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ABSTRACT

CONTEXT. To promote circularity in agricultural systems, the utilization of aquatic vegetation
for ecological wastewater treatment is a potential mechanism to capture and upcycle nutrients.
Agricultural wastewater is an excellent growing medium for aquatic plants like duckweed,
offering opportunities for wastewater treatment and conversion of harvested biomass into bio-
based products, including protein-rich livestock feed, which can potentially replace conventional

soil-based crops such as alfalfa.

OBJECTIVE. We hypothesize that nitrogen (N) and phosphorus (P) loadings to the Chesapeake
Bay Watershed (CBW) can be reduced via replacing alfalfa cultivation with manure-grown
duckweed by: a) reducing excess manure application on agricultural fields; b) reducing synthetic
fertilizer application on alfalfa croplands; and c) decreasing the release of fixed N back into the

environment from the decomposition of alfalfa crop residue.

METHODS. This study developed an optimization framework to identify locations where

alfalfa-to-duckweed replacement could be theoretically employed to minimize N and P loads into
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the CBW. A relative effectiveness (RE) indicator representing landscape-specific nutrient
delivery capacity was included within the framework. Using county-level data on alfalfa yields,
cropping area, and nutrient inputs from alfalfa croplands and dairy manure, we identified alfalfa
cultivation areas that could be removed and replaced with full or partial duckweed cultivation

and land conservation for optimal benefits.

RESULTS AND CONCLUSIONS. At the county scale, counties in Pennsylvania (especially
Lancaster and adjacent regions) with widespread farming operations and high RE values
consistently indicated the greatest benefit by replacing large areas of alfalfa cultivation (> 80% in
each county) with duckweed. Using nutrient load minimization as the primary objective function,
a 2.9% N reduction and 2.4% P reduction can be achieved at the watershed scale by converting
only 7.6% of the total alfalfa cropland area into duckweed farms. Upon introducing production
cost minimization as a competing second objective function, up to 12.8% N reduction and 9.2%
P reduction are possible with a 40% decrease in the alfalfa cropping area. A 10-year economic
analysis demonstrated the possibility for superior return on investment with this approach,
leading to almost seven times the baseline net revenue with alfalfa production, primarily

attributed to the higher protein content and corresponding revenue potential of duckweed.

SIGNIFICANCE. Many different constraints on alfalfa production (ex., maintaining some
baseline production) and duckweed replacement strategies (ex., utilization of decommissioned
alfalfa area vs. soil conservation) were used in this study, which offer a wide range of optimal

solutions that consider both environmental and economic tradeoffs.

Keywords: Optimization; duckweed; dairy manure; alfalfa; nutrient recycling; circular
bioeconomy



1. INTRODUCTION

Excessive concentrations of nutrients in the Chesapeake Bay Watershed (CBW) have long
been known to cause eutrophication and hypoxia, leading to declining ecosystem health in the bay
region (Russell et al, 2008). According to the Chesapeake Bay Foundation (CBF,

http://www.cbf.org), agricultural activities contribute to the largest share of nitrogen (N) and

phosphorus (P) loads reaching the Bay, of which 17% N and 38% P are attributed to manure, and
15% N and 28% P are attributed to fertilizers (CBF, 2010; Majsztrik & Lea-Cox, 2013). Dairy
operations alone amount to 20% of manure P and 24% of manure N generated within the watershed
(Devereux, 2009). State and federal initiatives are being steered to achieve the total maximum
daily load (TMDL) targets set by the U.S. Environmental Protection Agency for all the bay
watershed segments (USEPA, 2010). However, most restoration efforts have been focused on
point-source nutrient load reductions, and the EPA does not have the authority to enforce a
permitting process to curb non-point source pollution such as that coming from manure- and

fertilizer-laden runoftf (Hinkle, 2021).

Alfalfa is considered one of the highest-quality forages, and dairy cows efficiently utilize its
protein (13-18% on a dry matter basis), calcium, and fiber for producing milk (Jennings, 2005).
Many dairy farmers located in the CBW’s nutrient hotspot regions such as Lancaster, PA, grow
their own alfalfa as protein feed for their cows. To unload the excess dairy manure generated in
these regions, farmers typically carry out manure spreading on their farms. Since synthetic
fertilizers generally are also applied to these fields, this practice leaves a substantial amount of
nutrients in the soil that may leach as runoff and subsurface flow. Therefore, proper manure and
fertilizer management are vital in addressing the issue of degraded water quality in watersheds

with intensive dairy operations such as the CBW. A more sustainable solution for attaining water
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quality benefits could consist of a circular system that efficiently utilizes the excess manure and
simultaneously upcycles the waste nutrients to produce animal feed without using additional

fertilizers.

With the simultaneous increase in meat and milk production to feed the growing human
population (Ritchie & Roser, 2017) and the rising trend of plant-based diets, there is a high demand
to find alternative non-animal protein sources for both feed and food. Duckweed (a small floating
aquatic plant of the Lemnaceae family) is emerging as a potential candidate for sustainable protein
production (Roman et al., 2021). Duckweed can proliferate under a wide range of environmental
conditions and accumulate up to 45% protein by dry mass (Leng, 1999). Its ability to uptake
nutrients when grown in agricultural wastewater has been exploited in the past as a promising way
to promote circular agricultural systems (Adhikari et al., 2015; Igbal, 2012; Timmerman &
Hoving, 2016). Duckweed produced in this way can not only be used as animal feed, but also as a
biofuel feedstock (Calicioglu et al., 2021; Pena et al., 2017; Zhao et al., 2015), fertilizer-substitute
(Fernandez Pulido et al., 2021; Kreider et al., 2019), and potential human protein source (Roman
et al., 2021). On dairy farms, duckweed offers an excellent pathway to convert manure nutrients
into valuable feed and other by-products through cultivation on diluted manure. Substituting alfalfa
feed with manure-grown duckweed may help alleviate the problems arising from nutrient pollution
in surrounding water bodies by reducing the field application of manure and fertilizers. Converting
low-yielding marginal lands to duckweed farms could further provide additional economic benefits

to farmers and alleviate feed scarcity.

Due to the widely varying land use and biophysical characteristics in the CBW, it is essential
to take a spatially targeted management approach to reduce the nutrient loads delivered to the Bay.

Hotspot regions comprising dairy farms and alfalfa cropping areas present ideal locations to



implement manure-based duckweed cultivation as a substitute for the existing alfalfa feed
production. In this study, we present a watershed-scale spatial optimization framework that
identifies CBW counties for optimal manure-based duckweed cultivation in order to minimize N
and P loads generated in the watershed. Specifically, we focus on reducing the transport and
delivery of nutrients contained in dairy manure and alfalfa fertilizers by finding critical counties
where existing alfalfa farms can be replaced with duckweed farms. Since duckweed cultivation
comes with a high capital cost and return on investment compared to row crops such as alfalfa, the
economic tradeoffs of growing duckweed on dairy farms have also been incorporated into the

optimization framework.

Overall, we evaluated the economic feasibility and environmental benefits of replacing alfalfa
production on dairy farms with duckweed cultivation by: 1) finding optimal manure-based
duckweed production areas at a county-scale that would minimize nutrient loads entering the
Chesapeake Bay; and 2) assessing spatial patterns of optimized duckweed cultivation scenarios

involving constraints for both alfalfa production and economics.

2. METHODOLOGY

2.1. Study area and data

The Chesapeake Bay is an estuarine system with a drainage area spanning 166,000 km?
across the entire District of Columbia (DC) and parts of Pennsylvania (PA), Delaware (DE),
Virginia (VA), West Virginia (WV), and New York (NY). The primary land cover in the watershed
is forest (54.5%), followed by pasture (14.9%), developed areas (10.8%), and cultivated crops
(9.5%) (Kang & Sridhar, 2018). The watershed consists of 203 counties, of which 118 have dairy
farms. Lancaster and Franklin counties in PA together account for approximately 30% of the dairy

cows within the CBW (Figure 1).



County areas were extracted from the U.S. Department of Agriculture National Agricultural
Statistic Service (USDA-NASS) database (https://www.nass.usda.gov/). The remaining variables
used in the study were obtained from a Commodity-Specific Net Anthropogenic Phosphorus and
Nitrogen Inputs (CSNAPNI) model that estimates county and watershed scale N and P nutrient
inputs to crop and animal products  ((Algren et al, 2021, 2022);
https://github.com/malgren/CSNAPNI). Several modifications are currently being made to the
CSNAPNI model to increase the spatial resolution and incorporate region-specific fertilizer rates.
However, the latest available version (as of July 2022) was adopted for the current study. The
results from the CSNAPNI model used here are: (1) alfalfa production; (2) N and P in fertilizers
applied to alfalfa; (3) N in soil from atmospheric fixation; and (4) N and P in recoverable manure,
all at county-scale (in tons per year). Here, the N and P values are the gross anthropogenic inputs
to the land and do not account for losses due to transport and other biogeochemical processes. The
model uses a yield-based approach to estimate agricultural N fixation, which for alfalfa is assumed
to be 0.031 kg N/kg dry matter (Han & Allan, 2008; Hong et al., 2013). Recoverable manure
corresponds to the amount of manure that is collectible and available for land application (Kellogg
et al., 2011). ArcGIS tools were utilized to clip the counties that intersected the CBW boundary,
and proportional ratios were applied to determine the value of all variables in the clipped county

areas (Eq. 1).

Aclipped
X .. =X 5 —citpped 1
clipped county Acounty ( )

where Agoynty 18 the total county area, Xcoyney 18 the actual variable value for the county,

Actippea 18 the clipped area inside the watershed boundary, and X ;ppeq 18 the value of the variable



corresponding to the clipped area. The distribution of the number of dairy cows and alfalfa

production on a county-scale are shown in Figure 1.

To account for the effect of geographical characteristics on the amount of nutrients
delivered to the Bay, relative effectiveness (RE) values of N and P established by the Chesapeake

Bay Program watershed model were used (https://www.chesapeakebay.net/; Chesapeake Bay

Program (2020); Figure 2). These indicators are calculated by combining riverine and estuarine
effectiveness that estimates the improvement in dissolved oxygen per pound of nutrient reduction
to the local river. In other words, they aid in the targeted implementation of nutrient management
practices by identifying regions with higher RE values where interventions would most effectively
improve the Bay’s water quality. Since the effectiveness is estimated for 1,902 land-river segments
that are smaller in scale than the county-scale used in our study, area-weighted averaging was used
to calculate the RE for each county. Although RE values exist separately for two types of sources
(wastewater treatment plants and all other sources), we used the values corresponding to “all other

sources’ to represent a broader range of non-point source nutrient pollution contributors.
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Figure 1. County-level spatial distribution of (a) alfalfa production and (b) the number of dairy cows in the
Chesapeake Bay Watershed showing hotspot counties (Lancaster and Franklin) with the highest alfalfa and
dairy manure production.



NY N

DE
MD

Chesapeake Bay
Watershed

Relative Effectiveness of N

0-3
3-6
69
. 9-12 04080 160 240 320
| B o e e Kilometers

Figure 2. Location map of the Chesapeake Bay watershed showing the relative effectiveness of nitrogen
delivery for all land-river segments (adapted from (Chesapeake Bay Program, 2020).

2.2. AMALGAM Optimization
A Multi Algorithm Genetically Adaptive Method (AMALGAM) developed by (Vrugt &

Robinson, 2007) was used in this study to perform the spatial optimization of duckweed cultivation
locations. AMALGAM runs four different optimization algorithms in parallel (Non-dominated
Sorted Genetic Algorithm (NSGA) II, particle swarm optimization, adaptive metropolis search,
and differential evolution) and allows information sharing between these algorithms to produce

the best optimal solution. Studies in the past have demonstrated the effectiveness of using



AMALGAM in model calibrations and spatial optimization frameworks (Cibin & Chaubey, 2015;
P. V. Femeena et al., 2018; Liu et al., 2016). It merges the strengths of different algorithms, which
when used independently, may lead to widely varying optimal solutions depending on factors such
as initial parameter values. Combining algorithms in this manner has been shown to yield superior

and more convergent results compared to single-algorithm techniques (Zhang et al., 2008).

The optimizing variable was the percentage of alfalfa cropping area removed in each county
that has dairy production (118 counties in total). Inside the optimizer, these values (between 0 to
100%) were randomly generated and provided as input to the module that calculates the objective
function value for each iteration. The objective functions used for the different scenarios are
described in Section 2.2.1. A population size of 100 was assumed for this study, which means that
for each iteration, the optimizer generates 100 randomly generated parameter values. As the
iterations progress, the algorithms narrow down the search region of parameter values based on
objective function values from previous iterations and finally converge to parameter sets with
minimum objective function values (Figure 3). All optimization runs had a termination criterion
of 100,000 iterations — a high value selected to ensure that the optimization yields reasonable

convergence of objective function values.

The scenarios were run on a MATLAB programming platform, with script files consisting of
AMALGAM algorithms and additional modules to compute our user-defined objective functions.
Within the objective function module, replacing the land removed in alfalfa with duckweed
followed two different kinds of substitution strategies depending on the chosen scenario: a)
Growing duckweed on all of the land removed from alfalfa production, resulting in higher protein
production than the baseline scenario (since duckweed has more protein content than alfalfa); or

b) Growing duckweed on only part of the land removed from alfalfa to produce an equivalent
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amount of protein as the baseline scenario, and leaving the remaining land uncultivated. Both
strategies could reduce the fertilizer application and fixed N in the soil due to the reduced area of
alfalfa land under cultivation and simultaneously decrease the manure runoff from farms by
utilizing it for duckweed production. The rationale behind selecting these two strategies is that
they provide different types of benefits to the farmers and the environment. Strategy ‘a’, with its
larger share of land under duckweed production, will have greater nutrient load reduction benefits
when compared to strategy ‘b’. However, strategy ‘b’ would be a better choice if agricultural land
retirement (as a soil conservation measure) is a priority and socio-economic barriers in
transitioning all of their farmland to a new crop are of concern to farmers. Across the study, we
assume that the total area of land made available for duckweed cultivation is entirely used to
construct outdoor ponds for growing duckweed. Since the entire area available in each county
could be far greater than a typical pond size, a reasonable assumption involves spatially distributed
ponds covering the total area. Vertical duckweed farming, which can generate higher yields with
a lower land footprint than conventional ponds, is another potential growth system not considered

in this study.

The equations below illustrate the computational steps used to estimate the new duckweed area
and the resulting nutrient and manure load reductions for a certain percentage of the land area
removed from alfalfa production (all values calculated at the county-scale). Eq.s (2) and (3)

correspond to duckweed area calculations using the two substitution strategies described above.

Strategy ‘a’ (land conversion of all removed alfalfa to duckweed)

__%alfalfa arearemovedxAlfgrea

DWaT‘ea - 100 (2)

where DW,,;.., = new duckweed area and Alf,,., = existing alfalfa area

11



Strategy ‘b’ (equivalent baseline protein production)

__ Y%alfalfa arearemoved+Alfgreq . Alfyietd*Alf protein
DW,yeq = * 3)

100 DWyie1a*DWprotein

where DWreq = new duckweed area; Alfy,q = existing alfalfa area; Alf,;.;q = average alfalfa
yield (27.7 dry ton/ha/yr, (Penn State Extension, 2019)); DW,;.;4 = average duckweed yield (30
dry ton/ha/yr, (Leng et al., 1995)); Alf,rotein = average protein content of alfalfa (15%, (Foster et
al., 2009)); and DW,,,tein = average protein content of duckweed (35%, (Leng et al., 1995)). Note

that the duckweed yield used here is an optimistic estimate based on a review conducted by Leng
et al. (1995) that looked at yields from growing duckweed under real-world conditions (reported

range = 10 to 30 tons/ha/yr).

Once the new county areas under duckweed and alfalfa production were computed, nutrient

loads corresponding to alfalfa production were determined by simple proportional relationships

(Eq. (4)).

_ Anew
Nutrnew = Nutrexisting * Aioss (4)
existing

where Nutr,,,, is the new nutrient load (N fertilizer, P fertilizer, or N fixed), Nutrey;sting 1 the

existing nutrient load, and Ay, and Agy;sting are the new and existing areas under alfalfa.

Manure loads from each county were estimated assuming a 13 gal/day/animal-unit of dairy
manure production (Penn State Extension, 2017) and using an average value of 1.5 animal units
per dairy cow. The N and P contents in liquid manure were assumed to be 24 1b/1000 gal (2875.8
mg/L) and 9 1b/1000 gal (1078.4 mg/L), respectively (Jokela & Peters, 2009). Since raw manure
is extremely high in nutrients, it cannot be used directly for growing duckweed. A previous study

demonstrated that duckweed growth is optimal when the N concentration in the media is 60 mg/L
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(P. V. Femeena et al., 2022). Accordingly, a 2.1% manure dilution was considered, and the
remaining manure was counted towards the total manure that gets land applied and delivered to
the Bay. The sum of N (from fertilizer, fixation, and manure) and P (from fertilizer and manure)
at the county-level were multiplied by the corresponding RE values of each county to estimate the
effective N and P loads delivered to the Chesapeake Bay. For the final objective functions,
watershed-scale nutrient loads were computed, as discussed in Section 2.2.1. When two objective
functions (for nutrients and cost) are considered simultaneously, the optimizer tends to minimize
the objective function with the higher order value. To eliminate this bias, scaling factors were used

to convert the actual objective function values to a smaller order index values.
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Figure 3. Flowchart outlining optimization framework utilizing AMALGAM algorithm (method
adopted from Femeena et al. (2018)).

2.2.1. Scenario Selection

In addition to the baseline (existing) scenario, eight additional scenarios were formulated to
evaluate the effect of alfalfa-to-duckweed farm conversion on watershed-scale nutrient loads and
production cost (Table 1). The primary differences in the scenarios are: 1) the type of objective
function used (single objective to reduce nutrient loads or two objectives to reduce nutrients and
cost of production); 2) duckweed replacement strategy (baseline equivalent protein production or
conversion of all removed alfalfa area to duckweed cultivation). An added constraint was
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necessary for an effective optimization run for the single objective scenarios (1-6). This is because
a single-objective optimization for nutrient reduction without any competing constraints would
result in the most optimal scenario of 100% conversion of alfalfa to duckweed in all counties,
which is unrealistic. We formulated hypothetical cases where a certain percentage of the total
baseline alfalfa cropland area has to be retained. For instance, scenario 1 ensures that 90% of the
baseline alfalfa cropland area is maintained or that only 10% of the alfalfa land is available for
duckweed cultivation. This analysis also considered two additional cases with 70% and 50%
alfalfa production constraints. A constraint on baseline production ensures that the impact on
existing farming systems is not very high, avoids market fluctuations, and reduces socio-economic

burdens on farmers who are hesitant in transitioning to newer crop varieties.

Table 1. Scenarios used in the optimization runs and their corresponding objectives, constraints, and
duckweed replacement strategy used.

Scenario Objective(s) Constraint Duckweed Replacement Strategy

90% baseline total
1 watershed alfalfa
cropland area

70% baseline total
2 Minimize nutrients watershed alfalfa
cropland area

All removed land cultivated with
duckweed

50% baseline total
3 watershed alfalfa
cropland area

90% baseline total
4 watershed alfalfa
cropland area

70% baseline total Baseline protein production
5 Minimize nutrients watershed alfalfa maintained; Remaining land left
cropland area uncultivated

50% baseline total
6 watershed alfalfa
cropland area
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All removed land cultivated with

7
Minimize nutrients duckweed
and cost i
Baseline protein production
8 maintained; Remaining land left

uncultivated

2.2.1.1 Single objective optimization

The objective function (OF) for scenarios 1-6 involves minimizing total watershed nutrient
loads from the Chesapeake Bay (Eq. (5)). The effective N and P loads from all counties are
summed and divided by a factor of 10° to scale it down to a smaller value, referred to here as the
‘Nutrient load index (NLI)’. It should be noted that the variables used in Eq. (5) correspond to tons
of N and P, which are typically not added together in real-world conditions. In addition, since the
nutrient loads are multiplied with RE values (that range from 0 to 25), OF1 does not have a physical
meaning. In other words, it does not indicate the actual load value for the watershed but rather

implies an index representative of the relative amount of nutrient loads reaching the Bay.

_ Y203 (Alf i+ Manuren;)*RE N+ Y03 (Alf p;+Manurep;)*REp;

OF1 o (%)

where: OF1 is the objective function (also called the NLI); i is the county number; Alfy; and
Alfp; are the N and P from alfalfa croplands (through fertilizers/soil fixation); Manurey; and
Manurep; are the N and P from dairy manure; and REy; and REp; are the relative effectiveness

values for N and P, averaged for each county.

The baseline alfalfa production constraints (90%, 70%, and 50%) were incorporated into the
algorithm by setting OF1 to a very large value (10°) if the watershed-level alfalfa production
exceeds 90%, 70%, or 50% of the baseline production, respectively. Since the algorithm is

automatically designed to minimize the value of OF1, this approach will force the optimizer to
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eliminate parameter search in the region that produces high OF1 values. The final parameter set at

the end of 100,000 runs was selected as the optimal solution.

2.2.1.2 Two-objective optimization

Duckweed production involves a high capital cost in the first year due to construction costs
associated with building ponds and setting up storage and drying facilities for the harvested
duckweed. Therefore, it is essential to consider the economic tradeoffs associated with converting
existing alfalfa farms to duckweed cultivation systems. For scenarios 7 and 8, a cost-based
objective function (Eq. (6)), also called the ‘Net cost index (NCI)’, was thus introduced in addition
to OF1 described in Eq. (5). Specifically, OF2 was set to minimize the increase in annual net cost
compared to the baseline scenario. The first summation term in the numerator in Eq. (6)
corresponds to the net cost (production cost — revenue) associated with the new optimized scenario,

and the second term is the net cost for the baseline scenario.

?ff[(AlfCostneW—AlfRevnew )+ (DWCostpewy—DWRevpew)] + fgf[AlfCOStBase — AlfRevpgse]

108 (6)

OF2 =

where: OF2 is the second objective function (also called the NCI); i is the county number;
AlfCosty,,, and AlfRev,,, are the annual alfalfa production costs and revenue for the new
scenario; DWCost,,,, and DWRev,,,,, are the annual duckweed production costs and revenue for
the new scenario; AlfCostg,s. and AlfRevp,s. are the annual alfalfa production costs and

revenue for the baseline scenario.

For estimating the annual costs and revenue, the following assumptions were made (all values
presented on an annual basis): Alfalfa production cost = $45.34 per ton (Penn State Extension,
2019); Alfalfa revenue = $229 per ton dry matter assuming a moisture content of 15% (Foster et

al., 2009). Duckweed production costs were determined by performing a detailed techno-economic
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analysis (TEA) involving: 1) capital costs which include the costs for land, pond construction, and
drying tent; and 2) operating costs associated with duckweed harvesting and drying (See
Supporting Information for cost breakdown and assumptions used in the TEA). The analysis
yielded an annual duckweed production cost of $19,847.50 per ha and a revenue of $16,005.16 per
ha. This cost corresponded only to year one production and was used in all the two-objective
optimization runs. However, for long-term analysis, we used only the operating costs
($4447.89/ha/year) from year two onwards. Revenue from duckweed cultivation was calculated

using the same protein feed value as alfalfa and by applying a weighted ratio based on protein

D Wprotein%

x* ——————= ) Assuming the protein content to be 15%
Alfalfaprotein%) & p °

percent (D I/Vrevenue = Alfalfarevenue

in alfalfa (Foster et al., 2009) and 35% in duckweed (Leng et al., 1995), we estimated a duckweed
protein feed value of $535.29 per ton dry matter. We also conducted a long-term (10-year)
economic analysis to evaluate and compare the return on investment for alfalfa versus duckweed

farming systems.

Since the two-objective optimizations involve competing functions of NLI and NCI, the final
solutions for scenarios 7 and 8 are in the shape of a pareto-front that corresponds to multiple
optimal parameter sets instead of a single parameter set (as seen in the case of a single-objective
optimization). In other words, multiple combinations of OF1 and OF2 can be considered optimal
values; therefore, selecting one optimal solution is subjective and dependent on the study goals.
For the purpose of this study, three data points (one at each of the extreme ends of the pareto-
optimal front and one at the center) were manually selected for further analyses. ArcGIS software
was used to spatially visualize the optimal duckweed production patterns in the CBW for each of

the eight scenarios. Nutrient load reductions, decreases in alfalfa land area, and increases in first-
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year net cost and 10-year cumulative net revenue were extracted for comparison across the

different scenarios.

3. RESULTS
Spatial analysis of USDA and CSNAPNI model data (Figure 1) revealed that Pennsylvania

(PA) counties, which in total constitute 33% of the total CBW area, account for the largest share
of recoverable dairy manure (66%) and alfalfa fertilizer loads (65% of N loads and 70% of P
loads). The existing baseline scenario results in 44.80 x 10* tons of N input (6.5% from alfalfa
fertilizers and soil fixation, 93.5% from dairy manure) and 18.39 x 10 tons of P input (1.1% from
alfalfa fertilizers, 98.9% from dairy manure) generated in the watershed from dairy manure and
alfalfa fertilizers alone. Of the three major sources considered, dairy manure dominated the
nutrient share (93.5% of the total), whereas the contribution from fertilizers and N fixation was
very small (6.5%). Baseline production costs and revenue associated with alfalfa production were
estimated to be $46.25 million and $234.02 million, respectively, resulting in net revenue of

$187.77 million for the entire watershed.

3.1. Optimization results

3.1.1. Single objective optimization

With nutrient load minimization as the only objective function, the optimizer yielded an
optimal parameter set within the first 10,000 runs, with negligible reduction in OF1 beyond the
10,000™ iteration. The optimal NLI values were 0.83, 0.73, and 0.65 for 90%, 70%, and 50%
baseline alfalfa production constraints in scenarios 1-3 (Figure 4a). This corresponds to N loads of
43.50 x 10*, 40.84 x 10*, and 38.56 x 10* tons, indicating a reduction of 2.9%, 8.8%, and 13.9%

from the baseline, respectively (Table 2 and Figure 5). Similar decreases in P loads were also
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observed - Scenario 1: 17.94 x 10* tons (2.4%), Scenario 2: 17.19 x 10*(8.8%), and Scenario 3:

16.53 x 10* tons (10.1%).

Although alfalfa only covers 7.6% (1,200 km?) of the cropland in the CBW, it can potentially
export a significant quantity of N from land to the rivers. At an average export rate of 14 kg/ha/yr,
the total N exported from alfalfa fields can amount to 1680 tons annually (Shenk & Linker, 2013).
The CSNPANI model data used in this study revealed that alfalfa alone contributes to 29,128 tons
of N input (as fertilizer and soil-fixed N) and 2,100 tons of P input in the entire watershed;
combining the input from recoverable dairy manure, that increases to 76,356 tons of N and 10,733
tons of P, respectively. Results from single-objective optimization indicate that with only 10% of
the alfalfa land in the entire watershed allocated for manure-based duckweed cultivation, a total
amount of 12,991 tons of N and 4,438 tons of P inputs can be reduced annually. If only part of the
removed land is used for duckweed cultivation (while maintaining baseline protein yield), the
overall manure treatment capacity is reduced, which results in slightly higher nutrient loads or NLI
(Figure 4b). Assuming a protein content of 35% for duckweed and 15% for alfalfa, scenario 3
(with up to 50% alfalfa land available for duckweed cultivation) would yield an extra protein
production of 10.31 x 10° tons/yr if all of the removed lands are utilized for farming duckweed on
dairy manure waste. This is 68% higher than the baseline protein production of 6.14 x 10° tons/yr
with alfalfa alone. While the difference in optimal NLI between the two types of duckweed
replacement strategies is very small, the full alfalfa-to-duckweed conversion strategy results in an

additional annual removal of 6,100 tons of N and 2,500 tons of P from the total watershed loads.

The cost analysis showed that the full duckweed-substitution strategy (scenarios 1-3) comes
with a higher production cost than the partial duckweed substitution strategy (scenarios 4-6), as

expected from the increased capital cost in the first year associated with farming duckweed. While
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scenarios 1-3 resulted in a 33-185% increase in net cost in the first year, scenarios 4-6 had a

comparatively lower increase in cost at 20-103% for the three different constraints considered

(Table 2 and Figure 5). By financing the initial production cost over a longer timeframe (typical

of most farm equipment investments), farmers could reap long-term profits via duckweed protein

sales while avoiding high up-front costs. When a period of 10 years is considered, the returns from

protein sales of duckweed compensate for the high capital cost, as exemplified in the cumulative

net revenue increase (70-312% for strategy ‘a’ and 35-999% for strategy ‘b’). Replacing all removed

alfalfa land with duckweed growing systems is also the optimal scenario for both water quality

benefits and long-term profits.
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Figure 4. Data points representing each iteration of the single-objective (nutrient minimizing) optimization with
different types of duckweed replacement strategies. Panel (a) represents scenarios 1-3 for all removed land-to-
duckweed conversion, and (b) represents scenarios 4-6 for equivalent baseline alfalfa production. The data is
truncated at 10,000 runs since changes in the optimal values were insignificant beyond that point.
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Table 2. Optimization results for the scenarios examined in this study compared to baseline values at the watershed scale.

Optimal Results Change from baseline
Increase Increase
Duck- Reduction in net in net
Duckweed weed N load P load in alfalfa N P cost in revenue
replacement | area (x10* (x10* area reduction | reduction | the first after 10
Scenario Objective(s) | Constraint strategy (ha) tons/yr) | tons/yr) | (%) (%)" (%)" year (%) | years (%)
Baseline - - - 0.0 44.8 18.4 0.0 0.0 0.0 - -
90% baseline
alfalfa
1 production 11347.5 43.5 17.9 7.7 2.9 2.4 33.2 70.5
Minimize 70% baseline | All removed
. alfalfa alfalfa land to
2 nutrients production | duckweed 38831.2 40.8 17.2 26.3 8.8 6.5 109.5 192.7
50% baseline
alfalfa
3 production 65776.9 38.6 16.5 44.5 13.9 10.1 184.6 312.0
90% baseline
alfalfa
4 production . 4704.7 44.1 18.2 8.1 1.5 1.0 19.6 35.1
- Baseline
. 70% baseline .
Minimize equivalent
. alfalfa .
5 nutrients production p“’:iem . 15169.6 4.7 17.9 25.9 4.6 2.8 61.0 66.5
50% baseline production
alfalfa
6 production 25965.2 41.5 17.6 44 .4 7.5 4.3 103.1 99.6
All removed
alfalfa land to
7 (Case A2) . duckweed 59595.3 39.0 16.7 40.3 12.9 9.2 168.2 283.6
Minimize
nutrients and | - .
cost Bas'ehne
equivalent
protein
8 (Case B2) production 20965.7 42.0 17.7 35.9 6.3 3.7 85.1 82.4

"Refers to the percentage reduction in N and P inputs (from fertilizers, N fixation, and dairy manure) for the entire Chesapeake Bay Watershed.
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Figure 5. Scenario comparisons showing watershed-level nutrient load reduction, alfalfa area reduction, and
increases in first-year net cost and cumulative 10-year net revenue for the eight different optimization
scenarios.

3.1.2. Two-objective optimization

With net cost minimization introduced as the second objective function, the solution obtained
is in the form of a pareto-optimal front (Figure 6). Since both OF1 and OF2 were to be minimized,
all the data points along the pareto-front can be considered as an optimal solution. Three cases
were selected along each of the pareto-optimal fronts of scenarios 7 (all removed alfalfa-to-
duckweed conversion) and 8 (equivalent baseline protein production): A1, A2, and A3 correspond

to the selected cases in scenario 7; and B1, B2, and B3 correspond to those in scenario 8.

Cases Al and B, representing the zero cost/maximum nutrient scenarios, are the same as the
baseline scenario with zero alfalfa-to-duckweed conversion. Case A3 is the maximum cost
scenario which indicates 100% substitution of all removed alfalfa land with duckweed. This

scenario also provides the largest environmental benefit with a 23.2% reduction in N and a 19.4%
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reduction in P inputs from baseline values. The increase in first-year net cost for this case is
considerably high at 386.1% ($724.9 million above the baseline alfalfa production cost across the
entire watershed). But it also equates to an elevated increase in protein production (146.5% higher
than baseline protein production from alfalfa). In this scenario, the return on investment is
extremely high due to the large amount of duckweed produced, and therefore, within the second

year, cumulative revenue surpasses the cumulative production cost resulting in high profits.

Case A2 can be considered as the ‘true optimal’ solution in our study since it occurs towards
the center of the pareto front exhibiting a balanced minimum value for both nutrient load and cost
(NLI and NCI). With a 12.8% reduction in N load and a 9.2% reduction in P load, case A2
simultaneously comes with an economic drawback: a 168.2% increase in net cost for the first year
of duckweed cultivation. This additional cost, however, will be paid back over the 10-year period,
showing almost a 4-fold increase in cumulative net revenue at 10 years compared to if the existing
alfalfa production scenario were to continue (Table 2 and Figure 5). If economic constraints are
not a concern, case A3 represents the most ideal scenario demonstrating double the environmental

benefits over the ‘optimal’ case A2.
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Figure 6. Data points representing each iteration of the two-objective (nutrient and net cost minimizing)
optimization with different types of duckweed replacement strategies. The cases highlighted in the figure are
the selected points identified for further analysis.

The parameter search region shrank considerably when the duckweed replacement strategy
was changed to strategy ‘b’ with partial duckweed cultivation for equivalent baseline protein
production. This is because it acts as a constraint on the optimization where the algorithm is forced
to limit the duckweed cultivated area to produce only as much protein as the baseline scenario.
Accordingly, case B3, the highest cost case for strategy ‘b’, is 2.5 times less than the similar high-
cost case (A3) in strategy ‘a’. In terms of annual reduction in nutrients generated, case B3 decreases
N and P loads by 12.9% and 8.3%, respectively, over the baseline. The increase in the first-year
net cost to farmers is about 210.7% (compared to 386.1% in case A3), and 10-year cumulative net
revenue shows an increase of 3 times over the baseline condition (compared to 7.6 times in case

A3). Case B2, considered here as the ‘true optimal’ case, would decrease the watershed-scale N
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and P loads by only 6.3% and 3.7%, respectively, which are slightly less than half of what was
achieved in the optimal case A2 with the full duckweed conversion strategy (Table 2 and Figure
5). Consequently, the increase in first-year net cost is lower than case A2 (85% compared to the

baseline) and the 10-year cumulative net revenue is only 2 times that of the baseline value.

3.2.Spatial patterns of optimal duckweed farming locations
3.2.1. Single objective optimization
As expected from the high RE values and the substantial quantities of dairy manure generation
and alfalfa production in PA counties, the largest share of alfalfa-to-duckweed conversion occurs
predominantly in PA and other counties in the upper half of the watershed (Figure 7). This is
consistent across all the constrained scenarios 1 to 6 (with 90%, 70%, and 50% baseline alfalfa
production constraints). For scenarios 1 to 3 with strategy ‘a’ duckweed replacement (full
conversion), the optimized spatial pattern showed a total land conversion of 11,347 ha when 10%
of the alfalfa cropland is available for duckweed cultivation compared to 38,831 ha and 65,776 ha
when 30% and 50% alfalfa croplands are available, respectively (Table 2). Only 12 counties out
of 203 showed more than 10% land conversion from alfalfa to duckweed in scenario 1, indicating
that reasonable nutrient reduction (12,991 tons of N and 4,437 tons of P) can be achieved by just
targeting the top 6% of the hotspot counties (Figure S1, Supporting Information). For scenarios 2,
3, 5, and 6, which had greater flexibility in land availability for duckweed cultivation, the number
of counties that achieved modeling optimization of more than 10% land conversion was in the

range of 57 to 75 (less than half of the total number of counties in the watershed).

Lancaster county showed the highest effectiveness in reducing nutrient loads, with 83%
conversion in scenario 1 and 100% conversion for scenarios 2 and 3. We obtained similar results

for strategy ‘b’ duckweed replacement (partial conversion), where Lancaster county had 72%,
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100%, and 100% land conversions for scenarios 4, 5, and 6, respectively. Equifinality is a known
issue in optimization studies with several variables wherein different parameter combinations
result in similar results. This may have led to some counties being displayed as hotspots in certain
scenarios and not in the rest (for example, Broome county in NY and Adams county in PA being
hotspots in all scenarios except 8). However, there were still several counties with a large number
of dairy cows and high RE values that could be considered critical in reducing overall nutrients
delivered to the Bay, with examples including: Warren and Essex counties in Virginia; Garett
county in Maryland; Lebanon, Luzerne, Montour, Mifflin, Juniata, York, Chester,
Northumberland, Berks, Columbia, Clinton, Perry, Snyder, and Dauphin counties in PA, which
showed recommendations for more than 50% alfalfa land conversion for most of the scenarios
studied (Figure 7). Optimal duckweed farming locations revealed similar spatial patterns for the
two duckweed replacement strategies considered, indicating that the hotspot counties remain the
same whether full or partial duckweed cultivation is utilized. The major difference between the
two strategies is the higher mass of potential protein production and greater reduction in nutrient
delivery when full alfalfa-to-duckweed conversion is employed as opposed to partial conversion

(as discussed in Section 3.1).
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Figure 7. Spatial pattern showing the optimal distribution of land converted from alfalfa to manure-based
duckweed cultivation for single-objective (nutrient load minimizing) optimization. Scenarios with two types of
duckweed replacement strategies are shown: (a) Scenarios 1 to 3 with full duckweed cultivation in all removed

alfalfa land (upper panel); and (b) scenarios 4 to 6 with partial duckweed cultivation to maintain equivalent

baseline protein production (lower panel).

3.2.2. Two-objective optimization

Similar to the single-objective optimization, optimal patterns in scenarios 7 and 8 with both
nutrients and cost included in the objective functions showed a greater percentage of alfalfa
cropland removed from counties mainly in PA and those close to the Bay region (Figure 8). In

scenario 7, out of the 24 counties that recommended > 80% land conversion, only three were
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outside PA: Frederick in MD; Alleghany in VA; and Ontario in NY. A noteworthy observation is
that Ontario county in NY and Allegheny county in VA are not dairy-farm-intensive counties and
do not appear in the optimal pattern for scenario 8, again highlighting the equifinality problem in

optimization problems.

Optimal cases A2 in scenario 7, and B2 in scenario 8, would result in new duckweed cultivation
areas of 59,595 ha (40.3% reduction in alfalfa land) and 20,965 ha (35% reduction in alfalfa land),
respectively (Table 2). Since A2 utilizes all the removed land for duckweed cultivation, it has
higher nutrient reduction benefits (12.8% in N and 9.2% in P) when compared to B2 (6.3% in N

and 3.7% in P) and offers additional protein production (3.78 x 10° tons more than baseline).
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Figure 8. Spatial pattern showing the distribution of land converted from alfalfa to manure-based duckweed
cultivation for two-objective optimization (minimizing nutrient load and net cost). Scenarios with two types of
duckweed replacement strategies are shown: a) Case A2 in scenario 7 with full duckweed cultivation on all
removed alfalfa land (left); and b) Case B2 in scenario 8 with partial duckweed cultivation to maintain
equivalent baseline protein production (right).
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4. DISCUSSION

The non-linear multi-objective optimization proposed in this study warranted the use of an
and land prioritization models have been developed in the past using a host of simple optimization
methods such as linear programming (Malczewski, 1999), the more advanced evolutionary
algorithms like NSGA tend to produce more accurate results when multiple objectives and
constraints are involved (Cao et al., 2011; Wang et al., 2021). Prior CBW-focused work has
primarily employed single-objective optimization to identify cost-effective best management
practices (BMPs) in the watershed (Z. Kaufman et al., 2014; Talberth et al., 2015). Methods like
linear programming and the interior-point method have been used successfully in some of these
studies, but these algorithms, albeit faster, often times converge to a local optimum and lead to
erroneous solutions (Santos et al., 2003). Although employing a single algorithm for spatial
optimization could have decreased the runtime considerably, a combination algorithm was
preferable for our study due to the scale, high number of variables, and the complexity of the
processes involved (Maringanti et al., 2009). With the AMALGAM framework, we utilized a
proven enhanced optimization method that integrated the advantages of different algorithms to
improve the sampling process and reduce the computational burden with faster convergence to a
global optimum. The results showed successful and quick convergence to create an optimal
solution in single-objective optimization (converged in 2000-3000 iterations), and a distinct

pareto-optimal front in two-objective optimization (converged in 5000-6000 iterations).

Prior to conducting the optimization runs, Pennsylvania counties such as Lancaster and
Franklin, known for their widespread farming operations, could be visually identified as the

notable nutrient hotspot regions. In addition, from a geographical and hydrological connectivity
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perspective, RE values were also higher in PA counties owing to the shorter travel time of nutrients
from catchments in this region to the Chesapeake Bay (Figure 2). Results from quantitative
analysis suggest that PA is the lead contributor of N and P inputs to the CBW, accounting for 66%
of recoverable dairy manure, meriting spatially targeted nutrient management. Similar findings
highlighted by several other studies in the CBW support this observation (Devereux, 2009;
Kleinman et al., 2012). Considering that in 2017, the Commonwealth of PA failed to meet their
agricultural N reduction targets by 36% (EIP, 2017), there is immense value in advancing targeted

nutrient management of PA farms.

The major share of dairy manure towards the total N and P generated in the watershed (93.5%)
showed that manure storage and management is very crucial in curbing nutrient pollution. Past
studies have found that fertilizers are the primary nutrient source in the CBW, accounting for 28-
31% of the total watershed load compared to 40-54% from manure (Chesapeake Bay Foundation,
2004). The lower share of nutrients from fertilizer and N fixation (6.5%) compared to manure
(93.5%) observed in our study is attributed to the fact we only considered a single crop (alfalfa).
Although alfalfa is a nitrogen-fixing crop with lower N fertilizer requirements than other row
crops, it needs P fertilizers and a certain amount of supplemental N during the seeding phase
(Oregon State Extension, 2020). Hence, there is added benefit in the proposition of utilizing alfalfa

lands for manure management and soil conservation through duckweed farming.

4.1.Single Objective Optimization

Ignoring the economic tradeoffs of implementing duckweed cultivation, the results from
single-objective optimization revealed that over 10% N and P reductions (at-source) are possible
by using 65,777 ha of alfalfa land in the watershed. For context, the U.S. Environmental Protection

Agency (USEPA) in 2010 had established a TMDL goal for the Chesapeake Bay that aims to
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achieve a 25% reduction in N and a 24% reduction in P loads present in the Bay by the year 2025
(USEPA, 2010). A previous modeling study focusing on a sub-watershed (Spring Creek) within
the CBW has shown that a 1.7-23% reduction in N and 2.7-30% reduction in P is possible by
implementing BMPs such as buffer strip, no-till, cover crop, manure injection, etc. in up to 6000
ha of land (Amin et al., 2020). Another optimization study of the Conewago Creek watershed
found that reallocating crop rotations in the ~5500 ha agricultural area could alone lower N and P
loads by 15% and 14%, respectively (Jiang et al., 2021). It is important to note that the nutrient
loads reported in our study represent the N and P generated at-source and are not directly indicative
of the actual nutrients reaching the Bay, which may be lower due to load attenuation during nutrient
transport, presence of BMPs, manure processing strategies, etc. But given that around 20-25% of
net anthropogenic N inputs and 10% of P inputs are exported to the Bay (Howarth et al., 2006;
Najjar et al., 2010; Russell et al., 2008), the relative nutrient reductions quantified here could still
be representative of the load reductions possible within the Bay. With duckweed emerging as a
potential new feed crop in many countries worldwide (Huque et al., 1996; Sonta et al., 2019;
Tanuwiria & Mushawwir, 2020), growing it adjacent to livestock farms could be viewed as an

effective BMP in achieving the CBW’s nutrient reduction goals.

As per 2012 statistics, PA, VA, and MD have been identified as the largest sources of pollutants
in the CBW and are together required to achieve an additional reduction of 172.5 million pounds
(78,244 tons) of N by 2025 to meet the Chesapeake Bay Program targets (Majsztrik & Lea-Cox,
2013). As stated earlier, it is not reasonable to directly compare these values to the at-source
nutrient inputs reported in our study. However, assuming that 20-25% of anthropogenic N flux
ends up at the watershed outlet (Russell et al., 2008), Scenario 6 with the highest land conversion,

could in effect reduce N loads reaching the Bay by 12,484-15,605 tons a year. Considering the
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amount of nutrients that can be recycled through manure-based duckweed systems, it would be an
excellent pathway toward achieving the above-mentioned target, especially for the manure hotspot

counties in the CBW.
4.2. Two-Objective Optimization

For the two-objective optimization, the most environmentally sustainable scenario was Case
A3, which had the most land area under duckweed cultivation and displayed the highest reduction
in N and P loads (23.2% in N and 19.4% in P). Even if we account for load attenuation, this can
still be crucial in achieving the USEPA TMDL targets on nutrient reduction required in the Bay
waters (25% for N and 24% for P; USEPA (2010)). Unfortunately, this scenario is logically almost
impossible due to the likely socio-economic barriers in overcoming farmer resistance to adopting
alternate crops and infrastructural limitations related to installing new crop-growing systems. The
optimal cases A2 and B2 had nutrient reduction benefits ranging from 6.3-12.8% in N and 3.7-
9.2% in P. Of these, case A2 (under Scenario 7) utilizes all removed alfalfa land for duckweed
production and hence, offers an advantage of additional protein production (61.6% more than
baseline), which could benefit farmers economically. An average PA dairy farm purchases a good
portion of its protein feed (287 kg/cow/yr) from external sources (Holly et al., 2019). Assuming a
duckweed growth rate of 10 g/m?/day and protein intake of dairy cow to be 11 lbs/cow/day,
cultivating duckweed in a 1.4 ha pond for seven months can produce enough protein to feed 100
cows annually (Robinson, 2023; Said et al., 1979). Feed and fertilizer purchases are undeniably a
large environmental concern due to their associated carbon footprint and greenhouse gas
emissions. Additionally, from a nutrient balance perspective, feed and fertilizer imports are known
to decrease the nutrient use efficiency in farms when the imported nutrients are in excess of their

removal through crop uptake (Soberon et al., 2015). By allowing duckweed to grow on excess
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nutrients generated in dairy farms, farmers can not only increase the production of protein feed

and generate added revenue but also limit their dependence on external feed and fertilizer imports.

One of the most useful outputs from the two-objective optimization is the final range of points
along the pareto-optimal front. Each of these points represents a unique solution and spatial pattern
linked to different combinations of objective functions and constraints and therefore is valuable in
aiding the decision-making process regarding the economic and environmental tradeoffs in
duckweed farm implementation. Nutrient recovery techniques using aquatic vegetation, such as
the one proposed in this study, can potentially be included as part of the Watershed Implementation
Plans (WIPs) developed by states in the CBW to implement BMPs for meeting the Chesapeake
Bay TMDLs. The total net cost of implementing the required WIP BMPs between 2011 and 2025
was estimated to be approximately $3.6 billion (in 2010 dollars); and after 2025, it is predicted
that the net cost linked to full implementation of all WIP BMPs will be around $900 million
annually (Z. Kaufman et al., 2014). For the scenarios analyzed in this study, implementing
duckweed farming would incur a net cost ranging from $18.1 million (Scenario 4: 4,705 ha

duckweed land) to $252.7 million (Scenario 3: 65,777 ha duckweed land).

While different types of BMPs have been proposed to address water quality issues in the CBW,
some are challenging to implement due to their high installation costs. A relative cost analysis
conducted by the Chesapeake Bay Foundation illustrated that while small-scale practices such as
grassed buffers and conservation tillage would cost $7.50 per kg of N remediated, stormwater
retrofits can get quite expensive at $1,100/kg (Chesapeake Bay Foundation, 2013). Based on our
findings from the different scenarios, the increase in year one net cost for duckweed growing
systems would be $5.30-$7.70 per kg of N remediated, which is in the lower range of cost/benefit

ratios of other established BMPs. With research showing that significant cost savings can be
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realized through careful selection of cost-effective BMPs and targeted implementation of these
BMPs (D. E. Kaufman et al., 2021), implementing circular bioeconomy practices using duckweed
in select hotspot counties may be viewed as an environmentally sustainable and economically

viable BMP alternative.

4.3.Spatial Analysis

The importance of RE values in impacting water quality in the Bay is clearly documented in
past work focusing on the development of CBW TMDLs and has been successfully incorporated
in several modeling and optimization studies (D. E. Kaufman et al., 2021; Linker et al., 2013;
Robertson & Saad, 2011). Although a majority of hotspot counties selected in our study are known
for extensive farming operations (including dairy and alfalfa), some counties with a relatively
lower number of dairy farms, such as Luzerne, PA, and Warren, VA, were identified as hotspots
for duckweed cultivation primarily due to their high effectiveness of nutrient transport to the Bay
(i.e., high RE values). In a related context, many farming-intensive counties in the northern New
York region (such as Cortland, Madison, and Otsego, with more than 5,000 dairy cows/county) do
not appear in the list of most optimal counties for duckweed production due to their relatively
farther distance from the Bay and low effectiveness in nutrient delivery (Figure 2). The same
rationale can be linked to why Franklin county, the second most dairy-intensive county in PA, is

not as effective as Lancaster in reducing nutrient loads to the Bay.

Even though the decrease in the percentage of land area under alfalfa cultivation is not
considerably different in the two optimal cases of scenarios 7 and 8 (40.3% versus 35%), the one
with scenario 7 results in more than double the amount of duckweed area due to the full utilization
of the removed land for duckweed farming. Employing only part of the alfalfa cropland for

duckweed cultivation (replacement strategy ‘b’) as in scenario 8 can provide soil conservation
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benefits, especially when retiring highly erodible and environmentally sensitive farmlands, as
encouraged by the USDA voluntary Conservation Reserve Program (CRP) established through the
Food Security Act of 1985 (Bucholtz et al., 2004). In addition, since duckweed grows on a soil-
less medium, installing cultivation systems (ex., ponds) on marginal and less fertile lands offers a
profitable opportunity to farmers affected by poor crop yields. Leveraging existing marginal lands
for various uses is a widely explored research area. Some past work has demonstrated excellent
benefits of land-applying manure on marginal lands for increasing productivity (Saha et al., 2021)
as well as using these lands to grow perennial crops for bioenergy production (Sanderson & Adler,
2008; Valcu-Lisman et al., 2016). Utilizing similar areas for duckweed cultivation could further
enhance the potential use of these less-productive lands to offer additional economic gains for

farmers.

One of the challenges we encountered in the spatial pattern analysis was the problem of
equifinality. When the optimization variables (RE values and nutrient inputs) are not significantly
different between the counties, there is a high likelihood of equifinality, in which different
combinations of hotspot locations exhibit similar nutrient reductions (Her & Seong, 2018; Thorp
et al., 2015). Therefore, it is necessary to interpret multiple optimal solutions so that only counties
that consistently appear as hotspots should be considered for targeted nutrient management. In that
context, Lancaster and adjacent counties in central PA are the critical regions for consideration,
and the outcomes of this study distinctly prioritize manure management in PA for the overall water
quality benefit of the CBW. In addition to several modeling studies validating the nutrient hotspot
status of Lancaster (Kleinman et al., 2012; Young et al., 1985), a statewide assessment of PA soils
showing the highest presence of excess P in Lancaster soils further supports our finding

(Kogelmann et al., 2004). All eight optimization scenarios used in this study highlighted the
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relevance of considering nutrient delivery factors in designing decision-making tools for spatially
targeted nutrient management practices. Expanding this work could involve an integrated
watershed modeling approach considering both nutrient runoff potential and effective pollutant
transport capability that would help identify critical locations at a finer scale and assess the actual

discretized impacts on eutrophication in the Chesapeake Bay.

5. CONCLUSIONS

Spatial optimization of duckweed cultivation locations in the Chesapeake Bay Watershed was
conducted in this study to identify hotspot counties that are most critical in terms of manure and
fertilizer management. Growing duckweed on dairy manure offers an excellent opportunity to
upcycle nutrients that otherwise increase the risk of nutrient transport to surrounding water bodies,
leading to water pollution and eutrophication issues in the Chesapeake Bay. Eight different
scenarios were designed to evaluate the potential of dairy manure-based duckweed cultivation as
an alternative protein production approach to replace alfalfa cropping in the watershed. The
optimization runs resulted in similar spatial patterns with the highest land conversions displayed
by counties in Pennsylvania (Lancaster and adjacent counties above the Bay) for both duckweed
replacement strategies: (a) completely replacing all removed alfalfa land with duckweed
cultivation; and (b) partially replacing the removed alfalfa land to maintain only equivalent
baseline protein production. Depending on the percentage of alfalfa land available for conversion
(10%, 30%, or 50%), the former strategy would help reduce N and P loads by up to 14% and 10%,
respectively, and yield up to an additional 68% protein production compared to the existing
scenario. While this strategy is associated with a high capital cost, utilizing all of the removed
lands for duckweed cultivation has a high return on investment, making it an economical choice

in the long run. One area of improvement to expand this study is to include hydrological and stream
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routing processes in estimating delivery loads since they can highly influence the fate and transport
of inland nutrients generated in all the counties. Due to the scale of the study, counties with no
dairy production were excluded as variables from optimization. With more data on manure trading
between different watershed regions, we could assess how that practice would impact the

identification of hotspot locations for targeted manure-based duckweed farming.

Completely transitioning all alfalfa croplands to duckweed farms in counties with dairy
operations would ideally result in up to a 23% reduction in N and a 19% reduction in P loads which
can play a key role in achieving the Chesapeake Bay TMDL targets. While such a massive
agricultural land conversion may seem impractical when considering the economic and cultural
barriers, the optimization framework provided here seeks to aid stakeholders in decision-making
by offering different types of solutions available for a wide range of environmental and economic
constraints. The flexibility in modifying the objective functions and constraints within the
framework further extends its applicability to study additional user-defined scenarios and to

evaluate their environmental and economic benefits and tradeoffs.
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