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ABSTRACT

Existing batching methods are designed to cancel the variability parameter but not the bias of estimators,

and thus are applied typically in the setting of unbiased estimation. We provide a batching scheme that

cancel out the bias and variability parameters of estimators simultaneously, yielding asymptotically exact

confidence intervals for biased estimation problems. We apply our batching method to finite difference

estimators. We extend our method to the multivariate case in constructing confidence regions. We validate

our theory and analyze the effect of the number of batches through numerical examples.

1 INTRODUCTION

Batching methods are widely used in simulation analysis. The basic idea of batching methods is to divide the

data into batches. To construct a confidence interval (CI), these methods utilize pivotal statistics that cancel

out the variability parameter by judiciously combining the batch estimates. They thus construct CIs without

knowing the values of these variability parameters. These schemes are especially useful for problems where

the variance of the output is hard to compute, such as quantile (Nakayama 2014) whose variance estimation

involves density estimation, and in serially dependent problems and steady-state estimation (Asmussen and

Glynn 2007; Nakayama 2007).

The current literature on batching methods focus on the estimation variability, but not the bias. To

construct CIs for biased estimators, however, one could consider a batching strategy for the bias as well.

Biased estimation arise in many places in the simulation literature, a basic example being the class of finite-

difference estimators, which is widely used in stochastic gradient estimation under black-box settings where

the underlying dynamics of the simulation model is inaccessible (Lam et al. 2021). For finite-difference

estimators, under the arguably optimal selection of the perturbation parameter, the asymptotic distribution

of the (scaled) estimation error is not centered at 0 (Glynn 1989). Moreover, the center of this asymptotic

distribution depends on model characteristics that are unknown a priori, so an explicit correction for the

bias may not be straightforward. In this case, classical batching methods would fail because they do not

account for this bias. A bootstrap correction for the bias will not work either, since the estimator based on

the resampled data has the same amount of bias as the original data. An explicit correction for the bias

using some type of bias estimators is discussed in Section 4.4 of Hall (1992) for kernel density estimators

(KDE). However, the bias estimator requires the order and differentiability of the kernels, which make it

hard to be applied to general biased estimators.

In this paper, we propose a batching method that aims to cancel out both the bias and variance parameters

simultaneously, so that it can be applied to biased estimation problems. The way we handle the bias is to

take batch estimates with different batch sizes and cancel out the bias by scaling and subtracting these batch

estimates. The use of different batch sizes has some resemblance with subsampling techniques (Politis
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et al. (1999); Bickel et al. (1997)) where the resample size is chosen smaller than the original size in a

bootstrap, but the motivation in our case is different as we aim to cancel out the bias, instead of removing

smoothness conditions in a full-size bootstrap or handling serial dependence. The variability parameter,

on the other hand, can be handled in a similar way as the usual batching methods. Combining them,

we construct a pivotal statistic with a limiting t-distribution, which yields a CI with asymptotically exact

coverage. We also extend our method to the multivariate case where we construct ellipsoidal confidence

regions. We apply our method to finite-difference estimators both in the univariate and multivariate cases,

where the latter is based on simultaneous perturbation.

The rest of the paper is organized as follows. Section 2 introduces biased problems. Section 3 discusses

the challenges of usual batching and bootstrap methods. Section 4 proposes our batching method for biased

problems. Section 5 extends our method to the multivariate case. Section 6 gives numerical examples.

2 BIASED ESTIMATION PROBLEMS

Consider an unknown target quantity ψ . Given n i.i.d. data X1, . . . ,Xn, we use an estimator ψ̂n that depends

on the data and a tuning parameter δn to estimate ψ . Here, we consider biased problems in which we

cannot obtain unbiased samples easily.

A basic example of biased estimators is finite-difference estimators in stochastic gradient estimation.

Suppose f (·) is a black-box function that can only be noisily evaluated via unbiased samples. To estimate

the derivative of f (·) at a point x0, we would use the finite-difference estimator given by

Forward Finite Difference (FFD): ψ̂n,FFD =
1

n

n

∑
i=1

f̂
(i)
1 (x0 +δn)− f̂

(i)
2 (x0)

δn

or

Central Finite Difference (CFD): ψ̂n,CFD =
1

n

n

∑
i=1

f̂
(i)
1 (x0 +δn)− f̂

(i)
2 (x0−δn)

2δn

where f̂
(i)
1 (·) and f̂

(i)
2 (·), i = 1,2, . . . ,n are two independent noisy runs of f , and δn is a perturbation

parameter.

For biased problems such as the finite-difference estimators depicted above, we typically have a central

limit theorem (CLT)

nβ (ψ̂n−ψ)⇒ N
(

µ,σ2
)

(1)

for some β , when δn is appropriately chosen in terms of n (Fox and Glynn 1989). Here, unlike standard

CLT, because of the bias we have a non-zero-mean normal limit and β could be smaller than the canonical

rate of 1/2. For example, for FFD and CFD, under enough smoothness conditions, we have that (Glynn

1989)

n1/4
(

ψ̂n,FFD− f ′(x0)
)

⇒ N

(

−δ f ′′(x0)

2
,
2Var f̂2(x0)

δ 2

)

, if n1/4δn→ δ (2)

by choosing δn of order n−1/4 and

n1/3
(

ψ̂n,CFD− f ′(x0)
)

⇒ N

(

−δ 2 f ′′′(x0)

3
,
2Var f̂2(x0)

δ 2

)

, if n1/6δn→ δ (3)

by choosing δn of order n−1/6. The convergence rates in (2) and (3) are optimal for the respective classes

of estimators. That is, if we choose δn at different rates than depicted, then the convergence rates would

not improve. On a high level, this is because the chosen orders of δn balance the bias and variance in the

estimation, and any distortions would increase either bias or variance that leads to a larger magnitude of

overall error.
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Our goal is to construct a CI for ψ by using (1). In many problems such as finite differences as shown

above, it is difficult to estimate σ2 and µ and thus a direct use of the CLT in CI construction. Moreover,

as we will show, classical batching methods and bootstrap methods also face challenges.

3 CHALLENGES IN STANDARD BATCHING AND BOOTSTRAP METHODS

There are several variants of batching methods depending on the construction of the point estimator and

the scheme in aggregating different batches. The ideas of these methods are similar in the sense that they

all aim to cancel out the variability of the point estimator via dividing by a quantity that represents the

variability among the batch estimates. We discuss one of the variant in detail here and similar discussion

will also hold for other variants of batching methods.

One common batching method constructs a level 1−α CI as

(

Åψ± tm−1,1−α/2

Sbatch√
m

)

(4)

where

Åψ =
1

m

m

∑
i=1

ψ̂
(i)
n ,

S2
batch =

1

m−1

m

∑
i=1

(

ψ̂
(i)
n − Åψ

)2

,

ψ̂
(i)
n are independent estimators of ψ , and tm−1,1−α/2 is the 1−α quantile of t distribution with m− 1

degrees of freedom. This CI is based on the observation that when µ = 0 in (1), we have that

√
m( Åψ−ψ)

√

1
m−1 ∑

m
i=1

(

ψ̂
(i)
n − Åψ

)2
⇒ tm−1 (5)

as n→ ∞. In (5), the asymptotic distribution does not depend on σ since it is canceled out by taking the

ratio. However, if µ deviates from 0, the asymptotic distribution of the above statistic would change since

µ is not canceled out. Therefore, the CI given in (4) is not valid when µ ̸= 0.

Bootstrap methods also have issues due to the bias. Suppose we want to use bootstrap to approximate

the distribution of nβ (ψ̂n−ψ) where ψ̂n is calculated based on i.i.d. data X1, . . . ,Xn. The general principle

of bootstrap suggests to use the distribution of

nβ (ψ∗n − ψ̂n)

conditional on X1, . . . ,Xn, where ψ∗n is the estimate based on resampled data {X∗1 , . . . ,X∗n }, sampled with

replacement from {X1, . . . ,Xn}. In the finite difference setting (say FFD), we have that

ψ̂n,FFD = EP̂ [X ]

where

P̂ :=
1

n

n

∑
i=1

δXi

and Xi is the i-th estimator:

Xi =
f̂
(i)
1 (x0 +δn)− f̂

(i)
2 (x0)

δn

.
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Here δXi
is point mass at Xi. So the estimator based on resampled data is given by

ψ∗n,FFD = EP∗ [X ]

where

P∗ :=
1

n

n

∑
i=1

δX∗i .

From the linearity of ψ∗n,FFD as a function of P∗, it is clear that

E

[

nβ
(

ψ∗n,FFD− ψ̂n,FFD

)

|{X1, . . . ,Xn}
]

= 0.

But on the other hand, from (2) we know that (under some conditions, e.g., uniform integrability)

E

[

nβ (ψ̂n,FFD−ψ)
]

→−δ f ′′(x0)

2
̸= 0.

Comparing the above two displayed relations, we conclude that the distirbution of nβ
(

ψ∗n,FFD− ψ̂n,FFD

)

conditional on the data cannot approximate the true distribution of nβ (ψ̂n,FFD−ψ).
Essentially, the reason that the usual bootstrap cannot work is that any estimator with the same choice

of δn will share the same amount of bias. Therefore, comparisons between the original estimator and the

estimator based on resampled data will not give any information about the bias. In Section 4.4.2 of Hall

(1992), a similar issue is discussed for KDE, which is a related type of biased problems whose amount

of bias is determined by the bandwith. Hall (1992) proposes an explicit correction for the bias, but the

proposed formula for the correction is involved and depends on properties of the problem, such as the

order of the kernel and the differentiability of the kernel function, which makes it hard to implement.

The above challenges faced by the standard batching and bootstrap suggests that we look for ways to

cancel out the bias and variance simultaneously. An idea is to construct batch estimators with different

amount of bias so that information on the bias can be obtained. This motivates the batching method that

we will describe next.

4 A BATCHING METHOD FOR BIASED ESTIMATION

We consider a modified batching approach that handles the bias and variability of biased estimation

simultaneously. The proposed method is given in Algorithm 1. In Algorithm 1, we first construct a new

quantity ν
( j)
n,s = nβ ψ̂n−sβ ψ̂s which is governed by a (scaled) unbiased CLT. To explain, notice that replacing

n with s in (1), we also have that

sβ (ψ̂s−ψ)⇒ N
(

µ,σ2
)

(6)

as s→ ∞. By subtracting (1) by (6), we have that for independent ψ̂n and ψ̂s,

(

nβ ψ̂n− sβ ψ̂s

)

−
(

nβ − sβ
)

ψ ⇒ N
(

0,2σ2
)

. (7)

as n→ ∞,s→ ∞. Therefore, up to a scaling of nβ − sβ , ν
( j)
n,s is governed by a CLT with mean zero in the

limit. The rest of the steps in Algorithm 1 handle the variance using the variability among {ν( j)
n,s } j=1,2,...,m

in a similar way as usual batching. We have the following theorem regarding the asymptotic exactness of

the output of Algorithm 1.

Theorem 1 Suppose that (1) holds. Then in Algorithm 1, we have that for any α ∈ (0,1), and I =
Iα ,Iα,lower or Iα,upper,

P(ψ ∈I )→ 1−α

as n,s→ ∞.
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Algorithm 1 Batching for biased estimation

Require: nominal level 1−α , batch sizes n ̸= s, number of batches m, the value of β in (1)

for j = 1,2, . . . ,m (independently) do

ψ̂
( j)
n ← an estimator based on n i.i.d. samples and tuning parameter δn

ψ̂
( j)
s ← an estimator based on another s i.i.d. samples and tuning parameter δs

ν
( j)
n,s ← nβ ψ̂

( j)
n − sβ ψ̂

( j)
s

end for

Åν ← 1
m ∑

m
j=1 ν

( j)
n,s

S2← 1
m−1 ∑

m
j=1

(

ν
( j)
n,s − Åν

)2

Iα ←
[(

Åν− tm−1,1−α/2
S√
m

)

/
(

nβ − sβ
)

,
(

Åν + tm−1,1−α/2
S√
m

)

/
(

nβ − sβ
)

]

Iα,lower←
(

−∞,
(

Åν + tm−1,1−α
S√
m

)

/
(

nβ − sβ
)

]

Iα,upper←
[(

Åν− tm−1,1−α
S√
m

)

/
(

nβ − sβ
)

,∞
)

return Two sided CI Iα,lower and one-sided CIs Iα,lower,Iα,upper.

Proof. From the construction of ν
( j)
n,s and the observation (7), we have that

(

ν
( j)
n,s −

(

nβ − sβ
)

ψ
)

j=1,...,m
⇒ (Z j) j=1,...,m (8)

where Z j
i.i.d∼ N

(

0,2σ2
)

. Therefore, we have that

Åν−
(

nβ − sβ
)

ψ

S/
√

m
⇒

ÅZ

SZ/
√

m

d
= tm−1 (9)

where ÅZ = (1/m)∑
m
j=1 Z j and S2

Z = (1/(m−1))∑
m
j=1 (Z j− ÅZ)

2
, and tm−1 is a t-distribution with degree of

freedom m− 1. The convergence in distribution follows from (8) and the continuous mapping theorem,

and the equality in distribution
d
= follows from elementary properties of independent normal variables.

By inverting (9), we derive the desired result.

The use of the batch size s that is smaller than n has some resemblance with subsampling techniques

(Politis et al. (1999); Bickel et al. (1997)) where the resample size in a bootstrap is chosen smaller than the

full data size. However, the motivation here is different from that literature. While they use subsampling

to remove smoothness conditions required by full-size bootstraps or to handle serial dependence, we use

different batch sizes in order to combine these batches in a way to eliminate the bias. Suppose further that

s = ρn, i.e., ρ is the subsample factor of s with respect to n. In this case, the two-sided CI in Algorithm 1

can be written as
1

1−ρα

(

ÅY ± tm−1,1−α/2

SY√
m

)

where Yj = ψ
( j)
n −ραψ

( j)
s , and ÅY = (1/m)∑

m
j=1Yj and S2

Y = (1/(m−1))∑
m
j=1 (Yj− ÅY )

2
.

5 GENERALIZATION TO THE MULTIVARIATE CASE

The analysis in Section 2 can be extended to the multivariate case, where we want a confidence region for

multiple biased estimators. Suppose that we are interested in a multidimensional unknown target quantity

Ψ ∈ R
d and have biased estimators given by Ψ̂n which depend on a tuning parameter δn. In this case, we

will start from a multivariate analog of (1):

nβ (Ψ̂n−Ψ)⇒ N(µ,Σ) (10)
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where µ ∈ R
d ,Σ ∈ R

d×d .

For example, for the gradient estimation of a performance function w.r.t. multiple parameters, simul-

taneous perturbation finite difference (SPFD) can be employed (Spall 1992). Suppose f (·) : Rd → R can

only be noisily evalutaed and we want to estimate the gradient of f at x0 ∈ R
d . Then we would take a

random vector h ∈ R
d and then for each of i = 1,2, . . . ,d, an estimator for ∇ f (x0)i is given by

f̂1(x0 +δnh)− f̂2(x0−δnh)

2δnhi

(11)

Therefore, with n simulation runs, the estimator is given by

Ψ̂n,SPFD =
1

n

n

∑
j=1

(

f̂
( j)
1 (x0 +δnh( j))− f̂

( j)
2 (x0−δnh( j))

2δnh
( j)
i

)

i=1,2,...,d

(12)

where f̂
( j)
1 (·) and f̂

( j)
2 (·), j = 1,2, . . . ,n are two independent noisy runs of f , h( j), j = 1,2, . . . ,n are

independent samples with the same distribution as h, and δn is a (deterministic) perturbation parameter. As

discussed in Lam et al. (2019), if we assume that h has mean zero, the components of h are independent,

each component of h has finite inverse second moment and smoothness conditions hold for f , then the

bias and variance of the estimator given in (11) are of orders δ 2
n and δ−2

n respectively, which is the same

as CFD. Therefore, when δn is of order n−1/6, following the general result provided in Theorem 2 of Fox

and Glynn (1989) and using CramÂer±Wold device, we have that under regularity conditions,

n1/3(Ψ̂n,SPFD−∇ f (x0))⇒ N(µ,Σ)

for some µ ∈ R
d and Σ ∈ R

d×d .

For the multivariate case, an analog of Algorithm 1 is provided in Algorithm 2. In Algorithm 2, the way

we handle the bias and variance is similar to the univariate case, which yields a statistic with asymptotic

Hotelling T 2 distribution.

Algorithm 2 Batching for biased estimation (the multivariate version)

Require: nominal level 1−α , batch sizes n ̸= s, number of batches m, the value of β in (10), dimension d

for j = 1,2, . . . ,m (independently) do

Ψ̂
( j)
n ← an estimator based on n i.i.d. samples and tuning parameter δn

Ψ̂
( j)
s ← an estimator based on another s i.i.d. samples and tuning parameter δs

V
( j)
n,s ← nβ Ψ̂

( j)
n − sβ Ψ̂

( j)
s

end for
ÅV ← 1

m ∑
m
j=1V

( j)
n,s

S← 1
m−1 ∑

m
j=1

(

V
( j)
n,s − ÅV

)(

V
j

n,s− ÅV
)⊤

Iα,d←
{

y ∈ R
d : m

(

ÅV − (nβ − sβ )y
)⊤

S−1
(

ÅV − (nβ − sβ )y
)

≤ T 2
d,m−1,1−α

}

(Here, T 2
d,m−1,1−α the 1−α

quantile of Hotelling T 2 with dimension d and m−1 degrees of freedom.)

return Confidence region Iα,d

For Algorithm 2, we have that

Theorem 2 Suppose that (10) holds. Moreover, suppose that m≥ d +1. Then in Algorithm 2,

P(Ψ ∈Iα,d)→ 1−α

as n,s→ ∞.
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Proof. Similar to the one-dimensional case, from (1) and

nβ (Ψ̂n−Ψ)⇒ N(µ,Σ),

we have that
(

V
( j)
n,s −

(

nβ − sβ Ψ

))

⇒ (Z j) j=1,2,...,m

where Z j ∼ N(0,2Σ) are independent for each j = 1,2, . . . ,m. Therefore,

m
(

ÅV − (nβ − sβ )y
)⊤

S−1
(

ÅV − (nβ − sβ )y
)

⇒ m ÅZ⊤S−1
Z

ÅZ

where ÅZ = 1
n ∑

m
j=1 Z j and

SZ =
1

m−1

m

∑
j=1

(

Z j− ÅZ
)(

Z j− ÅZ
)⊤

.

Note that m ÅZ⊤S−1
Z

ÅZ
d
= T 2

d,m−1. This gives the desired result.

6 NUMERICAL EXAMPLES

6.1 A Toy Example

To illustrate the effectiveness of the method, we study the problem of constructing a 95% CI for the gradient

of

f (θ) := θ +θ 2 + sinθ .

at θ = 0. Suppose we can only generate estimators f̂ (θ) = f (θ)+ ε where the noise ε is a standard

normal. We consider both FFD and CFD. For FFD, we set δn = n−1/4. For CFD, we set δn = n−1/6.

We define the total simulation budget as N = m(s+n). We let ρ = 1/2. We test m = 2,5,10,15,20 and

N = 900,9000,90000,900000. Note that once N and m are specified, s and n are determined accordingly

by the constraint for the simulation budget and the choice of ρ . We replicate the experiments 1000 times

to estimate the coverage probabilities and the half length of the CIs.

The results for FFD and CFD are shown in Table 1 and Table 2 respectively. We can see that for both

FFD and CFD, the empirical coverages are close to the nominal level. Indeed, all of the empirical coverages

reported in Tables 1 and 2 are within the range 95%±2%. The difference in their performances appears

in the half length. For a fixed simulation budget, when m increases, the average half length decreases.

For example, in Table 1, when the simulation budget is fixed as 900 and m increases from 2 to 30, the

average half length reduces from 22.6 to 2.2. A similar observation also holds for CFD. This can also be

theoretically justified. Indeed, from the form of the CI given in Algorithm 1, we can see that the half length

is of order (
√

m(nβ − sβ ))−1. Since β < 1/2, the effect of increasing m supersedes the effect of decreasing

n,s when m(n+ s) and s/n are fixed. The half length also decreases as the simulation budget increases,

but at a slow rate. For example, for FFD, when the simulation budget increases from 900 to 900000 (103

times larger), the average half length (when m = 10) only reduces by 81% (1-0.6/3.2). The half length for

CFD has a faster decrease rate than FFD (which reduces by 90% when the simulation budget increase from

900 to 900000), but the amount of decrease in half length is still small compared to the increase in the

simulation budget. Essentially, this is due to the slow rate in the CLT result (1). From the above analysis,

and also suggested by the order of the half length, we can see that increasing m or increasing m and the

simulation budget simultaneously is more effective than just increasing the simulation budget, if we want

to shorten the length of the CI. Indeed, when N and m increases proportionally such that n and s are fixed,

the order of length given by (
√

m(nβ − sβ ))−1 will decrease at rate N−1/2. On the other hand, if we fix m

and increase N, the rate is only N−β . Lastly, comparing CFD and FD, we find that the half length for CFD

is significantly smaller than the half length of FFD. For example, when the simulation budget is 9000 and

m = 10, the lengths for FFD and CFD are 1.8 and 0.4 respectively. This is due to the fact that CFD has a

faster rate of convergence than FFD in the CLTs (2) and (3).
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simulation budget m empirical coverage average half length

2 95.9% (0.6%) 22.6 (16.7)

5 95.3% (0.7%) 4.4 (1.6)

900 10 95.9% (0.6%) 3.2 (0.8)

20 95.8% (0.6%) 2.5 (0.4)

30 94.6% (0.7%) 2.2 (0.3)

2 95.0% (0.7%) 12.7 (9.1)

5 95.6% (0.6%) 2.5 (0.9)

9000 10 94.8% (0.7%) 1.8 (0.4)

20 95.0% (0.7%) 1.4 (0.2)

30 96.4% (0.6%) 1.2 (0.2)

2 93.8% (0.8%) 7.0 (5.4)

5 94.0% (0.8%) 1.4 (0.5)

90000 10 95.7% (0.6%) 1.0 (0.2)

20 93.6% (0.8%) 0.8 (0.1)

30 94.8% (0.7%) 0.7 (0.1)

2 94.7% (0.7%) 3.9 (3.0)

5 95.3% (0.7%) 0.8 (0.3)

900000 10 95.2% (0.7%) 0.6 (0.1)

20 94.3% (0.7%) 0.4 (0.1)

30 94.8% (0.7%) 0.4 (0.1)

Table 1: Empirical coverages and average half lengths for FFD in the toy example. The standard errors

are shown in parentheses.

6.2 Sensitivity Analysis for an M/M/1 Queue

We consider the example in Lam et al. (2019). For an M/M/1 queue, we define the performance function

as the expected value of the average system time of the first 10 customers. The parameters are the arrival

rate λ and the service rate µ . Our goal is to construct 95% CIs for the gradients of the performance w.r.t.

λ and µ .

First, we construct 95% CIs for the two gradients separately. We focus on CFD with δn = n−1/6.

As in the toy example, the total simulation budget is defined as N = m(s+ n) and ρ = 1/2. We test

m = 2,5,10,20,30 and N = 900,1800,3600. We use the true values for the gradients given in Lam et al.

(2019). The estimated empirical coverage probabilities and half length are reported in Table 3. From Table

3, we have similar observations as in the toy example: all of the empirical coverages are close to the

nominal level, the half length of the CI decreases as simulation budget increases or as m increases, but for

a fixed m, the rate that the half length decreases as the simulation budget increases is slow.

Next, we study the 95% confidence region for the whole gradient vector w.r.t. λ and µ . We use SPFD

and choose the distribution of h as (h1,h2) where h1 and h2 are independent taking 1 and −1 with equal

probability. We choose δn = n−1/6 as in CFD. We test m = 5,10,20,30 and N = 900,1800,3600 (note that

we can not take m = 2 as in the one-dimensional case since we need m≥ d +1 in Theorem 2).

The empirical coverages and average areas of the confidence regions are reported in Table 4. Again,

we observe that the empirical coverages are close to the nominal level. The average area decreases faster

as the simulation budget increases or as m increases than the one-dimensional case. For example, when

m = 30 and the simulation budget increases from 900 to 3600, the average area becomes 33% (0.015/0.045)

of the original average area. On the other hand, in Table 3, the half length for the gradient w.r.t. µ becomes

61% (0.14/0.23) of the original for the same change of simulation budget. This is because the order of the

area of the confidence region is the square of the order of the half lengths.
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simulation budget m empirical coverage average half length

2 95.2% (0.7%) 5.18 (3.72)

5 94.1% (0.7%) 1.15 (0.42)

900 10 94.7% (0.7%) 0.86 (0.21)

20 95.4% (0.7%) 0.72 (0.12)

30 94.4% (0.7%) 0.66 (0.09)

2 95.1% (0.7%) 2.50 (1.86)

5 94.8% (0.7%) 0.53 (0.20)

9000 10 95.3% (0.7%) 0.40 (0.09)

20 93.4% (0.8%) 0.33 (0.05)

30 95.3% (0.7%) 0.31 (0.04)

2 94.8% (0.7%) 1.11 (0.85)

5 94.3% (0.7%) 0.25 (0.09)

90000 10 94.6% (0.7%) 0.19 (0.04)

20 95.6% (0.6%) 0.15 (0.03)

30 94.9% (0.7%) 0.14 (0.02)

2 94.9% (0.7%) 0.52 (0.38)

5 95.6% (0.6%) 0.12 (0.04)

900000 10 94.9% (0.7%) 0.09 (0.02)

20 95.2% (0.7%) 0.07 (0.01)

30 94.7% (0.7%) 0.07 (0.01)

Table 2: Empirical coverages and average half lengths for CFD in the toy example. The standard errors

are shown in parentheses.

simulation m empirical average half empirical average half

budget coverage (λ ) length (λ ) coverage (µ) length (µ)

2 94.9% (0.7%) 1.67 (1.28) 94.8% (0.7%) 1.83 (1.33)

5 95.4% (0.7%) 0.38 (0.13) 94.2% (0.7%) 0.39 (0.15)

900 10 95.0% (0.7%) 0.28 (0.07) 93.2% (0.8%) 0.29 (0.07)

20 94.0% (0.8%) 0.23 (0.04) 95.5% (0.7%) 0.25 (0.04)

30 94.6% (0.7%) 0.22 (0.03) 94.8% (0.7%) 0.23 (0.03)

2 94.2% (0.7%) 1.34 (1.05) 94.7% (0.7%) 1.40 (1.06)

5 95.1% (0.7%) 0.30 (0.11) 96.1% (0.6%) 0.31 (0.11)

1800 10 95.0% (0.7%) 0.22 (0.05) 94.8% (0.7%) 0.24 (0.06)

20 94.5% (0.7%) 0.19 (0.03) 93.6% (0.8%) 0.20 (0.03)

30 94.9% (0.7%) 0.17 (0.02) 96.3% (0.6%) 0.18 (0.02)

2 95.1% (0.7%) 1.07 (0.81) 95.3% (0.7%) 1.13 (0.86)

5 94.4% (0.7%) 0.23 (0.08) 95.1% (0.7%) 0.25 (0.09)

3600 10 94.6% (0.7%) 0.18 (0.04) 96.2% (0.6%) 0.18 (0.04)

20 95.1% (0.7%) 0.15 (0.02) 96.2% (0.6%) 0.15 (0.03)

30 93.9% (0.8%) 0.14 (0.02) 95.1% (0.7%) 0.14 (0.02)

Table 3: Empirical coverages and average half lengths for CFD in the M/M/1 queueing example. Columns

with (λ ), (µ) correspond to gradients w.r.t. λ and µ , respectively. The standard errors are shown in

parentheses.
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simulation budget m empirical coverage average area

5 94.7% (0.7%) 0.191 (0.252)

900 10 95.4% (0.7%) 0.076 (0.059)

20 95.1% (0.7%) 0.050 (0.024)

30 94.7% (0.7%) 0.045 (0.019)

5 95.0% (0.7%) 0.115 (0.136)

1800 10 95.1% (0.7%) 0.042 (0.029)

20 94.6% (0.7%) 0.030 (0.015)

30 94.2% (0.7%) 0.025 (0.010)

5 94.7% (0.7%) 0.063 (0.070)

3600 10 96.2% (0.6%) 0.026 (0.018)

20 94.4% (0.7%) 0.017 (0.008)

30 93.9% (0.8%) 0.015 (0.006)

Table 4: Empirical coverages and average areas for SPFD in the M/M/1 queueing example. The standard

errors are shown in parentheses.
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