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ABSTRACT

Perceiving the position and orientation of objects (i.e., pose es-
timation) is a crucial prerequisite for robots acting within their
natural environment. We present a hardware acceleration approach
to enable real-time and energy efficient articulated pose estimation
for robots operating in unstructured environments. Our hardware
accelerator implements Nonparametric Belief Propagation (NBP)
to infer the belief distribution of articulated object poses. Our ap-
proach is on average, 26X more energy efficient than a high-end
GPU and 11X faster than an embedded low-power GPU imple-
mentation. Moreover, we present a Monte-Carlo Perception Library
generated from high-level synthesis to enable reconfigurable hard-
ware designs on FPGA fabrics that are better tuned to user-specified
scene, resource, and performance constraints.
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1 INTRODUCTION

Determining the position and orientation of an object (i.e., pose
estimation) is crucial for robotic perception systems. While neural
networks are considered the state-of-art techniques for object pose
estimation, they require significant hardware resources and manual
labeling efforts for training. Moreover, general purpose GPUs used
for neural network inference are usually extremely power hungry
and can be challenging to implement on mobile robot platforms
with limited power constraints and battery life. Finally, even with all
the compute and training efforts, these neural network approaches
commonly perform poorly when faced with previously unseen
scenarios. While retraining the neural network with updated input
data can improve accuracy, this takes time and often the training
data for these new scenarios are not available.

Sampling based methods [4, 9, 11, 12, 16] are able to combine the
advantages of neural network approaches with the added robust-
ness of probabilistic inference and have been shown to outperform
end-to-end neural network approaches when encountering new
and challenging environments [2]. However, these sampling meth-
ods use iterative processing and have computation patterns that
do not map well to the fine-grained parallel execution of GPUs,
resulting in slow runtimes and high energy consumption on a GPU.

Recent works have explored custom hardware acceleration of
sampling based pose estimation algorithms through FPGAs [8, 10],
which has resulted in significant improvements in both runtime and
energy consumption. However, these prior works have two main
limitations: i) they consider pose estimation assuming rigid-body
objects, and ii) the hardware implementation is fixed to a specific
algorithm and cannot be reconfigured to better match design or
object constraints for a specific scenario. In this work, we address
both these concerns.

Oftentimes, there is an imbalance between software and hard-
ware development effort. While it might take minimal effort to
modify the software, redesigning the hardware may take more time
and effort and require hardware domain knowledge. With the re-
configurability of FPGAs and the use of High Level Synthesis (HLS),
we can reduce the redesign effort by creating an open-source soft-
ware library that can be used to synthesize new hardware designs'.

!The repository is available at: https:/progress.eecs.umich.edu/projects/bp-accelerate/
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By creating a software template library, we further help to increase
the accessibility for algorithm developers to customize and create
accelerators based on their design constraints.

In this paper, we present a novel hardware implementation of
belief propagation for articulated object pose estimation and utilize
the reconfigurable feature of FPGAs to create a software template
library that can be configured to generate hardware designs for
implementing pose estimation for both rigid-body and articulated
objects.

The rest of this paper is organized as follows. Section 2 summa-
rizes related work in scene perception and hardware acceleration
techniques for robotics. Section 3 describes the non-parametric be-
lief propagation algorithm to perform pose estimation. In Section 4
we describe in detail the hardware architectures of the accelerator
design and introduce the design of a software library for reconfig-
urable hardware implementations. Section 5 reports on our exper-
imental results for our FPGA design and compares them to both
a high performance and low-power GPU implementation. Finally,
Section 6 summarizes our work and discusses important considera-
tions for future open source hardware library development.

2 BACKGROUND

Robot perception is critical for robot manipulation. This step can
be computationally expensive and slow; however, there are few
works that consider optimizations with hardware acceleration. Of
these works, Schaeferling et al. [14] implement a CPU-FPGA solu-
tion for SIFT feature based pose estimation. The work of Schéffer
et al. [15] uses GPU and IMU sensors for vehicle localization and
pose estimation, which is not applicable for 6 degree-of-freedom
(DoF) pose estimation. Finally, Kosuge et al. [7] provides an FPGA
accelerated iterative closest point algorithm, which cannot produce
accurate pose results in unstructured environments with occlusions
(as shown in [17]). Finally, recent works [8], [10] proposed an FPGA
design for accelerating particle filtering for 6 DoF rigid body object
pose estimation. Compared to rigid body object pose estimation,
articulated 6 DoF object pose estimation presents additional per-
ception challenges. The configuration space of articulated objects
grows in dimensionality with the number of individual parts, which
presents a computational challenge for any low-power real-time
computing platforms.

Hardware accelerator design often requires significant domain
expertise. As a results, there has been recent interest in develop-
ing open-source hardware acceleration libraries. Several works use
high-level synthesis tools to aid with library development. Kalms
et al. [6] and Gorgon and Tadeusiewicz [5] use HLS tools to cre-
ate an open-source library for image processing. The Xilinx Vitis
library [1] provides a set of domain-specific accelerator libraries
that can handle applications from image processing to databases to
neural networks inference. We take a similar approach of using HLS
tools to develop a novel hardware library for object pose estimation,
which fills the need for a domain-specific acceleration library in
robotic pose estimation. Our FPGA libraries are parameterized and
can be configured to target different hardware resource constraints
and algorithm runtime and accuracy requirements.

3 ALGORITHM

The goal for sampling-based object pose estimation is to infer the
probability distribution of the object pose using observed sensor
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information. We use belief propagation [13] to efficiently model
and compute the distribution for both rigid-body and articulated
objects. For articulated objects specifically, we find the pose of each
object part separately. In continuous domains such as 6 DoF pose
estimation, belief propagation becomes intractable due to its use of
integrals. To enable performance in continuous spaces, algorithmic
approximations such as pull message passing for nonparametric
belief propagation (PMPNBP) [3] have been proposed.

The PMPNBP algorithm uses a Markov Random Field (MRF) to
model the object. The MRF is defined by an undirected graph G
composed of a set of nodes V and a set of edges &. Each node
s € V consists of a hidden variable, X, representing the object
pose or a part of the object pose and Ys represents a corresponding
observed data related to the part. Denoting all hidden variables in
the graph as X and all observed variables as Y, the joint probability
distribution of the random variables is given by the factorization:

PV e [ s XX [ o X))

(s,t)e& seV

where ¢ (X, Ys) is the unary likelihood for node s, which describes
the correspondence of an object part’s pose with its observation.
The function s (X5, X;) denotes the pairwise likelihood between
neighboring nodes, which measures how compatible part s at pose
X is with respect to part ¢ at pose X; based on the pair’s articulation
constraints.

For 6 DoF pose estimation, the observation is the RGBD data
from the camera sensor. The Markov random field is generated
using a Unified Robot Description Format (URDF) that describes
the joint limits between articulated object parts (articulation con-
straints), and the 3D mesh models of each object part. We compare
the rendered mesh model depth to the observation depth as an
estimation of unary likelihood and use the URDF file to create joint
constraints as needed for pairwise likelihood calculations. Details
of the unary likelihood calculation are given in Section 4.2.

3.1 Message passing

The PMPNBP algorithm defines a particle-based message passing
approach for approximate inference of each node’s belief distribu-
tion. The message passing scheme is illustrated in Fig. 1 with an
articulated clamp object, where each node X corresponds to the
pose of a part of the object and messages are passed between neigh-
boring nodes. The belief distribution bel of each node and messages
m between nodes are each represented by a set of weighted parti-
cles {w, ,u}?ﬁ 1» where i represents a sampled pose hypothesis for
one object part, and w is the corresponding sample’s weight. In the
message passing stage, a message mys (X;) from node t to node
s constitutes the distribution of the belief of node s informed by its
neighboring node t. This is mathematically expressed as:

mi () = ) X Y (X X [ | mir' ), @)

X eXy uep(t)\s

where p(t) \ s denotes neighboring nodes of ¢ excluding node s,
and X; denotes the particle set of node t. To compute mj (Xs) at

iteration n, first ,ut(? is sampled from the belief bel ! (X). Next,
these samples are passed to the neighboring nodes of t where the
weights {w;;) }?;Il are computed. This message update process in
outlined in Algorithm 1.
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Figure 1: left: A clamp represented as an articulate object by
an MRF. Each hidden node X; corresponds to the pose of a
part of the object with the corresponding observed node Y;.
Messages are passed bi-directionally between nodes (X, X;)
connected by an edge. right: A clamp represented as rigid
body by a Hidden Markov Model.

Algorithm 1: PMPNBP Message Update [3]
Input

:Incoming neighbor messages

£ ) = (g we Y,
Output: Updated outgoing message

mi, (Xs) = {(pyl)w <’>>}
Function message_update(m]}; )

Yuep(t)\s

Sample M outgoing particles {p } , from bel ™1 (Xs)

foreach /1} D do

sample Xt( D Ust(Xs = ,ug),Xt) > pairwise sampler
Wl(lil)ary — Pe(Xe = )A(t(i), Y)

neigh

[Tuep(os (Zﬁl WIS{:)I/ISJ(XS ﬂg)th = :uut)))
(1) (i) (D)

Wis <~ Wunary * Weijeh

w

end

m () — (D wiyM,
return mj (X;)

3.2 Belief update

In the belief update stage, the marginal belief of the hidden vari-
able of node s is expressed as the product of all incoming messages
from neighboring nodes t € p (s) weighted by the node’s unary
likelihood, as shown in Equation 3:

bell' (Xs) o« ¢s(Xs, ¥s) [ | mfiy(Xo). 3)

The node s receives all weighted 1ncc()sr)nmg messages from the
neighboring nodes and combines them into a set {(ps(l) , wsl) )}
The particles are then normalized and resampled as a new set of
belief particles using importance sampling for the next iteration.

Pseudocode for the belief update stage is included in Algorithm 2.

Algorithm 2: PMPNBP Belief Update [3]
Input

:Incoming neighbor messages

mil, (Xs) = {(uf2), wid )}, Vi € p(s)
Output: Updated belief bell (Xs) = {ygi) }?;Il
Function belief_update (mf (Xs)):
foreach t € p(s) do

foreach ,u;l) do
W;;) « Wts) s (Xs = /1;5), Ys)
Normahze weights {Wts)}
Z th =1
end

b resulting in

end

Combine all T of the incoming message particles into a
set (1" i) L

Normalize the welghts in this combined particle set,

resulting in ZT 1 ws(l)

Perform resampling to sample new set of {,us(i) }?;I ; that
represents bell

return bel? = {ys(i) }?ﬁl

Algorithm 3: Pull Message Passing for Nonparametric
Belief Propagation (PMPNBP) [3]

foreach iterationn € [1, N] do
foreach edge (s,t) € & do

m;ls (Xs) &
message_update(m!;! (X;) Yu € p(t) \ s)
my, (Xp)
message update(m;! (Xs) Yu € p(s) \ t)
end

foreach nodes € V do
| beld (Xs) « belief_update(m} (Xs) Vt € p(s))
end

end

The belief update and message update stages are performed alter-
natively and iteratively until the belief at each node converges.
Collectively, these processing stages makes up the pull message
passing algorithm, as is outlined in Algorithm 3.

3.3 Particle filtering

The particle filtering algorithm [18, 19] performs inference on a Hid-
den Markov Model (HMM), which can be represented as a special
case for Non-parametric belief propagation. Such representation
can be used to model the probabilistic distribution any rigid-body
objects where we do not expect the changes in the object geometry
as we seen in Fig. 1. With the sequential nature of the HMM, we
can interpret particle filter using Belief Propagation(BP) to perform
forward message passing from node x;_1 to node x;. The message
passing from Eq. 2 can be expressed as:

mt,t+1(xt+1)°</P(xt+1|xt)P(yt|xt)mt—1,t(xt)dxt 4)



At the starting point, the forward message can be expressed as:

Mo (x1) o« / pxilx0)p(xo)p(olxo)dxo « pxrlyo)  (5)

We see a forward message is proportional to the conditional prob-
ability of given state conditioned on all previous observation. By
applying the observation at the current state, we can get the poste-
rior probability of the current state Eq. 7.

me—1,t(xt) o p(xXtYo, Y1 --Yr—1) (6)
me—1,6 (x2)p(yelxe) o< p(xe, [yo, y1, ...yr) = bel(xz) (7)

Since computing the integral over non-linear and high-dimensional
state space is intractable, we can use Monte-Carlo methods to ap-
proximate the message with set of weighted particles m;—1(x;) =

{(yﬁi), wt(i))}?;[1 Weights for each sample w; are calculated by the
unary potential of sample x; and the importance sample is used to
generate a new sample set with their corresponding weights.

4 IMPLEMENTATION

Our hardware implementation takes inputs in the form of a user-
defined graphical model, G, and a set of randomly initialized belief
and message particles and performs belief propagation using the
pull message passing algorithm described in Section 3 until all parti-
cles converge. Our design centers around three main optimizations
in hardware: i) overlapping the belief update and message update
stages using deep pipelining, ii) customizing hardware computing
units for task-specific computing, and iii) implementing a flexible
hardware library for easy reconfiguration. Finally, all computations
are done using mixed-precision fixed point arithmetic to improve
speed efficiency on the FPGA (where object pose is represented
using 16-bit fixed-point and depth is 12-bit fixed point). We now
highlight these optimizations in more detail.

4.1 Overlapping Belief and Message Updates

The biggest improvement with a custom hardware design is ob-
tained by overlapping the computation of the belief update with the
message update. The dataflow for one iteration of belief update and
message update is shown in Fig. 2. For all samples in the message
samples set {5 }{\il on directed edge (¢, s), we create three concur-
rent datastreams to overlap the belief update and message update
computations. Datastream0 contains the belief unary unit, which
is in charge of calculating the unary likelihood ¢(Xs = s, Ys) for
the belief update stage on message sample ;5. Datastream1 goes
through the pairwise sampler for drawing a compatible sample X
from s s (X5 = pirs, X¢) and then calculates the unary likelihood for
the compatible sample X; as message unary. Datastream2 fetches
the message sample set from the neighboring edge (u, t), calculates
the pairwise point-wise potential to the message sample pg; and
accumulates the result as wyejgp, for message update. For the pair-
wise potential functions ¢ ; (X5 = Vt(;) Xt = yb([]t) ), if particle X
falls within the joint limits of s with respect to ¢, then the pairwise
likelihood is assigned a value of 1. Otherwise, the potential is the
exponential of the negative error between X and the nearest joint
limit. Within the pairwise point-wise unit, we further create parallel
()

computation units for p,;

to process all M samples for all ¢t nodes

Yangqi Liu, Anthony Opipari, Odest Chadwicke Jenkins, and R. Iris Bahar

neighboring node u. By using datastreams, we can avoid saving in-
termediate values for each stage of computation to reduce memory
accesses, which results in energy saving. Each stage in the dataflow
is pipelined such that the three datastreams can be computationally
balanced and there is no stalling before the resampler.

4.2 Raster Core

For belief propagation used in the 6 DoF pose estimation problem,
the unary likelihood is estimated by comparing the mesh model
of part s rendered at pose X with the observation Y. This unary
likelihood can be expressed as

rgb rgb\ ,depth depth
§s (X5 Ys) = ¢7 (X Y )ps P (X TP ®)
where ¢"9 is evaluated by the percentage of pixel intersection
between rendered object mask and the segmentation map, which
can be generated by a segmentation neural network. The variable
¢depth s estimated by the pixel distance error between the rendered

depth map to the observation depth map step ™h If the distance
error is below a certain threshold, we count the pixel as an inlier.

The unary likelihood computation requires rasterization, which
converts a mesh model defined by vertices and faces to a raster
depth image. The result of rasterization is a depth image of what a
3D object would look like at a certain pose. To implement unary
likelihood in hardware, we use a specialized raster core processing
unit. Similar to the one described in [8], the raster core pipelines
the 3D transformation with rasterization and inlier comparison
steps for a given sample. An example is shown in Fig. 3. During the
rasterization process, the rasterized pixel is immediately compared
with the corresponding observation pixel to check if the pixel is
an inlier, without waiting for the entire object to be rasterized
first. Compared to a GPU implementation, which is optimized for
graphical rendering, our raster core takes advantage of pipelining
and overlaps the process of rendering and inlier comparison, which
has to be performed sequentially on a GPU. The raster core unit
is modularized and can be replicated to process multiple samples
concurrently to further improve its throughput.

4.3 Parallel pairwise potential core

For the 6 DoF pose estimation problem, the sample pose and joint
limit are represented using dual quaternions. For two neighboring
nodes s and ¢, the joint limit between the nodes s and t is defined by
Ris = [dqfl‘si", dqfl‘sax]. For two samples p;s and py,¢, the pairwise
potential is calculated by the distance of ;5 to the joint constraints
at fiy;: [dq;'f;” * flyt, dq;'I‘s“x s fiyr ). If piys falls within this range, the
pairwise potential score is 1, otherwise the pairwise potential score
is exponentially decreasing with the distance from the range limit.

For our FPGA implementation, we partitioned our message sam-
ple buffer according to the number of parallel pairwise potential
cores. Therefore, each pairwise potential core can fetch from the
buffer concurrently and the outputs are accumulated in an adder
tree, as shown in Fig. 4. Pairwise potential cores are implemented
with DSPs and lookup tables to compute the dual quaternion trans-
formation and comparison. Note that fetching data, pairwise poten-
tial computation, and adder tree computation steps are pipelined,

which increases throughput when computing pairwise potential.
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Array of all messages going to
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Figure 2: The hardware system for our nonparametric belief propagation (NBP) algorithm. The processing system (CPU) takes
the user input object PGM, extracts all directed edges, and transfers the observation data to the programmable logic through the
AXI-4 protocol. Using programmable logic, we implement the NBP algorithm by creating three parallel dataflows, overlapping
the belief update with message update computation. Within the unary likelihood and pairwise likelihood unit, we further
create parallel processing units to increase throughput. We save the message weight w; in an array and the resampler performs
importance sampling to generate a new set of beliefs for node s for the next iteration.

Transformation rasterization g ?
~J k partition | —> +
Triangle compare with " Lo ) —>
sk observation partition Il fetch sample from Pairwise potential core
neighboring nodeg
rtition |1 irwi i >
partitio Pairwise potential core N

message sample
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Figure 3: Example of the raster core processing each triangle oy
of the object mesh model in sequence. On the right, the red
area is the rastered depth image and the blue area is the s“::ﬁ:?;

observation from the depth camera.

Figure 4: Example of 4 parallel pairwise potential units



4.4 Reconfigurability

In Section 3, we explained that particle filtering is a special case of
nonparametric belief propagation (NBP). Therefore, we can create
a uniform HLS-based library that can generate accelerator designs
with different data flows and streams to satisfy either of the algo-
rithms’ requirements. The architecture flow of our Monte-Carlo
Perception Library is shown in Fig. 5. In our library design, particle
filtering and NBP share common hardware modules including the
belief unary module, the weight calculator/merger, and the resam-
pling module, while the NBP algorithm has a additional hardware
component — a pairwise likelihood unit for calculating the mes-
sages from the neighboring nodes. The library is able to reroute data
streams according to user configurations. For such a library, we can
handle three types of pose estimation algorithms: particle filtering
for rigid-body objects, multiple particle filters for articulated object
parts, and NBP for articulated object pose estimation.

To give more control of the accelerator design to users without
requiring detailed hardware knowledge, we created a user inter-
face to provide some knobs for users to adjust to generate specific
designs tuned for their applications. We allow users to configure
the accelerator based on different resource allowances, as well as
power and energy constraints, as shown in Fig. 6. The input to
the interface is a Unified Robot Description File (URDF) for the
test object and the user parameters, which are used to create two
configuration files. The synthesize time configuration file includes a
list of algorithms the accelerator is running, the number of parallel
hardware components, the size of the memory scratchpad inside
the raster core, and algorithm parameters. The file determines the
amount of hardware resources needed by the accelerator and is used
to generate the desired customized hardware (i.e., an HLS design
and IP) mapped onto an FPGA. With a complete accelerator design
on an FPGA, the runtime configuration file is integrated with the
software interface and used to tradeoff runtime and accuracy of the
design by varying the number of samples, algorithm iterations, test
objects, and test scenes. In this way, the user can tune the system
based on application requirements.

5 EXPERIMENTAL RESULTS

We implemented our hardware design using Xilinx Vivado HLS
and tested it on a Xilinx FPGA ZCU102 Evaluation Board running
at 200 MHz. We compare the performance to a reference GPU
implementation running on two different GPU platforms: a high-
performance Nvidia Titan Xp running at 1.4GHz, and an embedded
low-power platform Nvidia Jetson AGX Xavier running at 1.37GHz.
Note that both GPU platforms run at much higher clock frequency
with more hardware resources than the FPGA. To measure power
on these different platforms, we used the Vivado power analyzer to
measure power on the FPGA, the NVIDIA Management Library to
estimate power on the Titan Xp, and an on-board power monitor to
collect readings for the Jetson AGX. The reference design on GPU
utilizes the high degree of parallelism in CUDA kernels and the
OpenGL library to render and process pose samples in parallel.

5.1 6 DoF pose estimation for tool dataset

We tested static frame 6 DoF pose estimation using a tool dataset
that consists of scenes of hand tools randomly placed on the table-
top, as used in [12]. We tested the following articulated objects,
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Figure 5: The overall architecture for the generalized library.
The Belief Propagation datapath is shown in blue and the
datapath that only belongs to particle filter is shown in red.
Based on the user specification, the library can automatically
select the datapath and hardware components for different
algorithms.
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Figure 6: User interface for generalized library.

shown in Table 1: a clamp, 3 types of pliers, a screwdriver, and a
flashlight, as they have different mesh sizes and articulations. For
the experiment, we evaluated our design with 256 particles for each
directed edge and randomly initialized the particles from the image
segmentation. Since this experiment was meant focus specifically
on the hardware acceleration of the belief propagation algorithm,
the image segmentation was generated from the groundtruth, rather
than a neural network output. We ran the belief message passing
loop for 100 iterations. An example run of the algorithm is shown
in Figure 7, where part (a) shows the initial belief and (b) shows

the final conver%\zfd belief. . )
5.1.1  Runtime. We compare the per-iteration (one pass of message

update and belief update) runtime for the different objects on three
different platforms. The runtime comparison for each articulated
object is shown in Fig. 8. Compared to the GPU implementations,
except for the clamp and flashlight, our FPGA design achieves bet-
ter or comparable results to the Titan Xp and significant runtime
improvements compared to the Jetson AGX. Note that running on
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(2) (b)

Figure 7: Static frame 6 DoF pose estimation with PMPNBP,
(a) represents the initial random sampled belief of the clamp
object and (b) shows the convergence of samples after 100
iterations of belief message passing.

screwdriver flashlight
} PROR®, -0-®
IEEORC NOZO

Table 1: Test objects with corresponding PGMs

Average per iteration runtime(ms)
W FPGA W Titan Xp [ Jetson AGX

0 226.88

clamp grey_pliers screwdriver longnose_pliers red_pliers flashlight

Figure 8: Average per-iteration runtime (in ms) for articu-
lated object 6 DoF pose estimation for tool dataset.

the FPGA, object rendering times vary depending on the specific
object’s size and mesh size. As often is the case, rendering is the
critical path for the iteration runtime. Even though the graph com-
plexity is the same for the clamp and pliers, the clamp has 10-15X
more pixels rendered compared to other objects, which results in a
longer runtime on the FPGA. However, for the GPU implementa-
tion, most of the computing time is spent on the inlier computation
and rendering is highly optimized through the OpenGL library
with a large number of parallel threads. Our FPGA implementa-
tion shows runtime improvements by using optimal dataflow and
pipelining the computation while achieving parallelism by creating
concurrent processing units. We can further reduce the rendering
time on the FPGA by creating more parallel raster cores if we have
more hardware resources on board.

To put our runtime improvements in better perspective, we also
compare our results to previous works. The CPU implementation

of the PMPNBP algorithm in [3] for a simple 2D problem takes
over 50 sec per-iteration for 100 particles and the CPU-GPU mixed
implementation in [12] on the same tool dataset reports 0.5s—2s
per-iteration runtime with 300 particles. We see our GPU and FPGA
implementations have greatly accelerated the PMPNBP algorithm
compared to these implementations by 1-2 orders of magnitude.

5.1.2  Power and Energy. Power and energy comparisons on dif-
ferent hardware platforms are shown in Table 2. The power is
measured as an average over 100 iterations of the pull message
passing algorithm and energy is measured by multiplying power
with average per-iteration runtime. Our FPGA design is more than
25X power efficient and 26X energy efficient compared to the Titan
Xp. Compared to the low power Jetson AGX we are 1.4X more
power efficient and at least 14X more energy efficient.

FPGA Titan Xp | Jetson AGX
power 4.7W 119.85W 6.4W
power saving - >25x >1.4x
energy 65.73 m] | 1747.41m] 977.66mJ
energy saving - >26x >14x

Table 2: 6 DoF pose estimation power and energy comparison
for the tool dataset.

5.2 Reconfigurable library

In our experiments, we also evaluated runtime, power, and energy
improvement with different accelerator designs generated by our
Monte-Carlo Perception Library. By creating our perception library,
we can easily experiment with different design configurations and
allow for easy design space exploration. Here, we experiment with
runtime and power impact by adjusting different numbers of com-
putation units. We first create an optimal design for each articulated
object as shown in Table 3. For special cases such as screwdrivers
and flashlights, the message passing happens only between two
nodes and there is no pairwise potential passing from the neighbor
of the neighboring nodes. Therefore, those objects can be evalu-
ated with accelerator design with unary units only. By tailoring
specific hardware resources for each testing object, we are able to
further improve the runtime and power dissipation of the algorithm
compared to the previous fixed design shown in Fig. 8. The improve-
ments in runtime, power and energy in shown in Figures 9 10 11.
In particular, we see that through optimal configurations for indi-
vidual object, we are able to further reduce energy cost by another
20%-30%.

We also used our perception library to evaluate different particle
filtering-based pose estimation algorithms. We create two experi-
ments, one treating the object as a rigid body object and the other
allowing for articulations in the objects using part-based particle
filtering (Part-based PF), described in [12]. In Table 4 we showed
the runtime and power for two particle filtering experiments.

Finally, we performed design space exploration with the library
design itself. Design space exploration allows users to find the
“sweet-spot" of the design under their particular constraints. We
created accelerator designs with different configurations and ex-
plored the tradeoff between runtime and power, as shown in Fig. 12.
The design exploration is performed by using different algorithms



Runtime improvement

50 y 5
5 0.0% 45 0.0% 45% 45%
40 4
35 3.5
30 3
25 25
20 2
15 » % 15
10 202% 16.7% 24.4% 31 17.7% 1
5 - X . d 05
0 | o o
Q © © o s ¢ N o o
o & & & B8 S N R
& 27 7 & é®$ Y r2% D7
8 < 5 § o <
© )

runtime  moptimized_runtime

Figure 9: Runtime improvement

l Object [ Optimal Configuration ‘
clamp 8 raster core per unary unit + 1 pairwise poten-
tial core + 150x150 raster core memory
grey pliers 8 raster core per unary unit + 1 pairwise poten-
tial core + 80x80 raster core memory
red pliers 8 raster core per unary unit + 1 pairwise poten-

tial core + 80x80 raster core memory

longnose pli- | 8 raster core per unary unit + 1 pairwise poten-

ers tial core + 80x80 raster core memory

screwdriver | 8 raster core per unary unit + 0 pairwise poten-
tial core + 70x70 raster core memory

flashlight 8 raster core per unary unit + 0 pairwise poten-

tial core + 80x80 raster core memory

Table 3: runtime and power for different articulated object
pose estimation at their optimal configuration. Since screw-
driver and flashlight has only two nodes, the message pass-
ing happens only between two nodes so there is no need to
calculate the pairwise potential and therefore, they can be
evaluated with IP design with unary unit only.

Part-based Rigid object
PF(16 raster | PF(16 raster
cores) cores)
power 31 W 31 W
clamp 15.7ms 8.15ms
grey_pliers 3.4ms 2.05ms
red_pliers 3.4ms 2.1ms
longnose_pliers 6.7ms 3.2ms
screwdriver 3.0ms 1.6ms
flashlight 3.2ms 3.1ms

Table 4: Runtime and power for particle-filtering based pose
estimation for rigid body objects and articulated objects

and adjusting different numbers of parallel hardware components,
while using the same number of particles for all the designs. We
see that for NBP algorithms, increasing the number of pairwise
potential units does not help with the overall improvement in run-
time given the fact that rasterization is the critical path. In general,
increasing the number of raster core units has more benefits in
reducing overall energy consumption. NBP algorithms also have
much higher energy consumption compared to part-based par-
ticle filtering algorithms. As shown in pose estimation accuracy

Power improvment
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from [12], part-based particle filtering actually has shown decent
pose estimating accuracy with symmetric objects (such as screw-
drivers). This experiment informs us that we can use part-based
particle filtering with symmetric objects as it saves significant en-
ergy and runtime.
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Figure 12: Design space exploration.

6 CONCLUSION

In this paper, we present novel hardware architectures for accelerat-
ing sampling-based pose estimation, critical for robotic applications.
Our accelerator design achieves runtime and power/energy advan-
tages through hardware customized to address the main bottle-
necks of the pose-estimation algorithm. In particular, we use deep
pipelining to overlap belief and message update stages, pipeline
balancing across different data streams, and elimination of unnec-
essary computation to optimize the computation. In addition, our
flexible Monte-Carlo Perception Library allows users to modify the
accelerator design based on their performance requirements and
hardware constraints, which results in further runtime and energy
saving compared to a fixed design. For future work, we hope to
extend our perception library to include other machine learning al-
gorithms appropriate for robotics, including those used for motion
planning.
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