptor, en-
suring at least three layers of water molecules
in between. A restraining potential is also in-
troduced to maintain geometrical alignment be-
tween the two ligands aimed at enhancing the
rate of convergence of the free energy estimate.
The alignment restraints are based on the rela-
tive position and orientation of the coordinate
frames of the two ligands defined by three cho-
sen reference atoms.?! More information on the
reference atoms selected for each system can be
found in the Supporting Information (Support-
ing Figure 3).

Each complex system was solvated with a 10
A solvent buffer and with sufficient sodium and
chloride ions to neutralize the system. The sol-
vated complexes are minimized and thermal-
ized at 300 K. Next, the system was annealed
from the bound state (A = 0) to the symmetric
alchemical intermediate (A = 0.5) for 250 ps.

AmberTools

Step #3
OpenMM

Step #4

OpenMM

Step #5
UWHAM

Figure 1: The AToM-OpenMM workflow used
in this work. (1) Starting from the protein-
ligand complexes from the Wang dataset” the
ligands are parametrised with GAFF2 and pro-
tein tropologies prepared in the Amber ff4SB
forcefield. (2) System complexes are build with
Ambertools and ligand B is displaced based on
a vector. (3) Energy minimisation and equi-
libration is performed. Later an annealing
and equilibration at A=1/2 is performed. (4)
Aysncronous replica exchange simulations are
performed until a total sampling of at least 50ns
is achieved. (5) After the simulations were fin-
ished, these were analyzed with the UWHAM
package to obtain the calculated AAG esti-
mates.

This step facilitates the creation of an initial
configuration of the system without strong re-



pulsive interactions at the alchemical intermedi-
ate state, which serves as the starting point for
the subsequent Hamiltonian replica exchange?*
molecular dynamics that computes the free en-
ergies of the two ATM legs connecting the al-
chemical intermediate to physical end states at
A=0and A = 1. Ca atoms of the protein re-
ceptor were restrained using a flat-bottom har-
monic restraining potential with a tolerance of
1.5 A.Additionally, we apply binding site re-
straints as a flat-bottom distance restraint be-
tween the geometrical centres of sets of recep-
tor atoms that surround the binding site and
ligand atoms. This defines the binding site vol-
ume as required by the quasi-chemical statis-
tical mechanics formulation of molecular bind-
ing.'® The restraints of the receptor and the
ligands are optional and employed here to limit
the conformational space that needs to be ex-
plored to reach convergence of the binding free
energy estimate.

The softplus alchemical potential®” was used
for all calculations with 11 A-states distributed
between A = 0 and 0.5 for each of the two ATM
legs (Supporting Table 1). AToM-OpenMM
performs asynchronous Hamiltonian replica ex-
changes in A-space using the method described
by Gallicchio et al.?* Exchanges were performed
every 10 ps. To maintain a temperature of 300
K, a Langevin thermostat with a time constant
of 2 ps was employed. Each ligand pair was
simulated for a minimum of 50 ns per AAG
estimate. The sampling time has been cho-
sen in order to be comparable to the aforemen-
tioned works, FEP+ studies sample between
36 and 60 ns per AAG estimate whereas Lee
et al.'® employed a total of 48 ns per ligand
pair in Amber. In the case of pmx,?? calcula-
tions were carried out for 50 ns per pair for two
force fields, GAFF and CGenFF. Since we per-
formed ATM calculations on wall time rather
than simulation time, as at the time of per-
forming these calculations there was no sup-
port for simulation time-based runs, the sam-
pled simulation time is similar but not identi-
cal for all ligand pairs. Binding free energies
and their corresponding uncertainties were cal-
culated from the perturbation energy samples
using the UWHAM method.?" The obtained
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relative binding free energies (AAG) were com-
pared to experimental measurements in terms
of the mean absolute error (MAE), root mean
square error (RMSE), and Pearson correlation
coefficient. The obtained values are compared
to the corresponding values reported in the lit-
erature. "10:22

The parallel replica exchange alchemical
molecular dynamics simulations were per-
formed with the OpenMM 7.7'7 MD engine and
the ATM Meta Force plugin?® using the CUDA
platform on NVIDIA RTX 2080 Ti cards.

2.1 Results

We conducted a comparison of ATM’s rela-
tive binding free energies (AAG) estimates for
the benchmarking dataset of Wang et al.” with
those of commercial and open-source alchemi-
cal approaches: FEP+,” Amber.'? and pmx.??
In addition to differences in the methodology,
these comparisons test variations in protein
force fields, ligand parameterization techniques,
and differences in the behavior of MD packages
as potential sources of deviation in the obtained
results. In this study, we have chosen to main-
tain the parameters described in the previous
ATM publications as we believe it would pro-
vide a fair and consistent comparison.

The results of the simulations are displayed
in Figures 3 and 4, which highlight the rela-
tive (Pearson correlation) and absolute (MAE)
performance of the method. Table 1 contains
a comparison against other free energy meth-
ods. Comparison against the other mentioned
methodologies can be found in Supporting Fig-
ures 1, 2 and 4. We observe that ATM performs
similarly to the other approaches in overall
Pearson correlation (0.59), with values for spe-
cific systems ranging from 0.42 to 0.71. ATM’s
Pearson correlation coefficients are particularly
good for the MCL-1, JNKI1, and Thrombin
datasets, where it outperforms the other meth-
ods albeit only by relatively small margins. For
the other protein targets, Pearson correlation
metrics fall within those of the other method-
ologies. For instance, in the case of p38, the
observed correlation is 0.71 for ATM, which
is the lowest when compared to the other ap-
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Figure 2: Top: Free energy diagram for an ATM-RBFE calculation, consisting of two independent
legs connected to single alchemical intermediate state. The first leg starts at A=0 where ligand A
is bound to the receptor R’s binding site, and ligand B is present in the solvent bulk. Leg 1 ends at
A=1/2 where both ligands A and B are simultaneously present at 50% both in the binding site and
in the solvent bulk. The second leg starts with ligand B bound to the binding site and ligand A in
the solvent bulk and ends in the same alchemical intermediate. Bottom: Graphical representations
for the described events.



- ATM
- FEP+

=TT
BNt

-0.2

o

[=)]

N

N

MCL1 TYK2 PTP1B BACE JNK1  CDK2 Thrombin p38

1.6

- ATM

N FEP+

== Amber20
pmx

MAE (kcal/mol)

MCL1 TyK2 PTP1IB BACE NK1

CDK2 Thrombin p38

Figure 3: (Top) Pearson correlation (r) and
(bottom) Mean Absolute Error (MAE) for each
protein-ligand system calculated with ATM
and reported estimates using the alternative
methodologies FEP+7, Amber!® and pmx?®.

proaches. However, the difference is not signif-
icant as the results for all methods fall within
the measurement error. Despite these positive
observations, we did encounter some difficulties
with the BACE dataset, as we obtained the low-
est correlation (0.42) among the methods which
is significantly lower than the best correlation
value obtained using the FEP+ methodology
(0.61). It is worth mentioning that the range of
AAG values of the BACE pairs is quite narrow
and covers only 3.5 kcal/mol, while comparable
in-size datasets cover a wider range of values of
at least 5 kcal/mol. In effect inaccuracies of the
method, as well as experimental measurements,
get amplified.

When considering absolute deviations from
the experimental references, ATM displayed
consistently poorer performance than the other
methodologies. ATM’s MAE metric is the high-
est among the three methods considered in
the comparison. However, the difference be-
tween ATM and other methodologies is not very

high in most cases. The exception to this is
BACE, where, consistent with the previously
mentioned results, the differences are the high-
est.

In terms of convergence, we observed that
50 to 60 ns per AAG estimate (2.3-2.8 ns per
A) tends to be sufficient. Convergence analy-
sis over time shows good convergence for most
cases as illustrated in Figure (Figure 5). The
variance of the predicted AAG tends to level
off for a majority of cases around 50 ns per
AAG estimate. We also performed longer simu-
lations for a series of ligand pairs to evaluate if
that extended sampling time was causing any
drift on the predicted AAG (Supporting Fig-
ure 12) where we observed that obtained val-
ues were stable. Furthermore, we analysed the
perturbation energy distributions for every A-
state (Supporting Figures 5,6,7). This analy-
sis helps to determine if the system has con-
verged or will converge in a reasonable amount
of time. A poor overlap between perturbation
energy distributions are indicative of unreliable
relative free energy estimates that could require
the design of alternative alchemical routes. We
have observed that in some of the ligand pairs
that showed poor correlation with both exper-
imental and calculated values from other ap-
proaches, there tends to be a poor overlap
between perturbation energy distributions of
nearby A-states, even after conducting multi-
ple replicates. From these results we can say
that we obtain an analogous convergence per-
forming a similar sampling time than the other
mentioned methodologies in this work. The is-
sue of convergence of binding free energy calcu-
lations is a very complex topic that we intend
to investigate in future work.

We have observed that ATM’s performance
metrics are significantly skewed by poor rela-
tive binding free energy predictions involving a
relatively small number of problematic ligands
(Supporting Figure 11). These ligands might be
affected by force field parameterization issues or
some specific aspects of the ATM methodology.
In terms of ligand force fields, OPLS3 was used
for FEP+, GAFF2 was used in two of the ap-
proaches (ATM and Amber), and a consensus
of GAFF2 with CGenFF in pmx. Given that all
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Figure 4: Performance of the Alchemical Transfer Method (ATM) for each protein-ligand system
studied. The calculated AAG estimates are plotted against their corresponding experimental val-
ues. MAE is in kcal/mol, r is Pearson correlation and values refer to the number of ligand pairs
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MCL1 0.58+0.10 1.7£0.2 | 0.514+0.10 1.440.2 | 0.51+0.10 1.3+£0.2 | 0.3240.11  1.240.2
TYK2 0.63+0.17 0.940.2 | 0.70+0.15 0.7+0.2 | 0.58+0.17  0.9£0.2 | 0.644+0.16  1.0+0.2
JNK1 0.69+0.13 0.6+0.1 | 0.594+0.15  0.840.1 | 0.59+0.15  0.74£0.2 | 0.65+0.14 0.540.1
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BACE 0.424+0.12 1.240.2 | 0.61+0.11 0.8+0.2 | 0.54+0.11  0.9£0.2 | 0.494+0.12 0.940.2
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Figure 5: Free energy convergence as a function
of time for a series of ligand pairs of MCL-1,
TYK2 and JNK1. The red line corresponds to

the experimental AAG value.

methods perform similarly, the accuracy of the
forcefield is of the same order as the precision of
the methods. In relation to this aspect, Merck
published a series of guidelines for FEP calcu-
lations with the requirement of an RMSE lower
than 1.3 keal /mol in the validation phase.?. As
we can observe in Table 1 ATM fulfills this re-
quirement for most of the analyzed systems in
this study.

One major difference between ATM and the
other methods is that ATM models explicitly
binding/unbinding processes in the alchemical
space. For example, a flexible ligand with dif-
ferent conformational propensities when bound
vs when in solution, will undergo an actual con-
formational transition. In double-decoupling
instead, the transformation is applied to the
bound and solution conformations individually
and a conformational transition is not neces-
sarily required to reach convergence. We be-
lieve that this is both a strength and a weak-
ness of ATM. When conformational changes
are important, especially if there are differences
in the conformational transition between the
ligands, ATM is expected to be superior to
other methods as it explicitly models the transi-
tions. When considering rigid ligands or ligands
with similar transitions, the conformational re-
arrangements will cancel out and the extra work

ATM needs to do is unnecessary and might hurt
convergence. We intend to study these aspects
in more detail in future work.

3 Conclusion

In this study, we evaluated the performance
of the Alchemical Transfer Method (ATM),
a novel approach for predicting protein-ligand
binding affinities. We benchmarked it against
the dataset of Wang et al.”, one of the most
popular data sets on the evaluation of free bind-
ing energy methodologies. Our results showed
that ATM is a competitive approach for pre-
dicting binding affinities, matching or even sur-
passing the performance of other state-of-the-
art methods in terms of Pearson correlation.
While mean absolute errors were slightly higher
compared to other methods, ATM is a promis-
ing approach for the estimation of relative bind-
ing free energies.

Unlike other methods, ATM does not require
splitting of binding free energy calculations into
receptor and solvation legs or the use of softcore
pair potentials. Furthermore, ATM is imple-
mented in the open-source OpenMM MD en-
gine, which is freely available. TIts flexibility
opens up the possibility for further improve-
ment of the method through the use of new
force fields, such as neural network potentials.

4 Data and software avail-
ability

The calculated free energy values, ligand
and protein structures as well as preparation
scripts are available at: https://github.com/
compsciencelab/ATM_benchmark
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6 Supporting Information

Supporting Methods

Table 1: Alchemical schedule of the Solftplus Alchemical Potential for the two legs for the alchemical
transformations. « values are in (kcal/mol)™! and uy and wy are in kcal/mol

A /\1 )\2 « (')
0.00 | 0.00 | 0.00 | 0.10 | 110
0.05 | 0.00 | 0.10 | 0.10 | 110
0.10 | 0.00 | 0.20 | 0.10 | 110
0.15 | 0.00 | 0.30 | 0.10 | 110
0.20 | 0.00 | 0.40 | 0.10 | 110
0.25 | 0.00 | 0.50 | 0.10 | 110
0.30 | 0.10 | 0.50 | 0.10 | 110
0.35 | 0.20 | 0.50 | 0.10 | 110
0.40 | 0.30 | 0.50 | 0.10 | 110
0.45 | 0.40 | 0.50 | 0.10 | 110
0.50 | 0.50 | 0.50 | 0.10 | 110

coocoocoocococooolf
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Figure 1: Scatterplots for the calculated AAG estimated against the experimental measurements
and compared to other methodologies for MCL-1, TYK2, PTP1B and BACE systems. The first col-
umn represents calculations performed with ATM. The other columns contain data from benchmark
studies of FEP47, Amber'® and pmx?2.
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Figure 2: Scatterplots for the calculated AAG estimated against the experimental measurements
and compared to other methodologies for JNK1, CDK2, Thrombin and p38 systems. The first col-
umn represents calculations performed with ATM. The other columns contain data from benchmark
studies of FEP47, Amber!® and pmx?2.
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Figure 3: Reference atoms selected for the applied restraining potential in every system. selected
atoms of each molecule define a cartesian coordinate system with the orange atom at the origin, a
z axis along the orange to green direction, and the purple atom oriented at the zz plane
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Figure 4: Root Mean Square Error (RMSE) for each protein-ligand system calculated with ATM

and reported through other methodologies such as FEP+7, Amber®® and pmx®.
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Figure 10: Pearson, spearman and kendall correlations for the BACE, p38, CDK2 and Throb-
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Figure 11: Structures of some of the ligands that showed poor correlation with experimental values
in two or more instances
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