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ABSTRACT 

CONTEXT. To promote circularity in agricultural systems, the utilization of aquatic vegetation 

for ecological wastewater treatment is a potential mechanism to capture and upcycle nutrients. 

Agricultural wastewater is an excellent growing medium for aquatic plants like duckweed, 

offering opportunities for wastewater treatment and conversion of harvested biomass into bio-

based products, including protein-rich livestock feed, which can potentially replace conventional 

soil-based crops such as alfalfa.  

OBJECTIVE. We hypothesize that nitrogen (N) and phosphorus (P) loadings to the Chesapeake 

Bay Watershed (CBW) can be reduced via replacing alfalfa cultivation with manure-grown 

duckweed by: a) reducing excess manure application on agricultural fields; b) reducing synthetic 

fertilizer application on alfalfa croplands; and c) decreasing the release of fixed N back into the 

environment from the decomposition of alfalfa crop residue.  

METHODS. This study developed an optimization framework to identify locations where 

alfalfa-to-duckweed replacement could be theoretically employed to minimize N and P loads into 
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the CBW.  A relative effectiveness (RE) indicator representing landscape-specific nutrient 

delivery capacity was included within the framework. Using county-level data on alfalfa yields, 

cropping area, and nutrient inputs from alfalfa croplands and dairy manure, we identified alfalfa 

cultivation areas that could be removed and replaced with full or partial duckweed cultivation 

and land conservation for optimal benefits.  

RESULTS AND CONCLUSIONS. At the county scale, counties in Pennsylvania (especially 

Lancaster and adjacent regions) with widespread farming operations and high RE values 

consistently indicated the greatest benefit by replacing large areas of alfalfa cultivation (> 80% in 

each county) with duckweed. Using nutrient load minimization as the primary objective function, 

a 2.9% N reduction and 2.4% P reduction can be achieved at the watershed scale by converting 

only 7.6% of the total alfalfa cropland area into duckweed farms. Upon introducing production 

cost minimization as a competing second objective function, up to 12.8% N reduction and 9.2% 

P reduction are possible with a 40% decrease in the alfalfa cropping area. A 10-year economic 

analysis demonstrated the possibility for superior return on investment with this approach, 

leading to almost seven times the baseline net revenue with alfalfa production, primarily 

attributed to the higher protein content and corresponding revenue potential of duckweed.  

SIGNIFICANCE. Many different constraints on alfalfa production (ex., maintaining some 

baseline production) and duckweed replacement strategies (ex., utilization of decommissioned 

alfalfa area vs. soil conservation) were used in this study, which offer a wide range of optimal 

solutions that consider both environmental and economic tradeoffs.  

 

Keywords: Optimization; duckweed; dairy manure; alfalfa; nutrient recycling; circular 

bioeconomy 
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1. INTRODUCTION 

Excessive concentrations of nutrients in the Chesapeake Bay Watershed (CBW) have long 

been known to cause eutrophication and hypoxia, leading to declining ecosystem health in the bay 

region (Russell et al., 2008). According to the Chesapeake Bay Foundation (CBF, 

http://www.cbf.org), agricultural activities contribute to the largest share of nitrogen (N) and 

phosphorus (P) loads reaching the Bay, of which 17% N and 38% P are attributed to manure, and 

15% N and 28% P are attributed to fertilizers (CBF, 2010; Majsztrik & Lea-Cox, 2013). Dairy 

operations alone amount to 20% of manure P and 24% of manure N generated within the watershed 

(Devereux, 2009). State and federal initiatives are being steered to achieve the total maximum 

daily load (TMDL) targets set by the U.S. Environmental Protection Agency for all the bay 

watershed segments (USEPA, 2010). However, most restoration efforts have been focused on 

point-source nutrient load reductions, and the EPA does not have the authority to enforce a  

permitting process to curb non-point source pollution such as that coming from manure- and 

fertilizer-laden runoff (Hinkle, 2021).  

Alfalfa is considered one of the highest-quality forages, and dairy cows efficiently utilize its 

protein (13-18% on a dry matter basis), calcium, and fiber for producing milk (Jennings, 2005). 

Many dairy farmers located in the CBW’s nutrient hotspot regions such as Lancaster, PA, grow 

their own alfalfa as protein feed for their cows. To unload the excess dairy manure generated in 

these regions, farmers typically carry out manure spreading on their farms. Since synthetic 

fertilizers generally are also applied to these fields, this practice leaves a substantial amount of 

nutrients in the soil that may leach as runoff and subsurface flow. Therefore, proper manure and 

fertilizer management are vital in addressing the issue of degraded water quality in watersheds 

with intensive dairy operations such as the CBW. A more sustainable solution for attaining water 

http://www.cbf.org/
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quality benefits could consist of a circular system that efficiently utilizes the excess manure and 

simultaneously upcycles the waste nutrients to produce animal feed without using additional 

fertilizers. 

With the simultaneous increase in meat and milk production to feed the growing human 

population (Ritchie & Roser, 2017) and the rising trend of plant-based diets, there is a high demand 

to find alternative non-animal protein sources for both feed and food. Duckweed (a small floating 

aquatic plant of the Lemnaceae family) is emerging as a potential candidate for sustainable protein 

production (Roman et al., 2021). Duckweed can proliferate under a wide range of environmental 

conditions and accumulate up to 45% protein by dry mass (Leng, 1999). Its ability to uptake 

nutrients when grown in agricultural wastewater has been exploited in the past as a promising way 

to promote circular agricultural systems (Adhikari et al., 2015; Iqbal, 2012; Timmerman & 

Hoving, 2016). Duckweed produced in this way can not only be used as animal feed, but also as a 

biofuel feedstock (Calicioglu et al., 2021; Pena et al., 2017; Zhao et al., 2015), fertilizer-substitute 

(Fernandez Pulido et al., 2021; Kreider et al., 2019), and potential human protein source (Roman 

et al., 2021). On dairy farms, duckweed offers an excellent pathway to convert manure nutrients 

into valuable feed and other by-products through cultivation on diluted manure. Substituting alfalfa 

feed with manure-grown duckweed may help alleviate the problems arising from nutrient pollution 

in surrounding water bodies by reducing the field application of manure and fertilizers. Converting 

low-yielding marginal lands to duckweed farms could further provide additional economic benefits 

to farmers and alleviate feed scarcity. 

Due to the widely varying land use and biophysical characteristics in the CBW, it is essential 

to take a spatially targeted management approach to reduce the nutrient loads delivered to the Bay. 

Hotspot regions comprising dairy farms and alfalfa cropping areas present ideal locations to 
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implement manure-based duckweed cultivation as a substitute for the existing alfalfa feed 

production. In this study, we present a watershed-scale spatial optimization framework that 

identifies CBW counties for optimal manure-based duckweed cultivation in order to minimize N 

and P loads generated in the watershed. Specifically, we focus on reducing the transport and 

delivery of nutrients contained in dairy manure and alfalfa fertilizers by finding critical counties 

where existing alfalfa farms can be replaced with duckweed farms. Since duckweed cultivation 

comes with a high capital cost and return on investment compared to row crops such as alfalfa, the 

economic tradeoffs of growing duckweed on dairy farms have also been incorporated into the 

optimization framework. 

Overall, we evaluated the economic feasibility and environmental benefits of replacing alfalfa 

production on dairy farms with duckweed cultivation by: 1) finding optimal manure-based 

duckweed production areas at a county-scale that would minimize nutrient loads entering the 

Chesapeake Bay; and 2) assessing spatial patterns of optimized duckweed cultivation scenarios 

involving constraints for both alfalfa production and economics. 

2. METHODOLOGY 

 

2.1. Study area and data 

The Chesapeake Bay is an estuarine system with a drainage area spanning 166,000 km2 

across the entire District of Columbia (DC) and parts of Pennsylvania (PA), Delaware (DE), 

Virginia (VA), West Virginia (WV), and New York (NY). The primary land cover in the watershed 

is forest (54.5%), followed by pasture (14.9%), developed areas (10.8%), and cultivated crops 

(9.5%) (Kang & Sridhar, 2018). The watershed consists of 203 counties, of which 118 have dairy 

farms. Lancaster and Franklin counties in PA together account for approximately 30% of the dairy 

cows within the CBW (Figure 1). 
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County areas were extracted from the U.S. Department of Agriculture National Agricultural 

Statistic Service (USDA-NASS) database (https://www.nass.usda.gov/). The remaining variables 

used in the study were obtained from a Commodity-Specific Net Anthropogenic Phosphorus and 

Nitrogen Inputs (CSNAPNI) model that estimates county and watershed scale N and P nutrient 

inputs to crop and animal products ((Algren et al., 2021, 2022); 

https://github.com/malgren/CSNAPNI). Several modifications are currently being made to the 

CSNAPNI model to increase the spatial resolution and incorporate region-specific fertilizer rates. 

However, the latest available version (as of July 2022) was adopted for the current study. The 

results from the CSNAPNI model used here are: (1) alfalfa production; (2) N and P in fertilizers 

applied to alfalfa; (3) N in soil from atmospheric fixation; and (4) N and P in recoverable manure, 

all at county-scale (in tons per year). Here, the N and P values are the gross anthropogenic inputs 

to the land and do not account for losses due to transport and other biogeochemical processes. The 

model uses a yield-based approach to estimate agricultural N fixation, which for alfalfa is assumed 

to be 0.031 kg N/kg dry matter (Han & Allan, 2008; Hong et al., 2013). Recoverable manure 

corresponds to the amount of manure that is collectible and available for land application (Kellogg 

et al., 2011). ArcGIS tools were utilized to clip the counties that intersected the CBW boundary, 

and proportional ratios were applied to determine the value of all variables in the clipped county 

areas (Eq. 1).  

𝑋𝑐𝑙𝑖𝑝𝑝𝑒𝑑 = 𝑋𝑐𝑜𝑢𝑛𝑡𝑦 ∗
𝐴𝑐𝑙𝑖𝑝𝑝𝑒𝑑

𝐴𝑐𝑜𝑢𝑛𝑡𝑦
         (1) 

where 𝐴𝑐𝑜𝑢𝑛𝑡𝑦 is the total county area, 𝑋𝑐𝑜𝑢𝑛𝑡𝑦 is the actual variable value for the county, 

𝐴𝑐𝑙𝑖𝑝𝑝𝑒𝑑 is the clipped area inside the watershed boundary, and 𝑋𝑐𝑙𝑖𝑝𝑝𝑒𝑑 is the value of the variable 
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corresponding to the clipped area. The distribution of the number of dairy cows and alfalfa 

production on a county-scale are shown in Figure 1.  

 To account for the effect of geographical characteristics on the amount of nutrients 

delivered to the Bay, relative effectiveness (RE) values of N and P established by the Chesapeake 

Bay Program watershed model were used (https://www.chesapeakebay.net/; Chesapeake Bay 

Program (2020); Figure 2). These indicators are calculated by combining riverine and estuarine 

effectiveness that estimates the improvement in dissolved oxygen per pound of nutrient reduction 

to the local river. In other words, they aid in the targeted implementation of nutrient management 

practices by identifying regions with higher RE values where interventions would most effectively 

improve the Bay’s water quality. Since the effectiveness is estimated for 1,902 land-river segments 

that are smaller in scale than the county-scale used in our study, area-weighted averaging was used 

to calculate the RE for each county. Although RE values exist separately for two types of sources 

(wastewater treatment plants and all other sources), we used the values corresponding to ‘all other 

sources’ to represent a broader range of non-point source nutrient pollution contributors. 

https://www.chesapeakebay.net/
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Figure 1. County-level spatial distribution of (a) alfalfa production and (b) the number of dairy cows in the 

Chesapeake Bay Watershed showing hotspot counties (Lancaster and Franklin) with the highest alfalfa and 

dairy manure production. 

 

Lancaster 
Franklin 

(a) (b) 
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Figure 2. Location map of the Chesapeake Bay watershed showing the relative effectiveness of nitrogen 

delivery for all land-river segments (adapted from (Chesapeake Bay Program, 2020). 

2.2.AMALGAM Optimization 

A Multi Algorithm Genetically Adaptive Method (AMALGAM) developed by (Vrugt & 

Robinson, 2007) was used in this study to perform the spatial optimization of duckweed cultivation 

locations. AMALGAM runs four different optimization algorithms in parallel (Non-dominated 

Sorted Genetic Algorithm (NSGA) II, particle swarm optimization, adaptive metropolis search, 

and differential evolution) and allows information sharing between these algorithms to produce 

the best optimal solution. Studies in the past have demonstrated the effectiveness of using 
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AMALGAM in model calibrations and spatial optimization frameworks (Cibin & Chaubey, 2015; 

P. V. Femeena et al., 2018; Liu et al., 2016). It merges the strengths of different algorithms, which 

when used independently, may lead to widely varying optimal solutions depending on factors such 

as initial parameter values. Combining algorithms in this manner has been shown to yield superior 

and more convergent results compared to single-algorithm techniques (Zhang et al., 2008). 

The optimizing variable was the percentage of alfalfa cropping area removed in each county 

that has dairy production (118 counties in total). Inside the optimizer, these values (between 0 to 

100%) were randomly generated and provided as input to the module that calculates the objective 

function value for each iteration. The objective functions used for the different scenarios are 

described in Section 2.2.1. A population size of 100 was assumed for this study, which means that 

for each iteration, the optimizer generates 100 randomly generated parameter values. As the 

iterations progress, the algorithms narrow down the search region of parameter values based on 

objective function values from previous iterations and finally converge to parameter sets with 

minimum objective function values (Figure 3). All optimization runs had a termination criterion 

of 100,000 iterations – a high value selected to ensure that the optimization yields reasonable 

convergence of objective function values.  

The scenarios were run on a MATLAB programming platform, with script files consisting of 

AMALGAM algorithms and additional modules to compute our user-defined objective functions. 

Within the objective function module, replacing the land removed in alfalfa with duckweed 

followed two different kinds of substitution strategies depending on the chosen scenario: a) 

Growing duckweed on all of the land removed from alfalfa production, resulting in higher protein 

production than the baseline scenario (since duckweed has more protein content than alfalfa); or 

b) Growing duckweed on only part of the land removed from alfalfa to produce an equivalent 
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amount of protein as the baseline scenario, and leaving the remaining land uncultivated. Both 

strategies could reduce the fertilizer application and fixed N in the soil due to the reduced area of 

alfalfa land under cultivation and simultaneously decrease the manure runoff from farms by 

utilizing it for duckweed production. The rationale behind selecting these two strategies is that 

they provide different types of benefits to the farmers and the environment. Strategy ‘a’, with its 

larger share of land under duckweed production, will have greater nutrient load reduction benefits 

when compared to strategy ‘b’. However, strategy ‘b’ would be a better choice if agricultural land 

retirement (as a soil conservation measure) is a priority and socio-economic barriers in 

transitioning all of their farmland to a new crop are of concern to farmers. Across the study, we 

assume that the total area of land made available for duckweed cultivation is entirely used to 

construct outdoor ponds for growing duckweed. Since the entire area available in each county 

could be far greater than a typical pond size, a reasonable assumption involves spatially distributed 

ponds covering the total area. Vertical duckweed farming, which can generate higher yields with 

a lower land footprint than conventional ponds, is another potential growth system not considered 

in this study.  

The equations below illustrate the computational steps used to estimate the new duckweed area 

and the resulting nutrient and manure load reductions for a certain percentage of the land area 

removed from alfalfa production (all values calculated at the county-scale). Eq.s (2) and (3) 

correspond to duckweed area calculations using the two substitution strategies described above. 

Strategy ‘a’ (land conversion of all removed alfalfa to duckweed) 

𝐷𝑊𝑎𝑟𝑒𝑎 =
% 𝑎𝑙𝑓𝑎𝑙𝑓𝑎 𝑎𝑟𝑒𝑎 𝑟𝑒𝑚𝑜𝑣𝑒𝑑∗𝐴𝑙𝑓𝑎𝑟𝑒𝑎

100
                     (2) 

where 𝐷𝑊𝑎𝑟𝑒𝑎 = new duckweed area and 𝐴𝑙𝑓𝑎𝑟𝑒𝑎 = existing alfalfa area 
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Strategy ‘b’ (equivalent baseline protein production) 

𝐷𝑊𝑎𝑟𝑒𝑎 =
% 𝑎𝑙𝑓𝑎𝑙𝑓𝑎 𝑎𝑟𝑒𝑎 𝑟𝑒𝑚𝑜𝑣𝑒𝑑∗𝐴𝑙𝑓𝑎𝑟𝑒𝑎

100
∗

𝐴𝑙𝑓𝑦𝑖𝑒𝑙𝑑∗𝐴𝑙𝑓𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝐷𝑊𝑦𝑖𝑒𝑙𝑑∗𝐷𝑊𝑝𝑟𝑜𝑡𝑒𝑖𝑛
            (3) 

where 𝐷𝑊𝑎𝑟𝑒𝑎 = new duckweed area; 𝐴𝑙𝑓𝑎𝑟𝑒𝑎 = existing alfalfa area; 𝐴𝑙𝑓𝑦𝑖𝑒𝑙𝑑 = average alfalfa 

yield (27.7 dry ton/ha/yr, (Penn State Extension, 2019)); 𝐷𝑊𝑦𝑖𝑒𝑙𝑑 = average duckweed yield (30 

dry ton/ha/yr, (Leng et al., 1995)); 𝐴𝑙𝑓𝑝𝑟𝑜𝑡𝑒𝑖𝑛 = average protein content of alfalfa (15%, (Foster et 

al., 2009)); and 𝐷𝑊𝑝𝑟𝑜𝑡𝑒𝑖𝑛 = average protein content of duckweed (35%, (Leng et al., 1995)). Note 

that the duckweed yield used here is an optimistic estimate based on a review conducted by Leng 

et al. (1995) that looked at yields from growing duckweed under real-world conditions (reported 

range = 10 to 30 tons/ha/yr).  

Once the new county areas under duckweed and alfalfa production were computed, nutrient 

loads corresponding to alfalfa production were determined by simple proportional relationships 

(Eq. (4)).   

𝑁𝑢𝑡𝑟𝑛𝑒𝑤 = 𝑁𝑢𝑡𝑟𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 ∗
𝐴𝑛𝑒𝑤

𝐴𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔
               (4) 

where 𝑁𝑢𝑡𝑟𝑛𝑒𝑤 is the new nutrient load (N fertilizer, P fertilizer, or N fixed), 𝑁𝑢𝑡𝑟𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 is the 

existing nutrient load, and 𝐴𝑛𝑒𝑤 and 𝐴𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 are the new and existing areas under alfalfa. 

Manure loads from each county were estimated assuming a 13 gal/day/animal-unit of dairy 

manure production (Penn State Extension, 2017) and using an average value of 1.5 animal units 

per dairy cow. The N and P contents in liquid manure were assumed to be 24 lb/1000 gal (2875.8 

mg/L) and 9 lb/1000 gal (1078.4 mg/L), respectively (Jokela & Peters, 2009). Since raw manure 

is extremely high in nutrients, it cannot be used directly for growing duckweed. A previous study 

demonstrated that duckweed growth is optimal when the N concentration in the media is 60 mg/L 
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(P. V. Femeena et al., 2022). Accordingly, a 2.1% manure dilution was considered, and the 

remaining manure was counted towards the total manure that gets land applied and delivered to 

the Bay. The sum of N (from fertilizer, fixation, and manure) and P (from fertilizer and manure) 

at the county-level were multiplied by the corresponding RE values of each county to estimate the 

effective N and P loads delivered to the Chesapeake Bay. For the final objective functions, 

watershed-scale nutrient loads were computed, as discussed in Section 2.2.1. When two objective 

functions (for nutrients and cost) are considered simultaneously, the optimizer tends to minimize 

the objective function with the higher order value. To eliminate this bias, scaling factors were used 

to convert the actual objective function values to a smaller order index values. 
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2.2.1. Scenario Selection 

In addition to the baseline (existing) scenario, eight additional scenarios were formulated to 

evaluate the effect of alfalfa-to-duckweed farm conversion on watershed-scale nutrient loads and 

production cost (Table 1). The primary differences in the scenarios are: 1) the type of objective 

function used (single objective to reduce nutrient loads or two objectives to reduce nutrients and 

cost of production); 2) duckweed replacement strategy (baseline equivalent protein production or 

conversion of all removed alfalfa area to duckweed cultivation). An added constraint was 

YES 

NO 

NO 

Generate initial parameter sample of 

county-level % alfalfa area removed 

Compute county-scale variables: 

- New duckweed and alfalfa area 

- New N & P fertilizer, and N- 

fixation loads 

- New manure loads 

YES 

Compute objective functions 

(watershed-scale nutrient loads 

and increase in net production 

cost) 

Optimizer (AMALGAM) 

 

Sample Rejected 

Generate new 

sample 

Termination 

criteria met? 

 

Optimal 

solution 

Constraints 

satisfied? 

Figure 3. Flowchart outlining optimization framework utilizing AMALGAM algorithm (method 

adopted from Femeena et al. (2018)). 
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necessary for an effective optimization run for the single objective scenarios (1-6). This is because 

a single-objective optimization for nutrient reduction without any competing constraints would 

result in the most optimal scenario of 100% conversion of alfalfa to duckweed in all counties, 

which is unrealistic. We formulated hypothetical cases where a certain percentage of the total 

baseline alfalfa cropland area has to be retained. For instance, scenario 1 ensures that 90% of the 

baseline alfalfa cropland area is maintained or that only 10% of the alfalfa land is available for 

duckweed cultivation. This analysis also considered two additional cases with 70% and 50% 

alfalfa production constraints. A constraint on baseline production ensures that the impact on 

existing farming systems is not very high, avoids market fluctuations, and reduces socio-economic 

burdens on farmers who are hesitant in transitioning to newer crop varieties.  

Table 1. Scenarios used in the optimization runs and their corresponding objectives, constraints, and 

duckweed replacement strategy used. 

Scenario Objective(s) Constraint Duckweed Replacement Strategy 

1 

Minimize nutrients 

90% baseline total 

watershed alfalfa 

cropland area 

All removed land cultivated with 

duckweed 
2 

70% baseline total 

watershed alfalfa 

cropland area 

3 

50% baseline total 

watershed alfalfa 

cropland area 

4 

Minimize nutrients 

90% baseline total 

watershed alfalfa 

cropland area 

Baseline protein production 

maintained; Remaining land left 

uncultivated 

5 

70% baseline total 

watershed alfalfa 

cropland area 

6 

50% baseline total 

watershed alfalfa 

cropland area 
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7 

Minimize nutrients 

and cost 
- 

All removed land cultivated with 

duckweed 

8 

Baseline protein production 

maintained; Remaining land left 

uncultivated 

 

2.2.1.1 Single objective optimization 

The objective function (OF) for scenarios 1-6 involves minimizing total watershed nutrient 

loads from the Chesapeake Bay (Eq. (5)). The effective N and P loads from all counties are 

summed and divided by a factor of 106 to scale it down to a smaller value, referred to here as the 

‘Nutrient load index (NLI)’. It should be noted that the variables used in Eq. (5) correspond to tons 

of N and P, which are typically not added together in real-world conditions. In addition, since the 

nutrient loads are multiplied with RE values (that range from 0 to 25), OF1 does not have a physical 

meaning. In other words, it does not indicate the actual load value for the watershed but rather 

implies an index representative of the relative amount of nutrient loads reaching the Bay. 

𝑂𝐹1 =
∑ (𝐴𝑙𝑓𝑁𝑖+𝑀𝑎𝑛𝑢𝑟𝑒𝑁𝑖)∗𝑅𝐸𝑁𝑖

203
𝑖=1 +∑ (𝐴𝑙𝑓𝑃𝑖+𝑀𝑎𝑛𝑢𝑟𝑒𝑃𝑖)∗𝑅𝐸𝑃𝑖

203
𝑖=1

106                  (5) 

where: OF1 is the objective function (also called the NLI);  𝑖 is the county number;  𝐴𝑙𝑓𝑁𝑖 and 

𝐴𝑙𝑓𝑃𝑖 are the N and P from alfalfa croplands (through fertilizers/soil fixation); 𝑀𝑎𝑛𝑢𝑟𝑒𝑁𝑖 and 

𝑀𝑎𝑛𝑢𝑟𝑒𝑃𝑖 are the N and P from dairy manure; and 𝑅𝐸𝑁𝑖 and 𝑅𝐸𝑃𝑖 are the relative effectiveness 

values for N and P, averaged for each county. 

The baseline alfalfa production constraints (90%, 70%, and 50%) were incorporated into the 

algorithm by setting OF1 to a very large value (106) if the watershed-level alfalfa production 

exceeds 90%, 70%, or 50% of the baseline production, respectively. Since the algorithm is 

automatically designed to minimize the value of OF1, this approach will force the optimizer to 



17 
 

eliminate parameter search in the region that produces high OF1 values. The final parameter set at 

the end of 100,000 runs was selected as the optimal solution. 

2.2.1.2 Two-objective optimization 

Duckweed production involves a high capital cost in the first year due to construction costs 

associated with building ponds and setting up storage and drying facilities for the harvested 

duckweed. Therefore, it is essential to consider the economic tradeoffs associated with converting 

existing alfalfa farms to duckweed cultivation systems. For scenarios 7 and 8, a cost-based 

objective function (Eq. (6)), also called the ‘Net cost index (NCI)’, was thus introduced in addition 

to OF1 described in Eq. (5). Specifically, OF2 was set to minimize the increase in annual net cost 

compared to the baseline scenario. The first summation term in the numerator in Eq. (6) 

corresponds to the net cost (production cost − revenue) associated with the new optimized scenario, 

and the second term is the net cost for the baseline scenario. 

 𝑂𝐹2 =
∑ [(𝐴𝑙𝑓𝐶𝑜𝑠𝑡𝑛𝑒𝑤−𝐴𝑙𝑓𝑅𝑒𝑣𝑛𝑒𝑤 )+ (𝐷𝑊𝐶𝑜𝑠𝑡𝑛𝑒𝑤−𝐷𝑊𝑅𝑒𝑣𝑛𝑒𝑤)] 203

𝑖=1 +∑ [𝐴𝑙𝑓𝐶𝑜𝑠𝑡𝐵𝑎𝑠𝑒 − 𝐴𝑙𝑓𝑅𝑒𝑣𝐵𝑎𝑠𝑒]203
𝑖=1

108     (6) 

where: OF2 is the second objective function (also called the NCI); 𝑖 is the county number;  

𝐴𝑙𝑓𝐶𝑜𝑠𝑡𝑛𝑒𝑤 and 𝐴𝑙𝑓𝑅𝑒𝑣𝑛𝑒𝑤 are the annual alfalfa production costs and revenue for the new 

scenario; DW𝐶𝑜𝑠𝑡𝑛𝑒𝑤 and 𝐷𝑊𝑅𝑒𝑣𝑛𝑒𝑤 are the annual duckweed production costs and revenue for 

the new scenario; 𝐴𝑙𝑓𝐶𝑜𝑠𝑡𝐵𝑎𝑠𝑒 and 𝐴𝑙𝑓𝑅𝑒𝑣𝐵𝑎𝑠𝑒 are the annual alfalfa production costs and 

revenue for the baseline scenario. 

For estimating the annual costs and revenue, the following assumptions were made (all values 

presented on an annual basis): Alfalfa production cost = $45.34 per ton (Penn State Extension, 

2019); Alfalfa revenue = $229 per ton dry matter assuming a moisture content of 15% (Foster et 

al., 2009). Duckweed production costs were determined by performing a detailed techno-economic 
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analysis (TEA) involving: 1) capital costs which include the costs for land, pond construction, and 

drying tent; and 2) operating costs associated with duckweed harvesting and drying (See 

Supporting Information for cost breakdown and assumptions used in the TEA). The analysis 

yielded an annual duckweed production cost of $19,847.50 per ha and a revenue of $16,005.16 per 

ha. This cost corresponded only to year one production and was used in all the two-objective 

optimization runs. However, for long-term analysis, we used only the operating costs 

($4447.89/ha/year) from year two onwards. Revenue from duckweed cultivation was calculated 

using the same protein feed value as alfalfa and by applying a weighted ratio based on protein 

percent (𝐷𝑊𝑟𝑒𝑣𝑒𝑛𝑢𝑒 = 𝐴𝑙𝑓𝑎𝑙𝑓𝑎𝑟𝑒𝑣𝑒𝑛𝑢𝑒 ∗
𝐷𝑊𝑝𝑟𝑜𝑡𝑒𝑖𝑛%

𝐴𝑙𝑓𝑎𝑙𝑓𝑎𝑝𝑟𝑜𝑡𝑒𝑖𝑛%
). Assuming the protein content to be 15% 

in alfalfa (Foster et al., 2009) and 35% in duckweed (Leng et al., 1995), we estimated a duckweed 

protein feed value of $535.29 per ton dry matter. We also conducted a long-term (10-year) 

economic analysis to evaluate and compare the return on investment for alfalfa versus duckweed 

farming systems. 

Since the two-objective optimizations involve competing functions of NLI and NCI, the final 

solutions for scenarios 7 and 8 are in the shape of a pareto-front that corresponds to multiple 

optimal parameter sets instead of a single parameter set (as seen in the case of a single-objective 

optimization). In other words, multiple combinations of OF1 and OF2 can be considered optimal 

values; therefore, selecting one optimal solution is subjective and dependent on the study goals. 

For the purpose of this study, three data points (one at each of the extreme ends of the pareto-

optimal front and one at the center) were manually selected for further analyses. ArcGIS software 

was used to spatially visualize the optimal duckweed production patterns in the CBW for each of 

the eight scenarios. Nutrient load reductions, decreases in alfalfa land area, and increases in first-
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year net cost and 10-year cumulative net revenue were extracted for comparison across the 

different scenarios. 

3. RESULTS 

Spatial analysis of USDA and CSNAPNI model data (Figure 1) revealed that Pennsylvania 

(PA) counties, which in total constitute 33% of the total CBW area, account for the largest share 

of recoverable dairy manure (66%) and alfalfa fertilizer loads (65% of N loads and 70% of P 

loads). The existing baseline scenario results in 44.80 x 104 tons of N input (6.5% from alfalfa 

fertilizers and soil fixation, 93.5% from dairy manure) and 18.39 x 104 tons of P input (1.1% from 

alfalfa fertilizers, 98.9% from dairy manure) generated in the watershed from dairy manure and 

alfalfa fertilizers alone. Of the three major sources considered, dairy manure dominated the 

nutrient share (93.5% of the total), whereas the contribution from fertilizers and N fixation was 

very small (6.5%). Baseline production costs and revenue associated with alfalfa production were 

estimated to be $46.25 million and $234.02 million, respectively, resulting in net revenue of 

$187.77 million for the entire watershed.   

3.1. Optimization results 

3.1.1. Single objective optimization 

With nutrient load minimization as the only objective function, the optimizer yielded an 

optimal parameter set within the first 10,000 runs, with negligible reduction in OF1 beyond the 

10,000th iteration. The optimal NLI values were 0.83, 0.73, and 0.65 for 90%, 70%, and 50% 

baseline alfalfa production constraints in scenarios 1-3 (Figure 4a). This corresponds to N loads of 

43.50 x 104, 40.84 x 104, and 38.56 x 104 tons, indicating a reduction of 2.9%, 8.8%, and 13.9% 

from the baseline, respectively (Table 2 and Figure 5). Similar decreases in P loads were also 
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observed - Scenario 1: 17.94 x 104 tons (2.4%), Scenario 2: 17.19 x 104 (8.8%), and Scenario 3: 

16.53 x 104 tons (10.1%).  

Although alfalfa only covers 7.6% (1,200 km2) of the cropland in the CBW, it can potentially 

export a significant quantity of N from land to the rivers. At an average export rate of 14 kg/ha/yr, 

the total N exported from alfalfa fields can amount to 1680 tons annually (Shenk & Linker, 2013). 

The CSNPANI model data used in this study revealed that alfalfa alone contributes to 29,128 tons 

of N input (as fertilizer and soil-fixed N) and 2,100 tons of P input in the entire watershed; 

combining the input from recoverable dairy manure, that increases to 76,356 tons of N and 10,733 

tons of P, respectively. Results from single-objective optimization indicate that with only 10% of 

the alfalfa land in the entire watershed allocated for manure-based duckweed cultivation, a total 

amount of 12,991 tons of N and 4,438 tons of P inputs can be reduced annually. If only part of the 

removed land is used for duckweed cultivation (while maintaining baseline protein yield), the 

overall manure treatment capacity is reduced, which results in slightly higher nutrient loads or NLI 

(Figure 4b). Assuming a protein content of 35% for duckweed and 15% for alfalfa, scenario 3 

(with up to 50% alfalfa land available for duckweed cultivation) would yield an extra protein 

production of 10.31 x 105 tons/yr if all of the removed lands are utilized for farming duckweed on 

dairy manure waste. This is 68% higher than the baseline protein production of 6.14 x 105 tons/yr 

with alfalfa alone. While the difference in optimal NLI between the two types of duckweed 

replacement strategies is very small, the full alfalfa-to-duckweed conversion strategy results in an 

additional annual removal of 6,100 tons of N and 2,500 tons of P from the total watershed loads.  

The cost analysis showed that the full duckweed-substitution strategy (scenarios 1-3) comes 

with a higher production cost than the partial duckweed substitution strategy (scenarios 4-6), as 

expected from the increased capital cost in the first year associated with farming duckweed. While 
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scenarios 1-3 resulted in a 33-185% increase in net cost in the first year, scenarios 4-6 had a 

comparatively lower increase in cost at 20-103% for the three different constraints considered 

(Table 2 and Figure 5). By financing the initial production cost over a longer timeframe (typical 

of most farm equipment investments), farmers could reap long-term profits via duckweed protein 

sales while avoiding high up-front costs. When a period of 10 years is considered, the returns from 

protein sales of duckweed compensate for the high capital cost, as exemplified in the cumulative 

net revenue increase (70-312% for strategy ‘a’ and 35-99% for strategy ‘b’). Replacing all removed 

alfalfa land with duckweed growing systems is also the optimal scenario for both water quality 

benefits and long-term profits.  

 

Figure 4. Data points representing each iteration of the single-objective (nutrient minimizing) optimization with 

different types of duckweed replacement strategies. Panel (a) represents scenarios 1-3 for all removed land-to-

duckweed conversion, and (b) represents scenarios 4-6 for equivalent baseline alfalfa production. The data is 

truncated at 10,000 runs since changes in the optimal values were insignificant beyond that point. 

 

(a) (b) 
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Table 2. Optimization results for the scenarios examined in this study compared to baseline values at the watershed scale. 

        Optimal Results Change from baseline 

Scenario Objective(s) Constraint 

Duckweed 

replacement 

strategy 

Duck-

weed 

area  

(ha) 

N load  

(x104 

tons/yr) 

P load 

(x104 

tons/yr) 

Reduction 

in alfalfa 

area 

 (%) 

N 

reduction

(%)* 

P 

reduction

(%)* 

Increase 

in net 

cost in 

the first 

year (%) 

Increase 

in net 

revenue 

after 10 

years (%) 

Baseline - - - 0.0 44.8 18.4 0.0 0.0 0.0 - - 

1 

Minimize 

nutrients 

90% baseline 

alfalfa 

production 

All removed 

alfalfa land to 

duckweed 

11347.5 43.5 17.9 7.7 2.9 2.4 33.2 70.5 

2 

70% baseline 

alfalfa 

production 38831.2 40.8 17.2 26.3 8.8 6.5 109.5 192.7 

3 

50% baseline 

alfalfa 

production 65776.9 38.6 16.5 44.5 13.9 10.1 184.6 312.0 

4 

Minimize 

nutrients 

90% baseline 

alfalfa 

production 
Baseline 

equivalent 

protein 

production  

4704.7 44.1 18.2 8.1 1.5 1.0 19.6 35.1 

5 

70% baseline 

alfalfa 

production 15169.6 42.7 17.9 25.9 4.6 2.8 61.0 66.5 

6 

50% baseline 

alfalfa 

production 25965.2 41.5 17.6 44.4 7.5 4.3 103.1 99.6 

7 (Case A2) 
Minimize 

nutrients and 

cost 

- 

All removed 

alfalfa land to 

duckweed 59595.3 39.0 16.7 40.3 12.9 9.2 168.2 283.6 

8 (Case B2) 

Baseline 

equivalent 

protein 

production  20965.7 42.0 17.7 35.9 6.3 3.7 85.1 82.4 
*Refers to the percentage reduction in N and P inputs (from fertilizers, N fixation, and dairy manure) for the entire Chesapeake Bay Watershed.
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Figure 5. Scenario comparisons showing watershed-level nutrient load reduction, alfalfa area reduction, and 

increases in first-year net cost and cumulative 10-year net revenue for the eight different optimization 

scenarios.  

 

3.1.2. Two-objective optimization 

With net cost minimization introduced as the second objective function, the solution obtained 

is in the form of a pareto-optimal front (Figure 6). Since both OF1 and OF2 were to be minimized, 

all the data points along the pareto-front can be considered as an optimal solution. Three cases 

were selected along each of the pareto-optimal fronts of scenarios 7 (all removed alfalfa-to-

duckweed conversion) and 8 (equivalent baseline protein production): A1, A2, and A3 correspond 

to the selected cases in scenario 7; and B1, B2, and B3 correspond to those in scenario 8.  

Cases A1 and B1, representing the zero cost/maximum nutrient scenarios, are the same as the 

baseline scenario with zero alfalfa-to-duckweed conversion. Case A3 is the maximum cost 

scenario which indicates 100% substitution of all removed alfalfa land with duckweed. This 

scenario also provides the largest environmental benefit with a 23.2% reduction in N and a 19.4% 
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reduction in P inputs from baseline values. The increase in first-year net cost for this case is 

considerably high at 386.1% ($724.9 million above the baseline alfalfa production cost across the 

entire watershed). But it also equates to an elevated increase in protein production (146.5% higher 

than baseline protein production from alfalfa). In this scenario, the return on investment is 

extremely high due to the large amount of duckweed produced, and therefore, within the second 

year, cumulative revenue surpasses the cumulative production cost resulting in high profits. 

Case A2 can be considered as the ‘true optimal’ solution in our study since it occurs towards 

the center of the pareto front exhibiting a balanced minimum value for both nutrient load and cost 

(NLI and NCI). With a 12.8% reduction in N load and a 9.2% reduction in P load, case A2 

simultaneously comes with an economic drawback: a 168.2% increase in net cost for the first year 

of duckweed cultivation. This additional cost, however, will be paid back over the 10-year period, 

showing almost a 4-fold increase in cumulative net revenue at 10 years compared to if the existing 

alfalfa production scenario were to continue (Table 2 and Figure 5). If economic constraints are 

not a concern, case A3 represents the most ideal scenario demonstrating double the environmental 

benefits over the ‘optimal’ case A2.  
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Figure 6. Data points representing each iteration of the two-objective (nutrient and net cost minimizing) 

optimization with different types of duckweed replacement strategies. The cases highlighted in the figure are 

the selected points identified for further analysis.  

The parameter search region shrank considerably when the duckweed replacement strategy 

was changed to strategy ‘b’ with partial duckweed cultivation for equivalent baseline protein 

production. This is because it acts as a constraint on the optimization where the algorithm is forced 

to limit the duckweed cultivated area to produce only as much protein as the baseline scenario. 

Accordingly, case B3, the highest cost case for strategy ‘b’, is 2.5 times less than the similar high-

cost case (A3) in strategy ‘a’. In terms of annual reduction in nutrients generated, case B3 decreases 

N and P loads by 12.9% and 8.3%, respectively, over the baseline. The increase in the first-year 

net cost to farmers is about 210.7% (compared to 386.1% in case A3), and 10-year cumulative net 

revenue shows an increase of 3 times over the baseline condition (compared to 7.6 times in case 

A3). Case B2, considered here as the ‘true optimal’ case, would decrease the watershed-scale N 
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and P loads by only 6.3% and 3.7%, respectively, which are slightly less than half of what was 

achieved in the optimal case A2 with the full duckweed conversion strategy (Table 2 and Figure 

5). Consequently, the increase in first-year net cost is lower than case A2 (85% compared to the 

baseline) and the 10-year cumulative net revenue is only 2 times that of the baseline value.  

3.2.Spatial patterns of optimal duckweed farming locations 

3.2.1. Single objective optimization 

As expected from the high RE values and the substantial quantities of dairy manure generation 

and alfalfa production in PA counties, the largest share of alfalfa-to-duckweed conversion occurs 

predominantly in PA and other counties in the upper half of the watershed (Figure 7). This is 

consistent across all the constrained scenarios 1 to 6 (with 90%, 70%, and 50% baseline alfalfa 

production constraints). For scenarios 1 to 3 with strategy ‘a’ duckweed replacement (full 

conversion), the optimized spatial pattern showed a total land conversion of 11,347 ha when 10% 

of the alfalfa cropland is available for duckweed cultivation compared to 38,831 ha and 65,776 ha 

when 30% and 50% alfalfa croplands are available, respectively (Table 2). Only 12 counties out 

of 203 showed more than 10% land conversion from alfalfa to duckweed in scenario 1, indicating 

that reasonable nutrient reduction (12,991 tons of N and 4,437 tons of P) can be achieved by just 

targeting the top 6% of the hotspot counties (Figure S1, Supporting Information). For scenarios 2, 

3, 5, and 6, which had greater flexibility in land availability for duckweed cultivation, the number 

of counties that achieved modeling optimization of more than 10% land conversion was in the 

range of 57 to 75 (less than half of the total number of counties in the watershed).  

Lancaster county showed the highest effectiveness in reducing nutrient loads, with 83% 

conversion in scenario 1 and 100% conversion for scenarios 2 and 3.  We obtained similar results 

for strategy ‘b’ duckweed replacement (partial conversion), where Lancaster county had 72%, 
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100%, and 100% land conversions for scenarios 4, 5, and 6, respectively. Equifinality is a known 

issue in optimization studies with several variables wherein different parameter combinations 

result in similar results. This may have led to some counties being displayed as hotspots in certain 

scenarios and not in the rest (for example, Broome county in NY and Adams county in PA being 

hotspots in all scenarios except 8). However, there were still several counties with a large number 

of dairy cows and high RE values that could be considered critical in reducing overall nutrients 

delivered to the Bay, with examples including: Warren and Essex counties in Virginia; Garett 

county in Maryland; Lebanon, Luzerne, Montour, Mifflin, Juniata, York, Chester, 

Northumberland, Berks, Columbia, Clinton, Perry, Snyder, and Dauphin counties in PA, which 

showed recommendations for more than 50% alfalfa land conversion for most of the scenarios 

studied (Figure 7). Optimal duckweed farming locations revealed similar spatial patterns for the 

two duckweed replacement strategies considered, indicating that the hotspot counties remain the 

same whether full or partial duckweed cultivation is utilized. The major difference between the 

two strategies is the higher mass of potential protein production and greater reduction in nutrient 

delivery when full alfalfa-to-duckweed conversion is employed as opposed to partial conversion 

(as discussed in Section 3.1). 
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Figure 7. Spatial pattern showing the optimal distribution of land converted from alfalfa to manure-based 

duckweed cultivation for single-objective (nutrient load minimizing) optimization. Scenarios with two types of 

duckweed replacement strategies are shown: (a) Scenarios 1 to 3 with full duckweed cultivation in all removed 

alfalfa land (upper panel); and (b) scenarios 4 to 6 with partial duckweed cultivation to maintain equivalent 

baseline protein production (lower panel). 

 

3.2.2. Two-objective optimization 

Similar to the single-objective optimization, optimal patterns in scenarios 7 and 8 with both 

nutrients and cost included in the objective functions showed a greater percentage of alfalfa 

cropland removed from counties mainly in PA and those close to the Bay region (Figure 8). In 

scenario 7, out of the 24 counties that recommended > 80% land conversion, only three were 
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outside PA: Frederick in MD; Alleghany in VA; and Ontario in NY. A noteworthy observation is 

that Ontario county in NY and Allegheny county in VA are not dairy-farm-intensive counties and 

do not appear in the optimal pattern for scenario 8, again highlighting the equifinality problem in 

optimization problems.  

Optimal cases A2 in scenario 7, and B2 in scenario 8, would result in new duckweed cultivation 

areas of 59,595 ha (40.3% reduction in alfalfa land) and 20,965 ha (35% reduction in alfalfa land), 

respectively (Table 2). Since A2 utilizes all the removed land for duckweed cultivation, it has 

higher nutrient reduction benefits (12.8% in N and 9.2% in P) when compared to B2 (6.3% in N 

and 3.7% in P) and offers additional protein production (3.78 x 105 tons more than baseline).  

 

Figure 8. Spatial pattern showing the distribution of land converted from alfalfa to manure-based duckweed 

cultivation for two-objective optimization (minimizing nutrient load and net cost). Scenarios with two types of 

duckweed replacement strategies are shown: a) Case A2 in scenario 7 with full duckweed cultivation on all 

removed alfalfa land (left); and b) Case B2 in scenario 8 with partial duckweed cultivation to maintain 

equivalent baseline protein production (right). 

 

 

 

(a) (b) 
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4. DISCUSSION 

The non-linear multi-objective optimization proposed in this study warranted the use of an 

enhanced evolutionary algorithm, as validated by Toscano et al. (2022). While spatial optimization 

and land prioritization models have been developed in the past using a host of simple optimization 

methods such as linear programming (Malczewski, 1999), the more advanced evolutionary 

algorithms like NSGA tend to produce more accurate results when multiple objectives and 

constraints are involved (Cao et al., 2011; Wang et al., 2021). Prior CBW-focused work has 

primarily employed single-objective optimization to identify cost-effective best management 

practices (BMPs) in the watershed (Z. Kaufman et al., 2014; Talberth et al., 2015). Methods like 

linear programming and the interior-point method have been used successfully in some of these 

studies, but these algorithms, albeit faster, often times converge to a local optimum and lead to 

erroneous solutions (Santos et al., 2003). Although employing a single algorithm for spatial 

optimization could have decreased the runtime considerably, a combination algorithm was 

preferable for our study due to the scale, high number of variables, and the complexity of the 

processes involved (Maringanti et al., 2009). With the AMALGAM framework, we utilized a 

proven enhanced optimization method that integrated the advantages of different algorithms to 

improve the sampling process and reduce the computational burden with faster convergence to a 

global optimum. The results showed successful and quick convergence to create an optimal 

solution in single-objective optimization (converged in 2000-3000 iterations), and a distinct 

pareto-optimal front in two-objective optimization (converged in 5000-6000 iterations).  

Prior to conducting the optimization runs, Pennsylvania counties such as Lancaster and 

Franklin, known for their widespread farming operations, could be visually identified as the 

notable nutrient hotspot regions. In addition, from a geographical and hydrological connectivity 
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perspective, RE values were also higher in PA counties owing to the shorter travel time of nutrients 

from catchments in this region to the Chesapeake Bay (Figure 2). Results from quantitative 

analysis suggest that PA is the lead contributor of N and P inputs to the CBW, accounting for 66% 

of recoverable dairy manure, meriting spatially targeted nutrient management. Similar findings 

highlighted by several other studies in the CBW support this observation (Devereux, 2009; 

Kleinman et al., 2012). Considering that in 2017, the Commonwealth of PA failed to meet their 

agricultural N reduction targets by 36% (EIP, 2017), there is immense value in advancing targeted 

nutrient management of PA farms. 

The major share of dairy manure towards the total N and P generated in the watershed (93.5%) 

showed that manure storage and management is very crucial in curbing nutrient pollution. Past 

studies have found that fertilizers are the primary nutrient source in the CBW, accounting for 28-

31% of the total watershed load compared to 40-54% from manure (Chesapeake Bay Foundation, 

2004). The lower share of nutrients from fertilizer and N fixation (6.5%) compared to manure 

(93.5%) observed in our study is attributed to the fact we only considered a single crop (alfalfa). 

Although alfalfa is a nitrogen-fixing crop with lower N fertilizer requirements than other row 

crops, it needs P fertilizers and a certain amount of supplemental N during the seeding phase 

(Oregon State Extension, 2020). Hence, there is added benefit in the proposition of utilizing alfalfa 

lands for manure management and soil conservation through duckweed farming. 

4.1.Single Objective Optimization 

Ignoring the economic tradeoffs of implementing duckweed cultivation, the results from 

single-objective optimization revealed that over 10% N and P reductions (at-source) are possible 

by using 65,777 ha of alfalfa land in the watershed.  For context, the U.S. Environmental Protection 

Agency (USEPA) in 2010 had established a TMDL goal for the Chesapeake Bay that aims to 
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achieve a 25% reduction in N and a 24% reduction in P loads present in the Bay by the year 2025 

(USEPA, 2010). A previous modeling study focusing on a sub-watershed (Spring Creek) within 

the CBW has shown that a 1.7-23% reduction in N and 2.7-30% reduction in P is possible by 

implementing BMPs such as buffer strip, no-till, cover crop, manure injection, etc. in up to 6000 

ha of land (Amin et al., 2020). Another optimization study of the Conewago Creek watershed 

found that reallocating crop rotations in the ~5500 ha agricultural area could alone lower N and P 

loads by 15% and 14%, respectively (Jiang et al., 2021). It is important to note that the nutrient 

loads reported in our study represent the N and P generated at-source and are not directly indicative 

of the actual nutrients reaching the Bay, which may be lower due to load attenuation during nutrient 

transport, presence of BMPs, manure processing strategies, etc. But given that around 20-25% of 

net anthropogenic N inputs and 10% of P inputs are exported to the Bay (Howarth et al., 2006; 

Najjar et al., 2010; Russell et al., 2008), the relative nutrient reductions quantified here could still 

be representative of the load reductions possible within the Bay. With duckweed emerging as a 

potential new feed crop in many countries worldwide (Huque et al., 1996; Sońta et al., 2019; 

Tanuwiria & Mushawwir, 2020), growing it adjacent to livestock farms could be viewed as an 

effective BMP in achieving the CBW’s nutrient reduction goals.  

As per 2012 statistics, PA, VA, and MD have been identified as the largest sources of pollutants 

in the CBW and are together required to achieve an additional reduction of 172.5 million pounds 

(78,244 tons) of N by 2025 to meet the Chesapeake Bay Program targets (Majsztrik & Lea-Cox, 

2013). As stated earlier, it is not reasonable to directly compare these values to the at-source 

nutrient inputs reported in our study. However, assuming that 20-25% of anthropogenic N flux 

ends up at the watershed outlet (Russell et al., 2008), Scenario 6 with the highest land conversion, 

could in effect reduce N loads reaching the Bay by 12,484-15,605 tons a year. Considering the 
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amount of nutrients that can be recycled through manure-based duckweed systems, it would be an 

excellent pathway toward achieving the above-mentioned target, especially for the manure hotspot 

counties in the CBW. 

4.2.Two-Objective Optimization 

For the two-objective optimization, the most environmentally sustainable scenario was Case 

A3, which had the most land area under duckweed cultivation and displayed the highest reduction 

in N and P loads (23.2% in N and 19.4% in P). Even if we account for load attenuation, this can 

still be crucial in achieving the USEPA TMDL targets on nutrient reduction required in the Bay 

waters (25% for N and 24% for P; USEPA (2010)). Unfortunately, this scenario is logically almost 

impossible due to the likely socio-economic barriers in overcoming farmer resistance to adopting 

alternate crops and infrastructural limitations related to installing new crop-growing systems. The 

optimal cases A2 and B2 had nutrient reduction benefits ranging from 6.3-12.8% in N and 3.7-

9.2% in P. Of these, case A2 (under Scenario 7) utilizes all removed alfalfa land for duckweed 

production and hence, offers an advantage of additional protein production (61.6% more than 

baseline), which could benefit farmers economically. An average PA dairy farm purchases a good 

portion of its protein feed (287 kg/cow/yr) from external sources (Holly et al., 2019). Assuming a 

duckweed growth rate of 10 g/m2/day and protein intake of dairy cow to be 11 lbs/cow/day, 

cultivating duckweed in a 1.4 ha pond for seven months can produce enough protein to feed 100 

cows annually (Robinson, 2023; Said et al., 1979). Feed and fertilizer purchases are undeniably a 

large environmental concern due to their associated carbon footprint and greenhouse gas 

emissions. Additionally, from a nutrient balance perspective, feed and fertilizer imports are known 

to decrease the nutrient use efficiency in farms when the imported nutrients are in excess of their 

removal through crop uptake (Soberon et al., 2015). By allowing duckweed to grow on excess 
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nutrients generated in dairy farms, farmers can not only increase the production of protein feed 

and generate added revenue but also limit their dependence on external feed and fertilizer imports. 

One of the most useful outputs from the two-objective optimization is the final range of points 

along the pareto-optimal front. Each of these points represents a unique solution and spatial pattern 

linked to different combinations of objective functions and constraints and therefore is valuable in 

aiding the decision-making process regarding the economic and environmental tradeoffs in 

duckweed farm implementation. Nutrient recovery techniques using aquatic vegetation, such as 

the one proposed in this study, can potentially be included as part of the Watershed Implementation 

Plans (WIPs) developed by states in the CBW to implement BMPs for meeting the Chesapeake 

Bay TMDLs. The total net cost of implementing the required WIP BMPs between 2011 and 2025 

was estimated to be approximately $3.6 billion (in 2010 dollars); and after 2025, it is predicted 

that the net cost linked to full implementation of all WIP BMPs will be around $900 million 

annually (Z. Kaufman et al., 2014). For the scenarios analyzed in this study, implementing 

duckweed farming would incur a net cost ranging from $18.1 million (Scenario 4: 4,705 ha 

duckweed land) to $252.7 million (Scenario 3: 65,777 ha duckweed land).  

While different types of BMPs have been proposed to address water quality issues in the CBW, 

some are challenging to implement due to their high installation costs. A relative cost analysis 

conducted by the Chesapeake Bay Foundation illustrated that while small-scale practices such as 

grassed buffers and conservation tillage would cost $7.50 per kg of N remediated, stormwater 

retrofits can get quite expensive at $1,100/kg (Chesapeake Bay Foundation, 2013). Based on our 

findings from the different scenarios, the increase in year one net cost for duckweed growing 

systems would be $5.30-$7.70 per kg of N remediated, which is in the lower range of cost/benefit 

ratios of other established BMPs. With research showing that significant cost savings can be 
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realized through careful selection of cost-effective BMPs and targeted implementation of these 

BMPs (D. E. Kaufman et al., 2021), implementing circular bioeconomy practices using duckweed 

in select hotspot counties may be viewed as an environmentally sustainable and economically 

viable BMP alternative. 

4.3.Spatial Analysis 

The importance of RE values in impacting water quality in the Bay is clearly documented in 

past work focusing on the development of CBW TMDLs and has been successfully incorporated 

in several modeling and optimization studies (D. E. Kaufman et al., 2021; Linker et al., 2013; 

Robertson & Saad, 2011). Although a majority of hotspot counties selected in our study are known 

for extensive farming operations (including dairy and alfalfa), some counties with a relatively 

lower number of dairy farms, such as Luzerne, PA, and Warren, VA, were identified as hotspots 

for duckweed cultivation primarily due to their high effectiveness of nutrient transport to the Bay 

(i.e., high RE values). In a related context, many farming-intensive counties in the northern New 

York region (such as Cortland, Madison, and Otsego, with more than 5,000 dairy cows/county) do 

not appear in the list of most optimal counties for duckweed production due to their relatively 

farther distance from the Bay and low effectiveness in nutrient delivery (Figure 2). The same 

rationale can be linked to why Franklin county, the second most dairy-intensive county in PA, is 

not as effective as Lancaster in reducing nutrient loads to the Bay. 

Even though the decrease in the percentage of land area under alfalfa cultivation is not 

considerably different in the two optimal cases of scenarios 7 and 8 (40.3% versus 35%), the one 

with scenario 7 results in more than double the amount of duckweed area due to the full utilization 

of the removed land for duckweed farming. Employing only part of the alfalfa cropland for 

duckweed cultivation (replacement strategy ‘b’) as in scenario 8 can provide soil conservation 
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benefits, especially when retiring highly erodible and environmentally sensitive farmlands, as 

encouraged by the USDA voluntary Conservation Reserve Program (CRP) established through the 

Food Security Act of 1985 (Bucholtz et al., 2004). In addition, since duckweed grows on a soil-

less medium, installing cultivation systems (ex., ponds) on marginal and less fertile lands offers a 

profitable opportunity to farmers affected by poor crop yields. Leveraging existing marginal lands 

for various uses is a widely explored research area. Some past work has demonstrated excellent 

benefits of land-applying manure on marginal lands for increasing productivity (Saha et al., 2021) 

as well as using these lands to grow perennial crops for bioenergy production (Sanderson & Adler, 

2008; Valcu-Lisman et al., 2016). Utilizing similar areas for duckweed cultivation could further 

enhance the potential use of these less-productive lands to offer additional economic gains for 

farmers.  

One of the challenges we encountered in the spatial pattern analysis was the problem of 

equifinality. When the optimization variables (RE values and nutrient inputs) are not significantly 

different between the counties, there is a high likelihood of equifinality, in which different 

combinations of hotspot locations exhibit similar nutrient reductions (Her & Seong, 2018; Thorp 

et al., 2015). Therefore, it is necessary to interpret multiple optimal solutions so that only counties 

that consistently appear as hotspots should be considered for targeted nutrient management. In that 

context, Lancaster and adjacent counties in central PA are the critical regions for consideration, 

and the outcomes of this study distinctly prioritize manure management in PA for the overall water 

quality benefit of the CBW. In addition to several modeling studies validating the nutrient hotspot 

status of Lancaster (Kleinman et al., 2012; Young et al., 1985), a statewide assessment of PA soils 

showing the highest presence of excess P in Lancaster soils further supports our finding 

(Kogelmann et al., 2004). All eight optimization scenarios used in this study highlighted the 
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relevance of considering nutrient delivery factors in designing decision-making tools for spatially 

targeted nutrient management practices. Expanding this work could involve an integrated 

watershed modeling approach considering both nutrient runoff potential and effective pollutant 

transport capability that would help identify critical locations at a finer scale and assess the actual 

discretized impacts on eutrophication in the Chesapeake Bay. 

5. CONCLUSIONS 

Spatial optimization of duckweed cultivation locations in the Chesapeake Bay Watershed was 

conducted in this study to identify hotspot counties that are most critical in terms of manure and 

fertilizer management. Growing duckweed on dairy manure offers an excellent opportunity to 

upcycle nutrients that otherwise increase the risk of nutrient transport to surrounding water bodies, 

leading to water pollution and eutrophication issues in the Chesapeake Bay. Eight different 

scenarios were designed to evaluate the potential of dairy manure-based duckweed cultivation as 

an alternative protein production approach to replace alfalfa cropping in the watershed. The 

optimization runs resulted in similar spatial patterns with the highest land conversions displayed 

by counties in Pennsylvania (Lancaster and adjacent counties above the Bay) for both duckweed 

replacement strategies: (a) completely replacing all removed alfalfa land with duckweed 

cultivation; and (b) partially replacing the removed alfalfa land to maintain only equivalent 

baseline protein production. Depending on the percentage of alfalfa land available for conversion 

(10%, 30%, or 50%), the former strategy would help reduce N and P loads by up to 14% and 10%, 

respectively, and yield up to an additional 68% protein production compared to the existing 

scenario. While this strategy is associated with a high capital cost, utilizing all of the removed 

lands for duckweed cultivation has a high return on investment, making it an economical choice 

in the long run. One area of improvement to expand this study is to include hydrological and stream 
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routing processes in estimating delivery loads since they can highly influence the fate and transport 

of inland nutrients generated in all the counties. Due to the scale of the study, counties with no 

dairy production were excluded as variables from optimization. With more data on manure trading 

between different watershed regions, we could assess how that practice would impact the 

identification of hotspot locations for targeted manure-based duckweed farming.  

Completely transitioning all alfalfa croplands to duckweed farms in counties with dairy 

operations would ideally result in up to a 23% reduction in N and a 19% reduction in P loads which 

can play a key role in achieving the Chesapeake Bay TMDL targets. While such a massive 

agricultural land conversion may seem impractical when considering the economic and cultural 

barriers, the optimization framework provided here seeks to aid stakeholders in decision-making 

by offering different types of solutions available for a wide range of environmental and economic 

constraints. The flexibility in modifying the objective functions and constraints within the 

framework further extends its applicability to study additional user-defined scenarios and to 

evaluate their environmental and economic benefits and tradeoffs. 
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