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Reinforcement learning (RL) is an important field of research in machine learning that is increasingly being
applied to complex optimization problems in physics. In parallel, concepts from physics have contributed to
important advances in RL with developments such as entropy-regularized RL. While these developments have
led to advances in both fields, obtaining analytical solutions for optimization in entropy-regularized RL is
currently an open problem. In this paper, we establish a mapping between entropy-regularized RL and research
in nonequilibrium statistical mechanics focusing on Markovian processes conditioned on rare events. In the
long-time limit, we apply approaches from large deviation theory to derive exact analytical results for the
optimal policy and optimal dynamics in Markov decision process (MDP) models of reinforcement learning.
The results obtained lead to an analytical and computational framework for entropy-regularized RL which is
validated by simulations. The mapping established in this work connects current research in reinforcement
learning and nonequilibrium statistical mechanics, thereby opening avenues for the application of analytical
and computational approaches from one field to cutting-edge problems in the other.
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I. INTRODUCTION

The combination of machine learning approaches with
concepts and tools from physics has given rise to significant
developments in current research [1]. Concepts derived from
statistical mechanics have led to important applications in
machine learning [2], and recent work has further highlighted
the importance of building bridges between the two disci-
plines [3–5]. Conversely, machine learning approaches such
as reinforcement learning (RL) are increasingly being used
to address complex optimization problems in diverse fields
of physics, ranging from quantum computing and quantum
control to adaptive optics [6–11]. While RL approaches are
now being widely applied in physics research, there has been
less emphasis on using insights and approaches from physics
to address open problems in RL. The development of such
approaches can lead to important discoveries in RL research
as well as provide avenues for the development of novel RL
algorithms to solve a diverse range of problems in physics
[7,12].

While the connections of machine learning to equilibrium
statistical mechanics are well established [2], the interface
with nonequilibrium statistical mechanics (NESM) is less ex-
plored. Recent work has addressed this gap by developing
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machine learning approaches with applications to NESM. For
example, graph neural network models for estimation of the
scaled cumulant generating function for observables in dy-
namical systems have been developed [13] and evolutionary
RL approaches have been used to calculate the likelihood
of dynamical large deviations [14]. While RL approaches
are thus starting to be applied to study systems of interest
in NESM, it is also of interest to explore if insights from
NESM can be used to obtain new insights into RL. An
example of the latter case arises when considering RL prob-
lems that involve optimization over system trajectories with
entropy-based regularization [15,16]. This framework, termed
maximum entropy RL, or more generally entropy-regularized
RL, allows the optimal control problem in RL to be recast as
a problem in Bayesian inference. This “control-as-inference”
approach involves the introduction of optimality variables
such that the posterior trajectory distribution, conditioned
on optimality, provides the solution to the optimal control
problem [15–18]. While this framework has led to several
advances, there are open questions relating to the derivation
of analytical results that characterize the optimal dynamics.

Recent research in NESM using large deviation theory has
developed a framework for analyzing Markovian processes
conditioned on rare events [19–23]. In this framework, a
generalization of the Doob h-transform [22,24,25] is used to
determine the driven process: a conditioning-free Markovian
process that has the same statistics as the original Markovian
process conditioned on a rare event. Similar derivations of the
driven or controlled processes have been obtained in previous
work using a maximum entropy approach for characterizing
nonequilibrium steady states [26–29]. The connection of this
framework to RL can be seen by noting that the goal in
entropy-regularized RL is to derive the posterior trajectory
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distribution conditioned on optimality and, in the long-time
limit, optimality of the trajectory is a rare event for the original
dynamics. This commonality of conditioning on rare events
suggests that approaches and results from NESM can be
used to characterize the optimal control policy for entropy-
regularized RL problems. Indeed, recent work has explored
connections between entropy-regularized RL and rare trajec-
tory sampling and applied it to a range of problems in physics
[12,30]; however an explicit characterization of the optimal
controlled processes for general entropy-regularized RL prob-
lems has not been derived to date.

In this paper, we develop a mapping between MDP-based
entropy-regularized RL and Markovian processes conditioned
on rare events in the long-time limit. Using approaches from
large deviation theory, we derive exact analytical expressions
characterizing trajectory distributions conditioned on optimal-
ity. Interestingly, our derivation of these results shows how the
generalized Doob h-transform arises naturally from Bayesian
inference applied to trajectory distributions. The results ob-
tained lead to analytical expressions for the optimal policy
and optimal dynamics in entropy-regularized RL which are
validated using simulations. The connections established in
this work also lead to an approach for model-free RL and
provide avenues for research focusing on the intersection of
RL and physics. Specifically, the mapping developed in this
work connects RL-based optimization to the estimation of
dynamical free energy in NESM [19], thus paving the way for
the use of approaches such as deep RL to estimate dynamical
free energies in nonequilibrium physics.

II. MARKOV DECISION PROCESS FRAMEWORK

In the following, we provide an overview of the standard
Markov decision process (MDP) framework for reinforcement
learning. To introduce the formalism, we focus on the finite
horizon, undiscounted case with horizon N [15]. Consider a
Markov chain with states represented by tuples (s, a), where
s is an agent’s current state and a is an action taken while
in state s. The probability that the agent transitions to state
s′ after taking action a is denoted by p(s′|s, a). The choice
of action a given the agent’s current state s is drawn from a
policy π (a|s), and the corresponding reward collected by the
agent is given by the reward function r(s, a).

With the above representation, we can now define probabil-
ity distributions over trajectories τ := {(s1, a1), . . . , (sN , aN )}
that are generated by the policy π (a|s) and transition proba-
bilities p(s′|s, a). Let p(s1), π (a|s) and p(s′|s, a) denote prior
distributions for the initial state, policy, and transition dynam-
ics respectively. The corresponding probability distribution
for uncontrolled trajectories is given by

p(τ ) = p(s1)
N∏

t=1

p(st+1|st , at )π (at |st ). (1)

The prior distribution for the transition dynamics corresponds
to the system’s uncontrolled transition dynamics. In the spe-
cial case of maximum entropy (MaxEnt) RL, the prior policy
is chosen as the uninformative prior, i.e., a uniform distribu-
tion over actions.

We now consider the probability distribution for controlled
trajectories that is generated by a specific policy πc(a|s) and
transition dynamics pc(s′|s, a) that may, in general, be differ-
ent from the uncontrolled prior distributions. The probability
distribution for controlled trajectories is given by

pc(τ ) = pc(s1)
N∏

t=1

pc(st+1|st , at )πc(at |st ). (2)

The objective in standard RL is to find the policy
π∗(a|s) that maximizes the total expected reward. Let Rτ =∑N

t=1 r(st , at ) denote the total reward accumulated over a
trajectory τ . Correspondingly, the optimal policy π∗(a|s) is
given by

π∗(a|s) = arg max
πc

Epc (τ )[Rτ ]. (3)

In entropy-regularized RL, the goal is to determine the de-
composition (Eq. 2) for the optimally controlled trajectory
distribution pc(τ ) that maximizes the objective function

Epc (τ )[Rτ ] − 1

β
H(pc(τ )||p(τ )), (4)

where β is a regularization parameter corresponding to the
inverse temperature. We can see that, in entropy-regularized
RL, the standard RL objective function is augmented to in-
clude a regularization term − 1

β
H(pc(τ )||p(τ )). This term

corresponds to the relative entropy between the controlled tra-
jectory distribution pc(τ ) and the prior trajectory distribution
p(τ ), and is given by the Kullback-Leibler divergence

H(pc(τ )||p(τ )) =
∑

τ

pc(τ ) ln
pc(τ )

p(τ )
.

This regularization process naturally yields stochastic optimal
policies, a desirable feature providing robustness to changes in
the problem’s dynamics. The role of the β parameter is then
to regulate the tradeoff between obtaining a single “greedy”
optimal solution and obtaining a collection of solutions with
lower returns but improved robustness.

The preceding generalization of standard RL allows one to
recast the optimal control problem as an inference problem
[15]. This control-as-inference approach involves the intro-
duction of optimality variables Ot defined such that

p(Ot = 1|st , at ) = exp[βr(st , at )], (5)

The binary random variable Ot represents the probability that
the trajectory is optimal at time step t . The purpose of this
definition is that the posterior trajectory distribution, obtained
by conditioning on Ot = 1 for all t , exactly corresponds to the
trajectory distribution generated by optimal control. The opti-
mal control problem in entropy-regularized RL thus becomes
equivalent to a problem in Bayesian inference.

Let O1:N define the event for which all steps in a trajectory
τ are optimal, i.e., O1:N

.= ⋂N
i=1(Oi = 1). To make connec-

tions to the “statistical mechanics of trajectories” formalism
in NESM [19], let us denote by Eτ = −Rτ the accumulated
energetic cost for a trajectory τ . From Bayes’s theorem, it fol-
lows that the posterior probability distribution for trajectories,
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conditioned on O1:N , is given by

p(τ |O1:N ) = p(τ )e−βEτ∑
τ p(τ )e−βEτ

. (6)

From the inference perspective, the central problem in
entropy-regularized RL is now to determine the posterior
distributions for the policy, dynamics, and initial state, con-
ditioned on optimality. As noted, these posterior distributions
correspond to the solution of the optimal control problem in
entropy-regularized RL.

In many practical RL problems, control of system dy-
namics and initial state distributions is unfeasible. In these
cases, the posterior dynamics and initial state distributions
must be constrained to exactly match the prior dynamics and
initial state distributions and the optimization is carried out
by varying the policy alone. We will refer to this approach as
the constrained optimization approach to entropy-regularized
RL. In the constrained optimization problem, the agent only
has control over the policy. The optimal trajectory distribution
for the constrained problem can therefore be decomposed as

p(τ |O1:N ) = p(s1)
N∏

t=1

p(st+1|st , at )π (at |st ,O1:N ). (7)

The preceding (constrained) problem formulation is to
be contrasted with the unconstrained optimization problem,
where the agent also has control over the transition dynamics
and initial state distributions. In this case, the optimal trajec-
tory distribution can be decomposed as [15]

p(τ |O1:N ) = p(s1|O1:N )
N∏

t=1

p(st+1|st , at ,O1:N )

× π (at |st ,O1:N ). (8)

In the remainder of the paper, unless otherwise stated, we
will focus on the solution of the unconstrained optimization
problem in entropy-regularized RL, where the transition dy-
namics and the initial state distribution are optimized along
with the policy. We note that the framework developed in this
work also leads to the solution of the constrained optimization
problem, which will be shown elsewhere.

III. SOLUTION USING LARGE DEVIATION THEORY

We now proceed to provide an analytical solution to the
central problem of entropy-regularized RL in the long-time
limit. Without loss of generality [15], we consider reward
functions such that the maximum reward is set to zero and we
have r(s, a) � 0 for all s, a. In this case, Eq. (5) indicates that,
in the long-time limit, optimality of the entire trajectory is a
rare event and the problem of determining the posterior policy
and dynamics corresponds to conditioning on such a rare
event. Research in NESM [20,22] has developed a framework
for characterizing Markovian processes conditioned on rare
events. In the following, we show how this framework leads
to analytical expressions for quantities of interest in entropy-
regularized RL. We note that the core of the derivation runs
parallel to previous results deriving the Doob h-transform in
discrete-time Markov chains [31–34]. In the following, our

FIG. 1. System dynamics in the extended model with transition
matrix P. Transition i → O = 0 occurs with probability 1 − eβri .
The introduction of an absorbing state provides an interpretation
for the binary random variable O. Conditioning on optimality (i.e.,
O = 1) is equivalent to conditioning on nonabsorption.

focus is on applying this framework to obtain new results for
entropy-regularized RL.

Let z = (s, a), z′ = (s′, a′) denote two consecutive state-
action tuples. We can combine the system dynamics p(s′|s, a)
with the fixed prior policy π (a′|s′) to compose the correspond-
ing transition matrix for the discrete time Markov chain

Pji = p(z′ = j|z = i) = p(s′|s, a)π (a′|s′). (9)

Based on the connection to large deviation theory [35], let
us define the tilted transition matrix

P̃ji = Pjie
βri , (10)

where ri = r(z = i) = r(s, a) denotes the reward associated
to the tuple (s, a). Note that the tilted matrix is not a stochastic
matrix and thus it cannot be interpreted as a transition matrix
for a Markov chain that conserves probability. To address this
issue, we introduce an additional absorbing state for the agent
such that the extended transition matrix P (as defined below)
is a stochastic matrix:

P ≡
[

P̃ 0
δ 1

]
, (11)

where δ is defined such that
∑

j P ji = 1, i.e., δi = 1 − eβri .
The extended model introduced above provides an inter-

pretation for the optimality variable introduced in Eq. (5) as
specifying the probability of nonabsorption (see Fig. 1). Let
us consider the system’s evolution for N time steps using the
transition matrix P. Imposing the condition O1:N is equivalent
to conditioning on nonabsorption for all N time steps. Thus
the optimal trajectory distribution is generated by considering
the probability distribution over trajectories generated by P,
conditional on no transitions to the absorbing state for the
entire trajectory. This interpretation allows us to make con-
nections to the theory of quasistationary distributions [33,34]
which can be used to analyze Markovian processes condi-
tioned on nonabsorption.

For the dynamics generated by P, given an initial state-
action pair i, the probability of transitioning to state-action
pair j after taking N steps is given by [P̃N ] ji. In the following,
we assume that P̃ is a primitive matrix, meaning that the cor-
responding dynamics is irreducible and aperiodic. In this case,
the Perron-Frobenius theorem implies that P̃ has a unique
dominant eigenvalue ρ with a corresponding unique right
eigenvector v (with vi > 0) and a unique left eigenvector u
(with ui > 0). The normalization of the eigenvectors is chosen
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such that
∑

i vi = 1 and
∑

i uivi = 1 [33]. Furthermore since
P̃ is substochastic (column sums between 0 and 1), we must
have ρ < 1 and so we define θ > 0 such that ρ = e−βθ .

We now consider the limit of large N , for which, using the
spectral decomposition of P̃, we have

[P̃N ] ji ≈ e−βθN uiv j (12)

Furthermore, let e−βξ denote the magnitude of the next dom-
inant eigenvalue. Then the convergence of the preceding
equation is exponential in N , i.e., the condition determining
the long-time limit corresponds to e−Nβ(ξ−θ ) � 1.

Now the probability that a trajectory starting with state-
action pair z1 = (s1, a1) is optimal for N steps is given by

P(O1:N |z1 = i) =
∑

j

[P̃N ] ji ≈ e−βθN ui. (13)

This result can be used to derive the posterior distribution
over trajectories conditioned on optimality. Typically, the dif-
ficulty in deriving expressions for the posterior distribution
stems from estimating the partition sum in the denominator
of Eq. (6). However, we note that the partition sum is given
by P(O1:N ) = ∑

i p(z = i)P(O1:N |z = i) and thus can be esti-
mated using the results derived.

To derive expressions for the posterior dynamics and state
distributions conditioned on optimality, we define, consistent
with the terminology in NESM, the driven transition matrix

[Pd ] ji = p(z′ = j|z = i,O1:N ). (14)

This definition implies that the driven transition matrix is the
generator of the Markov chain corresponding to the optimal
dynamics. In the long-time limit, we obtain that the driven
matrix is given by (see Appendix B 1)

[Pd ] ji = P̃jiu j

e−βθui
, (15)

which recovers the expression for the driven model as a gener-
alized Doob h-transform in recent work in NESM [20,22,23].
It is interesting to note that our analysis recovers this result
based on Bayesian inference of the posterior trajectory distri-
bution.

The result for the driven matrix can be used to derive the
following expressions for the optimal dynamics, policy, and
initial state-action pair distributions (see Appendices B 2 and
B 3)

p(s′|s, a,O1:N ) = p(s′|s, a)eβr(s,a)

e−βθu(s, a)

∑
a′

u(s′, a′)π (a′|s′),

(16)

π (a|s,O1:N ) = u(s, a)π (a|s)∑
a′ u(s, a′)π (a′|s)

, (17)

p(s1, a1|O1:N ) = p(s1, a1)u(s1, a1)∑
(s′

1,a
′
1 ) p(s′

1, a′
1)u(s′

1, a′
e1)

. (18)

The preceding equations, which are among the main results
of this paper, show that in the long-time limit the optimal
dynamics can be completely characterized by the dominant
eigenvalue and the corresponding left eigenvector of the tilted
matrix P̃. While previous work has shown how a special class
of MDPs are linearly solvable [36,37], our results show that

linear solutions can be obtained for more general MDP models
in the long-time limit.

The significance of this result is that it provides a closed-
form solution for the central problem of entropy-regularized
RL [stated in Eq. (8)]. For the case of deterministic dynamics,
the results show that the optimal dynamics is unchanged from
the original dynamics and the optimal policy is determined by
the left eigenvector u. For the case of stochastic dynamics, the
results allow us to determine how the original dynamics must
be controlled to obtain the optimal dynamics.

IV. VALUE FUNCTIONS AND STATISTICAL MECHANICS

The results derived for the optimal dynamics can be used
to derive analytical expressions for optimal value functions
in entropy-regularized RL [also called soft value functions
[15] and denoted by Q(s, a) and V (s)] and to make fur-
ther connections to statistical mechanics. The optimal value
function Q(s, a) represents the expected future return to be
collected, given that action a is taken from the initial state s,
and the optimal dynamics and policy are followed thereafter.
Note that this expected future return includes the penalization
given by the entropic cost term β−1H [see Eq. (4)]. Specif-
ically Q(s, a) is obtained by maximizing the average return
over the controlled trajectory distribution: Epc (τ |s,a)[Rτ ] −
1
β
H(pc(τ |s, a)||p(τ |s, a)). Note that, if we instead consider

the energetic costs over trajectories (i.e., Eτ = −Rτ ), the
problem of maximizing average returns is equivalent to
the problem of minimizing average costs: Epc (τ |s,a)[Eτ ] +
1
β
H(pc(τ |s, a)||p(τ |s, a)), in correspondence with Eq. (4). In

the following, we show how this optimization problem can
be solved by connecting to the free energy concept from
statistical mechanics.

To find the optimal value function, we need to consider
the trajectory distribution corresponding to optimal control.
Conditioned on the first step z1 = (s, a), the optimal trajectory
distribution is given by

p(τ |s, a,O1:N ) = 1

Zp(s, a)
p(τ |s, a)e−βEτ , (19)

where Zp(s, a) = ∑
τ p(τ |s, a)e−βEτ can be regarded as the

partition function corresponding to the nonequilibrium free
energy function

Fp(s, a) = − 1

β
ln Zp(s, a). (20)

We note that the free energy defined above corresponds
to the lower bound of the entropy-regularized RL objective,
representing the minimized expected total cost with both en-
ergetic and entropic contributions [38],

Fp(s, a) � Epc (τ |s,a)[Eτ ] + 1

β
H(pc(τ |s, a)||p(τ |s, a)),

and equality is attained when the controlled trajectory distri-
bution is given by Eq. (19). Thus the problem of minimizing
the expected costs, or equivalently maximizing the expected
return, is solved by the free energy, and correspondingly we
obtain Q(s, a) = −Fp(s, a). In other words, the function that
maximizes the expected total returns in entropy-regularized
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FIG. 2. Comparison of the optimal state-action pair distribution
and its approximation using the Perron eigenvectors of the tilted
matrix P̃, as a function of time step t , with N = 250. The Kullback-
Leibler divergence between the exact, time-dependent distribution
and the bulk/stationary distribution estimated using Eq. (23) is
shown. The plot shows that the ratio u(st ,at )v(st ,at )

p(st ,at |O1:T ) ≈ 1 in the “bulk”
region of the trajectory.

RL [Q(s, a)] is given by eβQ(s,a) = Zp(s, a) = p(O1:N |s, a),
consistent with [15]. This result, in combination with Eq. (13)
and the definition of the state-dependent value function V (s),
eβV (s) = ∑

a π (a|s)eβQ(s,a), yields the relations

βQ(s, a) = −βθN + ln u(s, a), (21)

βV (s) = −βθN + ln
∑

a

π (a|s)u(s, a). (22)

Thus the value functions in entropy-regularized RL can be
obtained using the dominant eigenvalue and the left Perron
eigenvector of the tilted matrix P̃. These results have been
validated by comparing with the dynamic programming so-
lution for entropy-regularized RL (see Appendix D). The
significance of the preceding equations is that they provide a
mapping between problems of interest in NESM and entropy-
regularized RL such that approaches from one field can be
used to solve problems in the other. For example, using the
derived equations, function approximators, a popular tool in
deep reinforcement learning for estimating value functions
[39], can potentially be used as a method for calculating the
left and right dominant eigenvectors of the tilted generator in
NESM.

Besides the value functions, other quantities of interest in
RL can also be obtained using the Perron-Frobenius eigen-
value and the corresponding eigenvectors, as previously noted
in diverse systems of interest [20,33,40,41]. For example, in
the long-time limit the right eigenvector gives the probability
of observing a state-action pair conditioned on optimality:
p(st , at |O1:t−1) = v(st , at ). Using Eq. (18), for t such that
t → ∞ and (N − t ) → ∞ (i.e., the “bulk” region of the tra-
jectory), we also have (see Appendix B 4)

p(st , at |O1:N ) ≈ u(st , at )v(st , at ). (23)

We note that u(s, a)v(s, a) represents the components of the
dominant right eigenvector of the driven matrix Pd , i.e., the
components of the steady-state distribution over state-action
pairs generated by the driven dynamics.

As shown in Fig. 2, the exact optimal state-action pair
distribution is in excellent agreement with the approximation
obtained using the steady-state distribution of the driven dy-
namics, for time t in the “bulk” region of the trajectory (i.e.,

FIG. 3. Results for a 9 by 9 maze, trajectory length N = 104.
Panels (a)–(d) show how state occupation frequencies (derived from
the optimal trajectory distribution) change with temperature. Panels
(e) and (f) show the mean energetic costs, and relative entropy per
time step as functions of β.

far from the extremities at t = 0 and t = N). Given that the
steady-state distribution over state-action pairs is a quantity
of significant interest in RL applications such as Inverse RL
[42], the result obtained in Eq. (23) can significantly impact
the computations involved in such RL approaches.

To further validate the theory presented, we consider the
“grid-world” setting shown in Figs. 3(a)–3(d) in which an
agent can take actions a by deterministically moving up,
down, left, or right. The state s of the agent is simply the
grid cell in which it resides. The agent’s task is to navigate
to the only rewarding state: the goal, indicated by the yellow
circle. The initial state of the agent is in the top left part of
the maze. The shading of states represents the steady-state
distribution

∑
a u(s, a)v(s, a) for various values of the con-

trol parameter, β. We note that, as β → ∞, the agent acts
greedily by not deviating from the shortest path, that is, the
most probable trajectories are those with higher rewards. This
observed behavior reveals the role of the β parameter, which
is to control the preference of the agent to purely minimize
energy (maximize rewards) in exchange for stochasticity.

In the limit of large N , we have F (s,a)
N → θ , which can

be interpreted as the “bulk” free energy per time step. Fur-
thermore, we can also obtain approximations for quantities
of interest such as the mean energetic cost per time step,
through the steady state distribution in Eq. (23), resulting in
the following expression:

1

N
E[Eτ ] = −

∑
s,a

u(s, a)v(s, a)r(s, a). (24)
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As shown in Fig. 3(e), the preceding equation is in excellent
agreement with results from simulations. We further note that
as the inverse temperature parameter β is varied, the optimal
trajectory distribution switches from primarily minimizing
entropic costs at high temperatures (low β) to primarily min-
imizing energetic costs at low temperatures (high β). The
approach developed therefore not only enables us to obtain
the value functions of interest in entropy-regularized RL, but
to also derive analytical expressions for the energetic and
entropic contributions, which were previously unavailable.

V. u-θ LEARNING

The framework developed shows how several quantities of
interest in entropy-regularized RL can be obtained using the
dominant eigenvalue and the corresponding left eigenvector of
the tilted matrix. In the following, we show how these quan-
tities can be obtained in a model-free setting (that is, without
explicit knowledge of the dynamics and rewards) by allowing
the agent to collect experience by randomly exploring using
the original transition dynamics.

By taking the sum over the columns of the driven matrix
in Eq. (15), we note that the left eigenvector elements can
be written as an expectation value over the original transition
dynamics. Correspondingly, the dominant eigenvalue and left
eigenvector can be obtained through a learning process based
on the following equation:

u(s, a)e−βθ = eβr(s,a)E∼p(s′,a′|s,a)[u(s′, a′)]. (25)

The corresponding update equations for learning u(s, a)
and θ are

u(s, a) ← (1 − α)u(s, a) + α
eβr(s,a)

e−βθ
u(s′, a′), (26)

e−βθ ← (1 − αθ )e−βθ + αθeβr(s,a) u(s′, a′)
u(s, a)

, (27)

where α and αθ are their respective learning rates [43].
Further refinements of the algorithm outlined above can be
developed following the connections to learning algorithms
for risk-sensitive control [44]. Note that the prior policy is
used for sampling actions during the training process [see
Eq. (25)]. Thus this model-free approach to RL, which we
term u-θ learning, is fundamentally an off-policy approach
[45] wherein the optimal policy is obtained via system
exploration using the prior policy. Our simulations (see Ap-
pendix D) indicate that optimal policies obtained using this
method are in excellent agreement with the corresponding
results obtained using dynamic programming [46] on the soft
Bellmann backup equation. Appendix C shows how the soft
Bellmann backup equation arises from the definition of the
tilted matrix P̃.

In conclusion, we have established a mapping between
entropy-regularized RL and recent research in NESM using
large deviation theory. The results derived include analytical
expressions for quantities of interest in RL and lead to a
learning algorithm for model-free RL. The results obtained
have thus established a framework for analyzing optimization
problems using entropy-regularized RL, and generalizations
of this approach hold promise for obtaining solutions to a

broader range of optimization problems in physics and ma-
chine learning.
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APPENDIX A: IMPLEMENTATION DETAILS

For the purposes of testing and validation we have de-
veloped an implementation of the method using Python, and
used the Gym environment framework developed by OpenAI
[47]. Since we focus on discrete state-action spaces, we shall
work with the FrozenLake Gym environment, which we have
modified to meet our needs regarding the transition dynamics
and reward structure.

The code’s implementation includes model-based and
model-free solutions, along with example scripts to use our
method. The code is made available as Supplemental Material
in this publication [48], and as a Github repository [49].

APPENDIX B: DRIVEN DYNAMICS
AND OPTIMAL DISTRIBUTIONS

1. Driven dynamics

The probability distribution for trajectories, τ1:T =
(z1, z2, . . . , zT ) with zt = (st , at ), conditioned on optimality
is given by [see Eq. (6)]

p(τ1:T |O1:T ) = p(τ1:T ,O1:T )

p(O1:T )
= p(τ )e−βEτ∑

τ p(τ )e−βEτ
,

For notational convenience, let zt = (st , at ) = i and zt+1 =
(s′

t+1, a′
t+1) = j denote two consecutive state-action tuples in

the trajectory τ1:T , with 1 � t < T . The corresponding ele-
ments of the driven and tilted matrices are, by definition,

[Pd ] ji = p(s′
t+1, a′

t+1|st , at ,O1:T ),

[P̃] ji = p(s′
t+1, a′

t+1|st , at )e
βr(st ,at ),

From the above equations, it can be seen that the tilted matrix
is time independent whereas the driven matrix will, in general,
depend on the time index t . In the following, we consider the
long-time limit (T − t ) → ∞. In this case, we will see that
the driven matrix is independent of the time index t .

Let us divide the trajectory τ1:T into two parts such
that τ1:t−1 = (z1, z2, . . . , zt−1) and τt :T = (zt , zt+1, . . . , zT ).
We will first focus on τt :T in the limit (T − t ) = N → ∞.
Using the definition of the driven matrix, we have

p(τt+2:T , zt+1 = j|zt = i,Ot :T )

= p(τt+2:T |zt+1 = j,Ot+1:T )[Pd ] ji (B1)

Using Eq. (6), the left-hand side of Eq. (B1) can also be
expressed as

p(τt+2:T , zt+1 = j|zt = i,Ot :T )

= p(τt+2:T ,Ot+1:T |zt+1 = j)

p(Ot :T |zt = i)
[P̃] ji. (B2)
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FIG. 4. (a) A four-state one-dimensional (1D) maze with two actions available to navigate. (b) The corresponding graphical model. Here
we model an irreducible Markov chain by making the agent return to the initial state after reaching the goal state. (c) Part of the Markov chain
at time step t . Right: representation of the stationary distribution resulting from the optimal dynamics, for a larger 10 by 10 2D maze and four
available actions: left, down, right, up.

In Eq. (B1) using the substitution

p(τt+2:T |zt+1 = j,Ot+1:T ) = p(τt+2:T ,Ot+1:T |zt+1 = j)

p(Ot+1:T |zt+1 = j)
,

and comparing with Eq. (B2), we get

[Pd ] ji = [P̃] ji p(Ot+1:T |zt+1 = j)

p(Ot :T |zt = i)
. (B3)

Taking the long-time limit and approximating the tilted
transition matrix using the dominant contribution,

P(Ot :T |zt = i) =
∑

j

[P̃N ] ji = e−βθN ui,

P(Ot+1:T |zt+1 = j) =
∑

k

[P̃N−1]k j = e−βθ (N−1)u j . (B4)

Substituting in Eq. (B3) we find that the driven matrix is given
by the Doob h-transform [see Eq. (15)]:

[Pd ] ji = P̃jiu j

e−βθui
.

2. Optimal policy

To derive the optimal policy, we begin with the observation

p(st , at |Ot :T ) = p(st , at )p(Ot :T |st , at )∑
(st ,at ) p(st , at )p(Ot :T |st , at )

. (B5)

Using the approximation in Eq. (B4), we can rewrite Eq. (B5)
as

p(st , at |Ot :T ) = p(st , at )u(st , at )∑
st ,at

p(st , at )u(st , at )
. (B6)

Note that the preceding equation is valid for times t such that
(T − t ) � 1. In particular, it can be applied for the initial
time-step to obtain the optimal initial state-action pair dis-
tribution result derived in the main text. For general t , the

optimal state distribution can be obtained from Eq. (B6) as

p(st |Ot :T ) =
∑

at
p(st , at )u(st , at )∑

st ,at
p(st , at )u(st , at )

.

From the preceding equations, we see that, in the long-time
limit (T − t ) → ∞, the optimal state-action pair distribution
is time independent. Therefore, using these equations and
suppressing the time index, we obtain that the optimal policy
is given by

p(a|s,O1:T ) = p(a|s)u(s, a)∑
a p(a|s)u(s, a)

,

π∗(a|s) = π (a|s)u(s, a)∑
a π (a|s)u(s, a)

, (B7)

where π∗(a|s) denotes the optimal policy and π (a|s) is the
prior policy.

3. Optimal transition dynamics

To derive the optimal transition dynamics, we first write
Eq. (15) as

p(s′, a′|s, a,O1:T ) = p(s′, a′|s, a)eβr(s,a)u(s′, a′)
e−βθu(s, a)

,

π∗(a′|s′)p∗(s′|s, a) = π (a′|s′)p(s′|s, a)eβr(s,a)u(s′, a′)
e−βθu(s, a)

.

(B8)

By substituting the optimal policy in Eq. (B7) into Eq. (B8),
we find that the optimal transition dynamics is given by

p∗(s′|s, a) = p(s′|s, a)eβr(s,a)

e−βθu(s, a)

∑
a′

π (a′|s′)u(s′, a′).
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FIG. 5. Comparison of the soft-Q values computed by the large deviation approach vs. the dynamic programming solution. Top left: The
10 by 10 empty maze used for the plots in this figure. Top right: Root mean squared deviations of Q values between the large deviation and
dynamic programming solutions, as a function of trajectory length. Bottom left: 20 step trajectories. Bottom right: 290 step trajectories. Here
we can see perfect correlation between both solutions, for long enough trajectories.

4. Optimal steady-state distribution

Now we consider the initial part of the trajectory τ1:t−1.
Consider

p(zt = j|z1 = i,O1:t−1) = p(zt = j,O1:t−1|z1 = i)

p(O1:t−1|z1 = i)
.

In the limit t → ∞, using the Perron-Frobenius theorem and
Eq. (B4), we get

p(zt = j|z1 = i,O1:t−1) = e−βθN uiv j

e−βθN ui
= v j .

Thus, the optimal state-action pair distribution at time t is
time-independent and independent of the initial state-action
pair distribution. This distribution is given by the right

FIG. 6. Optimal policies for three different mazes, obtained from
the dominant eigenvalue’s corresponding left eigenvector of the tilted
transition matrix. In these examples, the size of an arrow is propor-
tional to the probability of taking a step in that direction. Blue squares
represent hard walls, i.e., the agent is not allowed to step on them.
Each step taken by the agent incurs a penalization (r = −1). When
on a red square, there is a higher penalization (r = −1.5) and the
agent is allowed to continue its trajectory. The goal state is depicted
by the yellow circle, for which there is no penalization (r = 0) and
the agent will be replaced at the initial state, regardless of the action
taken.

eigenvector of the tilted matrix, and is referred to as the
quasistationary distribution [33].

The preceding equations have shown the equality p(zt =
j|O1:t−1) = v j . To obtain the steady-state distribution of the
optimal dynamics, we need to derive an expression for p(zt =
j|O1:T ). To proceed, we split the trajectory in a similar way as
above:

p(zt = j|O1:t−1,Ot :T )

= p(Ot :T |zt = j,O1:t−1)p(zt = j|O1:t−1)∑
k p(Ot :T |zt = k,O1:t−1)p(zt = k|O1:t−1)

.

Furthermore, using

p(Ot :T |zt = j,O1:t−1) = p(Ot :T |zt = j) = e−βθN ui

in combination with p(zt = j|O1:t−1) = v j , we get

p(zt = j|O1:T ) = e−βθN u jv j

e−βθN
∑

k ukvk
= u jv j .

Thus the optimal state-action pair distribution in the “bulk”
region of the trajectory [i.e., the times t such that t → ∞
and (T − t ) → ∞] is time-independent and is given by the
Hadamard product of the left and right eigenvectors of the
tilted matrix. It is readily verified that this distribution also
corresponds to the steady-state distribution of the driven ma-
trix PD.

APPENDIX C: DERIVATION OF SOFT BELLMAN
BACKUP EQUATIONS

Recall that we write the indices i = (s, a) and j = (s′, a′)
for two consecutive steps, and the transition matrix is

Pji = p(s′, a′|s, a) = p(s′|s, a)π (a′|s′).
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FIG. 7. Training evolution of u-θ learning agents for five different temperatures as a function of the training progress. Lower temperature
agents take longer to converge. Note that the optimal greedy policy is recovered at the lowest temperatures.

From Markov chain theory, when given a transition matrix P,
we interpret [PN ] ji as the probability of arriving at j after N
steps, given that we start from i. Since the transition matrix P
is a stochastic matrix, we have that

∑
j [PN ] ji = 1. For large

N , PN leads to the stationary distribution for the correspond-
ing Markov process.

Let us now consider the tilted transition matrix

P̃ji = eβri Pji,

which represents a substochastic transition matrix. As pointed
out in the main text, we can expand the graphical model with
an extra state in such a way that we obtain a proper stochastic
transition matrix. This extra state is an absorbing state, and
any trajectory that reaches it is regarded as suboptimal.

We can write the probability of remaining optimal after
taking N steps in the Markov chain as the probability of
nonabsorption,

p(O1:N |s, a) =
∑

j

[P̃N ] ji.

The preceding equation represents the so-called backward
messages [15]. Using this we can write a recursive relation
which then leads to the soft Bellman backup equation

p(O1:N |s, a) =
∑

j

∑
m

[P̃N−1] jmeβri Pmi

= eβr(s,a)
∑
s′,a′

p(s′, a′|s, a)p(O2:N |s′, a′).

Now, using the definitions of the soft value functions in
entropy-regularized RL [15],

βQ(s, a) = ln p(O1:N |s, a),

βV (s) = ln
∑

a

π (a|s) exp[βQ(s, a)],

we obtain, consistent with the result derived in [15], the fol-
lowing soft backup equation:

Q(s, a) = r(s, a) + 1

β
lnE{exp[βQ(s′, a′)]}

= r(s, a) + 1

β
ln

[∑
s′

p(s′|s, a) exp[βV (s′)]

]
,

where the expectation is taken with respect to the uncontrolled
dynamics: the prior policy and the original transition dynam-
ics.

APPENDIX D: EXPERIMENTAL VALIDATION

In order to validate the analytical framework proposed
in the main text and derived here, we defined a series of
grid-world mazes for which a complete dynamics model is
available, i.e., all available states, actions and transition dy-
namics are known beforehand. We modified the OpenAI Gym
environment “FrozenLakeEnv” [47], which has a discrete
state-action space. Our version of this environment provides
control over the reward function, stochastic behavior, and an

FIG. 8. Validation of solution by u-θ learning algorithm. The maze used is the same as in Fig. 7, with β = 10 and trajectory length
N = 1000 steps. Left: Convergence of the θ parameter learned by the agent towards the target value as computed by the model-based version.
The curve plots the mean values over 32 replicas, and the shaded area is the standard deviation. Right: Learning rate schedules used to learn
the θ parameter.
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option to define a cyclic mode that results in irreducible MDPs
(see Fig. 4). With this setup, we are able to compute the opti-
mal solution for the objective function in entropy-regularized
RL. The resulting soft-Q value function has been compared
with the dynamic programming result, which is obtained by
directly computing the soft-Q and soft-V value functions at
every step (see Fig. 5). Figure 6 shows three examples of
mazes and corresponding optimal policies. In the figure we
see how the policy can successfully steer the agent toward the
goal state, while avoiding dangerous states.

Here we provide some details about the validation of
the model-free version of our method (u-θ learning). The
approach consists of a temporal difference method [see
Eqs. (26) and (27) in the main text]. Validation of the
algorithm has been performed by comparing to the exact
solution as computed by dynamic programming. In Fig. 7
we show solutions to the displayed maze for several temper-
atures, as a function of training progress. Fig. 8 examines
the learned parameters and their comparison with dynamic
programming.
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