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ABSTRACT

Overfitting describes the phenomenon where a highly predictive model on the training data gen-
eralizes poorly to future observations. It is a common concern when applying machine learning
techniques to contemporary medical applications, such as predicting vaccination response and dis-
ease status in infectious disease or cancer studies. This review examines the causes of overfitting and
offers strategies to counteract it, focusing on model complexity reduction, reliable model evaluation,
and harnessing data diversity. Through discussion of the underlying mathematical models and
illustrative examples using both synthetic data and published real datasets, our objective is to
equip analysts and bioinformaticians with the knowledge and tools necessary to detect and mitigate

overfitting in their research.

Introduction

Machine learning (ML) and statistical modeling have
become important tools in modeling medical data and
prediction of disease outcomes and vaccination responses
in immunological research.'”> However, the application of
ML algorithms necessitates caution. A common occur-
rence in misusing ML algorithms is overfitting, which
arises when a predictive model fits well to training data
but performs poorly on new data due to excessive model
complexity.>” The implications of overfitting in medical
research can result in the erroneous publication of immu-
nological markers that are highly predictive on the train-
ing data but generalize poorly to untouched test datasets.
Put another way, overfitted models perform well in their
respective studies, but do not generalize to novel datasets.
To this end, recognizing and avoiding common pitfalls
that can lead to overfitting in contemporary immunologi-
cal research is of paramount importance.

This review delves into the prevalent scenarios that
contribute to overfitting and then presents strategies to
counteract its effects. We structure the content into three
primary themes:

e The double-edged nature of model complexity.
e Reliable model evaluation.
e Harnessing data diversity.

Our objective is to provide analysts and bioinformaticians
with the concepts and tools required to detect and cir-
cumvent overfitting in their modeling and analysis endea-
vors, informed by the latest advances in statistics and
machine learning.
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Double-edged nature of model complexity

Model complexity, which quantifies the complexity of a model
and its fit to the training data, is a crucial concept in under-
standing the phenomenon of overfitting. A predictive model’s
complexity increases with increased number of independent
features, such as analytes. Model complexity also increases
when a more intricate model architecture is used, such as
comparing linear regression to a deep neural network.
Modern immunological studies have enabled access to a vast
array of tens of thousands of analytes. In addition, off-the-shelf
machine learning tools have facilitated easy access to non-
linear modeling for capturing the interactive effects among
biological processes.® Both of these trends have given rise to
more complex and flexible models and reduce the training
errors which measure the estimation error of the response on
the training data. However, a flexible model does not always
lead to improved prediction accuracy on new data (referred to
as test data) not used during model fitting.

On the one hand, a more complex model might have
a smaller test error which measures the prediction error of
the response on the untouched test data. This is achieved by
reducing the model bias which measures the distance
between the expected/average estimated models and the
underlying true model. Here, the averaging of the estimated
models is done across models constructed using repeated
regenerations of training data. On the other hand, it is
important to note that fitting a more complex model also
introduces a higher model variance in the prediction func-
tion. That is, if the training data were regenerated indepen-
dently, the resulting fitted model could differ substantially.
This interplay between model complexity, model bias, and
model variance is commonly referred to as the bias-variance
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Figure 1. (a) Examples of underfitting, appropriate-fitting, and over-fitting a machine learning model to a training cohort. Underfitting oversimplifies the relationship
between predictive features whereas over-fitting fails to generalize to novel test cohorts that were not used to train the machine learning model. (b) Schema for
effective training of a predictive model, including data preparation, model training, model evaluation and selection, and finally test performance evaluation. Tools for

good machine learning practice provided are further explored in the manuscript.

tradeoff. This offers a clear mathematical perspective on how
model complexity affects the prediction performance on
novel test data: while an overly simplified model might fail
to capture strong predictive relationships and lead to under-
fitting, excessively high model complexity can cause the
model to overfit by excessively fitting to the noise in the
training data, thereby compromising its performance
(Figure 1a).

The effects of underfitting and overfitting become evident
when evaluating the model on novel datasets. For instance, if
we employ ordinary least squares (OLS) to fit a linear regres-
sion model with an equal or greater number of features than
the features in the training dataset, the model can usually
perfectly explain the response in the training cohort.
However, such models often fail to generalize well when pre-
dicting outcomes for new test samples. The same overfitting
issue may happen when adopting a highly non-linear model.
Another example described in a study by Peng et al.” involves
the use of support vector regression to forecast COVID-19
cases in severely affected countries, employing both linear
and non-linear predictive models. While the non-linear fit
demonstrated superior performance during training, it was
the linear fit that achieved the best results on the test data.
These two examples emphasize the need for caution when
employing machine learning models in medical decision-
making.

Finally, to illustrate the issue of overfitting in the immuno-
logical application, we present Example 2.1 where xgboost' '
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Figure 2. Training AUROC and validation AUROC for predicting high/low respon-
ders (y-axis) using xgboost against the training rounds (x-axis). It shows the
model performances in training or cross-validation as the training rounds
increased (increased model complexity) and compares the prediction perfor-
mance when using trees with depth being 1 (low non-linearity) or 6 (high non-
linearity).

was employed to identify common immune signatures that
predict antibody responses using a recently curated database.

Example 1. Consider the identification of common PBMC
transcriptomics signatures for predicting antibody responses



across 13 different vaccines by Fourati et al.,” covering live
viruses, inactivated viruses, and glycoconjugate vaccines, col-
lected by the Human Immunology Project Consortium
(HIPC) as the Immune Signature Data Resources.'* We
demonstrate the phenomenon of overfitting by constructing
models with varying complexity using the 500 most variable
genes to separate high-responder (267 participants) from low-
responder (265 participants) groups, defined from discretizing
maximum fold change antibody responses (day 28/day 0). To
evaluate how well the model generalizes to new test samples,
we split the data into the training set and the validation set,
with the model trained using only the training and classifica-
tion accuracies recorded for both the training and the valida-
tion. This scheme was repeated five times, and results were
averaged to increase the evaluation stability. The classification
accuracy is measured by area under the receiver operating
characteristic (AUROC), with higher value indicating better
classification. Figure 2 displays the training AUROC and vali-
dation AUROC of prediction models trained from xgboost
over the training rounds, with the tree depth being 1 or 6. At
each training round, xgboost constructs a tree of depth 1 or 6
to improve the current fit and aggregate the newly constructed
tree into the prediction model to increase model complexity.
As the training rounds increased, the predictions within train-
ing samples achieved high accuracy, with AUROC improving
for both tree depths. However, the validation AUROC is much
lower. Selecting a model with highest training AUROC can
lead to overfitting where the validation AUROC is worse
compared to earlier training rounds. Furthermore, the model
with a tree depth of 6 quickly overfitted from the inclusion of
highly non-linear. It achieved almost perfect training AUROC
but achieved worse validation AUROC than the simpler
xgboost model with a tree depth of 1.

Ideally, the objective is to construct a model that strikes
a favorable tradeoff between model bias and model variance,
thereby achieving an appropriate level of fitting for good
prediction performance on the test samples (Figure la). In
this review, we discuss three important aspects of good
practices for appropriate model fitting: model training,
model selection, and evaluation (Figure 1b). Finally, we
review the utilization of data diversity and its application
to avoiding overfitting.

Model complexity reduction

Learning the available strategies to effectively control or reduce
model complexity is an important step in taking full advantage
of the wide array of machine learning tools. Here, we review
model complexity reduction approaches based on regulariza-
tion and dimensionality reduction.

Regularization

Regularization is one of the most widely used techniques for
reducing the model complexity of prediction models. Given
a loss function, which is the user-specified objective that mea-
sures the goodness of model fit, e.g., mean-squared error is the
loss function for OLS, the standard regularization involves
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adding a penalty term to the loss function to discourage the
model from learning overly complex patterns. As a concrete
example, let x; and y; be the observed p analytes and response
for training sample i, with i = 1,...,n, for n total samples.
Regularized linear regression considers the following regular-
ized loss function:

1 n
Ly(B) = EZ (xiB—y)* + A (B),
i=1
where f is a vector contains the coefficients of the linear model
and p; is the coefficient for analyte j forj = 1,...p,and J(B) is

the regularization or penalty term to encourage simpler f,
thus, a less complex model. A is the amount of penalty
included, with larger A favoring a simpler model. Some of the
popular forms for J(pB) are listed below.

0 0
® Best subset selection defines J(f) = f;l B;| with ‘[3]’
being 0 if B; is 0 and 1 otherwise. It penalizes the number

of non-zero entries in . The problem of best subset
selection can be difficult to solve in general.'” There
have been many approximation algorithms for this pur-
pose. For example, forward stepwise selection can be seen
as a greedy algorithm for the best subset selection.'

2

¢ Ridge (or 1,) regularization defines J(p) = Zle ‘[3] as
the square sums of entries in f.

e Lasso (or 1) regularization defines J(B) = leJBj to

15

penalize sum of the absolute values of entries in

In the family of penalty loss J(B) = 5;1 [Sj‘a that penalizes

the a power of ‘Bj‘,the lasso penalty with a =1 is a special

case because it is the turning point where we can encourage
sparsity (a small number of non-zero entries in ) while being
able to solve the problem effectively. That is, when a <1,
sparsity is encouraged in B, but it is difficult to solve the
general problem exactly for all a <1.

There are other types of regularization penalties proposed by
statisticians. For example, the elastic net penalty'® considers
a mixture of lasso penalty and ridge penalty to encourage spar-
sity and the co-selection of highly correlated features, which can
be desirable in immunological applications for interpretation.'”
The grouped lasso penalty encourages the co-selection of fea-
tures from the same group specified by the users.'®

The idea of regularization through penalty losses is also
applicable to other non-linear machine learning techniques,
such as boosting and neural networks. In addition, regulariza-
tion does not only come in the form of penalty losses. For
example, dropout is a popular and effective technique to pre-
vent overfitting in neural networks."> At each updating step
during training, a percentage of nodes and connections from
the neural network are randomly dropped. This can also be
viewed as training with an adaptive regularizer that incorpo-
rates the effect of artificial feature noising.*’

Early stopping is another technique used to train machine
learning models, including boosting and neural networks, to
prevent overfitting by stopping the training process before the
model starts to overfit the training data.”' This procedure can
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be viewed as a form of implicit regularization with effects
s . . . . 22,2
similar to ridge regularization in some cases.”>*’

Dimension reduction

Dimension reduction can also be an effective way to reduce
model complexity and is commonly used in contemporary
immunological studies. It has been one of the main techniques
for working with high-dimensional immune profiles, such as
high-dimensional transcriptomics or complex multi-omics
observations.”**® Dimension reduction addresses the chal-
lenge of high dimensionality by constructing low-
dimensional factors to capture data variation from available
omics. These factors can be used for both biological interpre-
tation and prediction tasks of interest (Figure 3).”*® Working
with low-dimensional factors helps to alleviate potential over-
fitting issues because the number of features, and therefore
model complexity, is reduced.

Matrix factorization provides core concepts for dimension
reduction with high-dimensional data and serves as the foun-
dation of many dimension reduction tools for omics and
multi-omics analyses in immunological studies. Suppose we
have collected observations for p analytes across n samples and
denote the observed matrix as X € R"*P for these n samples
and p analytes. The number of analytes, p, is often large. The
central goal of matrix factorization is to approximate X by the
product ofa factor matrix U € R™X and a loading matrix
V € RP*K for some K much smaller then p :

X~UV'.

The factor matrix is constructed for capturing the variation
across n samples using K factors (columns in U), and the
loadings matrix describes each factor’s influence on the ana-
lytes (columns in V). For example, in gene expression analysis,
it can identify groups of genes that may be involved in

Multi-omics Assays
(Proteomics, Transcriptomics,
Metabolomics, Metagenomics, ...)

underlying biological processes or functions, with factors cap-
turing the variation of these processes across samples.

Widely used matrix factorization techniques principal com-
ponent analysis (PCA) and single-value decomposition
(SVD)**° derive U such that U can explain the maximum
amount of variance across features in X. Non-negative matrix
factorization (NMF) requires additionally that U and V con-
tain only non-negative values, which was originally proposed
to work with image data where this non-negativity constraint
leads to better interpretability.’’ The sparse PCA algorithm
imposes that columns in V have sparse non-zero entries,
which can lead to higher quality estimation in high dimensions
and often improved interpretability by highlighting a smaller
set of features for each factor.”> There are many other variants
of PCA for dimension reduction that could prove useful in
analyzing omics data, such as hub-feature identification which
identifies a small subset of hub-features as drivers of the
systematic level changes®* and autoencoder methods for
dimension reduction with non-linear model architectures.*

Of note, the concept of matrix factorization is frequently
combined with co-expression networks in omics analysis.>**’
For instance, the widely used weighted correlation network
analysis (WGCNA)*® approach first identifies modules as non-
overlapping subsets of co-expressed genes or other features
and uses the eigenvectors for genes from each module to
capture variability of features in the given module.

Given the increasing availability of large-scale multi-omics
data, it is crucial to perform dimension reduction appropri-
ately with multi-omics observations. While matrix factoriza-
tion approaches can be directly applied after concatenating
features from different omic assays, this is generally not advi-
sable due to the varying dimensionality and data properties
from different technologies. For example, instead of using
WGCNA on concatenated data, it has been suggested to per-
form a two-step procedure where we first apply WGCNA to

Factor Loadings

a N samples b K factors
= d o ge
o) c Factor Scores Prediction Model
—\x =
g ©) N samples —————  ,essseeeeeeeieieeeieeea
9 =) R :
Cohort 1B Lo Factor 1 —— 5 > :
(@ H
& ) Factor 2 —§® T |moa A :
= 2 g 2 -
Q Factor 3 — 5 » Q:
(&) > X i D|lmoa :
-1 cpP &= Factor 4 —— > 3 Al
) — o ° :
g g g Factor 5 -] a § BOA
o @ o @ © Factor 6 — 5 ol - :
[} i} — 3 2 ! 5j |
Naol|l = (7] = ¥ Factor7 | = > @
wn o = e H BOA
© w @© T e R e R e R
" =
£ E ks}
g = 2
° (o) °
Qo Qa
o o

Figure 3. An illustration workflow of multi-omics dimensionality reduction. (a) Multi-omics assays are profiled from the same cohort, resulting in multi-omics profiles for
the same N samples. (b) P biological analytes are condensed via dimensionality reduction into the construction of low-dimensional factors, consisting of factor loadings
and factor scores. Factor loadings are coefficients that indicate which biological analytes are contributing to construction of the each factor. (c) All N samples from the
cohort are assigned a score for each of the K factors, resulting in the factor scores matrix. (d) The resulting factor scores can be used as machine learning features to

predict responses of interest in a prediction model.



individual omics assays and align different assays as a second
step.39

Many popular matrix-factorization-based approaches have
been developed for dimension reduction with multi-omics
data, such as JIVE* as a generalization of PCA, jNMF and
iNMF as generalizations of NEM.*'~** Multi-omics integration
methods based on Bayesian factor models have also gained
popularity, which enables flexible modeling of different omic
data types and introduction of suitable priors. Multi-omics
integration tools like iCluster,** iClusterBayes,” and
MOFA***” employ such Bayesian factor models.

A different perspective for dimension reduction is taken by
Canonical correlation analysis (CCA),*® which extracts factors
to capture co-varying patterns between two matrices instead of
aiming for the maximization of explained variance as in matrix
factorization. This idea can be useful by connecting different
types of omics together to form a more comprehensive picture
of the underlying biology. For instance, Li et al.*® linked
metabolomic profiles with transcriptomic profiles using CCA
to gain an improved understanding of vaccination response.
This concept has been generalized to work with multiple data
blocks simultaneously, and we consider all methods based on
the generalization of CCA as belonging to the generalized CCA
(GCCA) family. GCAA has motivated the development of
several multi-omics integration methods such as multiple co-
inertia analysis (MCIA),*->° regularized GCCA (rGCCA),>>2
and multi-block sparse CCA (msCCA).>?

In this direction, supervised dimension reduction techni-
ques have been proposed to identify factors predictive of
responses of interest.”*>" In multi-omics analysis, for exam-
ple, DIABLO?® includes the response matrix as another assay
in dimension reduction using GCCA, while SPEAR®® priori-
tizes the construction of factors in a Bayesian multi-omics
factor model. To some extent, we can view supervised dimen-
sion reduction as preventing overfitting by using regulariza-
tion to deviate from the meaningful data variation directions.

Reliable model evaluation and selection

In the previous section, we discussed many popular techniques
for model complexity reduction, which can effectively avoid
overfitting. Equally important is the reliability of model eva-
luation, crucial for parameter tuning, model selection, and
understanding the prediction model and its usefulness. In
this section, we will review model evaluation methods and
discuss potential pitfalls.

AIC, BIC, and additive randomization

Akaike Information Criterion (AIC)* jointly considers the
goodness-of-fit and model complexity, measured by the num-
ber of parameters in the model:

2
AIC = —~ . loglik +2-,
n n

where loglik is the achieved log-likelihood summed over all n
training samples, and s is the number of parameters used to
characterize model training. For instance, if we consider
a linear regression model where the noise follows a standard

HUMAN VACCINES & IMMUNOTHERAPEUTICS e 5

normal distribution, then, 2 - loglik becomes the mean-squared
error in OLS and s is the number of features used in the linear
model. In this case, the AIC statistic is equivalent to Mallow’s
C, statistic,”’ whose expectation is unbiased for the prediction
error. In general, the AIC aims to achieve this unbiasedness.
Hence, by design, lower AIC statistics indicate better fitting of
models, which can be very useful for selecting among compet-
ing models.

However, AIC may not always achieve this goal in practice.
One significant issue in using AIC is determining s, as it is
common that the number of parameters appearing in the
trained model, does not always reflect the actual complexity
of the model’s training process.

Bayesian Information Criterion (BIC)®* adopts a similar
form to AIC, with more penalization on s:

2 s
BIC = — — - loglik -—
- loglik+p- -,

where p is the total number of parameters. Since p>2 in most
settings, it penalizes complex models more heavily and favors
the selection of simpler models compared to AIC. Despite the
similarity between BIC and AIC, BIC has a different motiva-
tion. Approximately, selection of the model with minimum
BIC is equivalent to choosing the model with the largest
posterior probability in the Bayesian framework.®’

Determining s to reflect the model complexity can be chal-
lenging at times, even in the linear regression setting as
demonstrated in Example 3.1.

Example 2: Suppose that x € R'* is a vector contains 1000
features, where each feature x; is generated from a standard
normal distribution for j=1,...,1000, and the response
y = x1P;+ ¢ depends only on the value of the first feature.
Independent noise (¢)is then generated from a standard nor-
mal distribution. Figure 4a,b show training errors, AIC, BIC,
and prediction errors as well as error estimates from the
additive randomization method (see later) for forward step-
wise selection with subset size 0 <'s < 10, averaged over 10
random repetitions.

The issue with using AIC and BIC in Example 2 arises from the
fact that the model at each subset size s is not fixed but
adaptively constructed and selected from the data, which is
common with high-dimensional data. Following the endeavor
of AIC to perform a fair evaluation of the bias-variance trade-
off, the additive randomization method®* was proposed to
measure the prediction performance among competing mod-
els regardless of complex training and selection procedures.
The core idea of additive randomization is to construct rando-
mized responses y* and y~ as shown below,

1 1
y+:y+otw:p+s+au), y’:yfaw:p+£faw,

where p = pu(x) is the underlying signal depending on the
feature value x, and w is additional additive noise from
a standard normal distribution generated by the analyst,
which is used in the construction of responses y* and y~
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Figure 4. A comparison of error estimate from additive randomization (denoted as “additive”), AIC, BIC, the true prediction error (denoted as “test”), and training error
(denoted as “train”) in example 2. Panels a and B shows the results for = 0 and 3 = 1, respectively as we vary the subset size (s). The prediction performance in this

example is not able to be tracked by the training error, AIC or BIC.

after multiplying by the scalers a and 1 respectively. This
particular form of construction guarantees the mutual inde-
pendence between y* and y~. Motivated by such an observa-
tion, the additive randomization method uses y* for all model
training, while using y~ to measure the model predictive
performance and select a final model with the smallest loss
using y~. It is worth noting that only the relative loss values
here are meaningful, as the absolute loss calculated from using
¥y~ does not resemble the true prediction error. In Figure 4, we
have shifted the loss estimated with additive randomization
such that the best model corresponds to a value of 1. Unlike
AIC and BIC, the evaluations from using additive randomiza-
tion successfully identified the model with the best prediction
performance in both experiment settings. The drawbacks of
the additive randomization are threefold: (1) it is currently
only applicable to linear regression problems with Gaussian
data, (2) it requires knowledge of the noise distribution, and
(3) the randomization renders higher variability, as seen in
Figure 4.

Cross-validation

Cross-validation (CV) is a widely used technique for assessing
the performance of machine learning models and model selec-
tion to prevent overfitting. %> Its popularity can be attributed
to its conceptual simplicity, improvement of data utilization
efficiency over sample-splitting, and wide applicability to all
types of supervised machine learning models.

CV starts by dividing the training samples into K disjoint
subsets (folds) randomly, usually of roughly equal size. For
each fold K, CV evaluates the prediction accuracy of a training
procedure by fitting it on the remaining (K — 1) folds. For
example, we may fit a Lasso regularized linear regression with

penalty A to the remaining (K — 1) folds, with p* being the
estimated regression coefficient. Then, for each sample i, sup-
pose it in fold k(i), let (xu41,ynt1)be its associated feature
value and response. We then calculate the squared error loss

—\ 2
with 1750 = (yi —x] [3"“)) for all k=1,...,K. The CV

error is defined by pooling together all cross-validated

errors |, @,

_ 1 " k()
v = E
Err®V = . L.

The CV error Err®V is used as the evaluation for the trained
model. By selecting a model with a small CV error from a set of
competing models, we can select a relatively good model
among them and mitigate overfitting. While AIC, BIC, and
additive randomization estimate the prediction error with
fixed feature values, CV aims to estimate the expected test
error on new data as the both the features and response are
independently generated together.””

A common choice for the number of folds is K =5 or
K = 10 as suggested by Kohavi et al.®® However, practitioners
may want to use a larger K, even leave-one-out cross-
validation which treats each sample as its own fold in CV,
when the sample size n is small. The fold number K indicates
a different kind of bias-variance tradeoff: when K is large, the
per-fold model in CV has a comparable training sample size as
the original model, thus, CV induces less learning bias due to
reduced sample size; however, when K is large, the model

similarity across folds becomes increased, and Err®” has
increased variability for estimating the expected test error.”
Practitioners should exercise caution when applying
CV. Firstly, the estimated CV error of the selected model
can be biased and an underestimation of the actual test
error due to selection, especially when the space of candi-
date models is large.®” Guan and Tibshirani’® proposed
a randomized CV, which combines CV with the idea of
additive randomization, enabling unbiased test error esti-
mation after arbitrary selection in the CV procedure.
Secondly, careless application of CV can fail even for
model selection purposes. This often happens if there is
unintended information leakage, in which data informa-
tion from the validation set is not perfectly hidden from
practitioners during the training and leaked to practi-
tioners during model training. Here, we demonstrate that



information leakage invalidates CV under two most
encountered settings in practice: (1) Explicit information
leakage due to using response (e.g., feature filtering) out-
side the CV loop, and (2) Implicit information leakage due
to unaccounted sample structure.

We first demonstrate that information leakage can hap-
pen when preprocessing steps occur before CV. Example 3
is a simple demonstration built upon section 7.10.2 from
Hastie et al.” which highlights the danger of severe over-
fitting caused by analysis steps (e.g., feature filtering) out-
side of the CV loop.

Example 3: Suppose we have n = 50 samples with half from
class 1 and the other half class 2. Suppose we have p = 5000
quantitative features, such as gene expression levels, that are
independently generated from the standard Gaussian distribu-
tion and are independent of the class assignment. Consider the
following invalid but typical CV analysis strategy: (1) perform
feature filtering by selecting d features with the largest associa-
tions with the response, (2) construct a one-nearest neighbor
classifier (INN) using the selected features. This CV scheme is
invalid because the feature filtering step has used all data
before CV is carried out. Since the data contains pure noise,
we expect the test error to be 50%. However, as we vary
d € {10, 50, 100, 500, 1000, 2000, 3000, 4000, 5000}, CV clas-
sification errors from step 2 are much lower than 50% when
we adopt the feature filtering scheme and let d be smaller than
5000 (Figure 5a).

When applying CV, it is also crucial to understand sample
structures that may contribute to potential information
leakage sources and account for them. Example 4 illustrates
the importance of accounting for the sample structure
when performing CV. In this example, a completely
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random splitting of samples into different folds results in
an invalid CV scheme.

Example 4: The lipidomic breast cancer data from the lab of
Livia Schiavinato Eberlin at UT Austin consist of 806 features
measured on 15,359 pixels in tissue images from 24 breast
cancer patients, and this data is used by Guan et al.>” The
pixels are divided into two classes, the normal class and the
cancer class, and we fit a regularized logistic regression model
using each procedure. In this example, randomly splitting CV
folds is an invalid scheme since pixels from the same patient
reveal patient-specific information, and the resulting CV
errors are over-optimistic for test error evaluation on samples
from a new patient. Instead, a better CV scheme is to consider
the stratified population structure and randomly split samples
based on their patient ids. Indeed, we observe that the CV
errors using random sample splitting to be much smaller than
that using random patient-id splitting (Figure 5b), as a result of
sample associations from the same patient.

Apart from such population stratification as demonstrated in
Example 4, the random sample splitting scheme is also often
invalid for time series data where the noises from nearby time
points are often correlated. In this case, randomly sampling long
blocks consisting of consecutive time points can usually alleviate
this problem.”"”

These examples highlight the importance of the proper
implementation of cross-validation. For practitioners who uti-
lize CV in their research, it is beneficial to think about the
following questions when designing the CV scheme instead of
blindly using the default choice:

(1) Are the samples independent or are they correlated
with each other? If samples are correlated with each

scheme -= CV(stratified randomization) - CV(completely randomized)

4 3 2 -
log(®)

Figure 5. A) CV evaluation using TNN with feature filtering as described in example 3. The x-axis shows the number of remaining features after filtering (d) with
d = 5000 representing no-filtering, and the y-axis shows the misclassification error using CV. The actual test error should be 0.5 (red dashed line), which is much higher
than the CV error in the presence of strong filtering (small d). B) CV evaluation with different randomization schemes using the lipidomic breast cancer dataset in
example 4. The x-axis shows the logarithm of lasso penalty (A), and the y-axis is the deviance loss. The achieved deviance when using CV with the stratified
randomization grouped by patient id (in red) is considerably higher than that from using CV with the completely randomized scheme (in turquoise).
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other, correlated samples should be grouped together
when constructing the CV folds, such as samples from
the same patient, samples from consecutive time, etc.

(2) Has the information from the response been used out-
side of the CV loop? Any analysis utilizing the response
itself is not allowed outside the CV loop. For example, if
we use feature filtering as a preprocessing step before
feeding data into the machine learning model, this must
also be done using only samples excluding the fold
under evaluation.

To further guard against potential negligence of using CV,
alternative model-free approaches such as permutation-based
analysis can be employed.”” Lu et al.”* used a random permu-
tation approach to assess the degree to which their modeling
approach was susceptibly overfitting and raised the alert of
over-training if the prediction accuracy is much better than
random guess.

Finally, it is always beneficial to set aside a separate test
dataset to mimic future independent observations. Similarly as
in CV, the test dataset aims to contain independent samples
from the remaining training data, for example, samples from
the same patient are not shared by the test dataset and the
training. Once set aside, the test dataset should not be used
during the entire pipeline consisting of training, evaluation,
model selection, and comparisons, and is only used for the
final validation (Figure 1b). Evaluations on this independent
test set can provide a reliable assessment of model perfor-
mance, and huge discrepancy between CV error and the pre-
diction error on the test set can help raise concerns about the
adopted CV scheme.

Note that even if our cross-validation or other evaluations
are not overfitted toward the noise, there is no guarantee that
we will always achieve the same level of accuracy on a future
dataset. For instance, the prediction errors on the test set could
still be significantly smaller than the prediction error on
a future dataset. This situation can arise if the future data
introduce new sources of variation that were not present in
the training data. For instance, measurements collected on
COVID-19 infected patients in 2020 may not completely
reflect the biology of new variants of interest, and a model
trained on medical data collected from one hospital might not
generalize well to another hospital.

Utilization of data diversity

The lack of reproducibility in generalizing discoveries to novel
datasets is an issue that has been well recognized by the
scientific community.”> Here, we ask the question: Can we
mitigate overfitting toward certain environments to improve
the prediction model’s generalizability to underrepresented or
new environments?

In many instances, the prediction accuracy can increase
significantly by increasing the volume of the training dataset.
The power of data expansion goes beyond prediction improve-
ment solely based on the volume boosting. Previously, it has
been shown that a suitable meta-analysis of multi-cohorts’
study can enhance the reproducibility of signature discovery
via hypothesis testing.”® Similarly, the diversity of data could

play a critical role in improving the generalization of the model
to under-represented environments. For example, Fourati
et al.” and Hagan et al.”” considered the problem of identifying
common immune signatures predictive of antibody response
among 13 different vaccinations, leading to signatures with
increased generalization potential.

Apart from data expansion efforts, we may further consider
adapting machine learning approaches to explicitly utilize data
diversity. Standard model training criteria involve empirical
risk minimization (ERM), which aims to achieve overall high
accuracy on another independently and identically generated
test cohort, e.g., the test cohort behaves similarly as the train-
ing data with some newly generated data noise. However,
models from ERM may perform poorly on certain subgroups
of samples due to heterogeneous subpopulation structure and
inclusion of non-generalizable predictive relationships.”® ®'
Alternatively, we can construct models that favor uniformly
good performance across different subpopulations rather than
focusing on overall accuracy, often referred to as distributional
robust optimization (DRO).*' ¢

Below, we desc;ibe a standard DRO where we find the
model parameter Bto minimize the loss (min) in the worst
subpopulation or group (r;leaé():

B= argminmaxLZi € Jts(xi,yi) +1(B)s
B |~7g|

geG

where g € G represents the group assignment, J ¢ contains
samples in group g, |J g| is the size of Jg, B is the model
parameter, J(p) is some regularization penalty on the para-
meter B, €5(x;, ;)is the achieved loss at sample i with model

parameter P. The above minmax formulation enables predic-
tions with more uniform performance across groups. This
DRO framework has been used in linear and other more
flexible models such as neural networks and is effective for
robust classification against distributional changes, including
future changes in the test cohort, and helps identify invariant
or generalizable predictive relationships across different popu-
lations. Example 5 demonstrates this desirable property of
DRO over ERM in a simulated example.

Example 5: Consider a classification task where the
response is y € {0,1}, the hidden group is g € {0,1}.
Given the class label yand the group assignment g, the
observed feature values x are from a 10-dimensional
Gaussian distribution. The first dimension of xseparates
the two response classes in the same way and the second
and third dimensions have opposite effects for samples from
the two groups. We generate the samples with 90% of them
from group 1 and 10% of them from group 2 and predict y
using feature x. Figure 6a shows the boxplots of predicted
probability of y = 1 separately for the two groups using an
ERM model and a DRO model, which minimizes the worst
group performance.®” For samples from group 2, the ERM
model achieves no better accuracy than random guessing,
even though it achieves high classification accuracy in group
1. In contrast, the DRO model performs similarly well in
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Figure 6. lllustrative example comparing ERM and DRO. Data are generated using example 5 with a signal-to-noise ratio of 1 for the prediction task. There are two
groups, with 90% samples from group 1 and 10% from group 2. In the underlying model, the first feature separates the two classes invariantly, but the second and third
features have opposite effects on samples from the two groups. A) Boxplots of predicted probability for y = 1 using the ERM and the DRO models separately for the
two groups. B) Estimated model coefficients (y-axis) for both the DRO and ERM models.

both groups. The estimated model coefficients are shown in
Figure 6b, with the ERM model depending heavily on all
three features and the DRO model largely dependent on the
first invariant feature.

The idea of explicitly utilizing population diversity for
robust learning has not been widely exploited in medical
studies, with only a few works adopting this modern
learning scheme. For example, Yang et al.*” considered
robust COVID-19 risk predictions across sex and ethni-
city, opening opportunities for novel analysis in this
direction.

Discussion

When applying machine learning methods to predictive
tasks in immunological and other biomedical applications,
researchers need to be aware of both the strengths and
limitations of these methods. Overfitting is one common
issue encountered during the construction of prediction
models in contemporary applications, which often deal
with complex and high-dimensional data. Gaining
a thorough understanding of the causes behind overfit-
ting, the associated challenges, and cutting-edge strategies
for diagnosis and mitigation is critical for appropriately
applying various techniques.

Traditional perspectives on overfitting typically assume
that training and test samples exhibit similar characteris-
tics. In practice, however, test samples might follow dif-
ferent patterns than the training counterparts. In such
situations, it becomes increasingly important to develop
models that can capture invariant relationships, which can
be more effectively achieved by leveraging the diversity of
populations within the training data. Although discussions
on this topic are currently limited, recognizing this crucial
aspect of research could lead to significant advancements,
particularly in light of the growing international efforts to
conduct large-scale studies spanning multiple environ-
ments, as exemplified by various study centers, cohort
populations, and responses of interest.®**!
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