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ABSTRACT

In this article, we establish a high-dimensional CLT for the sample mean of p-dimensional spatial data
observed over irregularly spaced sampling sites in RY, allowing the dimension p to be much larger than the
sample size n. We adopt a stochastic sampling scheme that can generate irregularly spaced sampling sites
in a flexible manner and include both pure increasing domain and mixed increasing domain frameworks.
To facilitate statistical inference, we develop the spatially dependent wild bootstrap (SDWB) and justify its
asymptotic validity in high dimensions by deriving error bounds that hold almost surely conditionally on
the stochastic sampling sites. Our dependence conditions on the underlying random field cover a wide
class of random fields such as Gaussian random fields and continuous autoregressive moving average
random fields. Through numerical simulations and a real data analysis, we demonstrate the usefulness of our
bootstrap-based inference in several applications, including joint confidence interval construction for high-
dimensional spatial data and change-point detection for spatio-temporal data. Supplementary materials for
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1. Introduction

Spatial data analysis plays an important role in many fields, such
as atmospheric science, climate studies, ecology, hydrology and
seismology. There are many classic textbooks and monographs
devoted to modeling and inference of spatial data, see, for exam-
ple, Cressie (1993), Stein (1999), Moller and Waagepetersen
(2004), Gaetan and Guyan (2010), and Banerjee, Carlin, and
Gelfand (2015), among others. This article aims to advance high-
dimensional Gaussian approximation theory and bootstrap-
based methodology related to the analysis of multivariate (and
possibly high-dimensional) spatial data. Specifically, we assume
that our data are from a multivariate random field Y = {Y(s) :
s € RY with Y(s) = (Yi(s),...,Y,(s)), where d > 2 is
the dimension of the spatial domain and p > 2 stands for
the dimension of multivariate measurements at any location
se R4

With recent technological advances and remote sensing tech-
nology, multivariate spatial data are becoming more prevalent.
For example, levels of multiple air pollutants (e.g., ozone, PM; 5,
PM;, nitric oxide, carbon monoxide) are monitored at many
stations in many countries. To understand spatial distribu-
tions of carbon intake and emissions as well as their seasonal
and annual evolutions, the total-column carbon dioxide (CO2)
mole fractions (in units of parts per million) are measured
using remote sensing instruments, which produce estimates
of CO2 concentration, called profiles, at 20 different pressure
levels; see Nguyen, Cressie, and Braverman (2017). The latter
authors treated 20 measurements at different profiles as a 20-
dimensional vector and proposed a modified spatial random

effect model to capture spatial dependence and multivariate
dependence across profiles. For an early literature on the model-
ing and inference of multivariate spatial data, we refer to Gelfand
and Vounatsou (2003), Gelfand et al. (2004), and Gelfand and
Banerjee (2010).

Motivated by the increasing availability of multivariate spa-
tial data with increasing dimensions, we shall study a fun-
damental problem at the intersection of spatial statistics and
high-dimensional statistics: central limit theorem (CLT) for
the sample mean of high-dimensional spatial data observed
at irregularly spaced sampling sites. When the dimension p is
low and fixed, CLTs for weighted sums of spatial data have
been derived when the sampling sites lie on the d-dimensional
integer lattice, see Bulinskii and Zhurbenko (1976), Bolthausen
(1982), and Guyon and Richardson (1984). To accommodate
irregularly spaced sampling sites, which is the norm rather
than the exception in spatial statistics, Lahiri (2003a) intro-
duced a novel stochastic sampling design and derived CLTs
under both pure increasing domain and mixed increasing
domain settings. However, so far, all these results are restricted
to the case when the dimension p is fixed, and there seem
no CLT results that allow for the growing dimension in the
literature.

To address the high-dimensional CLT for spatial data, we
face the following challenges: (a) when the dimension p exceeds
the sample size n, even for iid data, it is usually not known
whether the distribution of normalized sample mean (or its
norm, such as the £*°-norm) converges to a fixed limit, unless
under very stringent assumptions; (b) spatial data have no
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natural ordering and sampling sites are often irregularly spaced.
In the low-dimensional setting, Lahiri (2003a) showed that
the asymptotic variance depends on the sampling density, and
the convergence rate for the sample mean depends on which
asymptotic regime we adopt (pure increasing-domain vs. mixed
increasing domain). To meet the first challenge, we shall build
on the celebrated high-dimensional Gaussian approximation
techniques that have undergone recent rapid development (see
a literature review below) and establish the asymptotic equiva-
lence between the distribution of the normalized sample mean
and that of its Gaussian counterpart in high dimensions. To
tackle the challenge from the irregular spatial spacing, we shall
adopt the stochastic sampling scheme of Lahiri (2003a), which
allows the sampling sites to have a nonuniform density across
the sampling region and enables the number of sampling sites
n to grow at a different rate compared with the volume of the
sampling region A%. This scheme accommodates both the pure
increasing domain case (lim,—, oo nk;d = k € (0,00)) and the
mixed increasing domain case (lim,_, o nk;d = 00). From a
theoretical viewpoint, this scheme covers all possible asymptotic
regimes since it is well-known that the sample mean is not
consistent under the infill asymptotics (Lahiri 1996). See Lahiri
(2003b), Lahiri and Zhu (2006), and Bandyopadhyay, Lahiri, and
Nordman (2015) for some detailed discussions on the stochastic
spatial sampling design.

Specifically, we establish a CLT for the sample mean of high-
dimensional spatial data over the rectangles when p = p, — oo
as n — 00 and possibly p > n under a weak dependence
condition, where the random field is observed at a finite number
of discrete locations si,...,s, in a sampling region R, whose
volume scales as A9, where A, — 00 as n — oo. To facilitate
statistical inference, we propose and develop the spatially depen-
dent wild bootstrap (SDWB, hereafter), which is an extension
of the dependent wild bootstrap of Shao (2010) to the spatial
setting, and justify its asymptotic validity in high dimensions.
Notably, we will show that the SDWB works for a wide class
of random fields on R? that includes multivariate Lévy-driven
moving average (MA) random fields (see Kurisu (2022) for a
detailed discussion of such random fields). Lévy-driven MA ran-
dom fields constitute a rich class of models for spatial data and
include both Gaussian and non-Gaussian random fields such as
continuous autoregressive moving-average (CARMA) random
fields (Brockwell and Matsuda 2017). To illustrate the usefulness
of our theory and SDWB, we describe several applications,
including (i) simultaneous inference for the mean vector of high-
dimensional spatial data; (ii) construction of confidence bands
for the mean function of spatio-temporal data, and (iii) multiple
change-point detection for spatio-temporal data. In particular,
we demonstrate in Appendix J that the change-point detection
methodology we develop on the basis of Gaussian approxima-
tion and SDWB can be applied to detect the mean change in time
for a spatio-temporal dataset. Our method differs from most
of the existing change-point detection approaches developed
for spatio-temporal data and high-dimensional data in terms
of applicability and underlying assumptions; see Remark C.1 in
Appendix C for a detailed comparison.

Contributions and Connections to the literature. To put our con-
tributions in perspective, we shall review two lines of research

that have inspired our work. The first line is related to Gaus-
sian approximation for both high-dimensional independent data
and high-dimensional time series. There is now a large and
still rapidly growing literature on high-dimensional CLTs over
the rectangles and related bootstrap theory when the dimen-
sion of the data is possibly much larger than the sample
size. For the sample mean of independent random vectors, we
refer to Chernozhukov, Chetverikov, and Kato (2013), Cher-
nozhukov et al. (2014), Chernozhukov, Chetverikov, and Kato
(2015), Chernozhukov, Chetverikov, and Kato (2016), Cher-
nozhukov, Chetverikov, and Kato (2017), Chernozhukov et al.
(2022), Deng and Zhang (2020), Kuchibhotla, Mukherjee, and
Banerjee (2021), Fang and Koike (2020), and Chernozhukov,
Chetverikov, and Koike (2020). For high-dimensional U-
statistics and U-processes, see Chen (2018) and Chen and
Kato (2019). In the time series setting, Zhang and Wu (2017)
developed Gaussian approximation for the maximum of the
sample mean of high-dimensional stationary time series with
equidistant observations under the physical dependence mea-
sures developed by Wu (2005). Based on a nonparametric
estimator for the long-run covariance matrix of the sample
mean, they used a simulation-based approach to construct-
ing simultaneous confidence intervals for the mean vector.
Zhang and Cheng (2018) also developed high-dimensional CLTs
for the maximum of the sample mean of high-dimensional
time series under the physical/functional dependence mea-
sures and used nonoverlapping block bootstrap to perform
inference. Chernozhukov, Chetverikov, and Kato (2019) stud-
ied high-dimensional CLTs for the maximum of the sum of
B-mixing and possibly nonstationary time series and showed
the asymptotic validity of a block multiplier bootstrap method.
Also see Chang, Yao, and Zhou (2017), Koike (2019), and
Yu and Chen (2021) among others for the use of Gaus-
sian approximation or variants in high-dimensional testing
problems.

To the best of our knowledge, our work is the first paper
that establishes a high-dimensional CLT for spatial data and
rigorously justifies the asymptotic validity of a bootstrap method
for high-dimensional data in the spatial setting. From a tech-
nical point of view, the present paper builds on Chernozhukov,
Chetverikov, and Kato (2017), Chernozhukov, Chetverikov, and
Kato (2019), Zhang and Wu (2017), and Zhang and Cheng
(2018), but our theoretical analysis differs substantially from
those references in several important aspects. Specifically, (i) we
establish a high-dimensional CLT and the asymptotic validity of
SDWB that hold almost surely conditionally on the stochastic
sampling sites. Precisely, we show that the conditional distri-
bution of the sample mean (or its SDWB counterpart) given
the sampling sites can be approximated by a (conditionally)
Gaussian distribution. The randomness of the sampling sites
yields additional technical complications in high dimensions;
see for example, Lemma D.2 in Appendix D. (ii) We extend
the coupling technique used in Yu (1994) for irregularly spa-
tial data to prove the high-dimensional CLT. This extension
is nontrivial since there is no natural ordering for spatial data
and the number of observations in each block constructed is
random. Our approach to the blocking construction is also
quite different from those in Lahiri (2003b) and Lahiri and
Zhu (2006) whose proofs essentially rely on approximating the



characteristic function of the weighted sample mean by that
of independent blocks; see also Remark 2.1. (iii) We explore
in detail concrete random fields that satisfy our weak depen-
dence condition and other regularity conditions. Indeed, we
show that our regularity conditions can be satisfied for a wide
class of multivariate Lévy-driven MA random fields that con-
stitute a rich class of models for spatial data (see Brockwell
and Matsuda 2017) but whose mixing properties have not
been investigated so far. Verification of our regularity condi-
tions to Lévy-driven MA fields is indeed nontrivial and relies
on several probabilistic techniques from Lévy process the-
ory and theory of infinitely divisible random measures (Sato
2006).

Our work also builds on the literature of bootstrap methods for
time series and spatial data. For both time series and spatial data,
the block-based bootstrap (BBB) has been fairly well studied
since the introduction of moving block bootstrap (MBB) by
Kiinsch (1989) and Liu and Singh (1992). Among many variants
of the MBB, we mention Carlstein (1986) for the nonoverlapping
block bootstrap, Politis and Romano (1992) for the circular
bootstrap, Politis and Romano (1994) for the stationary boot-
strap, and Paparoditis and Politis (2001, 2002) for the tapered
block bootstrap. See Lahiri (2003b) for a book-length treatment.
The BBB methods have been extended to spatial framework for
both regular lattice and irregularly spaced non-lattice data. See
for example, Politis and Romano (1993), Politis, Paparoditis, and
Romano (1999), Lahiri and Zhu (2006), and Zhu and Lahiri
(2007).

As we mentioned before, the proposed SDWB is an extension
of the dependent wild bootstrap in Shao (2010), which was
developed for time series data. The main difference between
SDWB and DWB is that the SDWB observations in R? are
generated by simulating an auxiliary random field with suitable
covariance function on R? to mimic the spatial dependence.
In contrast, the DWB in Shao (2010) aims to capture temporal
dependence when d = 1. Thus, the multipliers (or external
variables) in SDWB are spatially dependent, hence, the name
SDWB. As argued in Shao (2010), the DWB/SDWB is much
easier to implement for irregularly spaced data than BBB, as
the latter requires partitioning the sampling region into blocks
and can be less convenient to implement due to incomplete
blocks. The SDWB is also different from the block multiplier
bootstrap (BMB) proposed in Chernozhukov, Chetverikov, and
Kato (2019) since the multipliers of the BMB are iid Gaus-
sian random variables, while the multipliers of SDWB are
dependent Gaussian random variables generated from a station-
ary Gaussian random field on the irregular spaced sampling
sites.

Compared to other bootstrap methods and associated the-
ory developed for spatial data (Lahiri and Zhu 2006; Zhu and
Lahiri 2007), our bootstrap-based inference targets at a high-
dimensional parameter and our theoretical argument is sub-
stantially different. Inference for a high-dimensional param-
eter related to spatial data is expected to grow due to the
increasing need for the analysis of multivariate spatial data
and spatio-temporal data that takes into account the effect
of dimension and spatial dependence. We anticipate that the
SDWB will be useful to inference for other parameters of inter-
est, such as smooth function model, in the high-dimensional
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spatial setting, although the focus of this article is on the
mean.

The rest of the article is organized as follows. In Section 2,
we introduce the asymptotic framework for the sampling region,
stochastic design of sampling locations, and dependence struc-
ture of the random field. In Section 3, we introduce the spatially
dependent wild bootstrap and describe its implementation. In
Section 4, we present a high-dimensional CLT for the sample
mean of high-dimensional spatial data and derive the asymptotic
validity of SDWB. In Section 5, we investigate finite sample prop-
erties of the SDWB via numerical simulations. All the proofs,
some additional simulation results and a real data illustration
are included in the supplement. The supplement contains the
high-dimensional CLT under polynomial moment condition
(Appendix A), discussion on examples of random fields that sat-
isfy our regularity conditions (Appendix B), some applications
of SDWB for spatial and spatio-temporal data (Appendix C),
proofs of Theorems 4.1 and A.1, and Corollary 4.1 (Appendix
D), proof of Theorem 4.2 (Appendix E), proof of Proposition B.1
(Appendix F), proof of Proposition C.1 (Appendix G), technical
tools (Appendix H), additional simulation results (Appendix I),
and real data analysis (Appendix J).

1.1. Notation

For any vector x = (x1,...,%;)" € RY, let |x| = Z?:l |xj| and

x|l = ./ ;]:1 sz denote the £! and ¢2-norms of x, respectively.

For two vectors x = (x1,...,%)" and y = (y1,...,y5)" € RY,
the notation x < y means that x; < y;forallj = 1,...,q. For
any set A C R1, let |A| denote the Lebesgue measure of A, and
let [A]l denote the number of elements in A. For any positive
sequences day, b,, we write a, < b, if there is a constant C > 0
independent of n such thata,, < Cb, foralln,a, ~ b,ifa, < b,
and b, < au, and a, < b, ifa,/b, — 0asn — oo. For any
a,b € R,letaVv b = max{a,b} and a A b = min{a, b}. For
a € Rand b > 0, we use the shorthand notation [a & b] =
[a—b,a+b).Let [ X|ly, = inf {c > 0: E[exp(IX|/c) — 1] < 1}
denote the 1/;-Orlicz norm for a real-valued random variable X.

For random variables X and Y, we write X < Y if they have the
same distribution.

2. Settings

In this section, we discuss mathematical settings of our sampling
design and spatial dependence structure. We observe discrete
samples Y(s1),...,Y(s,) from a random field Y = {Y(s) :
s € RY with Y(s) = (Yi(s),..., Yp(s))’ € RP and are
interested in approximating the distribution of the sample mean
Y, =n 'YL, Y(s) whenp = p, — ooasn — oo and
possibly p > n. The samplingsites s, . .., s, € R are stochastic
and obtained by rescaling iid random vectors Zy,...,Z,; see
below for details. Let (2, 0, W), j = 1,2, 3 be probability
spaces on which the random field Y, a sequence of iid random
vectors {Z;};> with values in R, and an auxiliary real-valued
Gaussian random field W = {W(s) : s € R9} are defined,
respectively. The auxiliary Gaussian random field W will be used
in the construction of SDWB. Consider the product probability
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space (2, F, P) where Q = QD x QW x QO F = FU g
FD @ F® and P = PD x P@ x PO Then Y, {Zi}i>1,
and W are independent by construction. Let Pz denote the joint
distribution of the sequence of iid random vectors {Z;};>; and
let P.;z denote the conditional probability given o ({Z;};>1), the
o -field generated by {Z;};>1. Let Ez denote the expectation with
respect to {Z;};>1 and let E.|z and var.z7 denote the conditional
expectation and variance given o ({Z;};>1), respectively. Finally,
let P.yz and var,yz denote the conditional probability and
variance given o ({Y(s) : s € RY U {Zi}i>1), respectively.

2.1. Sampling Design

We follow the setting considered in Lahiri (2003a) and define
the sampling region Ry, as follows. Let Rj; be an open connected
subset of (—1/2,1/2]4 containing the origin and let Ry be a Borel
set satisfying Rj C Ro C Ez, where for any set A C RY,
A denotes its closure. Let {An}n=1 be a sequence of positive
numbers such that A, — o0 as n — 00. We consider the
following set as the sampling region. R, = X,R¢. To avoid
pathological cases, we also assume that for any sequence of
positive numbers {a,},>1 with a, — 0 as n — oo, the number
of cubes of the form a, (i + [0,1)%), i € Z¢ with their lower left
corner ayi on the lattice a,Z that intersect both Ry and Rj is
O(a,; 1) as n — oo.

Next we introduce our (stochastic) sampling designs. Let f be
a continuous, everywhere positive probability density function
on Ry, and let {Z;};>; be a sequence of iid random vectors
with density f. Recall that {Z;};~; and Y are independent from
the construction of the probability space (€2, F, P). We assume
that the sampling sites sy, . . ., s, are obtained from realizations
Z1,...,2y of the random vectors Z1,...,Z, and the relation
Si :Anzi, i= 1,...,11.

The boundary condition on the prototype set Ry holds in
many practical situations, including many convex subsets in R?
such as spheres, ellipsoids, polyhedrons, as well as many non-
convex sets in R¥. See also Lahiri (2003a) and Chapter 12 in
Lahiri (2003b) for more discussions.

2.2, Dependence Structure

In what follows, we assume that the random field Y can be
decomposed as

Y(s) = X(s) + Y(s), seRY (2.1)

where X = {X(s) : s € RY} with X(s) = (X1(9), ..., Xp(s))" is
a strictly stationary random field and ¥ = {Y(s) : s € RY)
with Y'(s) = (Y1(s),..., Tp(s)) is a “residual” random field
that is negligible in a certain sense. The decomposition (2.1)
may (and in general does) depend on #, that is, X = X
and Y = Y, but the dependence on 7 is suppressed for
notational convenience. Throughout the article, we assume that
E[Y(s)] = 0 for any s € R%. Then Y is approximately stationary
with constant mean.

We also assume that the random field X satisfies a certain
mixing condition. Let ox(T) = o ({X(s) : s € T}) denote the
o -field generated by {X(s) : s € T} for T C R4. For any subsets
Ty and T, of R, the B-mixing coefficient between ox(7T;) and

ox(Ty) is defined by (T}, Ty) = sup Z]f.zl K L IP(A;NBy) —
P(Aj)P(By)|/2, where the supremum is taken over all partitions
(A, C ox(Ty) and {Bi}f_, C ox(T2) of R. Let R(b)
denote the collection of all finite disjoint unions of cubes in R¥
with total volume not exceeding b. Then, we define 8(a; b) =
sup {B(Tl, T2) : d(T1, T2) = a,T1, T2 € R(b)}, a,b > 0, where
d(T1,T;) = inf{|x — y| : x € T1,y € T»}. We assume that there
exist a nonincreasing function 8; with lim,_, o, B1(a) = 0 and
a nondecreasing function g (that may be unbounded) such that

B(asb) < B1(a)g(b), a,b > 0. (2.2)

Our mixing condition (2.2) is a S-mixing version of the «-
mixing condition considered in Lahiri (2003a), Lahiri and Zhu
(2006), and Bandyopadhyay, Lahiri, and Nordman (2015). In
general, the function 8; may depend on n since the random
field X that appears in (2.1) depends on n. Here we assume
that ¢ does not depend on n for simplicity, but the extension
to the general case that ¢ changes with n is not difficult. The
random field Y itself may not satisfy the mixing condition (2.2),
since the mixing condition (2.2) is assumed on X. With the
decomposition (2.1), we allow Y to have a flexible dependence
structure since the residual random field Y can accommodate
a complex dependence structure. In particular, we will show in
Appendix B that a wide class of Lévy-driven MA random fields
admit the decomposition satistfying Condition (4.1).

Remark 2.1. Lahiri (2003b), Lahiri and Zhu (2006), and Bandy-
opadhyay, Lahiri, and Nordman (2015) assume the «-mixing
version of Condition (2.2) to prove limit theorems for spatial
data in the fixed dimensional case (i.e., p is fixed). Lahiri (2003b)
established CLTs for weighted sample means of spatial data
under an «-mixing condition in the univariate case. Lahiri’s
proof relies essentially on approximating the characteristic func-
tion of the weighted sample mean by that of independent blocks
using the Volkonskii-Rozanov inequality (see Proposition 2.6
in Fan and Yao 2003) and then showing that the characteristic
function corresponding to the independent blocks converges to
the characteristic function of its Gaussian limit. However, in the
high-dimensional case (p, — o0 as n — 00), characteristic
functions are difficult to capture the effect of dimensionality
in approximation theorems, so we rely on a different argument
than that of Lahiri (2003b). Indeed, we use a stronger blocking
argument tailored to S-mixing sequences; see Lemma 4.1 in
Yu (1994). It is not known that corresponding results hold for
a-mixing sequences; see Remark (ii) right after the proof of
Lemma 4.1 in Yu (1994). Hence, we assume Condition (2.2) in
the present article.

Remark 2.2. Tt is important to restrict the size of index sets
Ty and T, in the definition of B(a;b). Define the S-mixing
coefficient of a random field X similarly to the time series
as follows: Let O; and O, be half-planes with boundaries
Ly and L, respectively. For each a > 0, define f(a) =

sup [B(Ol, 0,) :d(O01,0,) > a}. According to Theorem 1 in
Bradley (1989), if {X(s) : s € R?} is strictly stationary, then
B(a) = 0or 1 fora > 0. This implies that if a random field
X is B-mixing (lim, o B(a) = 0), then it is automatically m-
dependent, that is, f(a) = 0 for some a > m, where m is



a positive constant. To allow for certain flexibility, we restrict
the size of T7 and T, in the definition of S(a;b). We refer to
Bradley (1993) and Doukhan (1994) for more details on mixing
coeflicients for random fields.

3. Spatially Dependent Wild Bootstrap

In this section, we introduce the spatially dependent wild
bootstrap (SDWB) method for the construction of joint
confidence intervals for the mean vector u = E[Y(s)] =
(1) Let Yy = n7 30 Y(s) = Yoo Ypu)
denote the sample mean. In Section 4.1, we will show thatas n —

00, SUp 4 4 |P.iz (,/Ag(?n — )€ A) —Pz(V, €A)

Pz-as., provided that p = O(n®) for some o > 0, where A is
the class of closed rectangles in RP. Here V, = (Vi 4, . . ., Vp,n)/
is a centered Gaussian random vector in R? under P.z with

— 0,

(conditional) covariance matrix ©V» = (Ejzcn)lfj,kfp =
E.z[V,V}], the form of which is specified later. This high-
dimensional CLT implies that a joint 100(1 — 7)% confidence
interval for the mean vector u with v € (0,1) isgivenby Ci_; =
Hl'):l ’C\j,l_f, where 6j,1_f = [7]-," + k;d/z EJZ"qn(l — t)],
and ¢g,(1 — 1) is the (1 -

Vi
Vin/\[ %
Pz (maxlgjgp ‘V]n/ /ij;"‘ < qn(1— r)) + o(1) =
1 — © + o(1) with Pz-probability one, so that 61_t is a
valid joint confidence interval for g with level approximately
1—r.
In practice, we have to estimate the quantile g,(1 — 1),

. Indeed, we have Pz ([L € /C\l_r) =

maXISjSP

in addition to the coordinatewise variances ZY.”. To this end,
we develop the spatially dependent wild bootstrap (SDWB), as
an extension of DWB proposed by Shao (2010) to the spatial
setting. Given the observations {Y (s;)}/_,, we define the SDWB
pseudo-observations as Y*(s;) = Y, + (Y(s;) — Y,)W(s)), i =
1,...,n, where {W(s;)}!_, are n discrete samples from a real-
valued stationary Gaussian random field W = {W(s)

s € RY such that E[W(s)] = 0, var(W(s)) = 1 and
cov(W(s1), W(s2)) = a(llsy — s11l/bn). Here a(-) : R — [0,1]
is a continuous kernel function supported in [—1,1] and b, is a
bandwidth such that b,, — oo asn — 0.

To estimate the covariance matrix V7, we _use the
classical lag-window type estimator defined as XV» =
o7 L=t (Y(se) = Ya) (Y(se) = Yo)'alllse, — sex /b0
Denote by /E\]Zc” the (j, k)th component of SV, Let 7: =
nmIYT YH(s) = (1_/?”, ... ,17;,,[)’. It is not difficult to see
that &V = 24 var.‘y,z(?Z). That is, the SDWB variance esti-
mator coincides with the lag window estimator provided that
the covariance function and bandwidth used in SDWB match
the kernel and bandwidth in the above expression.

Then we can estimate the quantile g,(1 — 7) by the
empirical quantile of SDWB sample means g,(1 — 1) =
b))

inf{tER:P.Y’Z <‘/Aﬁmax1§j5p §t> > 1—7,'].
)

We will show in Sections 4.2 and C.1 in Appendix C that the

e
Y —Yin
=,

7)-quantile  of

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION @ 5

plug-in joint confidence interval 61,, with ZJZ” and g,(1 — 1)

replaced by /2\]2;" and g,(1 — t) will have asymptotically correct
coverage probability under regularity conditions.

Remark 3.1 (Comparison with DWB and other bootstrap meth-
ods). Since the introduction of DWB for time series inference,
there have been quite a bit further extensions in the time series
literature. For example, its validity has been justified for degen-
erate U- and V-statistics by Leucht and Neumann (2013) and
Chwialkowski, Sejdinovic, and Gretton (2014), and for empirical
processes by Doukhan et al. (2015). It has also been used in sev-
eral testing problems to cope with weak temporal dependence;
see Bucchiaa and Wendler (2017), Rho and Shao (2019), and Hill
and Motegi (2020) among others. Although conceptually simple,
the theory associated with SDWB is considerably more involved
than DWB and our proof techniques are substantially different
from the above-mentioned papers due to our focus on its validity
in the high-dimensional setting.

Recently, Hounyo (2022) introduced a novel wild bootstrap
for dependent data (WBDD), which can be viewed as an exten-
sion of DWB in the time series setting. The WBDD is a kind
of DWB but does not require the sequence of external variables
to be stationary, and with suitable choice of the distribution
of external variables, it can be shown to possess the second-
order correctness property for stationary time series. However,
the formulation of WBDD is limited to regularly spaced time
series and hinges on a pre-blocking processing of the data, and
there is not yet any extension to irregularly spaced time series
or spatial data. We expect that such an extension is possible in
view of grid-based block bootstrap of Lahiri and Zhu (2006) for
irregularly spaced spatial data, but nevertheless some nontrivial
implementation issues, such as the partition of the sampling
region into complete and incomplete blocks, will come up. By
contrast, the implementation of SDWB is agnostic to the spatial
configuration and only requires the knowledge of pairwise dis-
tance between sampling sites, for a given kernel and bandwidth.
As in the time series case, we do not expect the second order
accuracy for SDWB to hold in general.

In the literature of bootstrapping time series, Jentsch and
Politis (2015) showed the asymptotic validity of a multivariate
version of the linear process bootstrap (McMurry and Politis
2010) for inference about the mean when the dimension of a
time series is allowed to increase with the sample size. However,
the growth rate of p has to be slower than that of the sample size.
Since our method is mainly for spatial data, which does not have
natural ordering, and our theory allows p >> n, the applicability
of linear process bootstrap and ours are fairly different, and a
direct comparison seems unwarranted.

For spatial square-shaped data sample, Meyer, Jentsch, and
Kreiss (2017) extended the autoregressive (AR) sieve bootstrap
from time series to spatial process in Z? by fitting AR models of
increasing order to the given data, resampling of the residuals,
and generating bootstrap replicates of the sample. They showed
the validity of AR sieve bootstrap for an interesting class of
statistics including sample autocorrelations and standardized
sample variograms. As an important theoretical contribution,
they obtained a weighted Baxter-inequality for spatial processes,
which yields a rate of convergence for the finite predictor coef-
ficients, that is, the coeflicients of finite-order AR model fits,
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toward the autoregressive coeflicients. Also see Jentsch and
Meyer (2021) for related results on Akaike identity (Akaike
1969) for spatial lattice data. The applicability of spatial AR sieve
bootstrap (SARB, hereafter) and SDWB are quite different. On
one hand, our method is applicable to irregularly spaced spatial
data, whereas SARB is only developed for spatial lattice data and
an extension to allow irregular spacing seems highly nontrivial.
On the other hand, the theoretical justification of SDWB is on
the mean here, whereas the class of statistic to which SARB
applies is broader. In both Meyer, Jentsch, and Kreiss (2017) and
Jentsch and Meyer (2021), their focus was on univariate spatial
process, whereas we mainly target multivariate spatial process
with the dimension p being moderate or large.

4. Main Results

In this section, we first derive a high-dimensional CLT for the
sample mean over the rectangles in Section 4.1. Building on the
high-dimensional CLT, we establish the asymptotic validity of
the SDWB over the rectangles in high dimensions in Section 4.2.
In what follows, we maintain the baseline assumption discussed
in Section 2.

4.1. High-Dimensional CLT

To state the high-dimensional CLT, we shall consider the two
cases separately: (i) the coordinates of X are sub-exponential
and (ii) have finite polynomial moments. The results for the
second case are provided in Appendix A due to the page limit.
Some applications of our main results are also discussed in
Appendix C.

We make the following assumption.

Assumption 4.1. Suppose that p = O(n*) for some @ > 0. Let
{An}n>1 and {A2,}n>1 be two sequences of positive numbers
such that A1, A2y = 00, Aoy = 0(A1,), and A1, = 0(Ay).

(i) Therandom field X has zero mean, that is, E[X(s)] = 0 and
the residual random field Y satisfies that for some ¢ > 0,

1 n
P,z | max Z Yj(si)| > n*¢ log~ % p
=) p2ad i
N
=0 %) with Pz-a.s. (4.1)

There exist two sequences of positive constants {Dy,},>1
with D, > 1 and {8, }n>1 with 8, v — 0 such that

max [|Xj(s)lly, <Dn  and

1<j<p

Ez [max max ’Tj(si)|q] <y “42)

1<i<n1<j<p

with Pz-a.s. for some g € [8, 00).

(ii) The probability density function f is continuous, every-
where positive with support Ry.

(iii) We have lim, o nA;% = k& € (0,00] with A, > n¥ for
some i > 0.

(iv) There exists a constant 0 < ¢ < 1/2 such that

1 logn /E A2,
, D, (id + 1) q_")
\/)\12,11 n)\.; )\l,n

i 4 D6k3d
(R724,,D% + 2,D,) 2 2, =28 b e = 0(1)
s > ZA,;d

max

n’*2,n"n
n

asn — oo,whereEq = Eq(n) = H—Z;l:"l kd’lﬂll_z/q(k).

Further, there exists a constant 0 < ¢’ < ¢ such that

A0 50 = O(1). (4.3)

(v) We have lim,_ Azkig B (Az,n;k‘ni) = 0, and there exist
some constants 0 < ¢ < C < oo such that

Ej,j(o) <C, /;gd Ej,j(s)ds > ¢ and

/Rd |Zjj(s)ds < C foralll <j<p, (4.4)

where X (s) = (Zjk(s))1<jk<p = cov(X(s), X(0)).

A discussion about the above assumptions is warranted. The
sequences {A1 ,} and {12, } will be used in the large-block-small-
block argument, which is commonly used in proving CLTs for
sums of mixing random variables; see Lahiri (2003b). Specifi-
cally, 11, corresponds to the side length of large blocks, while
Aa2,n corresponds to the side length of small blocks. The first
part of Condition (4.2) requires the coordinates of X(s) to be
(uniformly) sub-exponential, while the second part of Condi-
tion (4.2) partially ensures the asymptotic negligibility of the
residual random field, along with the condition (4.1). Condition
(ii) is concerned with the distribution of irregularly spaced sam-
pling sites and allows a nonuniform density across the sampling
region. Condition (iii) implies that our sampling design allows
the pure increasing domain case (lim,—, nA;d =k € (0,00))
and the mixed increasing domain case (lim,_ oo 1A, % = 00).
Condition (4.3) is used to guarantee the asymptotic negligibility
of Y(s) for the asymptotic validity of the SDWB. For random
fields to be discussed in Appendix B, §,, v decays exponentially
fast as n — 00, so that Condition (4.3) is satisfied. Condition
(v) is a technical condition on the covariance function of X.
Condition (4.4) is used to guarantee that the (conditional) coor-

dinatewise variances of the normalized sample mean \/)Tz)_( n are
bounded away from zero almost surely.

Let us briefly compare our conditions with Condition (S.5)
in Lahiri (2003a), who established CLTs for weighted sums of
spatial data in the univariate case (i.e., p = 1). Condition
(iv) corresponds to Lahiri’s Condition (S.5) Part (i), and the
condition lim,_, o )»ﬁ)\l_)z Bons A‘i) = 0 corresponds to the 8-
mixing version of Lahiri’s Condition (S.5) Part (iii). In particular,
—d/2

,/Eqkz,nkf’; = O °) and A‘f)nDn/)\n = O(n™°) imply

Lahiri’s Condition (S.5) Part (i). Although our conditions are
slightly more restrictive than his, they enable us to obtain error
bounds for the high-dimensional CLT for the sum of large blocks
of high-dimensional spatial data with the dimension growing
polynomially fast in the sample size.



We are ready to state the main results. Let A = {]_[f:1 laj, bj] :
—00 < aj < bj < 00,1 <j < p} denote the collection of closed
rectangles in R?. For £ = (£1,...,€y) € 74, we let T,,(£;0) =
L+ (0, 1]‘1))\3,,, with A3, = A1,4+A2.4, and define the following
hypercubes, I';,(¢;1) = n;l:l(zj)\.’j)n,ﬁj)\g)n + A1,4]. Intuitively,
' (4;0) is a complete block of indices in R that contains a large
block I';,(¢;1) and many small blocks I',(4;0) \ I',(¢4;1). Let

={t € 29 : T,(4,0) N R, # ¥} denote the index set of
all hypercubes I',(£, 0) that are contained in or intersects with
the boundary of R,. Define S,(4;1) = Zi:siern(e;l)m” X(s;). If
[{i:s; e T,,(€;1) NR,}] = 0, weset S, (£;1) = 0.

Theorem 4.1 (High-dimensional CLT). Under Assumption 4.1,
the following result holds Pz-almost surely:

Pz<\/>Y EA)—P.|Z(V,1 EA)’

d J
sc(;“) mmﬁx$+om‘ﬁ“%,
1,n

sup
AeA

(4.5)

where C is a positive constant that does not depend on n,
and V, = (Vig...,Vps) is a centered Gaussian random
vector under P.;z with (conditional) covariance E.;z [Vn V’n] =

1 Teer, Bz [Sa6 D16 1),

The proof of Theorem 4.1 relies on an extension of the
coupling technique in Yu (1994) to irregularly spatial data. The
proof proceeds by first approximating the sample mean by the
sum of independent large blocks and then showing the high-
dimensional CLT for the sum of independent large blocks. The
terms S, (€; 1) that appear in the representation of E.|z[V, V]
is the (conditional) covariance matrix of independent couplings

for the large blocks. The first term (An /Al,n)d ﬂ()xzyn;)LZ) in
the error bound (4.5) comes from the blocking argument and
reflects a bound on the contribution from small blocks, while
the second term corresponds to the error bound of the high-
dimensional CLT for the sum of independent large blocks.

The covariance matrix of the (conditionally) Gaussian vector
V, depends on the block construction. While the result of
Theorem 4.1 is sufficient to establish the asymptotic validity of
the SDWB, it is possible to replace the approximating Gaussian
vector by that with covariance matrix independent of the block
construction, as shown in the following corollary.
Corollary 4.1. If, in addition to Assumptlon 4.1, (i) (nr,, dy-1 =
k7! + o((logn)™?), where k! = 0if k = oo (11)
the density function f is Lipschitz continuous inside Rp;
and (i) | |Zjj(s)lds = O(n=c/%) uniformly over

Isll =22,
< j < p, then we have with Pz-probability one,

supAeA‘Pw(fY eA) (VneA>

V, is a centered Gaussian random vector with covariance
v v/
E[V, V] = ( Jra Zik@dx [ f2@)dz + i Ej,k(o))1

= o(1), where

<Gk<p’

Corollary 4.1 is a high-dimensional extension of Theorem 3.1
in Lahiri (2003a) when w,,(s) = 1 in his notation. If there is no
residual random field Y, that is, Y = X then each component

of the covariance matrix E[V,, f/;] in Corollary 4.1 corresponds
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to lim,_s o )»f, cov(}_’j,n, Yin), 1 < jk < p. The conclusion
of Corollary 4.1 follows from Theorem 4.1 combined with the
Gaussian comparison inequality. Indeed, under the assumption
of Corollary 4.1, we will show that max;<jk<p [E.1z[Vjn Viul —
E[\V/},n\v/k,nﬂ = o((log n)~2) with Pz-probability one, which
implies the conclusion of Corollary 4.1 via the Gaussian com-
parison.

4.2. Asymptotic Validity of the SDWB

In this section, we establish the asymptotic validity of SDWB in
high dimensions. Recall that, given the observations {Y (s;)}}_,
the SDWB pseudo-observations are given by Y*(s;) = Y, +
(Y(s)) =Y, )W(s),i=1,...,n where {W(s))}L, are n discrete
samples from a real-valued stationary Gaussian random field
W = {W(s) :s € RY) independent of Y and {Z;};>;. We make
the following assumption on W.

Assumption 4.2. The random field W is a stationary Gaus-
sian random field with mean zero and covariance function
cov(W(s1), W(s2)) = a(llsz — s1ll/bs), where a(-) : R — [0,1]
is a continuous kernel function and b, is a bandwidth parameter.
The kernel function satisfies that a(0) = 1 and a(x) = 0 for
|x| > 1. There exist positive constants cy and Ly such that
|1 — a(x)] < Lwlx| for |x| < cw. Further, withi = +/—1,
Ka(x) = [p a(we ™ du > 0 forallx € R.

The condition on K, guarantees the positive semi-
definiteness of the covariance matrix of {W(s;)}L,.
Assumption 4.2 is satisfied by many commonly used kernel
functions in the literature of spectral density estimation, in
particular, Bartlett and Parzen kernels. See Andrews (1991) for
details.

Remark 4.1 (Comments on the auxiliary random field W). The
covariance function of the Gaussian random field W defined in
Assumption 4.2 implies that the random field W is isotropic. We
assume this condition for technical convenience, and it is not
difficult to see from the proof that the conclusion of the following
theorem holds for the following class of (possibly) non-isotropic
covariance functions. Consider a function & : RY — [0, 1] with
a(0) = 1, a(x) = 0 for ||x|| > 1, and assume that there exist
positive constants ¢y and Ly such that |1 — a(x)| < Ly | x| for
x|l < cw. Further, assume that the function a : R x R? —
[0, 1] defined by a(x1,x2) = a(x; — x7) is positive semidefinite.
For example, these conditions are satisfied for product kernels of
the form a(x) = ]_[]‘-i:1 aj(\/;l |xj|) where a; are one-dimensional
kernel functions that satisfy Assumption 4.2. In addition, the
Gaussian random field assumption can also be relaxed but at the
expense of additional technical complications; see Example 4.1
of Shao (2010) for an example of non-Gaussian distribution for
external random variables {W (s;)}1,

Theorem 4.2 (Asymptotic validity of SDWB in high dimensions).
Suppose that Assumptions 4.1 (or A.1 in Appendix A) and 4.2
hold with b, ~ X, . In addition, assume that

Zn (log n) Adk d

n=1

max (4.6)

" 1<jk<p /|s\|>4/,\2"

Zik(s)lds < oo.
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Then the following result holds Pz-almost surely: with P.;z-
probability at least 1 — O(n‘(%“)) — COu/A1n) B 1),
Pyz (‘/xg(?: ~Y,) € A) ~Piz(V, € A)‘ =

O(n’c// 6) where C is a positive constant that does not depend
on n and p.

SUPscA

From the definition of Y,, /Ad(Y, — ¥Y,) can

be decomposed into the sum of three terms: n_lki/ z

(X WX (si) — 2oty W)Y + 21y W)Y (s)).-

The proof of Theorem 4.2 proceeds with (i) showing asymp-
totic negligibility of second and third terms and (ii) approxi-
mating the first term by V. Let E.|x z denote the conditional
expectation given o ({X(s) s € Ry U {Z;}i=1) and let
U, = 7: -Y, = (Uins---»Upn)'. We can show that
Ejz [max)<ik<p |ME x,2LUjnUkn] = E1zlVjn Vial|]] = o(1)
with Pz-probability one using the results in the proof of The-
orem 4.2. This implies the consistency of SDWB for variance
estimation in the high-dimensional setting.

Remark 4.2 (Comparisons with block-based subsampling and
resampling methods). There have been substantial efforts in
extending subsampling (Politis, Romano, and Wolf 1999b) and
block-based bootstrap (BBB) methods (Lahiri 2003b) from
time series (i.e, d = 1) to random fields (ie, d > 2).
For example, Politis, Paparoditis, and Romano (1998) pro-
posed a subsampling method for irregularly spaced spatial data
generated by a homogeneous Poisson process. Politis, Papar-
oditis, and Romano (1999) proposed a version of the spa-
tial block bootstrap under the same framework. Lahiri and
Zhu (2006) developed a grid-based block bootstrap for irreg-
ularly spaced spatial data with nonuniform stochastic sam-
pling designs. While subsampling and BBB methods are able
to capture spatial dependence nonparametrically, their imple-
mentation can be inconvenient when applied to irregularly
spaced spatial data, as both require partitioning the sampling
region into complete and incomplete blocks, and the imple-
mentation details can be highly dependent on spatial config-
uration of sampling region. By contrast, the implementation
of SDWB only requires the generation of an auxiliary random
field W(-) and irregularity of sampling sites brings no additional
difficulty.

On the theory front, Shao (2010) showed that DWB and
BBB (especially TBB) are often comparable in terms of theoret-
ical properties in the time series setting with a proper choice
of kernel function and bandwidth, but all theoretical results
developed so far for BBB seem exclusively for low-dimensional
time series/random fields. In particular, the analysis of Shao
(2010) is focused on the case where the dimension p is fixed
and relies on the explicit limit distribution of the normalized
sample mean, while in the high-dimensional case, there are no
explicit limit distributions, and the asymptotic analysis of the
SDWB is substantially more involved than that of Shao (2010).
Overall, the technical assumptions and probabilistic tools we use
are considerably different due to our focus on high-dimensional
Gaussian approximation for random fields. To the best of our
knowledge, our work is the first attempt in the literature to show

the validity of a bootstrap method for high-dimensional spatial
data.

5. Simulation Results

In this section, we present some simulation results to evalu-
ate the finite sample properties of the SDWB in constructing
simultaneous confidence intervals for the mean vector of high-
dimensional spatial data. Let the sampling region be R, =
An(=1/2,1/2]> € R? with A,, € {15, 25}. We consider four data
generating processes (DGPs).

The first DGP (DGP1) is the compound Poisson-driven
CAR(1) (CP-CAR(1))-type random field Y(s) = Y 2, g(lls —
xi||)J;, where x; denotes the location of the ith unit point mass
of a Poisson random measure on R? with intensity A = 1
and {J;}i>1 is a sequence of iid random variables in R?. In our
simulation study, we set g(||x|]) = e_3”"”Ip and J; ~ N(0,1,),
where I, denotes the p x p identity matrix. To simulate CP-
CAR(1) random field, we follow the algorithm described in
Brockwell and Matsuda (2017):

(i) Take R}, to be a sufficiently large set containing R,,. In this
simulation study, we take R}, = 35 - (—1/2,1/2]*.

(i) Simulate a Poisson random variable n(R),) with mean A|R),|
and set it as the number of knots contained in R),.

(iii) Simulate n(R)) independent and uniformly distributed
points x1, ..., X&) in R},

(iv) Compute the truncated version of CP-CAR(1): Y(s) =

R/
YD (s — %)

The second DGP (DGP2) is a p-variate Gaussian
random field with mean zero and independent components,
each of which admits thleiv Matérn covariance function
cov(Y;(9),Y;(0) = 5 (V2vllsl/a)’ K (V2vlisl/a),
v > 0,a > 0,1 <j < p, where I'() is the gamma function. In
our simulation study, we set v = 3/2 and a = 1/4/3.

The third DGP (DPG3) is the following factor model: Y (s;) =
AF(si)) + R(si),i = 1,...,n, where A is a p x 5 matrix, F(s) is
a 5-variate mean zero Gaussian random field with independent
components that have the Matérn covariance function with v =
3/2,a =1/ /3, and R(s;) are p-variate iid standard Gaussian
random vectors. For each combination of (1, p, 1, b,), we gen-
erate all the p x 5 elements of A independently from the uniform
distribution on the interval [—1, 1] and fix it for all Monte Carlo
replications. Compared with DGP2, the Gaussian random field
Y from DGP3 adds strong componentwise dependence through
a factor model structure.

The fourth DGP (DGP4) is a p-variate non-Gaussian ran-
dom field with independent components such that Y(s) =
(le $),..., Yg (s))’, where Yj(s) admits the Matérn covariance

function with v = 3/2anda = 1 /\/5. In this case, we have
E[sz(s)] =var(Y1(0) = 1,j=1,...,p.

In our simulation, we compare the finite sample
properties of the SDWB with that of the grid-based block
bootstrap (GBBB) proposed in Lahiri and Zhu (2006). Let

o Yy, .. ,?*’BB)’ be the GBBB version of the sample

— pan
mean Y, (see Section 5.1.3 of Lahiri and Zhu (2006) for
details). A GBBB joint 100(1 — 7)% confidence interval for
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Figure 1. Coverage probabilities of SDWB and GBBB joint 95% confidence intervals for DGP1 (first row), DGP2 (second row), DGP3 (third row), and DGP4 (fourth row) with
n = 100 and p = 10 under uniform (left-panel) and Gaussian (right-panel) sampling design.
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Figure 2. Coverage probabilities of SDWB and GBBB joint 95% confidence intervals for DGP1 (first row), DGP2 (second row), DGP3 (third row), DGP4 (fourth row) with
n = 100 and p = 100 under uniform (left-panel) and Gaussian (right-panel) sampling design.



the mean vector g with © € (0,1) can be given by ’C\ﬁBr) =

-, Eﬁﬁ)t, where Ejfff’i’r = [1_/]-,,, +2,Y 41— r)], and
%BB)(I — 1) is a quantile function defined as 32 (1 — 1) =
inf {t eR:Pyz (,/kﬁ maxj <j<p 7;?;?3 - ?j,n =< t) >1- ‘c}.

To compute the critical values g,(1 — ) and %BB)(I — T), we

generate 1500 bootstrap samples for each run of the simulations.
The number of Monte Carlo iterations is 1000.

We consider two types of sampling designs: uniform distribu-
tion over Ry and a normal distribution N((—1/4, —1/4)’,5/41,),
truncated outside Ry. We set p € {10,100} and n € {100,250}
(results for n = 250 are shown in the supplement). We use
the Bartlett kernel for the covariance function of the Gaussian
random field {W(s) s € R?} and examine the coverage
accuracy for the bandwidth b, € {1,...,10}. Here b, denotes
the side length of the resampled blocks for GBBB and also the
bandwidth parameter in SDWB. Figures 1 and 2 show coverage
probabilities of SDWB and GBBB joint 95% confidence intervals
for DGP1 (first row), DGP2 (second row), DGP3 (third row),
and DGP4 (fourth row) with n = 100 and p € {10,100}
under uniform (left-panel) and Gaussian (right-panel) sampling
design. We also performed simulations for p = 400, but the
results were not much different from those for p € {10, 100}.

A few remarks are in order. (a), Comparing the cases 1, = 15
and A, = 25 for both SDWB and GBBB, we observe that the
larger A, generally corresponds to more accurate coverages for
the same combination of (n, p, b,). This can be explained by the

fact that the convergence rate of the sample mean is )Lz/ 2 and Ad
plays the role of effective sample size here. (b), for all settings,
there is a broad range of b,s that yield empirical coverage levels
that are closest to the nominal one for SDWB. This suggests
that in practice it is not necessary to find the optimal b,, that
corresponds to the optimal coverage, but instead we only need
to locate the range of b, for which the coverage accuracy is
almost optimal. By contrast, the performance of GBBB is more
sensitive to b,. When b,, is large, there is serious under-coverage,
and thus the optimal block size selection becomes more critical
for GBBB. (c), SDWB works for both low-dimensional (i.e.,
p = 10) and high-dimensional cases (i.e., p = 100), and seems
to be robust to strong componentwise dependence and non-
Gaussianness in view of results for DGP2, DGP3, and DGP4. (d)
When we change the sampling design from uniform to truncated
Gaussian, the performance for GBBB gets noticeably worse,
but SDWB is less affected. (e) A direct comparison between
SDWB and GBBB shows that the coverage for SDWB is closer
to the nominal level than that for GBBB almost uniformly. In
addition, the implementation of SDWB is much less involved
than that of GBBB. Overall, the results are very encouraging
as they demonstrate the advantage of SDWB over GBBB, the
applicability of SDWB to low, medium and high-dimensional
spatial data, and the robustness with respect to componentwise
dependence, non-Gaussianness and sampling designs.

6. Conclusion

In this article, we have advanced Gaussian approximation to
high-dimensional spatial data observed at irregularly spaced
sampling sites and proposed the spatially dependent wild
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bootstrap (SDWB) to allow feasible inference. We provide a
rigorous theory for Gaussian approximation and bootstrap con-
sistency under the stochastic sampling design in Lahiri (2003a),
which includes both pure increasing domain and mixed increas-
ing domain asymptotic frameworks. SDWB is shown to be valid
for a wide class of random fields that includes Lévy-driven MA
random fields and the popular Gaussian random field as special
cases. We demonstrate the usefulness of SDWB by constructing
joint confidence intervals of the mean of random field over time,
and performing change-point testing/estimation in the mean of
spatio-temporal data. The validity of our Gaussian approxima-
tion and associated bootstrap theory hinges on the approximate
spatial stationarity, suitable mixing and moment assumptions.
Both irregularly temporal spacing and temporal nonstationarity
can be accommodated in the application to inference for spatio-
temporal data.

To conclude, we shall mention several important future
research topics. First, an obvious one is to come up with a good
data driven formula for the bandwidth parameter b,, which
plays an important role in the approximation accuracy of SDWB.
For Gaussian approximation of time series and subsequent infer-
ence, a bandwidth parameter is often necessary; see Zhang and
Wu (2017), Zhang and Cheng (2018), Chang, Yao, and Zhou
(2017), among others, and it seems difficult to extend their data-
driven formula (see e.g., Chang, Yao, and Zhou 2017) to the
spatial setting. One way out is to adopt the minimal volatility
approach, as advocated by Politis, Romano, and Wolf (1999b)
for subsampling and block bootstrap of low-dimensional time
series, and it remains to see whether it works in our setting.
Second, the inference problem we study is limited to the mean of
random field since our Gaussian approximation result is stated
for the mean of p-dimensional spatial data. We are hopeful that
our theory can be extended to cover inference for the parameter
related to second order properties of a random field, such as
variogram at a particular lag, given the recent work by Chang,
Yao, and Zhou (2017) on testing white noise hypothesis for high-
dimensional time series. Also the extension to the inference of
the possibly high-dimensional parameter in spatial regression
models is worth pursuing. See Zhu and Lahiri (2007). The
stochastic sampling design in this article is inspired by that
of Lahiri (2003a). However, one may consider other sampling
designs based on point processes as considered in Garner and
Politis (2013). We believe that establishing high-dimensional
CLTs under different sampling design requires additional sub-
stantial works. We leave these topics for future investigation.

Supplementary Materials

The supplement contains the high-dimensional CLT under polynomial
moment condition (Appendix A), discussion on examples of random fields
that satisfy our regularity conditions (Appendix B), some applications of
SDWB for spatial and spatio-temporal data (Appendix C), proofs of Theo-
rems 4.1 and A.1, and Corollary 4.1 (Appendix D), proof of Theorem 4.2
(Appendix E), proof of Proposition B.1 (Appendix F), proof of Proposi-
tion C.1 (Appendix G), technical tools (Appendix H), additional simulation
results (Appendix I), and real data analysis (Appendix J).
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