PNAS Nexus, 2023, 2, 1-14

https://doi.org/10.1093/pnasnexus/pgad245
Advance access publication 31 July 2023

Research Report

> PNAS

v NEeXuUs

Kinesin and myosin motors compete to drive rich
multiphase dynamics in programmable cytoskeletal
composites

2, Christopher J. Currie?, Jonathan Michel®, Mehrzad Sasanpour?, Christopher Gunter®, K. Alice Lindsay?,
©, Moumita Das(®P, Jennifer L. Ross {2 and Rae M. Robertson-Anderson (£*

Ryan J. McGorty
Michael J. Rust®, Parag Katira

#Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA
PSchool of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623, USA
“Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
dDepartment of Physics, Syracuse University, Syracuse, NY 13244, USA

“Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
*To whom correspondence should be addressed: Email: randerson@sandiego.edu

Edited By: Pradeep Sharma

Abstract

The cellular cytoskeleton relies on diverse populations of motors, filaments, and binding proteins acting in concert to enable
nonequilibrium processes ranging from mitosis to chemotaxis. The cytoskeleton’s versatile reconfigurability, programmed by
interactions between its constituents, makes it a foundational active matter platform. However, current active matter endeavors are
limited largely to single force-generating components acting on a single substrate—far from the composite cytoskeleton in cells. Here,
we engineer actin-microtubule (MT) composites, driven by kinesin and myosin motors and tuned by crosslinkers, to ballistically
restructure and flow with speeds that span three orders of magnitude depending on the composite formulation and time relative to
the onset of motor activity. Differential dynamic microscopy analyses reveal that kinesin and myosin compete to delay the onset of
acceleration and suppress discrete restructuring events, while passive crosslinking of either actin or MTs has an opposite effect. Our
minimal advection-diffusion model and spatial correlation analyses correlate these dynamics to structure, with motor antagonism
suppressing reconfiguration and demixing, while crosslinking enhances clustering. Despite the rich formulation space and emergent
formulation-dependent structures, the nonequilibrium dynamics across all composites and timescales can be organized into three
classes—slow isotropic reorientation, fast directional flow, and multimode restructuring. Moreover, our mathematical model
demonstrates that diverse structural motifs can arise simply from the interplay between motor-driven advection and frictional drag.
These general features of our platform facilitate applicability to other active matter systems and shed light on diverse ways that
cytoskeletal components can cooperate or compete to enable wide-ranging cellular processes.
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Significance Statement

The cytoskeleton is a paradigmatic active matter system—comprising protein filaments, motors, and crosslinkers—that mediates
wide-ranging cellular processes from migration to morphogenesis. The cytoskeleton’s composite nature, conferring versatility and
programmability, is one of its hallmarks. Yet, state-of-the-art active matter designs are largely limited to single force-generating com-
ponents and substrates. Here, we engineer composites of MTs and actin driven by kinesin and myosin motors to restructure, contract,
and flow to form structures ranging from interpenetrating scaffolds to phase-separated clusters. Surprisingly, kinesin and myosin
compete to delay rapid restructuring and suppress demixing. Our bioinspired nonequilibrium composites not only bring reconstituted
systems a critical step closer to mimicking cytoskeletal complexity but are also foundational for diverse material applications from
wound healing to soft robotics.

Introduction filaments as needed for cellular processes (9-12). This complex

The cytoskeleton is a dynamic, nonequilibrium material compris-
ing protein filaments, including actin, microtubules (MTs), and
intermediate filaments, as well as motor proteins, such as myo-
sins and kinesins, that actively push and pull on the protein fila-
ments (1-8). Crosslinking proteins also connect and bundle

composite continuously restructures and reconfigures in re-
sponse to demands of the cell to enable diverse processes from
cytokinesis to mechanosensing (3-5, 7, 8, 13-21). In vitro systems
of reconstituted cytoskeletal proteins, which display rich and tun-
able dynamics, are also intensely studied as model active matter
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platforms to shed light on the nonequilibrium physics underlying
force-generating, reconfigurable systems (7, 12, 19, 22-40).

Interacting networks of semiflexible actin filaments and rigid
MTs provide tensile and compressive strength to the cytoskel-
eton while allowing for cell mobility, key to processes such as
division and chemotaxis (15, 16, 41-45). Further, recent studies
have shown that in vitro actin-MT composites exhibit emergent
mechanical properties that are not a simple sum of the single
component systems (46-48). For example, composites with
comparable concentrations of actin and MTs display both en-
hanced filament mobility and increased stiffness (46), as well
as an emergent nonmonotonic dependence of elasticity on actin
crosslinking (47).

More recently, myosin II minifilaments have been incorpo-
rated into actin-MT composites, showing that synergistic in-
teractions between actin and MTs prevent disordered flow
and rupturing often seen in actomyosin networks without
crosslinkers (26-28). These studies have also shown that com-
posites can be tuned to display enhanced mechanical strength
(27), coordinated motion of actin and MTs, sustained ballistic
contraction, and mesoscale restructuring (26, 28)—all in the
absence of crosslinking proteins to chemically connect the
filaments.

Microtubule-based active matter systems have also been engi-
neered using clusters of kinesin motors that crosslink and pull on
microtubule bundles to create active nematics (23, 24, 30, 31, 34,
35, 49-55). In these systems, kinesins generate long-lasting turbu-
lent flows by cyclically extending, buckling, fracturing, and heal-
ing bundles (49). More recently, actin has been incorporated into
active microtubule fluids, resulting in turbulent flow, contraction,
or formation of layered asters (29).

The distinct dynamics and structures that kinesin-driven and
myosin-driven systems display beg the question as to how differ-
ent active components and substrates cooperate or compete to
control cellular processes. While composite active matter is
beginning to be developed to introduce more control and tunabil-
ity over single-substrate systems (26-29, 56), incorporating two
active components that act on distinct substrates represents a
paradigm shift in active matter. Beyond the cellular relevance,
such designs can elucidate general principles for nonequilibrium
programmable materials that can reconfigure and generate force
and determine how to enhance programmability and expand
the dynamical and structural phase space by altering the active
and static nature of crosslinkers and the substrates on which
they act.

Here, we engineer actin-MT composites that undergo a rich
combination of advective flow, contraction, and multimode re-
structuring driven by kinesin and myosin motors. These dynamics
are coupled to distinct time-evolving structures that range from
interpenetrating actin-MT scaffolds to microscale phase-
separated amorphous clusters. We couple differential dynamic
microscopy (DDM) with particle image velocimetry (PIV) to dis-
cover that competition between kinesin-MT activity and acto-
myosin activity delays the onset of rapid restructuring while
crosslinking of either actin or MTs accelerates the time evolution
of active dynamics. Our advection—diffusion model and spatial
correlation analyses correlate the dynamic antagonism that we
observe with suppressed demixing of double-motor composites
and the crosslinker-mediated acceleration with enhanced re-
structuring and clustering. Despite these complexities, we find
that the broad phase space of active dynamics can be organized
into three general classes with distinct types and rates of ballistic
motion.

Results and discussion

Active cytoskeleton composite design
and formulation-structure phase space

We first describe our design strategy for realizing an active mat-
ter system that has two force-generating components that act on
two distinct, yet homogenously co-mixed, substrates. Namely,
we engineer composites of co-entangled MTs and actin (46) and
incorporate kinesin clusters and myosin II minifilaments that
crosslink and push and pull on pairs of MTs and actin, respective-
ly, to generate force and motion (49, 57) (Fig. 1A; Fig. S1). To inves-
tigate the extent to which actomyosin and kinesin-MT activities
act synergistically or antagonistically to dictate dynamics, we
perform experiments with either kinesin (X, Fig. 1B) or both kine-
sin and myosin (K + M, Fig. 1B). We further characterize the effect
of passive crosslinking of the MTs (MT XL, Fig. 1) or actin (Actin
XL, Fig. 1) at crosslinker:protein molar ratios R that are high
enough toinduce measurable changes in the viscoelastic proper-
ties but low enough to prevent filament bundling (47). To observe
the dynamics of our active cytoskeleton composites, we collect
sequential two-color time-series of actin and MTs comprising
composites over the ~1-h time course of measurable active dy-
namics. As shown in Fig. 1B, by simply incorporating or omitting
myosin motors and passive crosslinkers, we are able to drive sub-
stantial changes in the active restructuring, emergent dynamics,
and programmable phase space of non-equilibrium properties
(Movies S1-S3).

All composites begin in similar structural states with inter-
penetrating networks of actin and MTs uniformly distributed
throughout the field of view (Fig. 1B, top row). However, each com-
posite formulation reconfigures into distinct structural states over
activity times of T ~ 30 min, where T=0is defined as the time at
which kinesin is added to the composite. While we do not visualize
the motors, the spatially uniform active dynamics that we see at
the onset of activity indicate that, like the filaments, the motors
are uniformly mixed throughout the composite.

Examining the three kinesin-only composites (no myosin), we
find that without passive crosslinkers, composites form loosely
connected MT-rich amorphous clusters. Actin filaments first
co-localize in the cluster centers but are then squeezed out into
the surrounding space as the clusters contract further and dis-
connect from one another (Fig. 1B, dark blue boxes). Passive actin
crosslinking hinders this separation of actin and MTs, enabling
the slow uptake of actin into MT-rich clusters, such that the com-
posite becomes a connected network of clusters of co-localized
actin and MTs (Fig. 1B, dark green boxes). MT crosslinking leads
to similar amorphous MT clustering and actin-MT de-mixing as
without crosslinking; but these MT-rich regions coalesce over
time, resulting in larger-scale phase separation of actin and
MTs compared to the non-crosslinked case (Fig. 1B, dark red
boxes).

Turning to the double-motor composites that incorporate both
kinesin and myosin, we find that the addition of myosin impedes
the kinesin-driven de-mixing described above and reduces the de-
gree of restructuring over the course of activity (Fig. 1B, light
shaded boxes). This effect can be seen in the images at all time
points (rows in Fig. 1B), in which actin and MT networks are
more evenly distributed and interpenetrating than composites
without myosin. Without passive crosslinkers, composites show
little rearrangement (Fig. 1B, light blue boxes), as seen in previous
experiments on myosin-driven actin-MT composites (26-28).
Crosslinking of actin or MTs enables more restructuring of the
double-motor composites, but this reconfiguration and demixing
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Fig. 1. Engineering and characterizing active cytoskeleton composites with varying strain-generating components and connectivity. (A) We co-
polymerize actin monomers (2.32 pM) with tubulin dimers (3.48 pM) to form co-entangled composite networks of actin filaments and MTs. We use
NeutrAvidin to passively crosslink biotinylated actin filaments (Actin XL) or MTs (MT XL) at crosslinker:protein molar ratios of Ry = 0.02 and Ry = 0.005 for
actin and MTs to achieve similar distances d between crosslinks (48). We incorporate kinesin clusters and myosin Il minifilaments to drive composites out
of steady-state. (B) We acquire two-color confocal time-series of actin (green) and MTs (red) to capture motor-driven dynamics and reconfiguration. Each
column includes images taken at three different time points, T=5, 20, and 35 min, during motor activity for composites with kinesin (K, columns 1, 3, and
5), kinesin and myosin (K + M, columns 2, 4, and 6), no crosslinking (No XL, columns 1 and 2), actin crosslinking (Actin XL, columns 3 and 4), and MT
crosslinking (MT XL, columns 5 and 6). Below each composite imageis a zoom-in of a 25 pm x 25 pmregion denoted by a dashed-line boxin the mainimage
and single-channel images showing separately the MTs (middle, red) and actin (right, green). The 50-pum scale bar in the top right panels applies to all

full-size images.

is still more subdued than that for kinesin-only composites
(Fig. 1B, light green and red boxes).

Actin and MTs exhibit three distinct classes
of coordinated ballistic dynamics

To determine the non-equilibrium dynamics that enable this rich
formulation-dependent restructuring, i.e. how the system gets
from one structural state to another, we perform DDM on the actin
and MT channels of each two-channel (i.e. two-color) video. As we
describe in Methods and Supplementary Material, DDM analyzes
differences of images separated by varying lag times At in Fourier
space to compute image structure functions D(q, At) for different
wave vectors ¢, which describe how density fluctuations become
decorrelated for a given spatial scale (i.e. 2z/q) (Fig. 2A and B).
Figure 2A shows two-dimensional (2D) image structure func-
tions D(qx, qy, At) computed for the MT and actin channels of
three videos that are representative of different types of dynam-
ics we measure, which we describe below. The plots in the left
and right columns correspond to D(qx, qy) for sample “short”
and “long” lag times, At=3s and At=20s, and the color is set
by the value of D(qx, qy), with low (blue) and high (red) values in-
dicating lower and higher correlations, respectively (see Fig. 52
for more D(qx, qy) examples). The first notable feature in Fig. 2A
(and Fig. S2) is the similarity in the functional form of D(qx, qy)
for actin and MT channels of the same video and lag time, indi-
cating that the actin and MT network dynamics are well coupled
despite cases in which we observe large-scale de-mixing

(Fig. 1B). The lower magnitudes of D for actin compared to MTs
are due to the comparatively lower signal of the actin channel.
Moreover, the more uniform D(gx, qy) values seen in the purple-
bordered plots labeled “Slow,” as compared to the middle (or-
ange, Fast) and bottom (magenta, Multimode), are indicative of
more homogeneous and slow motion, in which fluctuations de-
correlate less over a given lag time and over varying lengthscales
(i.e. wave vectors). The modest radial asymmetry seen most
clearly in the orange-bordered plots is a sign of anisotropic mo-
tion, which we discuss in later sections. Finally, the reduced cor-
relation at At=20s compared to At=3s indicates that the
decorrelation timescales are <20 s.

To quantify the dynamics represented in Fig. 2A, we azimu-
thally average each D(qx, qy, At) to compute a corresponding one-
dimensional (1D) function for each lag time, D(q, At). Figure 2B
shows sample D(q, At) curves for the three videos analyzed in
Fig. 2A. We use the distinct functional features of these curves
to organize our data for all composite formulations and activity
times into three classes: Slow (top), Fast (middle), and Multimode
(bottom). Slow curves show a simple slow rise to plateau at large
lag times (Fig. 2B, top panel); Fast curves exhibit oscillations in
the decorrelation plateau (Fig. 2B, middle panel); and Multimode
curves reveal two distinct plateaus at well-separated lag times
(Fig. 2B, bottom panel).

These nontrivial functional forms cannot be accurately de-
scribed by exponential functions typically used in DDM (26, 28,
58, 59), so we instead use a function that assumes Schulz distribu-
tions of speeds, as has been used in other ballistic biological
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Fig. 2. DDM reveals ballistic dynamics of composites that separate into three dynamically distinct classes. (A) Representative two-dimensional (2D)
image structure functions D(qx, qy) computed from the ensemble average of all At =3 s (left) and At = 20 s (right) lag times for three representative videos
(see Movies 51-S3). The color scale is normalized separately for each image and indicates the value of each image structure function D(qx, gy, At)/Dmax,
with blue/red values indicating low/high correlations. (B) Azimuthally averaged 1D image structure functions D(q, At) versus lag time At computed from
2D D(qx, gy, At) functions for MTs (closed symbols) and actin (open symbols) at wave vector q = 1.33 pm~!. Black lines are fits to functions with Schulz
speed distributions. (C) Corresponding decay times z(q) computed from D(q, At) fits universally follow (q) = (ug) " scaling, indicative of ballistic motion.
Speeds for actin (va) and MTs (umr) determined from each z(q) fit are listed. Listed error values are the standard deviation of the corresponding Schulz

speed distribution.

systems such as swimming Escherichia coli (60, 61) (see Methods
and Supplementary Material). This function captures the oscilla-
tory plateaus seenin the Fast class, and a sum of two Schulz speed
distributions accurately captures the two-plateau behavior of the
Multimode class.

From the D(q, At) fits, we extract decay times, #(q), which exhibit
a power-law dependence on q that further quantifies the type and
rate of motion (Fig. 2C). Despite the varied functional forms of the
D(q, At) curves shown in Fig. 2B, the corresponding (q) for each
class exhibits power-law scaling of 7(q) ~ g%, indicative of ballis-
tic motion for both actin and MTs. Similar ballistic-like dynamics
have been previously reported for myosin-driven cytoskeleton
composites (26, 28). Fitting each z(q) curve to the power-law rela-
tion 7(q) ~ ((u)q)_1 yields the average speed (u) of each filament
type measured over the course of the corresponding video. As
listed in Fig. 2C, we find that (u) for the Fast class is ~7x larger
than the Slow (v). Fitting the Multimode D(q, At) data results in
two distinct 7(q) curves with corresponding (v) values that differ
>4-fold, suggesting that Multimode composites undergo a combin-
ation of Slow and Fast dynamics.

In the following sections, we use the distinct D(q, At) characteris-
tics described above to correlate the Slow, Fast, and Multimode classes
of dynamics with composite formulation and activity time. Namely,
we define the Slow class as having D(q, At) curves that exhibit single,
steady large-At plateaus, while Fast curves display single large-At
plateaus but with pronounced oscillations, and the Multimode class
exhibits two distinct, steady D(q, At) plateaus (Fig. 2B).

Motor competition delays the onset of acceleration
and suppresses multimode dynamics

Having identified quantitative metrics to classify network dynam-
ics, we now determine how the dynamics vary with composite for-
mulation and activity time T. We first evaluate the average actin
and MT speeds (v) determined from the corresponding (q)
for each time series (7-15 per formulation) for each of the six com-
posite formulations. Figure 3A-C shows T-dependent effects of
crosslinking (different panels) and motors (dark versus light
shades), with speeds spanning over three orders of magnitude
during motor activity. Notably, as suggested by the 2D image
structure functions shown in Fig. 2A, actin and MT speeds are
well correlated (comparing open and closed symbols) across all
composites and activity times despite the varying degrees to
which they co-localize or de-mix (Fig. 1B).

We find that actin and MTs in all composites accelerate and
reach a maximum speed Umax at activity time T(Umax) (Fig. 3D),
after which (uv) decreases. By classifying each data point in
Fig. 3A as Slow, Fast, or Multimode (Fig. 3E), as described above,
we measure the average Slow speed to be (U)s =~ 0.15 pm/s, which
is an order of magnitude slower than the Fast speed of
(U)F ~ 1.8 pm/s. The average low and high speeds for Multimode
data are comparable to those of Slow and Fast values, respectively,
with (U)y; = 0.17 pm/s and (U)y, =~ 1.7 pm/s.

We next turn to evaluating how composite formulation programs
the different dynamical classes and their dependence on activity time
T. The average filament speed for the un-crosslinked kinesin-driven
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Fig. 3. Kinesin-driven composites undergo acceleration and deceleration
that are gated by myosin activity and facilitated by crosslinking. (A-C)
Speeds (v) of MTs (MT, closed circles) and actin (A, open circles) versus
activity time Tin kinesin-driven composites with no crosslinking (A), actin
crosslinking (B), and MT crosslinking (C), without myosin (K, darker
shades) and with myosin (K + M, lighter shades). For Multimode cases,
which have two speeds, the slower speed is indicated by a star. Data
points corresponding to the 7(q) curves shown in Fig. 2C are circled in the
corresponding color (Slow = purple, Fast = orange, and Multimode =
magenta). Error bars (most too small to see) are the larger of the standard
error values determined from the Schulz distribution fits and (q)
distributions (see Methods). (D) Maximum speed Umax reached by each
composite, denoted by dashed circles in A, plotted against the time T at
which vmax occurs. (E) Scatterplot of all 106 actin and MT speeds shown in
A-C, divided into Slow, Fast, and Multimode classes. Horizontal lines
indicate averages, with the dashed line denoting the average of the slower
Multimode speeds (stars in A-C).

composite (nomyosin)increases ~20-fold in the first T ~ 20 min, tran-
sitioning from Slow to Multimode to Fast dynamics (Fig. 3A), reaching
Umax = 7 pm/s. Following this initial acceleratory period, the compos-
ite slowly decelerates over the course of ~40 min but never returns to
dynamics classified as Slow. Introducing myosin substantially delays
the onset of acceleratory dynamics, increasing T(Umax) ~3-fold, but
has little impact on the magnitude of Umax (Fig. 3A and D).
Moreover, Slow dynamics dominate over more of the activity time
than for the kinesin-only composite, as seen by the higher proportion
of light blue versus dark blue squares in Fig. 3A.

These results indicate that Fast dynamics are due primarily to
kinesin-driven motion, as there is minimal change in Umax upon
the addition of myosin and that myosin activity counteracts kine-
sin activity to delay the onset of Fast dynamics rather than cooper-
ating synergistically to amplify active dynamics. We can
understand this competition as follows.

Keeping in mind that the actin and MTs in the composites form
co-entangled interpenetrating networks of comparable mesh
sizes, we can assume that every actin filament is sterically inter-
acting with several MTs and other actin filaments and vice versa.
Kinesin acts to drive MTs together, which, in turn, attempt to pull
co-entangled actin filaments with them, competing with entan-
glements from other actin filaments that resist kinesin-driven
straining. However, because actin filaments are more flexible
and relax faster than MTs, they are able to be swept up with the
kinesin-driven MT network and then diffuse out of MT-rich clus-
ters to maximize their entropy.

Incorporating myosin into the composites strongly enhances
the competition between kinesin-driven pulling of actin and steric
entanglements by pulling actin filaments together, which, in turn,
attempt to pull interpenetrating MTs with them, counteracting
the force of kinesin driving MTs together. The surprising antagon-
istic interaction between the two motors may also be due to the
contractile versus extensile nature of actomyosin and kinesin-
MT activity, respectively (62). Namely, kinesin motors are highly
processive such that they principally induce nematic bundling,
sliding, and extensile motion of rigid MTs, whereas low-duty ratio
myosin motors primarily bend, compress, and contract semiflex-
ible actin filaments into asters or foci (49, 57).

We expect this competition to manifest structurally as en-
hanced actin-MT mixing and interpenetration, as we see in
Fig. 1B. In other words, while both filament types are pulled to-
ward like filaments (actin to actin, MTs to MTs) by their respective
motors, entanglements with the other filament type resist this
motor-driven self-association, thereby facilitating mixing. The
net result is reduced clustering and increased actin-MT inter-
penetration in double-motor composites. While the dynamics
eventually mirror those of kinesin-only composites, the structure
remains more homogeneous, as shown in Fig. 1B.

The fact that motor antagonism leads to a time delay rather
than suppression of active dynamics suggests that eventually ki-
nesin straining beats out myosin straining such that the dynamics
mirror kinesin-only composites after being gated by myosin activ-
ity. Kinesin-MT straining likely “beats out” actomyosin activity
due to the higher density of kinesin clusters compared to myosin
minifilaments. As we describe in Methods, in all double-motor
composites, there are ~75 force-generating kinesin clusters for
every myosin Il minifilament, and the average spacing between ki-
nesin clusters connecting a pair of MTs is ~12 nm compared to
~2.6 pm (>200x longer) for myosin minifilaments along actin fila-
ments. This increased density of strain-generating linkers along
MTs, as well as their higher duty ratio and processivity, likely
causes kinesin-MT force generation to dominate over that of
actomyosin.

We now turn to the effect of passive crosslinking on single-
motor and double-motor composites. As shown in Fig. 3A, the sig-
natures of motor competition and activity gating seen for un-
linked networks are preserved upon crosslinking of both actin
(Fig. 3B) and MTs (Fig. 3C). The primary effect of crosslinking is a
decrease in the maximum speed Umax and the time over which
the composites accelerate to this maximum T(Umax) (Fig. 3D).
Further, both crosslinking types exhibit Multimode dynamics at
the onset of activity (red and green triangles and stars), effectively
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eliminating the initial Slow dynamics seen in unlinked compo-
sites, likely due to crosslinking reducing the degrees of freedom
and increasing the connectivity of the composites, thereby sup-
pressing spatially uncorrelated microscale fluctuations. In other
words, large-scale restructuring (attributed to Multimode dynam-
ics) and acceleration to Umax are facilitated by crosslinking in
kinesin-only composites. Conversely, crosslinking of double-
motor composites eliminates the initial Multimode dynamics
seen for their unlinked counterparts, instead switching directly
from Slow to Fast dynamics with minimal structural reconfigur-
ation. This reduced restructuring of crosslinked double-motor
composites compared to kinesin-only composites can be seen in
Fig. 1.

To further understand the nature of Slow, Fast, and Multimode
dynamics and why crosslinking alters the propensity to exhibit
each type, we return to our Fig. 1 results, which show that cross-
linking leads to larger and denser filament aggregates compared
to unlinked cases. The reduced degrees of freedom and enhanced
connectivity that crosslinking provides may explain this en-
hanced mesoscale clustering, which, in turn, suppresses micro-
scale fluctuations available to the more randomly distributed
and less bundled filaments that emerge in the unlinked cases.
This mechanistic picture suggests that Fast dynamics are domi-
nated by coordinated motion or flow of the composites while un-
correlated microscale fluctuations describe Slow dynamics.
Conversely, as we describe above, we expect Multimode dynamics
to arise from mesoscale restructuring, bundling, and de-mixing
events.

Fast, slow, and multimode classes correlate with
distinct velocity fields and distributions

To corroborate the mechanisms that we postulate underlie the
different dynamical classes in the preceding section, we evaluate
the directionality and spatiotemporal coordination of the local dy-
namics that correspond to the sample Fast, Slow, and Multimode
data that we analyze in Fig. 2.

We first create temporal color maps, which colorize each frame
by the time it occurs during the video t, and overlay all colorized
frames (Fig. 4A; Fig. S3). In this way, the maps depict the motion
of the composites over the course of each video. Figure 4A shows
the color maps for the actin channel, which are nearly indistin-
guishable from the MT channel of the same video (see Fig. S3),
in line with our DDM results that show that actin and MTs within
any given composite exhibit similar dynamics (Figs. 2 and 3). The
Slow map (top panel) shows small-scale, randomly-oriented mo-
tion, while the Fast map shows spatially coordinated and nearly
unidirectional motion. The Multimode map displays features of
both Fast and Slow dynamics, exhibiting directionality on small
scales but largely uncorrelated motion at larger scales.

To quantify the features described above, we perform PIV on
the actin and MT channels of the videos analyzed in Fig. 4A. PIV
vector fields in Fig. 4B and Fig. S4 show overlaid velocity fields at
four equally spaced times t over the course of the videos analyzed
in Fig. 4A. Arrow lengths and directions represent the average vel-
ocity of features over 20 frames (~7.5 s) in the surrounding 8 x 8
square-pixel (6.7 um x 6.7 um) region of the field of view.

As shown in Fig. 4B and Fig. 54, Slow fields exhibit motion that is
slow (small arrows) and randomly oriented (no preferred arrow
direction), while Fast fields show rapid directional motion with
large arrows that all point in a similar direction. Multimode fields
(Fig. 4B, bottom row) reveal features of both Slow and Fast modes,
as seen by the different arrow sizes and directions. Figure 4C,

which shows the histograms of speeds computed from PIV ana-
lysis of each video, corroborates the dynamics we observe in the
sample flow fields (Fig. 4B) as well as in our DDM analysis
(Fig. 2C). Namely, the speed distribution for the Fast class (middle
row) is shifted substantially to the right of that for the Slow video
(top row), and the Multimode distribution (bottom row) shows two
distinct peaks that approximately align with Slow and Fast distri-
butions, respectively. To further quantify the speed distributions
and compare to our DDM results, we fit each histogram to a
Schulz distribution (Fig. 2C, solid lines; Fig. S5), which we likewise
used in the fitting function for the corresponding DDM image
structure functions (see Supplementary Material Methods). We
find that the Slow and Fast distributions are well described by a sin-
gle Schulz distribution, while Multimode distributions require a
sum of two Schulz distributions. The average speed (v) and stand-
ard deviation ¢ determined from each fit (listed in the correspond-
ing panel) show that the speeds measured in Fourier space using
DDM (Fig. 2B) and in real space using PIV are statistically indistin-
guishable (Table S2), with average values of (U)s~ 0.3 pm/s,
W) = 1.7 um/s, (U =~ 0.2 um/s, and (U)y, = 0.8 um/s for Slow
(S), Fast (F), and Multimode (M1, M2) videos, respectively.

Motivated by the apparent class-dependent anisotropy (or lack
thereof) in the PIV vector fields, we also evaluate the correspond-
ing velocity orientation distributions (Fig. 4D), which reveal iso-
tropic motion for the Slow class, with no perceptible peak and
comparable occurrences of all angles, compared to sustained uni-
directional Fast motion, as evidenced by the sharply peaked nar-
row distribution. The Multimode distribution displays features of
both Fast and Slow distributions, with a broader sampling of direc-
tions compared to Fast but with more pronounced peaks com-
pared to Slow.

As noted in the previous section, we also see evidence of aniso-
tropic dynamics in our DDM analysis, manifested as radial asym-
metry in the D(qx, gy, At) plots for the Fast class and to a lesser
extent in the Multimode plots (Fig. 2A; Fig. S2). To quantify this an-
isotropy in Fourier space, we evaluate an anisotropy factor Ar(q, t)
by computing weighted azimuthal integrals of the DDM image
structure function (detailed in Methods and Supplementary
Material (63)). Ar can assume values between -1 and 1 for x- and
y-directed motion, respectively, with Ar = 0 indicatingisotropic mo-
tion. Figure 4E shows that the distributions of Ar values for Slow and
Fast classes exhibit distinct peaks at Ar ~ 0 and Ar > 0, indicative of
isotropic and y-oriented motion, respectively. Conversely, the
Multimode distribution is broader with multiple peaks that span
from Ar <0 to Ar > 0 and include a significant fraction of near-zero
values. Likewise, the Multimode PIV orientation distribution samples
a broad range of angles (isotropic, Ar = 0) while also exhibiting dis-
tinct peaks (directionality, |Ar| > 0).

Spatiotemporal variations in dynamics are
suppressed by motor antagonism

To better elucidate the mechanisms dictating the different dy-
namical classes and the influence of motor antagonism on said
mechanisms, we use both DDM and PIV to resolve variations in
the short-time dynamics of the composites, i.e. those that occur
within the time t of a given video.

We first evaluate the average speed U(t) as a function of time t
for the actin and MT channels of each video analyzed in Figs. 2
and 4, which we compute from the corresponding PIV vector
fields, where ¥ is averaged over all vectors in a single field. As
shown in the U(t) plots in Fig. 5A and Fig. S6, Slow and Fast dynam-
ics are largely stationary over the course of a given video, with
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x-direction (~mx), respectively.

nearly constant speeds. In contrast, Multimode traces show dis-
crete and abrupt shifts from intermediate to fast motion to steady
slow motion.

Observing the time dependence of the corresponding average
velocity orientations 6(t), we find similar trends as for G(t), where-
by the directionality of both Fast and Slow examples is nearly inde-
pendent of t, while the average orientation of Multimode vectors
undergoes an abrupt and discrete shift att ~ 60 s.

To corroborate and better characterize the apparent stationar-
ity of Slow and Fast class dynamics and the non-stationary
Multimode dynamics shown in Fig. S5A and B, we compute
instantaneous DDM image structure functions Dj(q, At, t), which,
unlike the D(q, At) curves shown in Fig. 2B, are not averaged over
time t (63). By evaluating the probability distribution of Di(q, At)
values for all t in a given video, we can determine the extent to
which dynamics are temporally heterogeneous during the
acquisition time. Namely, ergodic stationary dynamics are ex-
pected to follow a Gaussian distribution of structural correlations,
which are quantified by D;(q, At, t). As shown in Fig. 5C, the Fast
and Slow distributions are strongly overlapping, with the Slow dis-
tribution being well fit to a Gaussian function. Conversely, the
Multimode distribution is distinctly non-Gaussian—with no
obvious peak, a broad distribution of values, and significant
noise—indicative of large intermittent fluctuations in structural
correlations (63).

To quantify the extent to which the temporal D; distributions
deviate from Gaussianity, we compute the skewness Sk=
({D; = DY)’ /({(D; = D)*))*?, which is zero for a Gaussian distribution.
For reference, the distributions shown in Fig. 5C have skewness val-
ues of Sg s =~ 0.42, Sk ~ 0.66, and Sk ~ 0.86 for the Slow, Fast, and
Multimode classes, respectively. Positive skewness, largest for
Multimode distributions, has been reported for colloidal gels that
are en route toward arrest and has been interpreted as arising
from discrete restructuring processes such as coalescing or ruptur-
ing, as well as intermittent fluctuations and rearrangements (63).

To determine the prevalence of non-stationary dynamics
across the formulation phase space and activity times, we com-
pute skewness values for all composite formulations and times
T evaluated in Fig. 3. Figure 5D-I shows stacked confidence ellipse
plots comparing skewness Sk, average speeds (v), and anisotropy
factors Ar colorized by dynamical class and separated into panels
for kinesin-driven composites without (Fig. 5D, F, and H) and with
(Fig. SE, G, and I) myosin (also see Fig. S7). The individual points
correspond to all data points shown in Fig. 3, and the ellipses en-
close one standard deviation around the mean. As shown, the
Multimode data exhibit the largest skewness values, as seen by
the magenta ellipses being furthest to the right in Fig. 5F and
H. Fast and Slow Sk values are similar to one another and deviate
less from zero. The higher skewness for Multimode data is coupled
with relatively fast speeds (Fig. S5F) but low anisotropy (Fig. 5H).
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Fig. 5. Non-stationary fast dynamics, unique to the Multimode class, indicate discrete intermittent restructuring. (A) Average speed U(t) versus time t
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for each time tis an average over all vector magnitudes in the PIV flow field associated with time t. (B) Average velocity orientations 6(t) versus t computed
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display data for composites with kinesin (K) and both kinesin and myosin (K + M), respectively.

These couplings further support our interpretation that Multimode
dynamics arise from large intermittent restructuring events,
which we expect to have no preferred directionality but give rise
to periods of time—e.g. during a restructuring event—that exhibit
fast dynamics.

Comparison of the composites driven by kinesin only (Fig. 5D, F,
and H; darker shades) versus two motors (Fig. 5E, G, and [; lighter
shades) reveals that the presence of myosin nearly eliminates
Multimode dynamics, as evidenced by the lack of magenta ellipses
in Fig. 5E, G, and I. Further, the distributions of data points for the
double-motor composites generally exhibit smaller skewness val-
ues as compared to kinesin-only composites, as seen by the ellip-
ses shifted to the left in Fig. 5G and I compared to Fig. 5F and
H. Despite these differences, we also observe that the distribu-
tions of speeds for composites with and without myosin are not
significantly distinct, as we discussed in the previous section
(also see Fig. 3).

Taken together, these results demonstrate that Multimode dy-
namics arise from discrete and abrupt restructuring events and
coarsening, and the presence of myosin suppresses this restruc-
turing such that double-motor composites exhibit very few in-
stances of Multimode dynamics and remain more homogenously
mixed at the end of the activity. In the absence of mesoscale dis-
crete restructuring, the double-motor networks take longer to
coarsen and switch to Fast coordinated flow.

Motor competition inhibits composite
restructuring and de-mixing enhanced by
crosslinking

To connect the dynamics we measure with various structures and
reconfiguration, we develop a minimal model that aims to capture
the key dynamical features of our composites. As described in
Methods and Supplementary Material, our model simulates

filament motion that arises from motor-driven advection and
thermal diffusion and works against steric hindrances and vis-
cous traps due to motor and protein crosslinking (see Fig. S8 and
Table S1). We purposefully simplify the model, ignoring details
such as filament flexibility and individual motor dynamics that
other models incorporate (64-66), to facilitate applications to oth-
er systems and identify the key parameters that dictate the ex-
perimental phenomena we observe.

Our model simulations show that all composites start as homo-
geneous interpenetrating networks of actin and MTs at T=0
(Fig. S9), as we see in experiments (Fig. 1B), but subsequently re-
structure to varying degrees depending on the composite formu-
lation. Figure 6A, which shows sample simulation snapshots of
the final states (T = T¢) of the six composite formulations, reveals
strong suppression of restructuring by motor competition, similar
to our experimental observations, with the K+M composites
undergoing substantially less restructuring and de-mixing than
the kinesin-only composites. Also, in line with experiments, cross
linking of either actin or MTs in simulated composites enhances
aggregation and clustering compared to composites without cross
linkers. This agreement between model predictions and experi-
mental observations suggests that it is the balance between fric-
tional jamming and motor-driven de-mixing that dictates the
different formulation-dependent structural regimes.

To quantify the degree of restructuring in simulations, we com-
pute the probability distributions of like filaments (gamr-amr(r))
and unlike filaments (ga,vr-m1/a (7)), @ radial distance r from a giv-
en actin/microtubule (A/MT) for the initial (T = 0) and final (T = T¢)
states of all composites (see Supplementary Material Methods).
For homogeneous well-mixed networks, all distributions should
equate to 1 for all r values, which we find to be the case for the ini-
tial states of all simulated composites (Fig. S9). The more ga_a(r) or
gur-mr(r) values are above 1, the more clustering of actin or MTs,
respectively. Conversely, ga_mr(r)<1 or gur-a(r)<1 indicates
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segregation and de-mixing of actin from MTs or vice versa.
Figure 6B-E plots the differences between the final and initial dis-
tributions, e.g. Aga—_a = ga-a(r, Tr) — ga-a(r, 0), such that values of
zero indicate minimal restructuring, while positive “like” distribu-
tions and negative “unlike” distributions indicate like-filament
clustering and de-mixing of unlike filaments, respectively. As
shown, the composites with kinesin and myosin show minimal
de-mixing regardless of crosslinking (Ag »~ 0in Fig. 6C and E), while
all composites without myosin show signatures of clustering and
de-mixing, which is generally more pronounced in the crosslinked
composites (Fig. 6B and D).

Finally, to directly compare the predicted and experimental re-
structuring, we perform identical spatial image autocorrelation
(SIA) analysis (see Methods) on the initial and final experimental
videos and simulation snapshots. SIA computes the correlation
in intensities gi(r) between two pixels separated by a radial dis-
tance r in a given image such that g;(r) indicates the lengthscales
over which structural features in an image are correlated.
Specifically, gi(r) values range from 1 for complete correlation
(such as when r = 0) to 0 for complete decorrelation, e.g. for r val-
ues much larger than the size of structural features. Similar to
Fig. 6B-E, we evaluate the differences between the final and initial
correlation functions Ag(r) for actin and MTs in all simulated
composites (Fig. 6H and I), which we compare to experimental val-
ues (Fig. 6F and G). We find that in both experiments and simula-
tions, the presence of myosin reduces the distance over which
structural correlations are enhanced over the time course of mo-
tor activity, evidenced as faster decay in Ag(r) with increasing r in
Fig. 6G and I compared to Fig. 6F and H. This feature is indicative of
reduced large-scale clustering and de-mixing of actin and MTs, as
is also evident in Figs. 1B and 6A. Moreover, in both experiments
and simulations, passive crosslinking generally leads to increased

structural correlations (larger Ag; values) compared to composites
without crosslinkers, in particular at larger distances and for actin
crosslinking. The increased aggregation with actin crosslinking
manifests in experiments as minimal decay and non-monotonic
dependence of Ag;(r) with increasing r for actin and MTs, respect-
ively, indicative of fewer small-scale clusters and increased meso-
scale (>10 pm) structural correlations. In simulations, increased
aggregation can be seen as larger Ag; values in the presence of ac-
tin crosslinkers across all lengthscales.

We note that given the simplicity of our model and the simu-
lated renderings of the composites, as well as the noise in our
microscope images, as can be seen in Fig. 1 and Movies S1-S3,
we do not expect quantitative agreement between experiments
and simulations. Rather, we aim to capture qualitatively similar
dependence of structural features on crosslinking and motor
competition, as we describe above. Namely, the presence of my-
osin inhibits restructuring while passive crosslinking enhances
it. The generally larger Ag; values measured in experiments com-
pared to simulations are likely due to the noise and finite depth of
the experimental images, which limit the occurrence of “empty
space” that are seen in simulated composites, thereby overesti-
mating correlations across lengthscales as compared to simulated
images. Moreover, the flexibility of the actin filaments, not ac-
counted for in the model, may also allow for greater restructuring
and clustering.

To understand the underlying mechanisms driving this re-
structuring more fully, we consider that while kinesin motor ac-
tivity adds to the advective term for MTs in the model, the
processive nature of kinesin also increases the drag on the MTs.
Conversely, the addition of non-processive myosin motors in-
creases filament advection with a relatively smaller increase in
drag. Thus, kinesin activity acts to collect MTs into locally
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arrested clusters that can either sweep up or squeeze out actin fil-
aments. The addition of passive crosslinking of actin or MTs accel-
erates this process by facilitating the coalescence of smaller
clusters into larger ones. On the other hand, myosin activity al-
lows for filament redistribution within clusters and diffusive mi-
gration of filaments out of clustered regions, thereby inhibiting
segregation between actin and MTs and increasing the rate at
which newly formed clusters can dissolve back into a mixed state.
Succinctly stated, motor antagonism can arise from an interplay
between competitive motor-driven advection and frictional
drag, irrespective of its origin—steric interactions or passive or ac-
tive crosslinking.

Conclusion

The cytoskeleton is a non-equilibrium multifunctional composite
comprising diverse protein filaments, motors, and crosslinkers
that cooperate and compete to enable diverse cellular structures
and processes. As such, the cytoskeleton is one of the primary in-
spirations to the burgeoning field of active matter, and much of
current active matter research seeks to learn from and emulate
the cytoskeleton. The composite nature of the cytoskeleton,
which confers its signature versatility and programmability, is
one of its hallmarks. Yet, current active matter platforms are
largely limited to a single force-generating component and/or
substrate. We address this gap by engineering co-entangled and
crosslinked composites of MTs and actin filaments driven by kine-
sin and myosin motors—breaking new ground in active matter de-
sign by incorporating multiple independently tunable
force-generating components and active substrates.

By coupling Fourier-space and real-space analyses (DDM and
PIV), we show that composites undergo a combination of Fast ad-
vective flow, Slow isotropic fluctuations, and Multimode restructur-
ing that result in structures ranging from interpenetrating actin-
MT scaffolds to de-mixed amorphous clusters. Surprisingly, com-
petition between kinesin and myosin straining delays the onset of
kinesin-driven acceleration without appreciably changing the
range of speeds that the different composites exhibit. Motor an-
tagonism also suppresses mesoscale restructuring events that
underlie Multimode dynamics, thereby sustaining mixed networks
of actin and MTs. Conversely, passive crosslinking hastens the on-
set of kinesin-mediated acceleration and subsequent deceleration
by enhancing network connectivity and suppressing uncorrelated
microscale motion. Importantly, the emergent dynamics and ex-
tensive programmable phase space of non-equilibrium properties
we reveal are a result of very subtle changes in substrate connect-
ivity and activity.

Our work brings reconstituted cytoskeleton systems an import-
ant step closer to mimicking the complexity of the active compos-
ite cytoskeleton by integrating two distinct and ubiquitous motor—
filament systems, actomyosin and kinesin-MT networks, that
have been shown to interact and co-mediate important cellular
processes including morphogenesis and exocytosis (67, 68), me-
chanosensation (69), and migration and stiffening (70).
Interactions between actomyosin, kinesin, and MTs have also
been implicated in wound healing, mitosis, and cytoplasmic
streaming (7, 15, 16, 28,43, 71, 72). Because the motor and filament
concentrations in our composites are within physiological ranges
(73), our results offer new insight into the macromolecular dy-
namics and interactions that contribute to these cellular proc-
esses. We note that cell-like confinement of in vitro cytoskeletal
networks has also been shown to play a key role in recapitulating

dynamics and structures seen in cells (71, 72, 74). We plan to build
in this layer of complexity in our future work (75).

Finally, the programmability of our composites, with multiple
well-controlled tuning knobs—motors, filaments, and cross
linkers—which can each be varied independently while maintain-
ing composite integrity, opens the door for reconfigurable materi-
als that can be programmed to exhibit varying types and rates of
motion and restructuring over broad spatiotemporal scales. For
example, materials based on our designs could be used as spatial-
ly controlled microactuators, responsive filtration and sequestra-
tion devices, and self-curing and self-repairing infrastructure
technologies. Our minimal advection—diffusion model that reca-
pitulates our experimental trends is broadly applicable to active
composite networks and lays the foundation for more complex
predictive models that quantitatively capture the structure and
dynamics of composite active matter. As such, we anticipate
that our double-motor material design, intriguing dynamical re-
sults, and corresponding modeling framework will spark a new
class of studies that explore the broad parameter space of this
platform.

Methods

See Supplementary Material Methods for more detailed descrip-
tions of each of the following sections.

Protein preparation

Rabbit skeletal actin monomers (Cytoskeleton), biotinylated actin
monomers (Cytoskeleton), porcine brain tubulin dimers
(Cytoskeleton), biotinylated tubulin dimers (Cytoskeleton),
rhodamine-labeled tubulin dimers (Cytoskeleton), and myosin II
(Cytoskeleton) are reconstituted and flash-frozen into single-use
aliquots according to previously described protocols (28, 48).
Biotinylated kinesin-401 is expressed in Rosetta (DE3)pLysS com-
petent E. coli (Thermo Fisher) and purified, as described in
Supplementary Material.

For composites that incorporate actin or MT crosslinking, ac-
tin—actin or MT-MT crosslinker complexes are prepared according
to previously described protocols (48). In brief, biotinylated actin
or biotinylated tubulin is combined with NeutrAvidin and free bio-
tin at a ratio of 2:2:1 protein:free biotin:NeutrAvidin.

Immediately prior to experiments, myosin II is purified as pre-
viously described (27) and stored at 4°C. Kinesin clusters are
formed by incubating dimers at a 2:1 ratio with NeutrAvidin
with 4 pM DTT for 30 min at 4°C.

Active cytoskeleton composite preparation
Actin-MT composites are formed by polymerizing 2.32 uM un-
labeled actin monomers and 3.48 uM tubulin dimers (5%
rhodamine-labeled) in PEM-100 (100 mM PIPES, 2 mM MgCl,, and
2 mM EGTA) supplemented with 0.1% Tween, 10 mM ATP, 4 mM
GTP, 5uM Taxol, and 0.47 uM AlexaFluor488-phalloidin (Life
Technologies).

For crosslinked composites, a portion of either actin monomers
or tubulin dimers is replaced with equivalent crosslinker com-
plexes to achieve the same overall actin and tubulin concentra-
tions and crosslinker:protein ratios of Ry =0.02 for actin or Rur
=0.005 for MTs. Ry and Ryr values are chosen to achieve similar
lengths between crosslinkers d along actin filaments and MTs
(da ~ 60 nm, dur ~ 67 nm) (48) and to be high enough to induce
measurable changes in the viscoelasticity compared to unlinked
networks but low enough to prevent filament bundling.
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Composites are polymerized for 30 min at 37°C, after which
1.86 uM phalloidin is added and the composite is incubated for
10 min at room temperature. Following, 50 uM blebbistatin (26),
an oxygen scavenging system, 0.47 uM myosin II, and 0.35 pM ki-
nesin are added. Concentrations of actin, tubulin, myosin II, and
kinesin are within reported physiological ranges (73, 76, 77).

While myosin activity is controlled by blebbistatin deactiva-
tion, kinesin starts to act immediately, so T=0 for each experi-
ment is set as the time kinesin is added. Each sample is gently
flowed into a ~1 mm x 24 mm sample chamber composed of a
silanized (78) coverslip and microscope slide fused together by a
~100-um-thick parafilm spacer and sealed with epoxy, creating
an airtight chamber.

Fluorescence microscopy

Imaging of AlexaFluor488-labeled actin and rhodamine-labeled
MTs comprising composites is performed using a Nikon A1R laser
scanning confocal microscope with a 60x 1.4 NA oil immersion ob-
jective (Nikon), 488-nm laser with 488/525-nm excitation/emis-
sion filters, and 561-nm laser with 565/591-nm excitation/
emission filters. 488-nm illumination also locally deactivates
blebbistatin (26-28). Time-series (videos) of 256 x 256 square-pixel
(213 pm x 213 pm) images are collected at 2.65 fps for a maximum
video time of tyax = 1000 frames (~ 377 s ~ 6.28 min). Imaging be-
gins 5 min after the addition of kinesin motors (T=5 min) in the
middle of the ~100-um-thick sample chamber. Each successive
video is collected in a different field of view of the same sample
until there is no longer any discernible restructuring or motion
(T ~ 60 —120 min). A total of 7-15 videos are collected for each
of the six formulations (no crosslinking, actin crosslinking, and
MT crosslinking, with and without myosin). Each video includes
two channels that separate the actin and MT signals such that
they can be processed separately and compared.

DDM

DDM is performed on the actin and MT channels of each video, as
described previously (28). Image structure functions are deter-
mined by taking the square of 2D Fourier transforms of differen-
ces between an image at time t and one at t+At. This
process yields the instantaneous image structure function
Di(ax, qy, At, t), where gx and qy are x and y components of the
wave vector g. As typically done in DDM analysis, we average D;

over all times t (frames) of a given video, and all wave vectors q

with the same magnitude g, to determine the 1D image structure
function D(q, At) that can be fit to various models. We fit D(q, At)
versus At for each wave vector q to a model in which the distribu-
tions of speeds are described by one or two Schulz functions (60)
(see Supplementary Material Methods), as has been done to de-
scribe other ballistic biological systems (60, 61). For Slow and
Fast data in which one distribution is sufficient, there are four
free parameters (A, B, t1, Z1), whereas for Multimode data, there
are seven (adding ©, Z,, and f) (see Supplementary Material
Methods). For each video, we perform fits for 40 different q values
in the range q = 0.8—2 pm~"! (~3-8 um), from which we extract z(q)
curves for the actin and MT channels. By fitting each (q) curve to
7(q) = ((v)q) ™}, we compute the average speed (v} for each channel
of each video. We determine the error associated with (v) using
two methods. First, we compute v from each individual (z, q)
pair (i.e. v=1/7q) and determine the standard error across those
values. Second, we use the Schulz parameter Z determined from
our D(q, At) fits and our measured (v) value to compute the stand-
ard deviation ¢ and corresponding standard error via the relation

Z= (‘—?)Z—L Error bars shown in Fig. 3 are the larger of the two val-
ues for each case.

To determine the degree to which dynamics deviate from radial
symmetry, implying directionality, we compute the anisotropy
factor Ar of Di(qx, dy, At t) in g-space by computing Ag(q, At, t) =
J D(q, At, 6) cos (20)do/ I D(q, At, )d0 and averaging over ¢, At,
and t (79, 80). 06 1s defined relative to the positive y-axis such that
Ar>0 and Ap<O correspond to motion along the y- and
x-directions, respectively, and Ar =0 indicates isotropic motion.

To evaluate the time dependence of dynamics over short time-
scales (within the time t of a single video), we investigate the tem-
poral distribution of instantaneous image structure functions
Di(ax, qy, At, t) for a given At and q. For steady-state dynamics,
one would expect this distribution to be Gaussian. Deviations
from Gaussianity indicate sporadic events, which cause larger
than typical structural decorrelations. We quantify this
non-Gaussian  behavior by evaluating the skewness,
Sk = ((D; — DY)*/({(D; — D)*))*'?, where the average is over At and g.

PIV

PIV is performed using the GPU-accelerated version of OpenPIV
(81). Interrogation windows of 8x8 square pixels, with a 4x4
square-pixel overlap, are used to generate 64 x 64 grids of veloci-
ties for MT and actin channels of each time series. Average veloci-
ties U for each interrogation window are determined from image
pairs separated by At = 10 frames (~3.77 s). From the measured
velocities, we determine the distribution of individual speeds v(t)
and velocity orientations 4(t) across each image over the course
of a video. To identify and exclude spurious velocities during stat-
istical analysis, we reject those points for which the
signal-to-noise ratio was <2. We fit the speed distributions to
Schulz distributions by minimizing the mean square difference
between the predicted statistical weight assigned to each bin (of
width 50 nm/s) for a given choice of parameters and the actual
fraction of speeds in each bin. Arrows plotted in Fig. 4B and
Fig. S4 represent the local velocity on a regular Cartesian grid,
with arrow length proportional to speed. Visualizations at differ-
ent video times t are superposed, with arrow color representing t.

SIA

SIA is performed separately on actin and MT channels of micro-
scope images and simulation snapshots (see below) using custom
Python scripts (27, 28, 81). SIA measures the correlation in inten-
sity gi of two pixels in an image as a function of separation dis-
tance r (82). We generate autocorrelation curves gi(r) by taking
the fast Fourler transform of the image F(I), multiplying by its
complex conjugate, applying an inverse Fourier transform F,
FL(EU0)I)

oy
Correlation curves shown in (i) Fig. 6F and G and (ii) Fig. 6H and I
are averages across (i) 100 microscope images from three time ser-
ies and (ii) simulation snapshots from three independent runs (see
below). Error bars indicate the standard error.

and normalizing by the squared intensity: gi(r)=

Computational model

To predict motor-driven restructuring, we develop a minimal
model that captures the key energetic components of our system,
as fully described in Supplementary Material Methods and
Table S1. In brief, we allow filaments to interact with neighboring
filaments via (i) motor-generated forces that can either pull the in-
teracting filaments toward each other or push them away and (ii)
crosslinks that increase the frictional forces on the interacting

€202 1800100 ZZ U0 Jasn Jajua) yolesssy [eba obaiq ueg Jo Ausieniun Aq gy8eez//Szpebd/g/z/ejonie/snxauseud/woo dno-olwapeoe//:sdiy Woil papeojumoc]


http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad245#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad245#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad245#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad245#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad245#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad245#supplementary-data

12 | PNAS Nexus, 2023, Vol. 2, No. 8

filaments. The movement of a filament center to a neighboring
grid point within a small temporal time step is then a stochastic
event with a probability that can be calculated by the standard so-
lution to the Fokker-Planck equation given by pix>1)=
1-1 (1 + erf(%)), where | is the distance to the next grid point
in a particular direction, g; is the average advection-induced dis-
placement in that direction, and o; is the diffusion-based rms 1D
displacement of the filament along the direction to the specific
grid point. The subscript i represents a specific filament in the
model. The movement probability of filament i to a neighboring
grid point that either (i) contains the center of filament j or (ii) is
empty is given by (i) p; = p; X pj or (ii) p; = p; x 1.

We implement our model on a 150 pm x 150 pm hexagonal lat-
tice with 2.5-um spacing and use numerical values for all model
parameters that are based on experimental and literature values
(see Table S1). Initially, each lattice point is either empty or occu-
pied by a center of an actin filament or MT using probabilities
matching the average volume fraction occupied by these ele-
ments. The movement of the filaments is simulated in each iter-
ation by calculating the likelihood of each possible movement p;
for all grid pointsi containing filament centers and randomly
picking one of these movements to occur based on these probabil-
ities (Fig. S8) (83). We perform three independent simulation runs
for each composite formulation (Fig. S9).

To quantify the degree of clustering and segregation of the dif-
ferent filaments, we compute the probability distributions of fila-

ments that are alike, ga_a(r) = (gﬁg» or guromr(r) = (E;%w and

unlike, ga_wr(r) = <g’ﬂ“§§(’%) or gur_a(r) = (%) a radial distance r

from a given actin filament (A) or MT (see Supplementary
Material Methods). In the above, Na,yr(r) is the number of actin/
MT neighbors at distance r from a specific filament, fa v is the ac-
tin/MT volume fraction, and N(r) is the maximum number of
possible neighbors that reside a distance r from the specific ac-
tin/MT. An increase in gaur-a/vr(r) above 1 indicates clustering
of actin/MTs, while a decrease in gamr—mr/a(r) below 1 indicates
segregation of unlike filaments. Correlation analysis data shown
in Fig. 6B-E are averages over all filaments of the same type over
three statistically independent replicates with error bars repre-
senting the standard error.
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