
A Reconfigurable Hardware Library for Robot Scene Perception
(Invited Paper)

Yanqi Liu
Brown University

Dept. of Computer Science

Providence, RI, USA

yanqi_liu@alumni.brown.edu

Anthony Opipari
University of Michigan

Dept. of Computer Science

Ann Arbor, MI, USA

topipari@umich.edu

Odest Chadwicke Jenkins
University of Michigan

Dept. of Robotics

Ann Arbor, MI, USA

ocj@umich.edu

R. Iris Bahar
Colorado School of Mines

Dept. of Computer Science

Golden, CO, USA

ribahar@mines.edu

ABSTRACT

Perceiving the position and orientation of objects (i.e., pose es-

timation) is a crucial prerequisite for robots acting within their

natural environment. We present a hardware acceleration approach

to enable real-time and energy efficient articulated pose estimation

for robots operating in unstructured environments. Our hardware

accelerator implements Nonparametric Belief Propagation (NBP)

to infer the belief distribution of articulated object poses. Our ap-

proach is on average, 26X more energy efficient than a high-end

GPU and 11X faster than an embedded low-power GPU imple-

mentation. Moreover, we present a Monte-Carlo Perception Library

generated from high-level synthesis to enable reconfigurable hard-

ware designs on FPGA fabrics that are better tuned to user-specified

scene, resource, and performance constraints.

CCS CONCEPTS

•Hardware→Hardware accelerators; •Computer systems or-

ganization→ Real-time system architecture; Robotics; •Math-

ematics of computing → Probabilistic reasoning algorithms.

KEYWORDS

robotics, hardware acceleration, belief propagation, energy-efficient

ACM Reference Format:

Yanqi Liu, Anthony Opipari, Odest Chadwicke Jenkins, and R. Iris Bahar. .

A Reconfigurable Hardware Library for Robot Scene Perception: (Invited

Paper). In . ACM, New York, NY, USA, 9 pages.

, ,

1 INTRODUCTION
Determining the position and orientation of an object (i.e., pose

estimation) is crucial for robotic perception systems. While neural

networks are considered the state-of-art techniques for object pose

estimation, they require significant hardware resources and manual

labeling efforts for training. Moreover, general purpose GPUs used

for neural network inference are usually extremely power hungry

and can be challenging to implement on mobile robot platforms

with limited power constraints and battery life. Finally, evenwith all

the compute and training efforts, these neural network approaches

commonly perform poorly when faced with previously unseen

scenarios. While retraining the neural network with updated input

data can improve accuracy, this takes time and often the training

data for these new scenarios are not available.

Sampling based methods [4, 9, 11, 12, 16] are able to combine the

advantages of neural network approaches with the added robust-

ness of probabilistic inference and have been shown to outperform

end-to-end neural network approaches when encountering new

and challenging environments [2]. However, these sampling meth-

ods use iterative processing and have computation patterns that

do not map well to the fine-grained parallel execution of GPUs,

resulting in slow runtimes and high energy consumption on a GPU.

Recent works have explored custom hardware acceleration of

sampling based pose estimation algorithms through FPGAs [8, 10],

which has resulted in significant improvements in both runtime and

energy consumption. However, these prior works have two main

limitations: 𝑖) they consider pose estimation assuming rigid-body

objects, and 𝑖𝑖) the hardware implementation is fixed to a specific

algorithm and cannot be reconfigured to better match design or

object constraints for a specific scenario. In this work, we address

both these concerns.

Oftentimes, there is an imbalance between software and hard-

ware development effort. While it might take minimal effort to

modify the software, redesigning the hardware may take more time

and effort and require hardware domain knowledge. With the re-

configurability of FPGAs and the use of High Level Synthesis (HLS),

we can reduce the redesign effort by creating an open-source soft-

ware library that can be used to synthesize new hardware designs1.

1The repository is available at: https://progress.eecs.umich.edu/projects/bp-accelerate/

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3508352.3561110&domain=pdf&date_stamp=2022-12-22

, , Yanqi Liu, Anthony Opipari, Odest Chadwicke Jenkins, and R. Iris Bahar

By creating a software template library, we further help to increase

the accessibility for algorithm developers to customize and create

accelerators based on their design constraints.

In this paper, we present a novel hardware implementation of

belief propagation for articulated object pose estimation and utilize

the reconfigurable feature of FPGAs to create a software template

library that can be configured to generate hardware designs for

implementing pose estimation for both rigid-body and articulated

objects.

The rest of this paper is organized as follows. Section 2 summa-

rizes related work in scene perception and hardware acceleration

techniques for robotics. Section 3 describes the non-parametric be-

lief propagation algorithm to perform pose estimation. In Section 4

we describe in detail the hardware architectures of the accelerator

design and introduce the design of a software library for reconfig-

urable hardware implementations. Section 5 reports on our exper-

imental results for our FPGA design and compares them to both

a high performance and low-power GPU implementation. Finally,

Section 6 summarizes our work and discusses important considera-

tions for future open source hardware library development.

2 BACKGROUND
Robot perception is critical for robot manipulation. This step can

be computationally expensive and slow; however, there are few

works that consider optimizations with hardware acceleration. Of

these works, Schaeferling et al. [14] implement a CPU-FPGA solu-

tion for SIFT feature based pose estimation. The work of Schäffer

et al. [15] uses GPU and IMU sensors for vehicle localization and

pose estimation, which is not applicable for 6 degree-of-freedom

(DoF) pose estimation. Finally, Kosuge et al. [7] provides an FPGA

accelerated iterative closest point algorithm, which cannot produce

accurate pose results in unstructured environments with occlusions

(as shown in [17]). Finally, recent works [8], [10] proposed an FPGA

design for accelerating particle filtering for 6 DoF rigid body object

pose estimation. Compared to rigid body object pose estimation,

articulated 6 DoF object pose estimation presents additional per-

ception challenges. The configuration space of articulated objects

grows in dimensionality with the number of individual parts, which

presents a computational challenge for any low-power real-time

computing platforms.

Hardware accelerator design often requires significant domain

expertise. As a results, there has been recent interest in develop-

ing open-source hardware acceleration libraries. Several works use

high-level synthesis tools to aid with library development. Kalms

et al. [6] and Gorgon and Tadeusiewicz [5] use HLS tools to cre-

ate an open-source library for image processing. The Xilinx Vitis

library [1] provides a set of domain-specific accelerator libraries

that can handle applications from image processing to databases to

neural networks inference. We take a similar approach of using HLS

tools to develop a novel hardware library for object pose estimation,

which fills the need for a domain-specific acceleration library in

robotic pose estimation. Our FPGA libraries are parameterized and

can be configured to target different hardware resource constraints

and algorithm runtime and accuracy requirements.

3 ALGORITHM
The goal for sampling-based object pose estimation is to infer the

probability distribution of the object pose using observed sensor

information. We use belief propagation [13] to efficiently model

and compute the distribution for both rigid-body and articulated

objects. For articulated objects specifically, we find the pose of each

object part separately. In continuous domains such as 6 DoF pose

estimation, belief propagation becomes intractable due to its use of

integrals. To enable performance in continuous spaces, algorithmic

approximations such as pull message passing for nonparametric

belief propagation (PMPNBP) [3] have been proposed.

The PMPNBP algorithm uses a Markov Random Field (MRF) to

model the object. The MRF is defined by an undirected graph G

composed of a set of nodes V and a set of edges E. Each node

𝑠 ∈ V consists of a hidden variable, 𝑋𝑠 , representing the object

pose or a part of the object pose and 𝑌𝑠 represents a corresponding
observed data related to the part. Denoting all hidden variables in

the graph as 𝑋 and all observed variables as 𝑌 , the joint probability
distribution of the random variables is given by the factorization:

𝑃 (𝑋,𝑌) ∝
∏

(𝑠,𝑡) ∈E

𝜓𝑠,𝑡 (𝑋𝑠 , 𝑋𝑡)
∏
𝑠∈V

𝜙𝑠 (𝑋𝑠 , 𝑌𝑠) , (1)

where 𝜙𝑠 (𝑋𝑠 , 𝑌𝑠) is the unary likelihood for node 𝑠 , which describes

the correspondence of an object part’s pose with its observation.

The function𝜓𝑠,𝑡 (𝑋𝑠 , 𝑋𝑡) denotes the pairwise likelihood between

neighboring nodes, which measures how compatible part 𝑠 at pose
𝑋𝑠 is with respect to part 𝑡 at pose𝑋𝑡 based on the pair’s articulation

constraints.

For 6 DoF pose estimation, the observation is the RGBD data

from the camera sensor. The Markov random field is generated

using a Unified Robot Description Format (URDF) that describes

the joint limits between articulated object parts (articulation con-

straints), and the 3D mesh models of each object part. We compare

the rendered mesh model depth to the observation depth as an

estimation of unary likelihood and use the URDF file to create joint

constraints as needed for pairwise likelihood calculations. Details

of the unary likelihood calculation are given in Section 4.2.

3.1 Message passing

The PMPNBP algorithm defines a particle-based message passing

approach for approximate inference of each node’s belief distribu-

tion. The message passing scheme is illustrated in Fig. 1 with an

articulated clamp object, where each node 𝑋𝑠 corresponds to the

pose of a part of the object and messages are passed between neigh-

boring nodes. The belief distribution 𝑏𝑒𝑙 of each node and messages

𝑚 between nodes are each represented by a set of weighted parti-

cles {𝑤, 𝜇}𝑀𝑖=1, where 𝜇 represents a sampled pose hypothesis for

one object part, and𝑤 is the corresponding sample’s weight. In the

message passing stage, a message𝑚𝑡𝑠 (𝑋𝑠) from node 𝑡 to node

𝑠 constitutes the distribution of the belief of node 𝑠 informed by its

neighboring node 𝑡 . This is mathematically expressed as:

𝑚𝑛
𝑡𝑠 (𝑋𝑠) =

∑
𝑋𝑡 ∈X𝑡

𝜙𝑡 (𝑋𝑡 , 𝑌𝑡)𝜓𝑠,𝑡 (𝑋𝑠 , 𝑋𝑡)
∏

𝑢∈𝜌 (𝑡)\𝑠

𝑚𝑛−1
𝑢𝑡 (𝑋𝑡), (2)

where 𝜌 (𝑡) \ 𝑠 denotes neighboring nodes of 𝑡 excluding node 𝑠 ,
and X𝑡 denotes the particle set of node 𝑡 . To compute𝑚𝑛

𝑡𝑠 (𝑋𝑠) at

iteration 𝑛, first 𝜇
(𝑖)
𝑡𝑠 is sampled from the belief 𝑏𝑒𝑙𝑛−1𝑠 (𝑋𝑠). Next,

these samples are passed to the neighboring nodes of 𝑡 where the

weights {𝑤
(𝑖)
𝑡𝑠 }𝑀𝑖=1 are computed. This message update process in

outlined in Algorithm 1.

A Reconfigurable Hardware Library for Robot Scene Perception , ,

Figure 1: left: A clamp represented as an articulate object by

an MRF. Each hidden node 𝑋𝑠 corresponds to the pose of a

part of the object with the corresponding observed node 𝑌𝑠 .
Messages are passed bi-directionally between nodes (𝑋𝑠 , 𝑋𝑡)

connected by an edge. right: A clamp represented as rigid

body by a Hidden Markov Model.

Algorithm 1: PMPNBP Message Update [3]

Input : Incoming neighbor messages

𝑚𝑛−1
𝑢𝑡 (𝑋𝑡) = {(𝜇 (𝑖)𝑢𝑡 ,𝑤

(𝑖)
𝑢𝑡)}

𝑀
𝑖=1 ∀𝑢 ∈ 𝜌 (𝑡) \ 𝑠

Output :Updated outgoing message

𝑚𝑛
𝑡𝑠 (𝑋𝑠) = {(𝜇 (𝑖)𝑡𝑠 ,𝑤

(𝑖)
𝑡𝑠)}𝑀𝑖=1

Function message_update(𝑚𝑛−1
𝑢𝑡):

Sample𝑀 outgoing particles {𝜇
(𝑖)
𝑡𝑠 }𝑀𝑖=1 from 𝑏𝑒𝑙𝑛−1𝑠 (𝑋𝑠)

foreach 𝜇
(𝑖)
𝑡𝑠 do

sample 𝑋
(𝑖)
𝑡 ∼ 𝜓𝑠,𝑡 (𝑋𝑠 = 𝜇

(𝑖)
𝑡𝑠 , 𝑋𝑡) ⊲ pairwise sampler

𝑤
(𝑖)
unary ← 𝜙𝑡 (𝑋𝑡 = 𝑋

(𝑖)
𝑡 , 𝑌𝑡)

𝑤 (𝑖)
neigh

←

∏
𝑢∈𝜌 (𝑡)\𝑠

(∑𝑀
𝑗=1𝑤

(𝑗)
𝑢𝑡 𝜓𝑠,𝑡 (𝑋𝑠 = 𝜇

(𝑖)
𝑡𝑠 , 𝑋𝑡 = 𝜇

(𝑗)
𝑢𝑡)

)

𝑤
(𝑖)
𝑡𝑠 ← 𝑤

(𝑖)
unary ·𝑤

(𝑖)
neigh

end

𝑚𝑛
𝑡𝑠 (𝑋𝑠) ← {(𝜇

(𝑖)
𝑡𝑠 ,𝑤

(𝑖)
𝑡𝑠)}𝑀𝑖=1

return𝑚𝑛
𝑡𝑠 (𝑋𝑠)

3.2 Belief update

In the belief update stage, the marginal belief of the hidden vari-

able of node 𝑠 is expressed as the product of all incoming messages

from neighboring nodes 𝑡 ∈ 𝜌 (𝑠) weighted by the node’s unary

likelihood, as shown in Equation 3:

𝑏𝑒𝑙𝑛𝑠 (𝑋𝑠) ∝ 𝜙𝑠 (𝑋𝑠 , 𝑌𝑠)
∏

𝑡 ∈𝜌 (𝑠)

𝑚𝑛
𝑡𝑠 (𝑋𝑠). (3)

The node 𝑠 receives all weighted incoming messages from the

neighboring nodes and combines them into a set {(𝜇
(𝑖)
𝑠 ,𝑤

(𝑖)
𝑠)}𝑇𝑖=1.

The particles are then normalized and resampled as a new set of

belief particles using importance sampling for the next iteration.

Pseudocode for the belief update stage is included in Algorithm 2.

Algorithm 2: PMPNBP Belief Update [3]

Input : Incoming neighbor messages

𝑚𝑛
𝑡𝑠 (𝑋𝑠) = {(𝜇 (𝑖)𝑡𝑠 ,𝑤

(𝑖)
𝑡𝑠)}𝑀𝑖=1 ∀𝑡 ∈ 𝜌 (𝑠)

Output :Updated belief 𝑏𝑒𝑙𝑛𝑠 (𝑋𝑠) = {𝜇 (𝑖)𝑠 }𝑀𝑖=1
Function belief_update(𝑚𝑛

𝑡𝑠 (𝑋𝑠)):
foreach 𝑡 ∈ 𝜌 (𝑠) do

foreach 𝜇
(𝑖)
𝑡𝑠 do

𝑤
(𝑖)
𝑡𝑠 ← 𝑤

(𝑖)
𝑡𝑠 · 𝜙𝑠 (𝑋𝑠 = 𝜇

(𝑖)
𝑡𝑠 , 𝑌𝑠)

Normalize weights {𝑤 (𝑖)
𝑡𝑠 }𝑀𝑖=1, resulting in∑𝑀

𝑖=1𝑤
(𝑖)
𝑡𝑠 = 1

end

end

Combine all 𝑇 of the incoming message particles into a

set {(𝜇 (𝑖)𝑠 ,𝑤
(𝑖)
𝑠)}𝑇𝑖=1

Normalize the weights in this combined particle set,

resulting in
∑𝑇
𝑖=1𝑤

(𝑖)
𝑠 = 1.

Perform resampling to sample new set of {𝜇 (𝑖)𝑠 }𝑀𝑖=1 that

represents 𝑏𝑒𝑙𝑛𝑠
return 𝑏𝑒𝑙𝑛𝑠 = {𝜇

(𝑖)
𝑠 }𝑀𝑖=1

Algorithm 3: Pull Message Passing for Nonparametric

Belief Propagation (PMPNBP) [3]

foreach iteration 𝑛 ∈ [1, 𝑁] do

foreach edge (𝑠, 𝑡) ∈ E do
𝑚𝑛
𝑡𝑠 (𝑋𝑠) ←

message_update(𝑚𝑛−1
𝑢𝑡 (𝑋𝑡) ∀𝑢 ∈ 𝜌 (𝑡) \ 𝑠)

𝑚𝑛
𝑠𝑡 (𝑋𝑡) ←

message_update(𝑚𝑛−1
𝑢𝑠 (𝑋𝑠) ∀𝑢 ∈ 𝜌 (𝑠) \ 𝑡)

end

foreach node 𝑠 ∈ V do
𝑏𝑒𝑙𝑛𝑠 (𝑋𝑠) ← belief_update(𝑚𝑛

𝑡𝑠 (𝑋𝑠) ∀𝑡 ∈ 𝜌 (𝑠))

end

end

The belief update and message update stages are performed alter-

natively and iteratively until the belief at each node converges.

Collectively, these processing stages makes up the pull message

passing algorithm, as is outlined in Algorithm 3.

3.3 Particle filtering

The particle filtering algorithm [18, 19] performs inference on a Hid-

den Markov Model (HMM), which can be represented as a special

case for Non-parametric belief propagation. Such representation

can be used to model the probabilistic distribution any rigid-body

objects where we do not expect the changes in the object geometry

as we seen in Fig. 1. With the sequential nature of the HMM, we

can interpret particle filter using Belief Propagation(BP) to perform

forward message passing from node 𝑥𝑡−1 to node 𝑥𝑡 . The message

passing from Eq. 2 can be expressed as:

𝑚𝑡,𝑡+1 (𝑥𝑡+1) ∝

∫
𝑝 (𝑥𝑡+1 |𝑥𝑡)𝑝 (𝑦𝑡 |𝑥𝑡)𝑚𝑡−1,𝑡 (𝑥𝑡)𝑑𝑥𝑡 (4)

, , Yanqi Liu, Anthony Opipari, Odest Chadwicke Jenkins, and R. Iris Bahar

At the starting point, the forward message can be expressed as:

𝑚0,1 (𝑥1) ∝

∫
𝑝 (𝑥1 |𝑥0)𝑝 (𝑥0)𝑝 (𝑦0 |𝑥0)𝑑𝑥0 ∝ 𝑝 (𝑥1 |𝑦0) (5)

We see a forward message is proportional to the conditional prob-

ability of given state conditioned on all previous observation. By

applying the observation at the current state, we can get the poste-

rior probability of the current state Eq. 7.

𝑚𝑡−1,𝑡 (𝑥𝑡) ∝ 𝑝 (𝑥𝑡 |𝑦0, 𝑦1, ...𝑦𝑡−1) (6)

𝑚𝑡−1,𝑡 (𝑥𝑡)𝑝 (𝑦𝑡 |𝑥𝑡) ∝ 𝑝 (𝑥𝑡 , |𝑦0, 𝑦1, ...𝑦𝑡) = 𝑏𝑒𝑙 (𝑥𝑡) (7)

Since computing the integral over non-linear and high-dimensional

state space is intractable, we can use Monte-Carlo methods to ap-

proximate the message with set of weighted particles𝑚𝑡−1,𝑡 (𝑥𝑡) =

{(𝜇
(𝑖)
𝑡 ,𝑤

(𝑖)
𝑡)}𝑀𝑖=1 Weights for each sample𝑤𝑡 are calculated by the

unary potential of sample 𝑥𝑡 and the importance sample is used to

generate a new sample set with their corresponding weights.

4 IMPLEMENTATION

Our hardware implementation takes inputs in the form of a user-

defined graphical model, G, and a set of randomly initialized belief

and message particles and performs belief propagation using the

pull message passing algorithm described in Section 3 until all parti-

cles converge. Our design centers around three main optimizations

in hardware: 𝑖) overlapping the belief update and message update

stages using deep pipelining, 𝑖𝑖) customizing hardware computing

units for task-specific computing, and 𝑖𝑖𝑖) implementing a flexible

hardware library for easy reconfiguration. Finally, all computations

are done using mixed-precision fixed point arithmetic to improve

speed efficiency on the FPGA (where object pose is represented

using 16-bit fixed-point and depth is 12-bit fixed point). We now

highlight these optimizations in more detail.

4.1 Overlapping Belief and Message Updates

The biggest improvement with a custom hardware design is ob-

tained by overlapping the computation of the belief update with the

message update. The dataflow for one iteration of belief update and

message update is shown in Fig. 2. For all samples in the message

samples set {𝜇𝑡𝑠 }
𝑀
𝑖=1 on directed edge (𝑡, 𝑠), we create three concur-

rent datastreams to overlap the belief update and message update

computations. Datastream0 contains the belief unary unit, which

is in charge of calculating the unary likelihood 𝜙 (𝑋𝑠 = 𝜇𝑡𝑠 , 𝑌𝑠) for
the belief update stage on message sample 𝜇𝑡𝑠 . Datastream1 goes

through the pairwise sampler for drawing a compatible sample 𝑋𝑡

from𝜓𝑠,𝑡 (𝑋𝑠 = 𝜇𝑡𝑠 , 𝑋𝑡) and then calculates the unary likelihood for

the compatible sample 𝑋𝑡 as message unary. Datastream2 fetches

the message sample set from the neighboring edge (𝑢, 𝑡), calculates
the pairwise point-wise potential to the message sample 𝜇𝑠𝑡 and
accumulates the result as𝑤neigh for message update. For the pair-

wise potential functions 𝜓𝑠,𝑡 (𝑋𝑠 = 𝜇
(𝑖)
𝑡𝑠 , 𝑋𝑡 = 𝜇

(𝑗)
𝑢𝑡), if particle 𝑋𝑠

falls within the joint limits of 𝑠 with respect to 𝑡 , then the pairwise

likelihood is assigned a value of 1. Otherwise, the potential is the

exponential of the negative error between 𝑋𝑠 and the nearest joint

limit. Within the pairwise point-wise unit, we further create parallel

computation units for 𝜇
(𝑗)
𝑢𝑡 to process all𝑀 samples for all 𝑡 nodes

neighboring node 𝑢. By using datastreams, we can avoid saving in-

termediate values for each stage of computation to reduce memory

accesses, which results in energy saving. Each stage in the dataflow

is pipelined such that the three datastreams can be computationally

balanced and there is no stalling before the resampler.

4.2 Raster Core

For belief propagation used in the 6 DoF pose estimation problem,

the unary likelihood is estimated by comparing the mesh model

of part 𝑠 rendered at pose 𝑋𝑠 with the observation 𝑌𝑠 . This unary
likelihood can be expressed as

𝜙𝑠 (𝑋𝑠 , 𝑌𝑠) = 𝜙
𝑟𝑔𝑏
𝑠 (𝑋𝑠 , 𝑌

𝑟𝑔𝑏
𝑠)𝜙

𝑑𝑒𝑝𝑡ℎ
𝑠 (𝑋𝑠 , 𝑌

𝑑𝑒𝑝𝑡ℎ
𝑠), (8)

where 𝜙𝑟𝑔𝑏 is evaluated by the percentage of pixel intersection

between rendered object mask and the segmentation map, which

can be generated by a segmentation neural network. The variable

𝜙𝑑𝑒𝑝𝑡ℎ is estimated by the pixel distance error between the rendered

depth map to the observation depth map 𝑌
𝑑𝑒𝑝𝑡ℎ
𝑠 . If the distance

error is below a certain threshold, we count the pixel as an inlier.

The unary likelihood computation requires rasterization, which

converts a mesh model defined by vertices and faces to a raster

depth image. The result of rasterization is a depth image of what a

3D object would look like at a certain pose. To implement unary

likelihood in hardware, we use a specialized raster core processing

unit. Similar to the one described in [8], the raster core pipelines

the 3D transformation with rasterization and inlier comparison

steps for a given sample. An example is shown in Fig. 3. During the

rasterization process, the rasterized pixel is immediately compared

with the corresponding observation pixel to check if the pixel is

an inlier, without waiting for the entire object to be rasterized

first. Compared to a GPU implementation, which is optimized for

graphical rendering, our raster core takes advantage of pipelining

and overlaps the process of rendering and inlier comparison, which

has to be performed sequentially on a GPU. The raster core unit

is modularized and can be replicated to process multiple samples

concurrently to further improve its throughput.

4.3 Parallel pairwise potential core

For the 6 DoF pose estimation problem, the sample pose and joint

limit are represented using dual quaternions. For two neighboring

nodes 𝑠 and 𝑡 , the joint limit between the nodes 𝑠 and 𝑡 is defined by
𝑅𝑡 |𝑠 = [𝑑𝑞𝑚𝑖𝑛

𝑡 |𝑠
, 𝑑𝑞𝑚𝑎𝑥

𝑡 |𝑠
]. For two samples 𝜇𝑡𝑠 and 𝜇𝑢𝑡 , the pairwise

potential is calculated by the distance of 𝜇𝑡𝑠 to the joint constraints
at 𝜇𝑢𝑡 : [𝑑𝑞

𝑚𝑖𝑛
𝑡 |𝑠

∗ 𝜇𝑢𝑡 , 𝑑𝑞
𝑚𝑎𝑥
𝑡 |𝑠

∗ 𝜇𝑢𝑡]. If 𝜇𝑡𝑠 falls within this range, the

pairwise potential score is 1, otherwise the pairwise potential score

is exponentially decreasing with the distance from the range limit.

For our FPGA implementation, we partitioned our message sam-

ple buffer according to the number of parallel pairwise potential

cores. Therefore, each pairwise potential core can fetch from the

buffer concurrently and the outputs are accumulated in an adder

tree, as shown in Fig. 4. Pairwise potential cores are implemented

with DSPs and lookup tables to compute the dual quaternion trans-

formation and comparison. Note that fetching data, pairwise poten-

tial computation, and adder tree computation steps are pipelined,

which increases throughput when computing pairwise potential.

A Reconfigurable Hardware Library for Robot Scene Perception , ,

Figure 2: The hardware system for our nonparametric belief propagation (NBP) algorithm. The processing system (CPU) takes

the user input object PGM, extracts all directed edges, and transfers the observation data to the programmable logic through the

AXI-4 protocol. Using programmable logic, we implement the NBP algorithm by creating three parallel dataflows, overlapping

the belief update with message update computation. Within the unary likelihood and pairwise likelihood unit, we further

create parallel processing units to increase throughput. We save the message weight𝑤𝑡𝑠 in an array and the resampler performs

importance sampling to generate a new set of beliefs for node 𝑠 for the next iteration.

Figure 3: Example of the raster core processing each triangle

of the object mesh model in sequence. On the right, the red

area is the rastered depth image and the blue area is the

observation from the depth camera.

Figure 4: Example of 4 parallel pairwise potential units

, , Yanqi Liu, Anthony Opipari, Odest Chadwicke Jenkins, and R. Iris Bahar

4.4 Reconfigurability

In Section 3, we explained that particle filtering is a special case of

nonparametric belief propagation (NBP). Therefore, we can create

a uniform HLS-based library that can generate accelerator designs

with different data flows and streams to satisfy either of the algo-

rithms’ requirements. The architecture flow of our Monte-Carlo

Perception Library is shown in Fig. 5. In our library design, particle

filtering and NBP share common hardware modules including the

belief unary module, the weight calculator/merger, and the resam-

pling module, while the NBP algorithm has a additional hardware

component — a pairwise likelihood unit for calculating the mes-

sages from the neighboring nodes. The library is able to reroute data

streams according to user configurations. For such a library, we can

handle three types of pose estimation algorithms: particle filtering

for rigid-body objects, multiple particle filters for articulated object

parts, and NBP for articulated object pose estimation.

To give more control of the accelerator design to users without

requiring detailed hardware knowledge, we created a user inter-

face to provide some knobs for users to adjust to generate specific

designs tuned for their applications. We allow users to configure

the accelerator based on different resource allowances, as well as

power and energy constraints, as shown in Fig. 6. The input to

the interface is a Unified Robot Description File (URDF) for the

test object and the user parameters, which are used to create two

configuration files. The synthesize time configuration file includes a

list of algorithms the accelerator is running, the number of parallel

hardware components, the size of the memory scratchpad inside

the raster core, and algorithm parameters. The file determines the

amount of hardware resources needed by the accelerator and is used

to generate the desired customized hardware (i.e., an HLS design

and IP) mapped onto an FPGA. With a complete accelerator design

on an FPGA, the runtime configuration file is integrated with the

software interface and used to tradeoff runtime and accuracy of the

design by varying the number of samples, algorithm iterations, test

objects, and test scenes. In this way, the user can tune the system

based on application requirements.

5 EXPERIMENTAL RESULTS
We implemented our hardware design using Xilinx Vivado HLS

and tested it on a Xilinx FPGA ZCU102 Evaluation Board running

at 200 MHz. We compare the performance to a reference GPU

implementation running on two different GPU platforms: a high-

performance Nvidia Titan Xp running at 1.4GHz, and an embedded

low-power platform Nvidia Jetson AGX Xavier running at 1.37GHz.

Note that both GPU platforms run at much higher clock frequency

with more hardware resources than the FPGA. To measure power

on these different platforms, we used the Vivado power analyzer to

measure power on the FPGA, the NVIDIA Management Library to

estimate power on the Titan Xp, and an on-board power monitor to

collect readings for the Jetson AGX. The reference design on GPU

utilizes the high degree of parallelism in CUDA kernels and the

OpenGL library to render and process pose samples in parallel.

5.1 6 DoF pose estimation for tool dataset

We tested static frame 6 DoF pose estimation using a tool dataset

that consists of scenes of hand tools randomly placed on the table-

top, as used in [12]. We tested the following articulated objects,

Figure 5: The overall architecture for the generalized library.

The Belief Propagation datapath is shown in blue and the

datapath that only belongs to particle filter is shown in red.

Based on the user specification, the library can automatically

select the datapath and hardware components for different

algorithms.

Figure 6: User interface for generalized library.

shown in Table 1: a clamp, 3 types of pliers, a screwdriver, and a

flashlight, as they have different mesh sizes and articulations. For

the experiment, we evaluated our design with 256 particles for each

directed edge and randomly initialized the particles from the image

segmentation. Since this experiment was meant focus specifically

on the hardware acceleration of the belief propagation algorithm,

the image segmentationwas generated from the groundtruth, rather

than a neural network output. We ran the belief message passing

loop for 100 iterations. An example run of the algorithm is shown

in Figure 7, where part (a) shows the initial belief and (b) shows

the final converged belief.
5.1.1 Runtime. We compare the per-iteration (one pass of message

update and belief update) runtime for the different objects on three

different platforms. The runtime comparison for each articulated

object is shown in Fig. 8. Compared to the GPU implementations,

except for the clamp and flashlight, our FPGA design achieves bet-

ter or comparable results to the Titan Xp and significant runtime

improvements compared to the Jetson AGX. Note that running on

A Reconfigurable Hardware Library for Robot Scene Perception , ,

(a) (b)

Figure 7: Static frame 6 DoF pose estimation with PMPNBP,

(a) represents the initial random sampled belief of the clamp

object and (b) shows the convergence of samples after 100

iterations of belief message passing.

clamp pliers screwdriver flashlight

Table 1: Test objects with corresponding PGMs

Figure 8: Average per-iteration runtime (in ms) for articu-

lated object 6 DoF pose estimation for tool dataset.

the FPGA, object rendering times vary depending on the specific

object’s size and mesh size. As often is the case, rendering is the

critical path for the iteration runtime. Even though the graph com-

plexity is the same for the clamp and pliers, the clamp has 10-15X

more pixels rendered compared to other objects, which results in a

longer runtime on the FPGA. However, for the GPU implementa-

tion, most of the computing time is spent on the inlier computation

and rendering is highly optimized through the OpenGL library

with a large number of parallel threads. Our FPGA implementa-

tion shows runtime improvements by using optimal dataflow and

pipelining the computation while achieving parallelism by creating

concurrent processing units. We can further reduce the rendering

time on the FPGA by creating more parallel raster cores if we have

more hardware resources on board.

To put our runtime improvements in better perspective, we also

compare our results to previous works. The CPU implementation

of the PMPNBP algorithm in [3] for a simple 2D problem takes

over 50 sec per-iteration for 100 particles and the CPU-GPU mixed

implementation in [12] on the same tool dataset reports 0.5s–2s

per-iteration runtime with 300 particles. We see our GPU and FPGA

implementations have greatly accelerated the PMPNBP algorithm

compared to these implementations by 1-2 orders of magnitude.

5.1.2 Power and Energy. Power and energy comparisons on dif-

ferent hardware platforms are shown in Table 2. The power is

measured as an average over 100 iterations of the pull message

passing algorithm and energy is measured by multiplying power

with average per-iteration runtime. Our FPGA design is more than

25X power efficient and 26X energy efficient compared to the Titan

Xp. Compared to the low power Jetson AGX we are 1.4X more

power efficient and at least 14X more energy efficient.

FPGA Titan Xp Jetson AGX

power 4.7W 119.85W 6.4W

power saving - >25x >1.4x

energy 65.73 mJ 1747.41mJ 977.66mJ

energy saving - >26x >14x

Table 2: 6 DoF pose estimation power and energy comparison

for the tool dataset.

5.2 Reconfigurable library

In our experiments, we also evaluated runtime, power, and energy

improvement with different accelerator designs generated by our

Monte-Carlo Perception Library. By creating our perception library,

we can easily experiment with different design configurations and

allow for easy design space exploration. Here, we experiment with

runtime and power impact by adjusting different numbers of com-

putation units. We first create an optimal design for each articulated

object as shown in Table 3. For special cases such as screwdrivers

and flashlights, the message passing happens only between two

nodes and there is no pairwise potential passing from the neighbor

of the neighboring nodes. Therefore, those objects can be evalu-

ated with accelerator design with unary units only. By tailoring

specific hardware resources for each testing object, we are able to

further improve the runtime and power dissipation of the algorithm

compared to the previous fixed design shown in Fig. 8. The improve-

ments in runtime, power and energy in shown in Figures 9 10 11.

In particular, we see that through optimal configurations for indi-

vidual object, we are able to further reduce energy cost by another

20%–30%.

We also used our perception library to evaluate different particle

filtering-based pose estimation algorithms. We create two experi-

ments, one treating the object as a rigid body object and the other

allowing for articulations in the objects using part-based particle

filtering (Part-based PF), described in [12]. In Table 4 we showed

the runtime and power for two particle filtering experiments.

Finally, we performed design space exploration with the library

design itself. Design space exploration allows users to find the

“sweet-spot" of the design under their particular constraints. We

created accelerator designs with different configurations and ex-

plored the tradeoff between runtime and power, as shown in Fig. 12.

The design exploration is performed by using different algorithms

, , Yanqi Liu, Anthony Opipari, Odest Chadwicke Jenkins, and R. Iris Bahar

Figure 9: Runtime improvement Figure 10: Power improvement Figure 11: Energy improvement

Object Optimal Configuration

clamp 8 raster core per unary unit + 1 pairwise poten-

tial core + 150x150 raster core memory

grey pliers 8 raster core per unary unit + 1 pairwise poten-

tial core + 80x80 raster core memory

red pliers 8 raster core per unary unit + 1 pairwise poten-

tial core + 80x80 raster core memory

longnose pli-

ers

8 raster core per unary unit + 1 pairwise poten-

tial core + 80x80 raster core memory

screwdriver 8 raster core per unary unit + 0 pairwise poten-

tial core + 70x70 raster core memory

flashlight 8 raster core per unary unit + 0 pairwise poten-

tial core + 80x80 raster core memory

Table 3: runtime and power for different articulated object

pose estimation at their optimal configuration. Since screw-

driver and flashlight has only two nodes, the message pass-

ing happens only between two nodes so there is no need to

calculate the pairwise potential and therefore, they can be

evaluated with IP design with unary unit only.

Part-based

PF(16 raster

cores)

Rigid object

PF(16 raster

cores)

power 3.1 W 3.1 W

clamp 15.7ms 8.15ms

grey_pliers 3.4ms 2.05ms

red_pliers 3.4ms 2.1ms

longnose_pliers 6.7ms 3.2ms

screwdriver 3.0ms 1.6ms

flashlight 3.2ms 3.1ms

Table 4: Runtime and power for particle-filtering based pose

estimation for rigid body objects and articulated objects

and adjusting different numbers of parallel hardware components,

while using the same number of particles for all the designs. We

see that for NBP algorithms, increasing the number of pairwise

potential units does not help with the overall improvement in run-

time given the fact that rasterization is the critical path. In general,

increasing the number of raster core units has more benefits in

reducing overall energy consumption. NBP algorithms also have

much higher energy consumption compared to part-based par-

ticle filtering algorithms. As shown in pose estimation accuracy

from [12], part-based particle filtering actually has shown decent

pose estimating accuracy with symmetric objects (such as screw-

drivers). This experiment informs us that we can use part-based

particle filtering with symmetric objects as it saves significant en-

ergy and runtime.

Figure 12: Design space exploration.

6 CONCLUSION

In this paper, we present novel hardware architectures for accelerat-

ing sampling-based pose estimation, critical for robotic applications.

Our accelerator design achieves runtime and power/energy advan-

tages through hardware customized to address the main bottle-

necks of the pose-estimation algorithm. In particular, we use deep

pipelining to overlap belief and message update stages, pipeline

balancing across different data streams, and elimination of unnec-

essary computation to optimize the computation. In addition, our

flexible Monte-Carlo Perception Library allows users to modify the

accelerator design based on their performance requirements and

hardware constraints, which results in further runtime and energy

saving compared to a fixed design. For future work, we hope to

extend our perception library to include other machine learning al-

gorithms appropriate for robotics, including those used for motion

planning.

ACKNOWLEDGMENT
This work is supported by equipment grants from Nvidia and Xilinx

Corporations, and NSF grant #2128036.

A Reconfigurable Hardware Library for Robot Scene Perception , ,

REFERENCES
[1] [n.d.]. Xilinx Vitis Library. https://github.com/Xilinx/Vitis_Libraries/tree/master/

vision.
[2] X. Chen, R. Chen, Z. Sui, Z. Ye, Y. Liu, R. I. Bahar, and O. C. Jenkins. 2019. GRIP:

Generative Robust Inference and Perception for Semantic Robot Manipulation in
Adversarial Environments. In 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 3988–3995.

[3] Karthik Desingh, Shiyang Lu, Anthony Opipari, and Odest Chadwicke
Jenkins. 2019. Efficient nonparametric belief propagation for pose
estimation and manipulation of articulated objects. Science Robot-
ics 4, 30 (2019), eaaw4523. https://doi.org/10.1126/scirobotics.aaw4523
arXiv:https://www.science.org/doi/pdf/10.1126/scirobotics.aaw4523

[4] Karthik Desingh, Anthony Opipari, and Odest Chadwicke Jenkins. 2018. Pull
Message Passing for Nonparametric Belief Propagation. arXiv:1807.10487 [cs]
(2018). arXiv:1807.10487 http://arxiv.org/abs/1807.10487

[5] Marek Gorgon and Ryszard Tadeusiewicz. 2000. Hardware-based image process-
ing library for Virtex FPGA. In Reconfigurable Technology: FPGAs for Computing
and Applications II, Vol. 4212. SPIE, 1–10.

[6] Lester Kalms, Ariel Podlubne, and Diana Göhringer. 2019. Hiflipvx: An open
source high-level synthesis fpga library for image processing. In International
Symposium on Applied Reconfigurable Computing. Springer, 149–164.

[7] Atsutake Kosuge, Keisuke Yamamoto, Yukinori Akamine, and Takashi Oshima.
2021. An SoC-FPGA-Based Iterative-Closest-Point Accelerator Enabling Faster
Picking Robots. IEEE Transactions on Industrial Electronics 68, 4 (2021), 3567–3576.
https://doi.org/10.1109/TIE.2020.2978722

[8] Y. Liu, G. Calderoni, and R. I. Bahar. 2020. Hardware Acceleration of Monte-
Carlo Sampling for Energy Efficient Robust Robot Manipulation. In IEEE/ACM
International Conference on Field Programmable Logic and Applications (FPL).

[9] Yanqi Liu, Alessandro Costantini, R Bahar, Zhiqiang Sui, Zhefan Ye, Shiyang Lu,
and Odest Chadwicke Jenkins. 2018. Robust object estimation using generative-
discriminative inference for secure robotics applications. In Proceedings of the

International Conference on Computer-Aided Design. ACM, 75.
[10] Yanqi Liu, Can Eren Derman, Giuseppe Calderoni, and R. Iris Bahar. 2020. Hard-

ware Acceleration of Robot Scene Perception Algorithms. In 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). 1–8.

[11] Anthony Opipari, Chao Chen, Shoutian Wang, Jana Pavlasek, Karthik Desingh,
and Odest Chadwicke Jenkins. 2021. Differentiable Nonparametric Belief Propa-
gation. arXiv preprint arXiv:2101.05948 (2021).

[12] Jana Pavlasek, Stanley Lewis, Karthik Desingh, and Odest Chadwicke Jenkins.
2020. Parts-Based Articulated Object Localization in Clutter Using Belief Propa-
gation. arXiv:2008.02881 [cs] (2020). arXiv:2008.02881 http://arxiv.org/abs/2008.
02881

[13] Judea Pearl. 1982. Reverend Bayes on Inference Engines: A Distributed Hier-
archical Approach. In Proceedings of the Second AAAI Conference on Artificial
Intelligence (Pittsburgh, Pennsylvania) (AAAI’82). AAAI Press, 133–136.

[14] Michael Schaeferling, Ulrich Hornung, and Gundolf Kiefer. 2012. Object recogni-
tion and pose estimation on embedded hardware: SURF-based system designs
accelerated by FPGA logic. International Journal of Reconfigurable Computing
2012 (2012), 6. doi:10.1155/2012/368351.

[15] László Schäffer, Zoltán Kincses, and Szilveszter Pletl. 2018. A Real-Time Pose Esti-
mation Algorithm Based on FPGA and Sensor Fusion. In International Symposium
on Intelligent Systems and Informatics (SISY). doi:10.1109/SISY.2018.8524610.

[16] Zhiqiang Sui, Zhefan Ye, and Odest Chadwicke Jenkins. 2018. Never Mind the
Bounding Boxes, Here’s the SAND Filters. arXiv:1808.04969 (2018).

[17] Zhiqiang Sui, Zhefan Ye, and Odest Chadwicke Jenkins. 2018. Never Mind
the Bounding Boxes, Here’s the SAND Filters. CoRR abs/1808.04969 (2018).
arXiv:1808.04969 http://arxiv.org/abs/1808.04969

[18] Andreas Ten Pas and Robert Platt. 2016. Localizing handle-like grasp affordances
in 3d point clouds. In Experimental Robotics. Springer, 623–638.

[19] Jeong Woo, Young-Joong Kim, Jeong-on Lee, and Myo-Taeg Lim. 2006. Localiza-
tion of mobile robot using particle filter. In 2006 SICE-ICASE International Joint
Conference. IEEE, 3031–3034.

