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Abstract

As immunological and clinical studies become more complex,
there is an increasing need to analyze temporal
immunophenotypes alongside demographic and clinical
covariates, where each subject receives matrix-valued time series
observations for potentially high-dimensional longitudinal
features, as well as other static characterizations. Researchers
aim to find the low-dimensional embedding of subjects using
matrix-valued time series observations and investigate
relationships between static clinical responses and the
embedding. However, constructing these embeddings can be
challenging due to high dimensionality, sparsity, and irregularity
in sample collection over time. In addition, the incorporation of
static auxiliary covariates is frequently desired during such a
construction. To address these.issues, we propose a smoothed
probabilistic PARAFAC model with covariates (SPACO) that
utilizes auxiliary covariates of interest. We provide extensive
simulations to test different aspects of SPACO and demonstrate
its application to an'immunological dataset from patients with
SARS-CoV-2 infection. Supplemental materials associated with
this article are available online.

Keywords:Tensor decomposition; Time series; Missing data; Probabilistic model.
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1 Introduction

Sparsely observed multivariate time series data are now common in immunological
studies. For each subject or participant i (i=1,...,7), we can collect multiple
measurements on J features over time, but often at », different time stamps
{t.1,--1,, } . For example, for each subject, immune profiles are measured for
hundreds of markers at irregular sampling times in Lucas et al. (2020) and Rendeiro
et al. (2021). Let X, eR"* be the longitudinal measurements for subject i, and

X eR"™™ be the sparse three-way tensor collecting X, for all I subjects, where T
is the number of unique time points across all subjects, e.g., 7 = Uil e, FIRA
major computational task in practice is to construct low-dimensional embeddings that
capture data variability in X across subjects. Tensor decomposition is'a widely, used
technique for achieving this goal. Figure 1 demonstrates the PARAFACI/CP tensor
decomposition and utilization of the decomposition results (Harshman and

Lundy, 1994), where we approximate a tensor by the sum«of rank-one tensors. Apart
from tensor reconstruction and denoising, the decompagsition of the three-way tensor
X provides decomposed factors U, V', and @, whichaim to capture major variations
along the subject, feature, and time directions respectively. These factors can be
utilized for further downstream analysis. Forinstance, factors U (also denoted as
the subject scores) serve as the aforementioned subject embeddings, which can be
used to investigate the relationship between immune profiles and various

clinical/demographic covariates.

The immune profiles are"usually highly sparse observed along the time dimensions,
that is, the sets {7, ...z, for different subjects /tend to be small in size and have
low overlaps, resultingin a high missing rate along the time dimension of X (Figure
1). In additionyresearchers may have access to nontemporal covariates for each
subject, such as medical conditions and demographic information, which may
partially explain the variation in the temporal measurements of X'across subjects. As
an example, the IMPACT study (Lucas et al., 2020) analyzed immune profiles of 98
COVID-19 infected individuals. Researchers measured immune profiles for more
than 30 days after symptom onset, but only an average of 1.84 measured time points

per subject. Auxiliary demographic information, including sex and age, and several



preexisting medical conditions, were also collected. To better estimate U in this
example, a tensor decomposition tool that can properly model the longitudinal

behavior of the factors and incorporate available auxiliary covariates is needed.

In this paper, we propose SPACO (smooth and probabilistic PARAFAC model with
auxiliary covariates) to adapt to the sparsity long the time dimension in X'and utilize
the auxiliary covariates Z. SPACO assumes that X'is a noisy realization of some low-
rank signal tensor whose time components are smooth and subject scores have a

potential dependence on the auxiliary covariates 2

K
Xig = Z”ﬂc wVje T €ys Gy~ N (O’O'.?)
k=

1
w, = (4 )y ~ N(’LeAf)a n=pz,.

Here, (1) z/is the # row of Zand g eR?* describes the dependence of the
expected subject score for subject /on z;, (2) ux, ¢,, vikare the,subject score,
trajectory value and feature loading for factor kin the PARAFAC model and the
observation indexed by (/ £, j) where u, has a normal prior N(nl.,Af). We impose
smoothness on time trajectories (¢, )., and sparsity on Bto deal with the irregular

sampling along the time dimension and potentially high dimensionality in Z

Alongside the proposal of the model, we will delve into several issues pertinent to
SPACO, including model initialization, auto-tuning of smoothness and sparsity in g,
and hypothesis testing on G Effectively addressing these concerns is crucial for
applying SPACO in pragctice. In‘the remainder of the article, we summarize work
closely related to our'study‘in Section 1.1. We describe the SPACO model in Section
2 and discuss modelparameter estimation with predetermined tuning parameters in
Section 3! Section4 is dedicated to the examination of the aforementioned issues
that bear practical significance. A comparative analysis of SPACO with existing
methods on synthetic data is presented in Section 5. Lastly, in Section 6, we employ
SPACO on a highly sparse tensor containing immunological measurements from
SARS-COV-2 infected patients. We also provide a Python package, SPACO, for

researchers who are interested in utilizing the proposed method.



1.1 Related work

Matrix-valued observations have become increasingly important in modern
applications, particularly in the context of dimension reduction or matrix-valued data
clustering (Chang, 1983; Vichi et al., 2007; Viroli, 2011; Anderlucci and Viroli, 2015).

Tensor decomposition is a useful technique for modeling matrix-valued observations,
and has been applied in various fields (Acar and Yener, 2008; Kolda and

Bader, 2009; Sidiropoulos et al., 2017). In the study of multivariate longitudinal data,
researchers in economics have combined tensor decomposition with auto-cross-
covariance estimation and autoregressive models (Fan et al., 2008; Lam

et al., 2011; Fan et al., 2011; Bai and Wang, 2015, 2016; Wang et al., 2019,2021).
However, these approaches are either not compatible with highly sparse data or do
not scale well with the feature dimensions, both of which are important for medical

applications.

Functional PCA (Besse and Ramsay, 1986; Yao et al;2005) is often used for
modeling sparse longitudinal data in the matrix form. At.utilizes the smoothness of
time trajectories to handle sparsity in longitudinal ebservations and estimates the
eigenvectors and factor scores under this smoothness assumption. Yokota

et al. (2016) and Imaizumi and Hayashi (2017) introduced smoothness into tensor
decomposition and estimated the parameters by iteratively solving penalized

regression problems. However, these'methods do not consider auxiliary covariates.

It has been previously discussed that including auxiliary information could potentially
improve our estimation. Fer example, Li et al. (2016) proposed the supervised
sparse and functionalprincipal component (SupSFPC) method and observed that
auxiliary covariates'improve signal estimation quality in the matrix setting for
modeling multivariate longitudinal observations. In Chen et al. (2020), the authors
observed that inclusion of auxiliary constraints improve the quality of tensor
decomposition. Lock and Li (2018) proposed SupCP, a supervised multiway
factorization model with complete observation that employs a probabilistic tensor
model (Tipping and Bishop, 1999; Mnih and Salakhutdinov, 2007; Hinrich and

Mgarup, 2019). Although an extension to sparse tensor is straightforward, SupCP



does not model smoothness and can be highly affected by severe missingness along

the time dimension.

To address these limitations, we propose SPACO, an extension of functional PCA
and SupSFPC to the setting of three-way tensor decomposition using the parallel
factor (PARAFAC) model (Carroll et al., 1980; Harshman and Lundy, 1994). SPACO
jointly models smooth longitudinal data with potentially high-dimensional static
covariates Zusing a probabilistic model. When Zis unavailable, we refer to the
SPACO model as SPACO-. SPACO- itself is also an attractive alternative to existing
tensor decomposition implementations with probabilistic modeling, smoothness
regularization, and automatic parameter tuning. In our numerical experiments, we
demonstrate the advantages of SPACO and SPACO- over several state-of-the-art
tensor decomposition methods and the improvement of SPACO over SPACO- by
utilizing Z

2 SPACO Model
2.1 Notations

We use (1) bolded uppercase letters to represent three-way tensors, (2) regular
uppercase letters to represent a matrix,;and (3) bolded lowercase to represent
vectors. Following this convection, let"X eR”"* be the tensor for some sparse
multivariate longitudinal observations, where /is the number of subjects, Jis the
number of features, and 7 is the number of total unique time points. Let

X, =(X,, - X_)eREMNX =(X] - X[)eR" X, =(X] - X]

1 T') ERJX(IT)
be the matrix unfolding of<X'in the subject/feature/time dimension respectively. For
any matrix A, we let. 47/ 4, denote its /7 row/column, and often write 4, as A,for the

 column forseconvenience. We also define:
Tensor product ©: a eR’,b eR’,c eR’, then, A=a®@boc eR"" with 4, =abc,.

Kronecker product ®: 4 cR" ' B eR">*: then C=A® B eR">*%%) i the
(4,B ... AyB)
Kronecker product of Aand B: C= A® B = { R J e RULXKK)
A,B ... 4,B



Column-wise Khatri-Rao product ©: 4 eR"* B eR">*, then C= A0 B eR">"*
with C, =(4,®B,) for k=1,....K .

Element-wise multiplication -: 4,B eR"”*, then C= 4B eR"”* with C, =(4,B,); for
b eR"*,C= Ab= Adiagih,,....b,}; for b eR', C=b-A=diagih,,....b,} 4.

2.2 Smooth and probabilistic PARAFAC model with covariates

We assume X'to be a noisy realization of an underlying signal array F which is a

rank K'tensor with U/ ®/V be the decomposed factor matrices, e.g.,

K
F:ZUk@Qk ©V,, where U, /®, /V, are k columns of U/®/V . We denote the

k=1

rows of U/®/V by u, /¢ /v, and their entries by u, / ¢, /v, . We let xi denote the
(7, ¢, )-entry of X_ Then,

17

K
xi(j = zuik tkvjk + &, U~ N(”iﬂAf)a ggjt ~ N(O, GJZ )a (1)
k=1

where A, = diag{s;,...,s;} is a K x Kdiagonal covariance matrix and #, is a mean
vector of length K In practice, although the observation tensor Xis almost always of
high-rank, it is often assumed that F is (or approximately) low-rank with K'being

small.

We set 5, =0 in the absence of.auxiliary covariates Z eR". In the setting where we
are interested in explaining the heterogeneity #, across subjects using Z, we may
model 5, as a function of'z, =Z, . Here, we consider a linear model 7, =z, g, for
k=1,...,K, where giis the’k? entry of 5, and B eR"* is the coefficients matrix
describing the dependence of subject scores on Z To avoid confusion, we will

always call Xthe “features”, and Zthe “covariates” or “variables”.

Recalling that X, eR”*" is the unfolding of Xin the subject direction, we write i for
the indices of observed values in the i" row of Xj, and X, ; for the vector of these
observed values. Each such observed value xj; has noise variance aﬁ , and we write
A to represent the diagonal covariance matrix with diagonal values oﬁ being the
corresponding variances for ¢, at indices in i . Similarly, we define {f, X, ., A.} for

g0



the unfolding X, eR™", and {;, X, -, A;} for the observed indices, the associated
observed vector and diagonal covariance matrix for the /# row in X, eR”" . We set
0= {V,(D,,B,(of,j :1,...,J),(s,f,k: 1,...,K)} to denote all model parameters. Set
H=VOo®ecR™* and f, = X . — H, 5, as the residual vector after removing mean
signals from observations for subject / If Uis observed, the complete log-likelihood
is

LX,U|0)= _%Z(f;/\;lfi + (ui - ”i)TA;’l(ui _”i) +log| A; | +1log | Af |) (2)

1

Set ii =A; +H;AJAH;. The marginalized log likelihood integrating out the

randomness in U enjoys a closed form (Lock and Li, 2018):
L(X|©) —%[foi;lf,- +log |2, |j. (3)

Model parameters in eq. (3) are not identifiable due to (4)parameters rescaling from
(@.,V,, Bi»sp) to (¢®@,,c,V,,c.5,,cisp) forany cc,c, =1, and (2) reordering of different
component kAfor k=1,...,K . More discussions'of the model identifiability can be
found in Lock and Li (2018). Hence, adopting'similar rules from Lock and Li (2018),

we require

(C.1) |7 =1

D, ng T.

(C.2) The latent components are in decreasing order based on their overall
variances A, | Zf3; 341 , and the first non-zero entries in Vi and @, to be

positive, e.gi, v, 0 and ¢, >0 if they are non-zero.

In the immunelogieal application being considered, U represents subject scores,
which are latent variables characterizing differences across subjects, /represents
feature loadings, revealing the composition of factors using the original features and
aiding downstream interpretation, and ® represents time trajectories interpreted as
function values sampled from some underlying smooth functions ¢, (¢) at a set of

discrete-time points where the sampling in the time direction is often highly sparse.



We address the challenge of sparse sampling utilizing the smoothness assumption
in ¢,(z) and encourage it by directly penalizing the function values via a penalty term

ZEMCDZQ(D,( . This paper considers a Laplacian smoothing (Sorkine et al., 2004)
k

with a weighted adjacency matrix I'. Let 7[¢] be the time associated with the #” slice

along the time dimension, e.g., time associated with X, . We define Q and I' as

( 1 - 1 0 0 )
T[2]-T[1] T[2]-T[]
0 —L_ 0 s _
Q= FTF, I'= T[3]1-7[2] cRT*TD
0 0 1 1

TIT1-T[T -1 T[T1-T[E-1]

The Laplacian smoothing discourages abrupt trajectory changes‘in observations
from close-by time points, which is usually a reasonable assumption biologically.
Practitioners may choose other forms for Q based on their applications. For
example, if practitioners want ¢, (¢) to have slowly, varying derivatives, they can also

use a penalty matrix that penalizes changesiin‘gradients over time.

Further, when the number of covariates gin Zis moderately large, we may wish to
impose sparsity in the S parametersWe encourage such sparsity by including a lasso
penalty (Tibshirani, 2011) inthe moedel. In summary, our goal is then to find
parameters maximizing.the expected penalized log-likelihood, or minimizing the

penalized expected.deviance loss J(®), under norm constraints:

. 1 K
min J(©) &= —EL(X |®)+ Z 2,0, QD, + Z Ao | B, | @
k=1 k

st |V, 2=1,| @, 2 =T, forallk=1,...,K.

The objective only incorporates the identifiability constraint (C.1). By changing the
signs in I, ®, B and reordering them, we can always ensure (C.2) without altering
the attained objective value.



Equation (4) characterizes a non-convex problem. We will obtain local optimal
solutions via an alternating update procedure: (1) we update £ through lasso
regressions while keeping other parameters fixed, (2) we update other model
parameters using the EM algorithm while keeping £ fixed. See Section 3 for more

details.

3 Model parameter estimation

Given the model rank K"and penalty terms A,,, 4,, , we alternately update parameters
B, V, U, 2 and o° with a mixed EM procedure described in Algorithm 1. We briefly

explain the updating steps here:

(1): Given other parameters, we find Sto directly minimize the objective by solving a

least-squares regression problem with lasso penalty.

(2): Fixing B, we update the other parameters using an EM procedure. Denote the
current parameters as 0,. At the M-step, we minimize the\penalized expected

negative log-likelihood
SO0, By | -LX.U10)+ T A0 00T, 11, (6)
k k

under the current posterior distribution t+{®,, X . We adopt a block-wise parameter

updating scheme where we updatesl4, @, , Arand aﬁ sequentially.

Algorithm 1: SPACO with/fixedpenalties

Data: X, Q, A1, A, K

Result: Estimated V, @, B, s?, &° and posterior distribution of U |®, X and the
marginalized density P(X|©) .

1 Initialization of V, @, B, s2, ¢* and the posterior distribution of

2 while Not converged do

3for k=1,...,K do

4 B, «—argmin, {-L(X |©)+ 4, |, |}



5 ¥, «—argmin, | J(©;0,)+v, |V, [ |, wis the largest value leading to the minimizer
having |7, ;=1

6 @, «argmin, [ J(©;0,)+ v, |®, [} ]. v, is the largest value leading to the

minimizer having |®, |*=T

7 5] < arg max , B, L(X,U|0©).

8 end
9For j=1,...,J: o) «—argmax , B, L(X,U|®).

10 Update the posterior distribution (posterior mean and covariance) of U.
11 end

Algorithm 1 describes the high level ideas of our updating schemes.<The posterior
distribution of u, for each row in Uis Gaussian, with posterior covariance ,and

posterior mean u, given below,
3, =(H;AH, +A})" (6)
w=3,(A)B 2+ HIAX, ). (T)

In line 5 and 6, we guarantee the norm eonstraints on Vxand @, by adding an
additional quadratic term and set the ceefficient vto guarantee the norm
requirements. Although the problem is not convex, our proposed approaches yield
optimal solutions for updating different parameter blocks in the sub-routines, and the

penalized (marginalized) deviance loss is non-increasing over the iterations.

Theorem 3.1. InAlgerithm 1, let ©®, and ©,,, are the estimated parameters at the
beginning:and end of the (" iteration of the outer while loop. We have
J(O) > J (@),

Proof of Theorem 3.1 is given in Appendix B.1. Derivations and explicit steps for

carrying subroutines are deferred to Appendix A.1.



4 Initialization, tuning and testing
4.1 Initialization

One popular initialization approach for PARAFAC decomposition is through the
Tucker decomposition [U,® ,V,;G] of Xusing HOSVD/MLSVD (De Lathauwer

et al., 2000) where G e R*"*>*% s the core tensor and U, eR"*, & eR™*,

v, eR”% are unitary matrices multiplied with the core tensors along the subject,
time and feature directions respectively (K, / K, / K, is the smallest between Kand
1/T/J), and then perform PARAFAC decomposition on the small core tensor G
(Bro and Andersson, 1998; Phan et al., 2013). Here, we propose to initialize-SPACO
with Algorithm 2, which combines the aforementioned approach with functional/PCA
(Yao et al., 2005) to handle sparse longitudinal data. Algorithm 2 proceeds as
follows: (1) perform SVD on X/ to get V', ; (2) project X, onto each celumn of V, and
perform functional PCA to estimate @ ; (3) a ridge-penalized,regression regressing

rows of X;on VV, ® @, and estimate U, and G from the.regression coefficients.

Algorithm 2: Initialization of SPACO

1 Let ¥/, be the top A3 left singular vectors of X; using only the observed columns.
2 Set Y (k)= (Y,(k),....Yj(k)) €R"", where Y (k)= X_,.(V,), eR’.

3 Let @, be thetop Kaeigenvectors from functional PCA on the row aggregation of

matrices Y(k) k =1;(..,K,. (see Appendix A.2 for details on functional PCA.)

4 Let U=argmin, {| X,-UWV, @D ) 2 +5|U[2} eR™", where Jis a small

regularization parameter to avoid severe over-fitting to the noise.

5 Let U, be the top Kleft singular eigenvectors of U, and G=UU eR¥*" | Let

G cR¥*¥ pe the estimated core array from rearranging G .



K
6 Let ZAk © B, ©C, be the rank-K CP approximation of G. Stack these as the

k=1

columns of 4,B,C eR***, and set [U,®,V]=[U,4,® B,V,C].

7 For each k=1,...,K, rescale the initializers to satisfy constraints on Vand ®@.

In a noiseless model with & = 0 and complete temporal observations, one may

replace the functional PCA step of Algorithm 2 with standard PCA. Then [U,®,V]
becomes a PARAFAC decomposition of ﬁx .
+

K
Lemma 4.1. Suppose X = ZU L ©@®, ®V, and is completely observed.\Replace ®

k=1

K
in Algorithm 2 by the top K eigenvectors of W = %Z Y(k)' Y (k). Then, the outouts

k=1

K
U,®,V of Algorithm 2 satisfy that X = (1+6)Y .U, @ D, @, .

k=1

By default, we set 6=

. Proof of Lemma 4.1 is-given in Appendix B.2.

1
NI T
4.2 Auto-selection of tuning parameters

Selection of regularizers A1 and A2: One possible approach to select the tuning
parameters 4, and 4,, is through.cross-validation. However, this can be
computationally expensive even when tuning each parameter sequentially.
Additionally, determining.a suitable set of candidate values for the parameters before
running the SPACO algorithm can be challenging. To address these issues, we
adopt nested cross-<validation, which has been empirically demonstrated to be useful
(Huang et al;, 2008; Li et al., 2016). Specifically, we tune the parameters within their

corresponding subroutines as follows:

(1) In the update for @, , we conduct column-wise leave-one-out cross-validation to
select 4,,, where all observations from a single time point are left out (See Appendix
A3.)



(2) In the update for Bk, we perform K-fold cross-validation to select A,, .

Rank selection: Rank selection can be performed through cross-validation, as
suggested in SupCP (Lock and Li, 2018). To reduce computational costs, we adopt

two strategies (see Appendix A.4 for more details):

(1) We initialize the cross-validation parameters with estimates obtained from
running a full SPACO/SPACO- analysis and only carry out a limited number of
iterations to update the parameters. We find that using 5 or 10 iterations is sufficient

in our experiments (the default maximum number of iterations is 10).

(2) We start the analysis with the smallest possible rank and gradually increase it.
We terminate the analysis when either the cross-validated marginal log-likelihood

stops improving or when we reach the maximum rank that we are willing to consider.
4.3 Covariate importance

In Section 5 of our synthetic experiments, we found that.incorporating Z could
improve the estimation of subject scores when Z strongly influenced the subject
scores. This leads us to question how to determine the significance of such
covariates when they are present. Here, we consider the construction of
approximated p-values from partial independence/marginal independence tests

between Z;and

H(f/fmal :Zj J_l_ 77k |ch , H(;nkargin :Zj J_I_ 77](,
both of which are practicalinterest.

Recap ongrandomization-based hypothesis testing: Before introducing our proposal,
we will revisit concepts of hypothesis testing via randomization in the traditional
setting where we investigate the relationship between a response variable yand a

covariate variable z

First, we investigate the marginal independence between yand z, with the null
hypothesis H;*" :z L y. The randomization test, widely employed for

independence testing, offers a valid p-value without assuming a specific dependence



structure between between yand z (Fisher, 1936; Pitman, 1937; Efron

et al., 2001; Ernst, 2004). Here, we outline the randomization test for marginal
independence. Let #(z,y) be a test statistic where z and y are the observation
vectors for zand response y. For instance, one may set #(z,y) =| cor(z,y)|. Let
T:=t(z,y) and T, =1(z",y), for b=1,...,B, where z’ is either a permutation of z or a
vector of independent realizations from the marginal distribution of z There are
subtle differences between using z” generated from a permutation and using one
generated from the marginal distribution (Onghena, 2017); however, we will not
distinguish them in this context. Under the null hypothesis H;*",T,T,,...,T, are
exchangeable. Thus, for any « €(0,1), we have P(T >t |y)<a, where ¢, __isthe

(1- @) -percentile of the empirical distribution constituted by (7,7,...,7,) .

In addition to marginal independence, many statistical inquiries focus on the
conditional or partial independence between yand zgiven additional variable(s) z,
with the null hypothesis H/“* :z L1 y|z,. For illustration,.one'may consider a linear

regression model expressed by the following equation;

y=zf+z,y+¢,

where {is a mean-zero noise term independent of zand . In recent years, the
conditional randomization test has emerged as a popular method for testing the
partial independence between variables zand y, given z. If the conditional
distribution of z |z, is known, theiconditional randomization test generates new
copies of zfrom the distribution’z| z,, allowing the construction of randomized test
statistics that are exchangeable with the original one under H?“* . This approach
leverages the known conditional distribution to construct valid testing procedures
without imposing,additional constraints on the relationship between yand (z,z,)
(Candes et al., 2018; Berrett et al., 2020). To be specific, we define the test statistic
t(z,z,,y) where z, represents the observations for variables z,. The test statistics
t(z,z,,y) can take any function form, e.g., we can set #(z,z,,y) =| cor(z,y)|. Let
T=Hzz,y) and T, = t(gb,zo,y), where z” is an independent copy of the
observation vector generated from the distribution of z |z , for 5=1,...,B. Under the

null hypothesis H/"", the test statistics 7and T° have the same conditional



distribution given z, and y. Hence, P(T >t _|z,,y)<a, where ¢, isthe (1-a)-

percentile of the conditional distribution of (7,7;,...,7,) (Candes et al., 2018).

sdys-

In this paper, we propose to adapt the idea of randomization tests to construct robust
p-values for testing independence/conditional independence between factors and

auxiliary covariates in SPACO, where the responses are not given beforehand.

Oracle randomization test in SPACO: Returning to SPACO, we first consider the
ideal scenario where V, @, s2 and o are given. Lemma 4.2 forms the basis of our

proposal.

Lemma 4.2. Given V,®,s*,c°, and let 3, be the true regression coefficients.on. the

covariates Z for y,,(=1,....,K . Forany k=1,....K, set

2,

VoD AV o)),

S; T (2 i )kk

yi=(Z), HAX,;

M/l.

Then, we have y, =z, B, + &, where & ~ N(0,w)\is independent of auxiliary

covariates.

Lemma 4.2 is proved via direct calculation in Appendix B.3. Readers may recognize
that y and Zmatch the regression model, potentially allowing the application of the
standard randomization technigue.sProposition 4.3 details our construction of both
observed and randomized,test-statistics, the validity of which is a result of Lemma
4.2 and Lemma F.1.in Candes et al. (2018). A proof is provided in Appendix B.4 for

completeness.

1
Z;(yi - Zinﬂj‘,k )Z’J
Proposition 4.3. Set T — for ,Bf . estimated without the j

amal 1

covariate Z, T, . = L/ Replacing Z; with the properly randomized Z, to

margm 1



create T and T

—margin —partial ’

where Z; Is a permutation of Z; for T,

—margin

and Z; is

we have

artial 7

independently generated from Z, | Zj(, forT,

d

T

margin | y = Znargin | y’

under H];"*", (8)
a artial
7jnam'al | (Ya Zje ): ]:partial | (yﬁ Zf )’ under H(fk . (9)

Algorithm 3 outlines our proposal. The conditional randomization test involves

generating Z, from the conditional distribution Z, |Zjﬁ, , Which is estimated using an

appropriate exponential family distribution. Further details on the generations of\Z,

can be found in Appendix A.5.

Algorithm 3: Randomization test for Z
1for k=1,...,K do
3 Construct responses and features as described inLemma 4.2.

5 Define j3, by

1

B, =argmin, , _, {Z %(z? B, — 5, )l h}.
7 Compute the designed test statistic 7 using (Zj,Zj(.,y,,Bj( ’k).

9 Compute randomized statistics 7” using (Zf,Zf,y,,éjﬁ,k), where Z? for b=1,...,B
are (conditionally-orimarginally) independent copies of Z.

11 Let G(.) be the empirical estimate of the CDF of 7under Ao using {7,,....T",T},
and return thé two-sided p-value p=[1-G( T ]+G(—|T]).

12 end




Approximated p-value construction with estimated model paramters: The true model
parameters V, @, s2, and o’ are unknown, so we will substitute the true parameters
with their empirical estimates. However, the empirical estimates from a full SPACO
fit tend to suffer from fitting towards the noise. To mitigate such influence, we utilize
V,® from cross-validation described in Section 4.2. Specifically, for i €1, , the index
set for fold m, we construct y, using estimates ™", @™ and the prior covariance
estimate A " from other folds, by setting ¥, =(Z,),.(V"" @d)"”)TA;.XIJ with X, is
also estimated using V™", ®", and A;.'" . This procedure, referred to as cross-fit,
employs data from other folds to estimate certain parameters, and forms the final
quantity of interest with them and data from current fold. Additionally, initializing each
fold at the global solution enhances the comparability of the constructed«y ‘and z
across different folds. This cross-fit approach yields improved Type l.error control

compared to the naive incorporation of full estimates in our empirical experiments.

5 Numerical studies with synthetic data

This section presents an evaluation of SPACO using'synthetic Gaussian data. The
noise variance is fixed at 1, and the true rank is set to /A= 3. The simulated data
consists of (X,Z) with dimensions (/,7,.J,¢) €{(100,30,10,100),(100,30,500,100)} .
The observed rate (i.e., 1— the missing rate) along the time dimension is set to

r €{100%,50%,10%} , with observed time stamps chosen randomly for each subject.

i.idd 1

iid
To generate the data, we first sét v, _~ J\/’(O,j) and z, ~ N(0,1) for

2
i=1..,1,j=1...,J and™=1;",q. Then, we set ¢l(t):91,¢2(t):492,/1—(%) , and

logJ +logT

@, (1) =06, cos(47z%) with random parameters 6,,6,,6, ~ ¢,"N(0, ) for

| .
¢ €l,3,5. Weaalso'set g, ~c, -N(O,%) for ¢, €0,3,10 for the first (=1,2,3, and

set 5, =0 otherwise. Here, ¢i controls the signal-to-noise ratio (SNR) in the
observed tensor X and is referred to as SNR1; & captures the signal-to-noise ratio
in the auxiliary covariates Zand is also referred to as SNR2. Each Uk is standardized
to have mean 0 and variance 1 after generation. This generates 54 different

simulation setups in total.

5.1 Reconstruction quality evaluation



We compare SPACO, SPACO-, plain CP from python package fensorly, and a proxy
to SupCP by setting 1, = 4,, =107 in SPACO as small fixed values (additional small
penalties enhance numerical stability when dealing with large g and a high missing
rate). Although this is not exactly SupCP, it bears high resemblance. This special
case of SPACO is referred to as SupCP, which is included to assess gains from
smoothness regularization on the time trajectory. Note that SPACO, SPACO-, and
SupCP all employ our proposed initialization, improving stability and performance at
high missing rates. An analysis contrasting SupCP with random and proposed
initialization is presented in Appendix C.1. In our experiments, we used the true rank
for all methods. The accuracy the rank estimation procedure proposed in section 4.2
is assessed in Appendix C.3. In our experiments, the rank estimation procedure
closely approximates the true model rank when the signal is strong, with a tendency
to underestimate in cases of weaker signal. This underestimation does not, however,

lead to significant increases in reconstruction loss.

Figure 2 shows the achieved correlation between the reconstructed tensors and the
underlying signal tensors across various setups and 20 random repetitions. The

correlation between two tensors Fand F is defined as
<Elemean’F;lemean > / (H F:J’emean ZH F:i

version the original and estimated tensors, respectively, and (F,

lemean °

emean

2) , where Faemesnand ﬁd are the demeaned

A
F;lemean

) is their
inner product. Each subplot corresponds-to different signal-to-noise ratio
combinations (SNR1, SNR2), as.indicated by its row and column labels. The y-axis
represents the achieved correlation, while the x-axis shows different combinations of
J and observation rate! For example, x-axis label J10 0.1 means the feature
dimension is 10, and 10% of entries are observed. The “Raw” method, which
correlates the true signal with the empirical observation on non-missing entries, is
included to demonstrate signal level in different simulation setups, even though it is
not directly comparable to other others in the presence of missing data. A

comparison of reconstruction quality on missing entries is provided in Appendix C.2.

SPACO achieves better reconstruction than SPACO- when subject scores U depend
strongly on Z This is likely due to improved quality in estimating U. To confirm this,

we evaluate the estimation quality of Uat J= 10 and SNR2=10 and measure the



estimation quality by /% (regressing the true subject scores on the estimated ones).
In Figure 3, we show the achieved (1-R*) for SPACO and SPACO- (smaller is
better), where the x-axis label represents the observing rate and column names

represent the component, e.g., Comp1 - U,.

SPACO /SPACO- are both top performers for our smooth tensor decomposition
problem and achieve significantly better performance than CP and SupCP when the
signal is weak and when the missing rate is high by utilizing the smoothness of the
time trajectory. To see this, we compared the estimation quality of the time
trajectories using SPACO and SupCP. In Figure 4, we show the achieved (1-R*) for
SPACO and SupCP at J= 10. The x-axis label represents different trajectory and
observing rate, e.g., C1 _r1.0 represents estimation of ¢ (¢) at observing rate r= 1.0.
When the signal is weak (SNR1=1), SPACO can approximate the constant trajectory
component (C1) and begin to estimate other trajectories successfully as the signal
increases. SPACO achieves significantly better estimation,of the true underlying

trajectories than SupCP for various signal-to-noise ratios.
5.2 Variable importance and hypothesis testing

We investigate the approximated p-values based on cross-fit for testing the partial
and marginal associations of Zwith {under the same simulation set-ups. Since our
variables in Zare generated independently, the two null hypotheses coincide.
Nevertheless, the two tests have different powers given the same p-value cut-off, as
a result of different test statistics adopted. The proposed randomization tests for
SPACO achieve reasonable Type | error controls. Utilizing Cross-fit is important for
maintaining good Type 1 error control. In Appendix C.5, we present qg-plots
comparing p-valuesiusing cross-fitted Vand ® to the naive construction. The latter
exhibits noticeable deviations from the uniform distribution for the later construction
when the signal-to-noise ratio is low. Figure 5 and Figure 6 show the achieved Type |
error and power with p-value cut-offs at & =0.01,0.05 and with an observing rate r=

0.5. The type | errors are also well controlled for » €{1.0,0.1} (Appendix C.4).

6 Case study



SPACO was employed to analyze a longitudinal immunological dataset on COVID-
19 obtained from the IMPACT study (Lucas et al., 2020). The original dataset
comprised 180 samples collected from 98 COVID-19 infected participants,
measuring 135 immunological features. Features with more than 20% missing
observations were excluded, and the remaining missing values were imputed using
MOFA (Argelaguet et al., 2018) (see Appendix D for more details), resulting a
complete matrix of 111 features and 180 samples. This matrix was organized into a
sparsely observed tensor of size (7,7,J)=(98,35,111), where T'is the number of
unique days from symptom onset (DFSO). The average observing rate along the
time dimension was 1.84. Additionally, we had access to auxiliary covariates 2
containing eight risk factors (COVID_risk1 - COVID_risk5, age, sex, BMI), as well as
four symptom measures (ICU, Clinical score, Length of Stay, Coagulopathy). We ran
SPACO with X and Zand SPACO- with X only, selecting a model rank of K= 3
based on five-fold cross-validation. The three estimated components are denoted as
C1/C2/C3. Integrating static covariates Z with the longitudinal measurements can
sometimes improve the estimation quality of subject scoresi.compared to SPACO-,
as demonstrated in our synthetic data examples. While:true subject scores are
unobtainable in the real dataset, the clinical.relevance of the estimated subject

scores can still be assessed by comparing them with clinical responses.

SPACO and SPACO- yielded overall highly similar estimations and subject scores,
as depicted in Figure 7A, with the 'second component exhibiting the largest
discrepancy, yet maintaining a correlation above 0.98. Despite this similarity, we
observed a noticeable increase in correlations between C2 from SPACO and
ICU/Clinical scores/Length of Stay. The permutation p-values from tests on whether
the association/between these clinical responses are higher with C2 from SPACO
than with C2 from SPACO- are 0.006, 0.008, and 0.002 for ICU, Clinical scores and

Length of Stay, respectively, as shown in Figure 7B.

Through the use of the randomization test, we can assess the contribution of each Z;
to C2. Table 1 provides the p-value and adjusted p-value from the conditional
independence test, with the number of randomization B= 2000. The top associated
risk factor is COVIDRISK_3 (hypertension) with a p-value of 0.001 (adjusted p-value
around 0.01). BMI is also weakly associated with C2, with a p-value of 0.07. Both



these risk factors displayed much weaker associations with symptom measures
when analyzed separately. By including these risk factors in SPACO, the method not
only outperforms SPACO-, but also achieves a stronger association with the clinical

responses compared to the risk factors themselve (Figure 7B-C).

7 Discussion

We propose SPACO to model sparse multivariate longitudinal data and auxiliary
covariates jointly. The smoothness regularization used in SPACO may lead to a
significant improvement in estimation quality, particularly when the missing rate.is
high. Inclusion of informative auxiliary covariates can also enhance the estimation.of
subject scores. We applied our proposed pipeline to COVID-19 datasets‘and
demonstrated its effectiveness in identifying components with subject-scores that are
closely associated with clinical outcomes of interest. Moreover, SPACO can identify
static covariates that may contribute to severe symptoms. In‘the future, we plan to
extend SPACO to model multi-omics data, characterized:by differing data types,
scales, and potentially measurement times. Such an.extension will require a tailored
model design that carefully integrates the different omics data, rather than a naive

approach of blindly pooling them together:.
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SUPPLEMENTARY MATERIALS

Online Appendices:
(Online Appendices.pdf, pdf file) provides additional details of the algorithms,
more results from numerical experiments and technical proofs.

Experiment Code:
(SPACOexperiments.zip, zip file) It contains code for reproducing results in
synthetic and real data experiments, and organized read data set. A
README.md document has been included to for detailed instructions on how
to reproduce results represented in this article. Contents in this zip file can
also be found at https://github.com/LeyingGuan/SPACOexperments.

Python package for SPACO:
(SPACO.zip, zip file) It contains the Python implementation of the SPACO
package. Readers can also find and install SPACO from GitHub at
https://github.com/LeyingGuan/SPACO.


https://github.com/LeyingGuan/SPACOexperments
https://github.com/LeyingGuan/SPACO
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Fig. 1 lllustration of the PARAFAC/CP decomposition method for immunoprofiles
measured longitudinally. The white color represents missing data in the time
direction. The three-way tensor is approximated as the sum of K rank-one tensors
F',...,F* . Each rank-one tensor F* (k=1,...,K) can be expressed using‘a factor
along the subject direction (U, ), a factor along the feature direction (), anda
factor along the time direction (®,). The factors associated with the tensor

decomposition can be used in downstream analysis.
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Fig. 2 Reconstruction evaluation by'the correlation between the estimates and the
true signal tensor. In each subplot, the x-axis label indicates different Jand
observing rate, the y-axis is the achieved correlation, and the box colors represent
different methods. The corresponding subplot column/row name represents the
signal-to-noise ratio SNR1/SNR2.
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Fig. 3 Comparison of SPACO and SPACO- forreconstructing Uat J= 10, SNR2

=10. In each subplot, the x-axis label indicates different component and observing

rate, the y-axis is the achieved (1—R’);, and the box colors represent different

methods. The corresponding subplot.column/row name represents the signal-to-

noise ratio SNR1/component.
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subplot, the x-axis label indicates different'component and observing rate, the y-axis
is the achieved (1-R*), and the box celors represent different methods. The
corresponding subplot column/row name represents the signal-to-noise ratio
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Fig. 7 Comparisons between subject scores estimated from SPACO and'SPACO-
as well as the static risk factors. Panel A displays the high concordance.in the
correlations between estimated subject scores from SPACO and.SPACO-. Panel B
shows the correlations with clinical responses (row label) using subject scores from
the most distinct component, C2, estimated with SPACQO.and SPACO-. The
associated permutation p-values, which assess the improvement in correlations with
the four clinical responses using SPACO, are shown'beneath the row label. Panel C
shows the correlation between clinical responses and the two most significant risk
factors identified through conditional independence testing, COVIDRISK_3 and BMI.



Table 1 Results from randomization test for the second component (C2). The

column nonzero counts the number of 1 for binary covariate COVIDRISK_1 -
COVIDRISK_5 and sex (1 = Male, 0 = Female). The adjusted p-values (padj) are

based on BH correction.

COVIDRISK_1||COVIDRISK_2||COVIDRISK_3||COVIDRISK_4|{|COVIDRISK_5| Age|| sex|BMI
pval 0.958 0.809 0.001 0.268 0.73/0.518|/0.762|/0.07
padj 0.958 0.924 0.009 0.714 1.00(11.000(1.000/0.28
nz_count 7 24 50 23 S5|.NaN|| 47|NaN




