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Abstract—Brain-computer interfaces (BClIs) enable direct com-
munication with the brain, providing valuable information about
brain function and enabling novel treatment of brain disorders.
Our group has been building HALO , a flexible and ultra-low-
power processing architecture for BCIs. HALO can process
up to 46 Mbps of neural data, a significant increase over the
interfacing bandwidth achievable by prior BCIs. HALO can
also be programmed to support several applications, unlike
most prior BCIs. Key to HALO ’s effectiveness is a hardware
accelerator cluster, where each accelerator operates within its
own clock domain. A configurable interconnect connects the
accelerators to create data flow pipelines that realize neural
signal processing algorithms. We have taped out our design in
a 12nm CMOS process. The resulting chip runs at 0.88V, per-
accelerator frequencies of 3-180 MHz, and consumes at most
5.0mW for each signal processing pipeline. Evaluations using
electrophysiological data collected from a non-human primate
confirm HALO ’s flexibility and superior performance per watt.

Index Terms—B.9.1 Low-power design, C.0.a Emerging tech-
nologies, C.0.b Hardware/software interfaces, C.1.3.e Dataflow
architectures

I. INTRODUCTION

BCIs directly sense and stimulate electrical activity of
neurons in the brain, enabling a new approach to increas-
ing our understanding of the brain, treating drug-resistant
epilepsy, restoring motor capabilities in individuals suffer-
ing from neurological disorders, and more [1-4]. BCIs are
also heralding innovation in improving mental focus, short-
term memory, mind-controlled assistive devices, and more.
Consequently, companies like Meta, Microsoft, Neuralink,
Kernel, Neuropace, Synchron, Paradromics and Medtronic are
building BCIs that read, process, and stimulate increasingly
more neurons with the highest signal fidelity.

BClIs can be realized as non-invasive headsets, or, as inva-
sive devices where the electrodes to sense/stimulate neurons
are implanted in or around brain tissue surgically. Our work
focuses on the latter, which can record and stimulate a
large population of neurons with high fidelity [5], and have
important clinical, research and therapeutic uses.

Conflicting constraints make it challenging to design pro-
cessors for invasive BCIs. On the one hand, BCIs must process
increasing volumes of neural data in real-time. For example,
BClIs that treat seizures must process neural activity to detect
signs of a current or impending seizure, determine where
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and how to apply electrical stimulus to mitigate the seizure,
and apply the stimulus, all within a few milliseconds [6].
Some BCIs can read neuronal activity at 10s of Mbps,
recent experimental designs claim even higher rates [7], and
DARPA’s NESD program targets reading millions of neurons
at Gbps data [8]. All this data must be analyzed in real time.

On the other hand, BCIs cannot overheat brain tissue
by more than 1°C. In general, BCI vendors target power
consumption under 15 mW for safe permanent implantation.

Current BCIs have adopted the approach of rigid specializa-
tion to a particular application, or sacrificing data rates to sup-
port multiple applications. Consequently, the BCI landscape
is fragmented with many single-use or low capability devices.
Table I captures this predicament using a representative list of
state-of-art commercial and research BClIs.

Medtronic Neuropace Aziz Kassiri Neuralink NURIP HALO

[2] [2] o1 12 [71 [10]

Tasks Supported

Spike Detection X X X X X X v
Compression x x v x x x v
Seizure Prediction x v x v X v v
Movement Intent v X X X X X v
Encryption x X x x x x v
Technical Capabilities

Programmable v Limited x v x Limited v
Read Channels 4 8 256 24 3072 32 96
Data rate (Mbps) 0.01 0.02 9.76  1.32 545 0.13 46
Safety (<15mW) v v v v x v v

TABLE I: Existing commercial and research BCIs meet target
power budgets by either restricting their scope to a single
use case, or by dropping brain-computer communication band-
width. HALO is the first flexible implantable BCI architecture
to overcome this tradeoff.

II. THE HALO PROJECT

Our goal is to build a BCI processor that can process
high neural data rates and supports many BCI applications,
while meeting the power constraints needed for safe long-
term implantation. The outcome of our research is HALO,
a BCI processor that has a family of accelerator processing
elements (PEs), each operating in separate clock domains
with low-power asynchronous circuit-switched communica-
tion. Figure la shows the chip diagram of a 12nm CMOS
tape out of HALO. Figure 1b shows how HALO integrates
with the remainder of a typical implantable BCI device.
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Fig. 1: The chip diagram on the left shows our HALO tape-out
in a 12nm technology. Per-PE labels show the distinct logic
and memory components of the PE that are placed in different
physical locations. The block diagram on the right shows other
key components of implantable BCIs, including the sensors,
which consists of conductive needles that penetrate millimeters
of cortical tissue, analog components, a radio, and power
sources. Implantable BCIs are packaged in a hermetically-
fused silica capsule or titanium capsule.

HALOQO’s design is unconventional in many ways. Standard
low power design dictates that we realize one accelerator per
BCI application in the form of a dedicated ASIC (which we
refer to as a monolithic ASIC). We find that monolithic ASICs
exceed the permitted power budget, and do not achieve our
desired flexibility in hardware design.

Instead, HALO realizes both flexibility and low power
operation. We begin by systematically mapping the design
space of BCI applications to identify the target capabilities
we wish to support. These include disease treatment, signal
processing, and secure transmission of neuronal data (e.g.,
compression and encryption). While these capabilities are not
exhaustive, we identify them to be the broad features required
for a flexible multi-use BCI platform.

Next, we refactor the underlying algorithm of the BCI
applications into distinct pieces or kernels that realize different
phases of the algorithm. The kernels facilitate the design of
modular, ultra-low-power hardware processing elements (PEs).
By bundling logic with similar complexity within individual
PEs, we are able to clock the module at the lowest frequency
required to sustain bandwidth and reduce power. We complete
the design by including a low-power RISC-V microcontroller
to configure PEs into processing pipelines and support com-
putation for which there are no PEs.

Finally, we devise several hardware-software co-design
techniques described in Section IV, which optimize the design
at the abstraction level of the PEs. These techniques enable
HALO to achieve 4-57 x and 2 x lower power dissipation than
software and monolithic ASIC implementations, respectively.

HALO °’s top-down, modular approach provides another
important design benefit. It allows us to be agile, and tape
out the design with incremental functionality. We evaluate
our tape-outs using electrophysiological data collected from a
non-human primate’s motor cortex. We originally synthesized
HALO in 28nm, and have later synthesized and taped out
several modules in 12 nm.

III. COMPUTATIONAL TASKS SUPPORTED BY HALO

Figure 2 presents an overview of the HALO architecture.
The block diagram on the left shows the PEs in our design.
The PEs are assembled into the task pipelines shown on the
right, by using a configurable interconnect.

HALO supports multiple types of applications. The first
category consists of support for seizure treatment and mit-
igating movement disorders. Seizure prediction/stimulation
pipelines are part of the state-of-the-art BCIs approved for
clinical use by the U.S. Food and Drug Administration
(FDA) [11]. Similarly, algorithms to detect/stimulate the brain
to counteract movement disorders associated with essential
tremor and Parkinson’s disease are under FDA approved trials.
HALO supports FFT, cross-correlation, and bandpass filters
over linear models to support closed loop treatment of these
neurological disorders.

The second category includes compression to reduce radio
transmission bandwidth. BCIs generally require lossless com-
pression, except in specific scenarios like spike sorting. HALO
supports spike detection using the near energy operator (NEO)
PE, and implements several lossless compression variants
since the best choice of the compression algorithm varies
across brain regions and patient activity. We support lossless
LZ4 and LZMA compression, as well as discrete wavelet
transform (DWT) compression. Compression ratios vary by as
much as 40% depending on compression algorithm and target
brain region [3].

Finally, HALO supports encryption with the AES PE.
No existing BCI supports encryption, but we foresee it as
becoming necessary in future BCIs for secure data exfiltration.
HALQO’s encryption PE is designed according to standards
like HIPAA, NIST, and NSA that require using AES with an
encryption key of at least 128 bits.

IV. THE HALO ARCHITECTURE

HALO supports five tasks, and can set up two of them
in multiple ways, leading to a total of eight distinct pipelines
configurable by a clinician. With the conventional monolithic
ASIC approach, we would have required eight ASICs. Instead,
we decompose the pipelines into reusable PEs, shown in
Figure 2. A RISC-V microcontroller is used to configure the
PEs into pipelines via programmable switches.

A. Decomposing BCI Tasks into PEs

Kernel PE decomposition: Some BCI tasks consist of distinct
computational kernels naturally amenable to PE decomposi-
tion. For example, seizure prediction combines kernels for
FFT, cross-correlation (XCOR), Butterworth bandpass filtering
(BBF), and a support vector machine (SVM). We realize each
as a PE, as shown in Figure 2. The kernels differ in their
computation logic, and hence, require a different frequency
each, to sustain a given throughput. Without decomposition,
the entire logic must be run at the highest frequency required
among all the kernels, which wastes power. Decomposition
enables clocking each PE at its own lowest possible frequency,
saving power. Consider XCOR and BBF. XCOR contains



D

> > >
o
F @] F

D

[ RISC-V MICRO-CONTROLLER |

Frequently used BCI tasks pipelines
Compression (LZ4):

Compression (LZMA): ADC — MUX — INT — LZ — MA — RC — [AES]
Compression (DWT):
Movement Intent:
Encryption:

Spike Detection (NEO);ADC — MUX — INT — NEO — THR — GATE — [AES]
Spike Detection (DWT):ADC — MUX — DWT — THR — GATE — [AES]

Seizure Prediction:

Compression
Movement Intent
Seizure Prediction

ADC — MUX — INT — LZ — LIC — [AES] Spike Detection
Routing Switch
ADC — MUX — INT — DWT — TOK — MA — RC — [AES] outing Switc
Byte stream

ADC — MUX — INT — FFT — THR — [GATE] — [AES] )
Taped-out in 12nm
ADC — MUX — GATE — AES
NT| Interleaver

E0 e 0000

ADC — MUX — INT — {FFT, XCOR, BBF} — SVM — THR —[GATE]— [AES]

Fig. 2: HALO consists of low-power hardware PEs and a RISC-V micro-controller. The PEs are configured into pipelines to
realize tasks ranging from compression (in blue) to spike detection (in green). PEs taped-out in the latest 12nm technology
node are shown within the grey background. Optional PEs (e.g., AES encryption) are shown in square brackets. PEs operating
in parallel (e.g., FFT, XCOR, and BBF for seizure prediction) are shown in curly brackets.

complex computation (e.g., divisions, square roots) that scales
quadratically with the number of inputs. In contrast, BBF is
a simple filter with minimal arithmetic that scales linearly
with the input count. Therefore, a much lower frequency (14 x
lower) is sufficient for BBF to achieve the same throughput
as XCOR, saving power.

PE reuse generalization: Multiple BCI tasks like movement
intent and seizure prediction often share the same computa-
tional kernel, such as FFT, but with different configurations
(e.g., the FFT resolution). We make our PEs configurable to
increase their reuse across applications.

Major refactoring: PE decomposition is more effective if
the original algorithms are refactored. Consider LZMA and
DWTMA compression. Both algorithms compute the fre-
quency of data values to encode them efficiently. However,
we found that using one PE for all operations overshoots the
15mW power budget. Therefore, we refactored the original
algorithm. We identify that data locality of functions manip-
ulating major data structures is a good indicator of kernel
boundaries. This observation is also tied to the fact that PEs
in HALO have only local memories and cannot share large
amounts of data. We call this approach, Locality Refactoring.
Algorithm 1 shows the LZMA application before refactor-
ing. It has two tasks: one calculates the frequency of input data
values (shown in green), and the other encodes the values (in
blue). The frequency calculation operations on lines 5, 6, and
line 9, update the same datastructure. Therefore, refactoring it
to keep those operations together would keep the updates to
shared datastructures fully local within respective tasks. This
enables developing separate PEs for each task, which can be
clocked at their own optimal frequencies, providing 2x power
savings over a design that combines all operations into one PE.
We used domain-specific knowledge to manually refactor
the BCI algorithms. However, emerging accelerator design
tools (e.g., [12]) augmented with suitable data-flow and graph
analyses, show promise in automating such refactoring.

B. Processing Element Optimizations

Unchanged PE output: Some PEs (e.g., XCOR, LZ) process
data in blocks instead of samples and wait for all inputs in the
block to arrive. Despite pipelining, this bursty computation
is problematic as it requires either large buffers to sink the
outputs of computations or running the destination PEs at high
frequency to meet data rates. Both approaches waste power.
To address this issue, we spatially reprogram the original
algorithm and co-design it with the hardware. Consider the
XCOR PE. The original algorithm waits for all data to arrive
before operating on it, but we refactor it to process inputs
as they arrive. The final form in Algorithm 2 reduces the
amount of computation needed in the final step, as well as the
number of buffers needed to store the inputs. This translates
to a power savings of 2.2x over the original algorithm. This
technique also extends to other PEs like LZ to achieve 1.5x
power reduction.

Algorithm 1 LZMA pseudocode

1: function LZMA_COMPRESS_BLOCK(input)

2 output = list(lzma_header);

3 while data = input.get() do

4: best_match = find_best_match(data);

5: Probmaten, = count(tablemaqtcn, best_match)
6.
7
8

/count_total(tablematch);
rl = range_encode( Probmatch );
: output.push_back(rl);
9: increment_counter (tablemqaticn, best_match);
10: end while
11: return output;
12: end function

Modified PE output: When possible, we modify the PE
outputs to save energy without losing accuracy. Consider the
data block size used in compression. Large block sizes lead
to better estimates of frequencies, but small block sizes allow
the use of smaller data types and reduce the memory footprint
and power of the MA PE. We observe that the frequencies of
values within a block remain largely unchanged after they have
stabilized. Consequently, we allow the frequency counters to



saturate and set block size independently of counter bit width.
Overall, counter saturation modification allows HALO to
benefit both from reduced memory footprint of 16-bit counters,
and better compression ratio of larger blocks.

Algorithm 2 XCOR spatial programming refactoring

1: function XCOR(nput, output)

2: /I channel[][] stores input in appropriate channel location
3 channel[channel_num]|[sample_num| = input

4: /I data[] stores sums of input received so far

5: data[count]+ = input

6: // data_lag[] stores sums of input till LAG

7 if count_2 == LAG then

8: data_lag[count] = data[count]
9: end if

10: // Finish correlation computation

11: if channel. filled() then

12: for each i, j € channels do

13: avg_i = datali]/SIZE

14: avg_j = (data[j] — data_lag[j])/SIZE
15: output.push_back(avg_i, avg_j)

16: end for

17: return output

18: end if

19: end function

C. Per-PE Clock Domains

HALO is designed as a globally asynchronous locally
synchronous (GALS) architecture [13], with each PE operating
in its own independently tunable clock domain to minimize
power while sustaining the required throughput. This design
avoids a global clock, and instead, the PEs use their own
pausable clock generators and clock control units locally. The
overheads of using multiple clock generators is low for HALO
because the PEs run only at low frequencies (3—180 MHz)
with sufficient slack, allowing the use of inexpensive clock
generators, and any clock uncertainty from them is easily
tolerated.

To communicate between clock domains, we use standard
two flip-flop synchronizers [13] at the sender and receiver
PEs. There is a high frequency connection (150 MHz) between
the PEs with one additional pair of synchronizers—one to
synchronize with the sender, and the other to synchronize with
the receiver. Sending and receiving data in this design takes
~2 sender clock cycles, and ~2 receive cycles, respectively.
This latency is acceptable for most PEs, which do not transfer
data every cycle.

For the remaining PEs that require a single clock cycle
input/output, we use a different approach. We use a FIFO at
the PE that runs at 4x the PE frequency. The FIFO and the
PE are in the same clock domain, and we use simple clock
division to generate the PE clock signal from the FIFO’s clock.
Synchronizing data crossing between the interconnect and the
FIFO completes in about 2 FIFO cycles, leaving ample time
for the PE to read/write a new value on each of its clock
cycles. This solution is possible because, even at 4x the PE
frequency, metastability resolution for the synchronizer takes
a fraction of a clock cycle.

D. On-Chip Network

We use a circuit-switched network on an asynchronous
communication fabric. The decomposition of BCI tasks into
kernels creates a small number of static and well-defined
data-flows between PEs. For these few, fixed flows, a circuit-
switched network is much lower in power over a more flexible
packet-switched network. We estimate that a simple packet-
switched mesh network consumes over 50 mW, making it
infeasible for our use. In contrast, our circuit-switched inter-
connect components across all PEs including the FIFOs and
synchronizers, consume a total of 1.1 mW.

E. Choice of FIFO Buffer Design

Despite optimizations, FIFO buffers are necessary at the
output of some of HALO’s bursty PEs, e.g., PEs in the
compression pipeline. Reducing the buffer sizes is important to
reduce power, especially for our 12 nm tape-outs. We achieve
this by first increasing the frequency of the PE that reads
from the buffer, beyond the rate necessary to sustain the data-
processing rate. We select the optimal frequency and FIFO
buffer size by studying the power tradeoff between the higher
frequency of the PE and the lower size of the FIFO. We show
this tradeoff in Section VI-B. For FIFOs larger than 128 Bytes,
we use a high-speed two-port register file, since it consumes
less power than registers.

V. SYNTHESIS

Our 15 mW target power budget includes the HALO chip,
sensors, ADC, amplifier, and radio. We assume a microelec-
trode array with 96 channels, each of which records each
sample encoded in 16 bits at a frequency of 30 KHz, yielding
a data rate of 46 Mbps. After accounting for all analog com-
ponents, HALO’s processing pipelines (including the radio)
must consume no more than 12mW. We present results for
our original evaluation at 28 nm Fully-Depleted Silicon-On-
Insulator (FD-SOI) CMOS process as well as our augmented
evaluation for our tape-out at 12nm (which includes accurate
estimates for the interconnect). Synthesis and power analysis
is performed using the latest generation of Cadence® synthesis
tools with standard cell libraries from STMicroelectronics.

Table II shows the synthesis results from 28 nm, and 12 nm.
Typically, a lower process node facilitates using a lower
frequency to sustain a given data processing rate, since the
gate delays are lower. However, Table II shows that several
PEs have a higher frequency at 12nm. This was necessary to
optimize the FIFO buffer size (Section IV-E), and is especially
noticeable for the inherently bursty PEs (LZ, DWT, MA, RC).

VI. EVALUATION

We use a physical synthesis flow for 28nm and 12nm tech-
nology nodes. A subset of our evaluations ( i.e., compression
analysis) use brain data from a non-human primate collected
by the Borton Lab at Brown University as per our original
HALO paper [3].



PE 28 nm 12 nm
Freq Logic Mem Area Freq Logic Mem Area
(MHz) (mW) (mW) (KGE) (MHz) (mW) (mW) (KGE)
Lz 129 1.51 1.56 55 155 059  0.64 157
LIC 225 032 005 25 25 0.16  0.01 20
MA 92 2.28 1.06 66 180 1.02  0.65 222
RC 90 079 0 12 60 208 0 40
DWT 3 0.01 0 2 36 0.07 000 3
TOK 6 001 O 1 8 006 000 4
NEO 3 002 0 5 14 0.04 000 3
THR 16 0.01 0 1 35 0.04 000 4
GATE 5 0.01  0.12 17 42 034 004 28
RISCV 25 0.48 138 70 25 026 028 297
FFT 157 057 044 22 - - - -
XCOR 85 425 036 81 -
BBF 6 010 0 23 -
SVM 3 0.04 0.11 8 -
AES 5 011 0 34 -

TABLE II: Frequency, power, and area characteristics of our
28nm and 12nm HALO variants.

A. Power Consumption

Figure 3 compares HALO’s power at 28 nm and 12 nm with
the monolithic ASIC approach, and another approach that runs
the applications on a RISC-V processor. Software tasks on
RISC-V can execute sequentially or in parallel, where the 96
electrode data streams are split between the multiple cores.
We study core counts from 1 to 64 and report the outcome of
the best configuration per task. HALO uses less power than
monolithic ASICs and RISC-V approaches, and is the only
design within the power limit of 15 mW for all applications.

Fig. 3: Power (in log-scale) of PEs, control logic and radios
for HALO versus RISC-V and monolithic ASICs. To meet
the 15 mW device power budget, these components (without
ADCs and amplifiers) need to be under 12 mW (the red line).
We compare HALO against the lowest-power RISC-V and
Monolithic-ASIC, the standard approach to low power design.
HALO-28 nm shows our original evaluation for 28 nm process
node. HALO-12nm shows the evaluation for 12nm process
node with accurate power analysis for interconnect.

B. Power Trade-off in the FIFO Buffer Design

Bursty PEs require large FIFOs to buffer data till the PE
can accept it. We show this trade-off between using a large
FIFO buffer versus increasing the frequency of the PE using
the MA module in the LZ-MA-RC pipeline.

Figure 4 shows the total power consumed by the MA-RC
segment of the compression pipeline, split into the power
consumed by the FIFO buffer, and the PE compute, as the
frequency of MA is varied. MA must run at 9OMHz to
process the input rate of 46 Mbps. Figure 4 shows that the
power consumed by the FIFO buffer decreases as frequency
is increased. With a higher frequency, the PE can process
inputs faster, reducing the buffer time, and consequently, the
size of the buffer. However, a higher frequency increases the
dynamic power of not only MA but also for the subsequent
PEs, i.e., RC, to sustain the increased dataflow rate. The figure
shows that the overall power is lowest when MA operates at
120 MHz, which is 33% higher than the minimum frequency
required to sustain the input datarate.

We perform a similar analysis for all PEs with bursty
datarates, considering all pipelines they are part of. For ex-
ample, from Figure 2, MA is in another compression pipeline
with DWT, and optimizing the power of that pipeline yields a
frequency of 180 MHz, which we finally use for MA.
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Fig. 4: Power of MA-RC components divided into FIFO and
PE power for the LZMA pipeline. As MA frequency increases,
FIFO size and power decreases. Correspondingly, PE power
increases. The total power is minimized at 120 MHz.

VII. AGILE PROTOTYPING

HALO is an unconventional BCI processor, and we follow
an agile approach to tape out and verify it incrementally.
Our first tape out only includes the RISC-V processor that
we develop entirely in-house. This chip has an area of about
297 KGE (kilo gate equivalent), normalized to the cell area of
a 2-input NAND gate.

Next, we add some pipelines that are relatively easy to verify
because their signal processing is simpler ( i.e., spike detec-
tion) and some, which are more complex ( i.e., compression).
Figure 1a showed this layout, and has an area of of 809 KGE.
We tape out two versions of this design. One exposes the
RISC-V interface, the PE interfaces that carry reconfiguration
commands, and PE internal memory, externally for testing and



debugging. The other variant has these connections internal,
as they would be in the final system.
HALO has been designed in a modular manner from the
beginning to support such an agile workflow (Section II).
Figure 5 shows the initial dies we received from the foundry.

They operate at 0.88 V with overall dimensions < 1 mm?.
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(a) Single die.

(b) Multlple dies from a wafer.

Fig. 5: Chips from our first tape-out in 12 nm technology node.

We will complete additional tape outs to include all our PEs,
and then package the chips with the remaining components
of the BCI: sensors and stimulation units, ADC, radio, and a
power source (Figure 1b). Along with neuroscientists, we plan
on evaluating the performance and safety of the final package
in vivo using animal studies.

VIII. CONCLUSION

HALO presents a wet lab to chip design project that
explores the question of how to build a flexible ultra-low-
power processing architecture for next-generation BCIs. While
this work performs an initial exploration of workloads that
are important for neuroscience, but the list of tasks can be
expanded. Future BCIs will implement other workloads, with
different pipelines targeting different research and medical
objectives. Because of its modular design, HALO will be able
to support such workloads seamlessly.
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