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Abstract 
As immunological and clinical studies become more complex, 
there is an increasing need to analyze temporal 
immunophenotypes alongside demographic and clinical 
covariates, where each subject receives matrix-valued time series 
observations for potentially high-dimensional longitudinal 
features, as well as other static characterizations. Researchers 
aim to find the low-dimensional embedding of subjects using 
matrix-valued time series observations and investigate 
relationships between static clinical responses and the 
embedding. However, constructing these embeddings can be 
challenging due to high dimensionality, sparsity, and irregularity 
in sample collection over time. In addition, the incorporation of 
static auxiliary covariates is frequently desired during such a 
construction. To address these issues, we propose a smoothed 
probabilistic PARAFAC model with covariates (SPACO) that 
utilizes auxiliary covariates of interest. We provide extensive 
simulations to test different aspects of SPACO and demonstrate 
its application to an immunological dataset from patients with 
SARS-CoV-2 infection. Supplemental materials associated with 
this article are available online.  

Keywords: Tensor decomposition; Time series; Missing data; Probabilistic model.  
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1  Introduction 

Sparsely observed multivariate time series data are now common in immunological 

studies. For each subject or participant i  ( 1, , )i I  , we can collect multiple 

measurements on J  features over time, but often at in  different time stamps 

,1 ,{ , , }
ii i nt t . For example, for each subject, immune profiles are measured for 

hundreds of markers at irregular sampling times in Lucas et al. (2020) and Rendeiro 

et al. (2021). Let in J
iX


  be the longitudinal measurements for subject i , and 

I T J X  be the sparse three-way tensor collecting iX  for all I  subjects, where T  

is the number of unique time points across all subjects, e.g., ,1 ,| { , , }|
ii i i nT t t   . A 

major computational task in practice is to construct low-dimensional embeddings that 

capture data variability in X  across subjects. Tensor decomposition is a widely used 

technique for achieving this goal. Figure 1 demonstrates the PARAFAC/CP tensor 

decomposition and utilization of the decomposition results (Harshman and 

Lundy, 1994), where we approximate a tensor by the sum of rank-one tensors. Apart 

from tensor reconstruction and denoising, the decomposition of the three-way tensor 

X provides decomposed factors U , V , and  , which aim to capture major variations 

along the subject, feature, and time directions respectively. These factors can be 

utilized for further downstream analysis. For instance, factors U  (also denoted as 

the subject scores) serve as the aforementioned subject embeddings, which can be 

used to investigate the relationship between immune profiles and various 

clinical/demographic covariates.  

The immune profiles are usually highly sparse observed along the time dimensions, 

that is, the sets { ,1 ,, ,
ii i nt t } for different subjects i tend to be small in size and have 

low overlaps, resulting in a high missing rate along the time dimension of X (Figure 

1). In addition, researchers may have access to nontemporal covariates for each 

subject, such as medical conditions and demographic information, which may 

partially explain the variation in the temporal measurements of X across subjects. As 

an example, the IMPACT study (Lucas et al., 2020) analyzed immune profiles of 98 

COVID-19 infected individuals. Researchers measured immune profiles for more 

than 30 days after symptom onset, but only an average of 1.84 measured time points 

per subject. Auxiliary demographic information, including sex and age, and several 
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preexisting medical conditions, were also collected. To better estimate U  in this 

example, a tensor decomposition tool that can properly model the longitudinal 

behavior of the factors and incorporate available auxiliary covariates is needed.  

In this paper, we propose SPACO (smooth and probabilistic PARAFAC model with 

auxiliary covariates) to adapt to the sparsity long the time dimension in X and utilize 

the auxiliary covariates Z. SPACO assumes that X is a noisy realization of some low-

rank signal tensor whose time components are smooth and subject scores have a 

potential dependence on the auxiliary covariates Z:  

2

1

1

, ~ (0, )

( ) ~ ( , ), .

K

itj ik tk jk itj itj j
k

K
i ik k i f i i

x u v

u

 







 

  



zu η η
 

Here, (1) zi is the ith row of Z and q K   describes the dependence of the 

expected subject score for subject i on zi, (2) uik, tk , vjk are the subject score, 

trajectory value and feature loading for factor k in the PARAFAC model and the 

observation indexed by (i, t, j) where iu  has a normal prior ( , )i fη . We impose 

smoothness on time trajectories 1( )tk t   and sparsity on β to deal with the irregular 

sampling along the time dimension and potentially high dimensionality in Z.  

Alongside the proposal of the model, we will delve into several issues pertinent to 

SPACO, including model initialization, auto-tuning of smoothness and sparsity in β, 

and hypothesis testing on β. Effectively addressing these concerns is crucial for 

applying SPACO in practice. In the remainder of the article, we summarize work 

closely related to our study in Section 1.1. We describe the SPACO model in Section 

2 and discuss model parameter estimation with predetermined tuning parameters in 

Section 3. Section 4 is dedicated to the examination of the aforementioned issues 

that bear practical significance. A comparative analysis of SPACO with existing 

methods on synthetic data is presented in Section 5. Lastly, in Section 6, we employ 

SPACO on a highly sparse tensor containing immunological measurements from 

SARS-COV-2 infected patients. We also provide a Python package, SPACO, for 

researchers who are interested in utilizing the proposed method.  
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1.1  Related work 

Matrix-valued observations have become increasingly important in modern 

applications, particularly in the context of dimension reduction or matrix-valued data 

clustering (Chang, 1983; Vichi et al., 2007; Viroli, 2011; Anderlucci and Viroli, 2015).  

Tensor decomposition is a useful technique for modeling matrix-valued observations, 

and has been applied in various fields (Acar and Yener, 2008; Kolda and 

Bader, 2009; Sidiropoulos et al., 2017). In the study of multivariate longitudinal data, 

researchers in economics have combined tensor decomposition with auto-cross-

covariance estimation and autoregressive models (Fan et al., 2008; Lam 

et al., 2011; Fan et al., 2011; Bai and Wang, 2015, 2016; Wang et al., 2019, 2021). 

However, these approaches are either not compatible with highly sparse data or do 

not scale well with the feature dimensions, both of which are important for medical 

applications.  

Functional PCA (Besse and Ramsay, 1986; Yao et al., 2005) is often used for 

modeling sparse longitudinal data in the matrix form. It utilizes the smoothness of 

time trajectories to handle sparsity in longitudinal observations and estimates the 

eigenvectors and factor scores under this smoothness assumption. Yokota 

et al. (2016) and Imaizumi and Hayashi (2017) introduced smoothness into tensor 

decomposition and estimated the parameters by iteratively solving penalized 

regression problems. However, these methods do not consider auxiliary covariates.  

It has been previously discussed that including auxiliary information could potentially 

improve our estimation. For example, Li et al. (2016) proposed the supervised 

sparse and functional principal component (SupSFPC) method and observed that 

auxiliary covariates improve signal estimation quality in the matrix setting for 

modeling multivariate longitudinal observations. In Chen et al. (2020), the authors 

observed that inclusion of auxiliary constraints improve the quality of tensor 

decomposition. Lock and Li (2018) proposed SupCP, a supervised multiway 

factorization model with complete observation that employs a probabilistic tensor 

model (Tipping and Bishop, 1999; Mnih and Salakhutdinov, 2007; Hinrich and 

Mørup, 2019). Although an extension to sparse tensor is straightforward, SupCP 
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does not model smoothness and can be highly affected by severe missingness along 

the time dimension.  

To address these limitations, we propose SPACO, an extension of functional PCA 

and SupSFPC to the setting of three-way tensor decomposition using the parallel 

factor (PARAFAC) model (Carroll et al., 1980; Harshman and Lundy, 1994). SPACO 

jointly models smooth longitudinal data with potentially high-dimensional static 

covariates Z using a probabilistic model. When Z is unavailable, we refer to the 

SPACO model as SPACO-. SPACO- itself is also an attractive alternative to existing 

tensor decomposition implementations with probabilistic modeling, smoothness 

regularization, and automatic parameter tuning. In our numerical experiments, we 

demonstrate the advantages of SPACO and SPACO- over several state-of-the-art 

tensor decomposition methods and the improvement of SPACO over SPACO- by 

utilizing Z.  

2  SPACO Model 

2.1  Notations 

We use (1) bolded uppercase letters to represent three-way tensors, (2) regular 

uppercase letters to represent a matrix, and (3) bolded lowercase to represent 

vectors. Following this convection, let I T J X  be the tensor for some sparse 

multivariate longitudinal observations, where I is the number of subjects, J is the 

number of features, and T is the number of total unique time points. Let 

     ( ) ( ) ( )
:,:,1 :,:, :,:,1 :,:, :,1,: :, ,:: , : , :I TJ T IJ J IT

I J T J J TX X X       X X X X X X

 be the matrix unfolding of X in the subject/feature/time dimension respectively. For 

any matrix A, we let : :/i iA A  denote its ith row/column, and often write :iA  as Ai for the 

ith column for convenience. We also define:  

Tensor product : , ,I T J  a b c , then, I T J  A a b c  with itj i t j cA a b .  

Kronecker product ⊗: 1 1 2 2,I K I KA B 
  , then 1 2 1 2( ) ( )I I K KC A B 

    is the 

Kronecker product of A and B: 

1

1 2 1 2

1 1 1

11 1

( ) ( )

1

K

I I K K

I I K

A B A B

C A B
A B A B



 

 
   

 
  

.  
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Column-wise Khatri-Rao product : 1 2,I K I KA B 
  , then 1 2( )I I KC A B 

   

with :, :, :,( )k k kC A B   for 1, ,k K  .  

Element-wise multiplication ·: , I KA B  , then · I KC AB    with ( )ik ik ikC A B ; for 

1, · diag{ , , }K
KC A A   b b b b ; for 1, · diag{ , , }I

IC A A   b b b b .  

2.2  Smooth and probabilistic PARAFAC model with covariates 

We assume X to be a noisy realization of an underlying signal array F which is a 

rank K tensor with / /U V  be the decomposed factor matrices, e.g., 

1

K

k k k
k

U V


 F , where / /k k kU V  are kth columns of / /U V . We denote the 

rows of / /U V  by / /i t ju v , and their entries by / /ik tk jku v . We let xitj denote the 

(i, t, j)-entry of X. Then,  

2

1

, ~ ( , ), ~ (0, ),
K

itj ik tk jk itj i i f ijt j
k

x u v   


   u η  (1)  

where 2 2
1diag{ , , }f Ks s    is a K  ×  K diagonal covariance matrix and iη  is a mean 

vector of length K. In practice, although the observation tensor X is almost always of 

high-rank, it is often assumed that F is (or approximately) low-rank with K being 

small.  

We set i  0η  in the absence of auxiliary covariates I qZ  . In the setting where we 

are interested in explaining the heterogeneity iη  across subjects using Z, we may 

model iη  as a function of ,::i iZz . Here, we consider a linear model ik i k  z  for 

1, ,k K  , where ηik is the kth entry of iη  and q K   is the coefficients matrix 

describing the dependence of subject scores on Z. To avoid confusion, we will 

always call X the “features”, and Z the “covariates” or “variables”.  

Recalling that ( )I TJ
IX

  is the unfolding of X in the subject direction, we write i  for 

the indices of observed values in the thi  row of XI, and ,I iX  for the vector of these 

observed values. Each such observed value xitj has noise variance 2
j , and we write 

i  to represent the diagonal covariance matrix with diagonal values 2
j  being the 

corresponding variances for ijt  at indices in i . Similarly, we define ,{ , , }T t tt X   for 
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the unfolding ( )T IJ
TX

 , and ,{ , , }J j jj X   for the observed indices, the associated 

observed vector and diagonal covariance matrix for the jth row in ( )J IT
JX

 . We set 

   2 2{ , , , , 1, , , , 1, , }j kV j J s k K         to denote all model parameters. Set 

( )TJ KH V    and , ,:i iI i iX H f η  as the residual vector after removing mean 

signals from observations for subject i. If U is observed, the complete log-likelihood 

is  

 1 11( , | ) ( ) ( ) log | | log | | .
2 i i i i f i i fi i

i

L U I             f fX u η u η   (2)  

Set i fi i iH H     . The marginalized log likelihood integrating out the 

randomness in U enjoys a closed form (Lock and Li, 2018):  

11( | ) log | | .
2 i i i i

i

L  
       

f fX   (3)  

Model parameters in eq. (3) are not identifiable due to (1) parameters rescaling from 

2( , , , )k k k kV s  to 2 2
1 2 3 3( , , , )k k k kc c V c c s  for any 1 2 3 1c c c  , and (2) reordering of different 

component k for 1, ,k K  . More discussions of the model identifiability can be 

found in Lock and Li (2018). Hence, adopting similar rules from Lock and Li (2018), 

we require  

(C.1) 2 2
2 21,k kV T   .  

(C.2) The latent components are in decreasing order based on their overall 

variances 2
, 2 /f kk kZ I  , and the first non-zero entries in Vk and k  to be 

positive, e.g., 1 0kv   and 1 0k   if they are non-zero. 

In the immunological application being considered, U represents subject scores, 

which are latent variables characterizing differences across subjects, V represents 

feature loadings, revealing the composition of factors using the original features and 

aiding downstream interpretation, and   represents time trajectories interpreted as 

function values sampled from some underlying smooth functions ( )k t  at a set of 

discrete-time points where the sampling in the time direction is often highly sparse.  
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We address the challenge of sparse sampling utilizing the smoothness assumption 

in ( )k t  and encourage it by directly penalizing the function values via a penalty term 

1k k k
k

   . This paper considers a Laplacian smoothing (Sorkine et al., 2004) 

with a weighted adjacency matrix Γ. Let [ ]t  be the time associated with the tth slice 

along the time dimension, e.g., time associated with ., .,tX . We define Ω and Γ as  

( 1)

1 1 0 0
[2] [1] [2] [1]

10 0
[3] [2],

1 10 0
[ ] [ 1] [ ] [ 1]

T T

T T T T

 

 
 

  
 
 
       
 
 
 

  
    

 

The Laplacian smoothing discourages abrupt trajectory changes in observations 

from close-by time points, which is usually a reasonable assumption biologically. 

Practitioners may choose other forms for Ω based on their applications. For 

example, if practitioners want ( )k t  to have slowly varying derivatives, they can also 

use a penalty matrix that penalizes changes in gradients over time.  

Further, when the number of covariates q in Z is moderately large, we may wish to 

impose sparsity in the β parameter. We encourage such sparsity by including a lasso 

penalty (Tibshirani, 2011) in the model. In summary, our goal is then to find 

parameters maximizing the expected penalized log-likelihood, or minimizing the 

penalized expected deviance loss ( )J  , under norm constraints:  

1 2
1

2 2
k 2 k 2

1min ( ) : ( | ) | |
2

s.t V =1, =T,  for all k=1, ,K.

K

k k k k k
k k

J L   


       

 

 X
 (4)  

The objective only incorporates the identifiability constraint (C.1). By changing the 

signs in V,  , β and reordering them, we can always ensure (C.2) without altering 

the attained objective value.  
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Equation (4) characterizes a non-convex problem. We will obtain local optimal 

solutions via an alternating update procedure: (1) we update β through lasso 

regressions while keeping other parameters fixed, (2) we update other model 

parameters using the EM algorithm while keeping β fixed. See Section 3 for more 

details.  

3  Model parameter estimation 

Given the model rank K and penalty terms 1 2,k k  , we alternately update parameters 

β, V, U, s2 and 2  with a mixed EM procedure described in Algorithm 1. We briefly 

explain the updating steps here:  

(1): Given other parameters, we find β to directly minimize the objective by solving a 

least-squares regression problem with lasso penalty.  

(2): Fixing β, we update the other parameters using an EM procedure. Denote the 

current parameters as 0 . At the M-step, we minimize the penalized expected 

negative log-likelihood  

00 | 1 2( ; ) : ( , | ) | | ,k k k k k
k k

J L U   

 
         

 
 U X   (5)  

under the current posterior distribution 0| ,U  X . We adopt a block-wise parameter 

updating scheme where we update Vk, k , Λf and 2
j  sequentially.  

__________________________________________________________________  

Algorithm 1: SPACO with fixed penalties 

__________________________________________________________________ 

Data: X, Ω, λ1, λ2, K  

Result: Estimated V,  , β, s2, 2  and posterior distribution of | ,U  X  and the 

marginalized density ( | )P X  .  

1 Initialization of V,  , β, s2, 2  and the posterior distribution of U;  

2 while Not converged do  

3 for 1, ,k K   do  

4 2arg min { ( | ) | |}
kk k kL     X   
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5 2
0 2arg min ( ; )

kk V V kV J V      , νV is the largest value leading to the minimizer 

having 2
2 1kV    

6 2
0 2arg min ( ; ) ,

kk kJ    
         is the largest value leading to the 

minimizer having 2
2k T    

7 2 0

2
|arg max ( , | )

k
k Us
s L U X .  

8 end  

9 For 1, ,j J  : 2 0

2
|arg max ( , | )

j
j U L U


  X .  

10 Update the posterior distribution (posterior mean and covariance) of U.  

11 end 

__________________________________________________________________ 

Algorithm 1 describes the high level ideas of our updating schemes. The posterior 

distribution of iu  for each row in U is Gaussian, with posterior covariance Σi and 

posterior mean iμ  given below,  

1 1 1( )i fi i iH H       (6)  

 1 1
, .i i f i i i I iH X     zμ  (7)  

In line 5 and 6, we guarantee the norm constraints on Vk and k  by adding an 

additional quadratic term and set the coefficient ν to guarantee the norm 

requirements. Although the problem is not convex, our proposed approaches yield 

optimal solutions for updating different parameter blocks in the sub-routines, and the 

penalized (marginalized) deviance loss is non-increasing over the iterations.  

Theorem 3.1. In Algorithm 1, let   and 1  are the estimated parameters at the 

beginning and end of the th  iteration of the outer while loop. We have 

1( ) ( )J J    .  

Proof of Theorem 3.1 is given in Appendix B.1. Derivations and explicit steps for 

carrying subroutines are deferred to Appendix A.1.  
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4  Initialization, tuning and testing 

4.1  Initialization 

One popular initialization approach for PARAFAC decomposition is through the 

Tucker decomposition [ , , ; ]U V   G  of X using HOSVD/MLSVD (De Lathauwer 

et al., 2000) where 1 2 3K K K 
G  is the core tensor and 1 2,I K T KU  

    , 

3J KV 

   are unitary matrices multiplied with the core tensors along the subject, 

time and feature directions respectively ( 1 2 3/ /K K K  is the smallest between K and 

/ /I T J ), and then perform PARAFAC decomposition on the small core tensor G 

(Bro and Andersson, 1998; Phan et al., 2013). Here, we propose to initialize SPACO 

with Algorithm 2, which combines the aforementioned approach with functional PCA 

(Yao et al., 2005) to handle sparse longitudinal data. Algorithm 2 proceeds as 

follows: (1) perform SVD on XJ to get V ; (2) project XJ onto each column of V  and 

perform functional PCA to estimate  ; (3) a ridge-penalized regression regressing 

rows of XI on V  , and estimate U
 and G from the regression coefficients.  

__________________________________________________________________  

Algorithm 2: Initialization of SPACO 

__________________________________________________________________ 

1 Let V  be the top K3 left singular vectors of XJ using only the observed columns.  

2 Set 1( ) ( ( ), , ( )) I T
TY k Y k Y k    , where :, ,:( ) ( ) I

t t kY k V X .  

3 Let   be the top K2 eigenvectors from functional PCA on the row aggregation of 

matrices Y(k) 31, ,k K  . (see Appendix A.2 for details on functional PCA.)  

4 Let 
22 2arg min { ( ) } I K

U I F FU X U V U 

      , where δ is a small 

regularization parameter to avoid severe over-fitting to the noise.  

5 Let U  be the top K left singular eigenvectors of U , and 
2K KG U U 

  . Let 

K K K G  be the estimated core array from rearranging G .  
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6 Let 
1

K

k k k
k

A B C


  be the rank-K CP approximation of G. Stack these as the 

columns of , , K KA B C  , and set [ , , ] [ , , ]U V U A B V C     .  

7 For each 1, ,k K  , rescale the initializers to satisfy constraints on V and  . 

__________________________________________________________________ 

In a noiseless model with δ  =  0 and complete temporal observations, one may 

replace the functional PCA step of Algorithm 2 with standard PCA. Then [ , , ]U V  

becomes a PARAFAC decomposition of 
1

1 
X .  

Lemma 4.1. Suppose * * *

1

K

k k k
k

U V


 X  and is completely observed. Replace   

in Algorithm 2 by the top K eigenvectors of 
1

1 ( ) ( )
K

k

W Y k Y k
I 

  . Then, the outputs 

, ,U V  of Algorithm 2 satisfy that 
1

(1 )
K

k k k
k

U V


  X .  

By default, we set 
1
J T

 


. Proof of Lemma 4.1 is given in Appendix B.2.  

4.2  Auto-selection of tuning parameters 

Selection of regularizers λ1 and λ2: One possible approach to select the tuning 

parameters 1k  and 2k  is through cross-validation. However, this can be 

computationally expensive even when tuning each parameter sequentially. 

Additionally, determining a suitable set of candidate values for the parameters before 

running the SPACO algorithm can be challenging. To address these issues, we 

adopt nested cross-validation, which has been empirically demonstrated to be useful 

(Huang et al., 2008; Li et al., 2016). Specifically, we tune the parameters within their 

corresponding subroutines as follows:  

(1) In the update for k , we conduct column-wise leave-one-out cross-validation to 

select 1k , where all observations from a single time point are left out (See Appendix 

A.3.)  
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(2) In the update for βk, we perform K-fold cross-validation to select 2k .  

Rank selection: Rank selection can be performed through cross-validation, as 

suggested in SupCP (Lock and Li, 2018). To reduce computational costs, we adopt 

two strategies (see Appendix A.4 for more details):  

(1) We initialize the cross-validation parameters with estimates obtained from 

running a full SPACO/SPACO- analysis and only carry out a limited number of 

iterations to update the parameters. We find that using 5 or 10 iterations is sufficient 

in our experiments (the default maximum number of iterations is 10).  

(2) We start the analysis with the smallest possible rank and gradually increase it. 

We terminate the analysis when either the cross-validated marginal log-likelihood 

stops improving or when we reach the maximum rank that we are willing to consider.  

4.3  Covariate importance 

In Section 5 of our synthetic experiments, we found that incorporating Z could 

improve the estimation of subject scores when Z strongly influenced the subject 

scores. This leads us to question how to determine the significance of such 

covariates when they are present. Here, we consider the construction of 

approximated p-values from partial independence/marginal independence tests 

between Zj and ηk:  

0 0: | , : ,c
partial margin
k j k k j kj

H Z Z H Z    

both of which are practical interest.  

Recap on randomization-based hypothesis testing: Before introducing our proposal, 

we will revisit concepts of hypothesis testing via randomization in the traditional 

setting where we investigate the relationship between a response variable y and a 

covariate variable z.  

First, we investigate the marginal independence between y and z, with the null 

hypothesis 0 :marginH z y . The randomization test, widely employed for 

independence testing, offers a valid p-value without assuming a specific dependence 
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structure between between y and z (Fisher, 1936; Pitman, 1937; Efron 

et al., 2001; Ernst, 2004). Here, we outline the randomization test for marginal 

independence. Let ( , )t z y  be a test statistic where z  and y  are the observation 

vectors for z and response y. For instance, one may set ( , ) | cor( , ) |t z y z y . Let 

: ( , )T t z y  and : ( , )b
bT t z y , for 1, ,b B  , where 

bz  is either a permutation of z  or a 

vector of independent realizations from the marginal distribution of z. There are 

subtle differences between using 
bz  generated from a permutation and using one 

generated from the marginal distribution (Onghena, 2017); however, we will not 

distinguish them in this context. Under the null hypothesis 0 1, , , ,margin
BH T T T  are 

exchangeable. Thus, for any (0,1)  , we have *
1( | )P T t   y , where *

1t   is the 

(1 ) -percentile of the empirical distribution constituted by 1( , , , )BT T T .  

In addition to marginal independence, many statistical inquiries focus on the 

conditional or partial independence between y and z given additional variable(s) zo, 

with the null hypothesis 0 : |partial
oH z y z . For illustration, one may consider a linear 

regression model expressed by the following equation:  

,oy z z      

where ζ is a mean-zero noise term independent of z and zo. In recent years, the 

conditional randomization test has emerged as a popular method for testing the 

partial independence between variables z and y, given zo. If the conditional 

distribution of | oz z  is known, the conditional randomization test generates new 

copies of z from the distribution | oz z , allowing the construction of randomized test 

statistics that are exchangeable with the original one under 0
partialH . This approach 

leverages the known conditional distribution to construct valid testing procedures 

without imposing additional constraints on the relationship between y and ( , )oz z  

(Candes et al., 2018; Berrett et al., 2020). To be specific, we define the test statistic 

( , , )ot z z y  where zo represents the observations for variables zo. The test statistics 

( , , )ot z z y  can take any function form, e.g., we can set ( , , ) | cor( , ) |ot z z y z y . Let 

: ( , , )oT t z z y  and : ( , , )b
b oT t z z y , where 

bz  is an independent copy of the 

observation vector generated from the distribution of | oz z , for 1, ,b B  . Under the 

null hypothesis 0
partialH , the test statistics T and bT  have the same conditional 
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distribution given oz  and y . Hence, *
1( | , )oP T t   z y , where *

1t   is the (1 ) -

percentile of the conditional distribution of 1( , , , )BT T T  (Candes et al., 2018).  

In this paper, we propose to adapt the idea of randomization tests to construct robust 

p-values for testing independence/conditional independence between factors and 

auxiliary covariates in SPACO, where the responses are not given beforehand.  

Oracle randomization test in SPACO: Returning to SPACO, we first consider the 

ideal scenario where V,  , s2 and 2  are given. Lemma 4.2 forms the basis of our 

proposal.  

Lemma 4.2. Given 2 2, , ,V s  , and let *  be the true regression coefficients on the 

covariates Z for , 1, ,K   . For any 1, ,k K  , set  

 
 

 

1

2

,: ,,:

( ) ( ) ,

,

.

i i i i

i k i kk

i i i i I ik

V V

w s

y H X



    

  

  

 

Then, we have *
i i k iy   z , where ~ (0, )i iw  is independent of auxiliary 

covariates.  

Lemma 4.2 is proved via direct calculation in Appendix B.3. Readers may recognize 

that y and Z match the regression model, potentially allowing the application of the 

standard randomization technique. Proposition 4.3 details our construction of both 

observed and randomized test statistics, the validity of which is a result of Lemma 

4.2 and Lemma F.1 in Candes et al. (2018). A proof is provided in Appendix B.4 for 

completeness.  

Proposition 4.3. Set 
, ,

2

1 ( )

1

c ci iji j j k
i i

partial

ij
i i

y Z Z
wT

Z
w








 for 

,cj k
  estimated without the jth 

covariate Zj, 
2

1

1

i ij
i i

margin

ij
i i

y Z
wT
Z

w






. Replacing Zj with the properly randomized jZ  to 
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create marginT  and partialT , where jZ  is a permutation of Zj for marginT  and jZ  is 

independently generated from | cj j
Z Z  for partialT , we have  

0| | , under ,
d

margin
margin margin kT T Hy y  (8)  

0| ( , ) | ( , ), under .c c

d
partial

partial partial kj j
T Z T Z Hy y  (9)  

Algorithm 3 outlines our proposal. The conditional randomization test involves 

generating jZ  from the conditional distribution | cj j
Z Z , which is estimated using an 

appropriate exponential family distribution. Further details on the generations of jZ  

can be found in Appendix A.5. 

__________________________________________________________________ 

Algorithm 3: Randomization test for Zj  

1 for 1, ,k K   do  

3 Construct responses and features as described in Lemma 4.2.  

5 Define ˆ
k  by  

,

2
: 0 2 1

1

1ˆ arg min ( ) | | .
k k j

I

k i k i k k
i i

y
w    



 
   

 
 z  

7 Compute the designed test statistic T using 
,

ˆ( , , , )c cj j j k
Z Z y .  

9 Compute randomized statistics bT  using 
,

ˆ( , , , )c c
b
j j j k

Z Z y , where b
jZ  for 1, ,b B   

are (conditionally or marginally) independent copies of Zj.  

11 Let ˆ (.)G  be the empirical estimate of the CDF of T under H0 using 1{ , , , }BT T T , 

and return the two-sided p-value ˆ ˆ[1 (| |)] ( | |)p G T G T    .  

12 end 

__________________________________________________________________ 
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Approximated p-value construction with estimated model paramters: The true model 

parameters V,  , s2, and 2  are unknown, so we will substitute the true parameters 

with their empirical estimates. However, the empirical estimates from a full SPACO 

fit tend to suffer from fitting towards the noise. To mitigate such influence, we utilize 

,V   from cross-validation described in Section 4.2. Specifically, for mi , the index 

set for fold m, we construct iy  using estimates ,m mV    and the prior covariance 

estimate m
f
  from other folds, by setting ,: ,( ) ( )m m

i i k i I iy V X      with i  is 

also estimated using ,m mV   , and m
f
 . This procedure, referred to as cross-fit, 

employs data from other folds to estimate certain parameters, and forms the final 

quantity of interest with them and data from current fold. Additionally, initializing each 

fold at the global solution enhances the comparability of the constructed y  and z  

across different folds. This cross-fit approach yields improved Type I error control 

compared to the naive incorporation of full estimates in our empirical experiments.  

5  Numerical studies with synthetic data 

This section presents an evaluation of SPACO using synthetic Gaussian data. The 

noise variance is fixed at 1, and the true rank is set to K = 3. The simulated data 

consists of ( , )ZX  with dimensions ( , , , ) {(100,30,10,100),(100,30,500,100)}I T J q  . 

The observed rate (i.e., 1  the missing rate) along the time dimension is set to 

{100%,50%,10%}r  , with observed time stamps chosen randomly for each subject. 

To generate the data, we first set 
. . 1~ (0, )
i i d

jkv J
 and 

. .
~ (0,1)
i i d

iz  for 

1, , , 1, ,i I j J     and 1, ,q  . Then, we set 

2

1 1 2 2( ) , ( ) 1 tt t
T

   
 

     
, and 

3 3( ) cos(4 )tt
T

    with random parameters 1 2 3 1
log log, , ~ · (0, )J Tc

rIT
  


 for 

1 1,3,5c  . We also set , 2
log~ · (0, )k

qc
I

  for 2 0,3,10c   for the first 1,2,3 , and 

set 0k   otherwise. Here, c1 controls the signal-to-noise ratio (SNR) in the 

observed tensor X  and is referred to as SNR1; c2 captures the signal-to-noise ratio 

in the auxiliary covariates Z and is also referred to as SNR2. Each Uk is standardized 

to have mean 0 and variance 1 after generation. This generates 54 different 

simulation setups in total.  

5.1  Reconstruction quality evaluation 
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We compare SPACO, SPACO-, plain CP from python package tensorly, and a proxy 

to SupCP by setting 2
1 2 10k k     in SPACO as small fixed values (additional small 

penalties enhance numerical stability when dealing with large q and a high missing 

rate). Although this is not exactly SupCP, it bears high resemblance. This special 

case of SPACO is referred to as SupCP, which is included to assess gains from 

smoothness regularization on the time trajectory. Note that SPACO, SPACO-, and 

SupCP all employ our proposed initialization, improving stability and performance at 

high missing rates. An analysis contrasting SupCP with random and proposed 

initialization is presented in Appendix C.1. In our experiments, we used the true rank 

for all methods. The accuracy the rank estimation procedure proposed in section 4.2 

is assessed in Appendix C.3. In our experiments, the rank estimation procedure 

closely approximates the true model rank when the signal is strong, with a tendency 

to underestimate in cases of weaker signal. This underestimation does not, however, 

lead to significant increases in reconstruction loss.  

Figure 2 shows the achieved correlation between the reconstructed tensors and the 

underlying signal tensors across various setups and 20 random repetitions. The 

correlation between two tensors F and F̂  is defined as 

 2 2
ˆ ˆ, /demean demean demean demeanF F F F  , where Fdemean and d̂emeanF  are the demeaned 

version the original and estimated tensors, respectively, and ˆ,demean demeanF F   is their 

inner product. Each subplot corresponds to different signal-to-noise ratio 

combinations (SNR1, SNR2), as indicated by its row and column labels. The y-axis 

represents the achieved correlation, while the x-axis shows different combinations of 

J and observation rate. For example, x-axis label 10 _ 0.1J r  means the feature 

dimension is 10, and 10% of entries are observed. The “Raw” method, which 

correlates the true signal with the empirical observation on non-missing entries, is 

included to demonstrate signal level in different simulation setups, even though it is 

not directly comparable to other others in the presence of missing data. A 

comparison of reconstruction quality on missing entries is provided in Appendix C.2.  

SPACO achieves better reconstruction than SPACO- when subject scores U depend 

strongly on Z. This is likely due to improved quality in estimating U. To confirm this, 

we evaluate the estimation quality of U at J = 10 and SNR2 10  and measure the 
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estimation quality by R2 (regressing the true subject scores on the estimated ones). 

In Figure 3, we show the achieved 2(1 )R  for SPACO and SPACO- (smaller is 

better), where the x-axis label represents the observing rate and column names 

represent the component, e.g., Comp1 1U .  

SPACO /SPACO- are both top performers for our smooth tensor decomposition 

problem and achieve significantly better performance than CP and SupCP when the 

signal is weak and when the missing rate is high by utilizing the smoothness of the 

time trajectory. To see this, we compared the estimation quality of the time 

trajectories using SPACO and SupCP. In Figure 4, we show the achieved 2(1 )R  for 

SPACO and SupCP at J = 10. The x-axis label represents different trajectory and 

observing rate, e.g., 1_ 1.0C r  represents estimation of 1( )t  at observing rate r = 1.0. 

When the signal is weak (SNR1=1), SPACO can approximate the constant trajectory 

component (C1) and begin to estimate other trajectories successfully as the signal 

increases. SPACO achieves significantly better estimation of the true underlying 

trajectories than SupCP for various signal-to-noise ratios.  

5.2  Variable importance and hypothesis testing 

We investigate the approximated p-values based on cross-fit for testing the partial 

and marginal associations of Z with U under the same simulation set-ups. Since our 

variables in Z are generated independently, the two null hypotheses coincide. 

Nevertheless, the two tests have different powers given the same p-value cut-off, as 

a result of different test statistics adopted. The proposed randomization tests for 

SPACO achieve reasonable Type I error controls. Utilizing Cross-fit is important for 

maintaining good Type I error control. In Appendix C.5, we present qq-plots 

comparing p-values using cross-fitted V and   to the naive construction. The latter 

exhibits noticeable deviations from the uniform distribution for the later construction 

when the signal-to-noise ratio is low. Figure 5 and Figure 6 show the achieved Type I 

error and power with p-value cut-offs at 0.01,0.05   and with an observing rate r = 

0.5. The type I errors are also well controlled for {1.0,0.1}r   (Appendix C.4).  

 

6  Case study 
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SPACO was employed to analyze a longitudinal immunological dataset on COVID-

19 obtained from the IMPACT study (Lucas et al., 2020). The original dataset 

comprised 180 samples collected from 98 COVID-19 infected participants, 

measuring 135 immunological features. Features with more than 20% missing 

observations were excluded, and the remaining missing values were imputed using 

MOFA (Argelaguet et al., 2018) (see Appendix D for more details), resulting a 

complete matrix of 111 features and 180 samples. This matrix was organized into a 

sparsely observed tensor of size ( , , ) (98,35,111)I T J  , where T is the number of 

unique days from symptom onset (DFSO). The average observing rate along the 

time dimension was 1.84. Additionally, we had access to auxiliary covariates Z 

containing eight risk factors (COVID_risk1 - COVID_risk5, age, sex, BMI), as well as 

four symptom measures (ICU, Clinical score, Length of Stay, Coagulopathy). We ran 

SPACO with X  and Z and SPACO- with X  only, selecting a model rank of K = 3 

based on five-fold cross-validation. The three estimated components are denoted as 

C1/C2/C3. Integrating static covariates Z with the longitudinal measurements can 

sometimes improve the estimation quality of subject scores compared to SPACO-, 

as demonstrated in our synthetic data examples. While true subject scores are 

unobtainable in the real dataset, the clinical relevance of the estimated subject 

scores can still be assessed by comparing them with clinical responses.  

SPACO and SPACO- yielded overall highly similar estimations and subject scores, 

as depicted in Figure 7A, with the second component exhibiting the largest 

discrepancy, yet maintaining a correlation above 0.98. Despite this similarity, we 

observed a noticeable increase in correlations between C2 from SPACO and 

ICU/Clinical scores/Length of Stay. The permutation p-values from tests on whether 

the association between these clinical responses are higher with C2 from SPACO 

than with C2 from SPACO- are 0.006, 0.008, and 0.002 for ICU, Clinical scores and 

Length of Stay, respectively, as shown in Figure 7B.  

Through the use of the randomization test, we can assess the contribution of each Zj 

to C2. Table 1 provides the p-value and adjusted p-value from the conditional 

independence test, with the number of randomization B = 2000. The top associated 

risk factor is COVIDRISK_3 (hypertension) with a p-value of 0.001 (adjusted p-value 

around 0.01). BMI is also weakly associated with C2, with a p-value of 0.07. Both 
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these risk factors displayed much weaker associations with symptom measures 

when analyzed separately. By including these risk factors in SPACO, the method not 

only outperforms SPACO-, but also achieves a stronger association with the clinical 

responses compared to the risk factors themselve (Figure 7B-C).  

7  Discussion 

We propose SPACO to model sparse multivariate longitudinal data and auxiliary 

covariates jointly. The smoothness regularization used in SPACO may lead to a 

significant improvement in estimation quality, particularly when the missing rate is 

high. Inclusion of informative auxiliary covariates can also enhance the estimation of 

subject scores. We applied our proposed pipeline to COVID-19 datasets and 

demonstrated its effectiveness in identifying components with subject scores that are 

closely associated with clinical outcomes of interest. Moreover, SPACO can identify 

static covariates that may contribute to severe symptoms. In the future, we plan to 

extend SPACO to model multi-omics data, characterized by differing data types, 

scales, and potentially measurement times. Such an extension will require a tailored 

model design that carefully integrates the different omics data, rather than a naive 

approach of blindly pooling them together.  
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SUPPLEMENTARY MATERIALS  

Online Appendices:  

(Online Appendices.pdf, pdf file) provides additional details of the algorithms, 

more results from numerical experiments and technical proofs.  

Experiment Code:  

(SPACOexperiments.zip, zip file) It contains code for reproducing results in 

synthetic and real data experiments, and organized read data set. A 

README.md document has been included to for detailed instructions on how 

to reproduce results represented in this article. Contents in this zip file can 

also be found at https://github.com/LeyingGuan/SPACOexperments.  

Python package for SPACO:  

(SPACO.zip, zip file) It contains the Python implementation of the SPACO 

package. Readers can also find and install SPACO from GitHub at 

https://github.com/LeyingGuan/SPACO.  
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Fig. 1 Illustration of the PARAFAC/CP decomposition method for immunoprofiles 

measured longitudinally. The white color represents missing data in the time 

direction. The three-way tensor is approximated as the sum of K  rank-one tensors 

1, , KF F . Each rank-one tensor kF  ( 1, , )k K   can be expressed using a factor 

along the subject direction ( )kU , a factor along the feature direction ( )kV , and a 

factor along the time direction ( )k . The factors associated with the tensor 

decomposition can be used in downstream analysis. 
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Fig. 2 Reconstruction evaluation by the correlation between the estimates and the 

true signal tensor. In each subplot, the x-axis label indicates different J and 

observing rate, the y-axis is the achieved correlation, and the box colors represent 

different methods. The corresponding subplot column/row name represents the 

signal-to-noise ratio SNR1/SNR2. 
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Fig. 3 Comparison of SPACO and SPACO- for reconstructing U at J = 10, SNR2

10 . In each subplot, the x-axis label indicates different component and observing 

rate, the y-axis is the achieved 2(1 )R , and the box colors represent different 

methods. The corresponding subplot column/row name represents the signal-to-

noise ratio SNR1/component. 
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Fig. 4 Comparison of SPACO and SupCP for reconstructing   at J = 10. In each 

subplot, the x-axis label indicates different component and observing rate, the y-axis 

is the achieved 2(1 )R , and the box colors represent different methods. The 

corresponding subplot column/row name represents the signal-to-noise ratio 

SNR1/SNR2. 
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Fig. 5 Achieved type I errors at observing rate r = 0.5. In each subplot, x-axis label 

indicates different combination of feature dimension J and targeted level 

{0.01,0.05}  , while the y-axis represents the achieved type I errors. Different bar 

colors represent different tests (partial or marginal). The two dashed horizontal lines 

correspond to levels 0.01 and 0.05. 
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Fig. 6 Achieved power at observing rate r = 0.5. In each subplot, the x-axis label 

indicates different combinations of feature dimension J and targeted level 

{0.01,0.05}  , the y-axis indicates the achieved power. Different bar colors 

represent different tests (partial or marginal).  
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Fig. 7 Comparisons between subject scores estimated from SPACO and SPACO- 

as well as the static risk factors. Panel A displays the high concordance in the 

correlations between estimated subject scores from SPACO and SPACO-. Panel B 

shows the correlations with clinical responses (row label) using subject scores from 

the most distinct component, C2, estimated with SPACO and SPACO-. The 

associated permutation p-values, which assess the improvement in correlations with 

the four clinical responses using SPACO, are shown beneath the row label. Panel C 

shows the correlation between clinical responses and the two most significant risk 

factors identified through conditional independence testing, COVIDRISK_3 and BMI. 
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Table 1 Results from randomization test for the second component (C2). The 

column nonzero counts the number of 1 for binary covariate COVIDRISK_1 - 

COVIDRISK_5 and sex (1 = Male, 0 = Female). The adjusted p-values (padj) are 

based on BH correction.  

 

COVIDRISK_1 COVIDRISK_2 COVIDRISK_3 COVIDRISK_4 COVIDRISK_5 Age sex BMI 

pval  0.958 0.809 0.001 0.268 0.73 0.518 0.762 0.07 

padj  0.958 0.924 0.009 0.714 1.00 1.000 1.000 0.28 

nz_count 7 24 50 23 5 NaN 47 NaN 
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